51
|
Bernstein C. DNA Methylation and Establishing Memory. Epigenet Insights 2022; 15:25168657211072499. [PMID: 35098021 PMCID: PMC8793415 DOI: 10.1177/25168657211072499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
A single event can cause a life-long memory. Memories physically reside in neurons, and changes in neuronal gene expression are considered to be central to memory. Early models proposed that specific DNA methylations of cytosines in neuronal DNA encode memories in a stable biochemical form. This review describes recent research that elucidates the molecular mechanisms used by the mammalian brain to form DNA methylcytosine encoded memories. For example, neuron activation initiates cytosine demethylation by stimulating DNA topoisomerase II beta (TOP2B) protein to make a temporary DNA double-strand break (repaired within about 2 hours) at a promoter of an immediate early gene, EGR1, allowing expression of this gene. The EGR1 proteins then recruit methylcytosine dioxygenase TET1 proteins to initiate demethylation at several hundred genes, facilitating expression of those genes. Initiation of demethylation of cytosine also occurs when OGG1 localizes at oxidized guanine in a methylated CpG site and recruits TET1 for initiation of demethylation at that site. DNMT3A2 is another immediate early gene upregulated by synaptic activity. DNMT3A2 protein catalyzes de novo DNA methylations. These several mechanisms convert external experiences into DNA methylations and initiated demethylations of neuronal DNA cytosines, causing changes in gene expression that are the basis of long-term memories.
Collapse
Affiliation(s)
- Carol Bernstein
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
52
|
Okur V, Chen Z, Vossaert L, Peacock S, Rosenfeld J, Zhao L, Du H, Calamaro E, Gerard A, Zhao S, Kelsay J, Lahr A, Mighton C, Porter HM, Siemon A, Silver J, Svihovec S, Fong CT, Grant CL, Lerner-Ellis J, Manickam K, Madan-Khetarpal S, McCandless SE, Morel CF, Schaefer GB, Berry-Kravis EM, Gates R, Gomez-Ospina N, Qiu G, Zhang TJ, Wu Z, Meng L, Liu P, Scott DA, Lupski JR, Eng CM, Wu N, Yuan B. De novo variants in H3-3A and H3-3B are associated with neurodevelopmental delay, dysmorphic features, and structural brain abnormalities. NPJ Genom Med 2021; 6:104. [PMID: 34876591 PMCID: PMC8651650 DOI: 10.1038/s41525-021-00268-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.
Collapse
Affiliation(s)
- Volkan Okur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, 77021, USA
| | - Zefu Chen
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- Graduate School of Peking Union Medical College, 100005, Beijing, China
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, 77021, USA
| | - Sandra Peacock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, 77021, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lina Zhao
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily Calamaro
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Sen Zhao
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Jill Kelsay
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72701, USA
| | - Ashley Lahr
- Department of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
| | - Chloe Mighton
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, M5T 3M6, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, M5B 1A6, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Hillary M Porter
- Rare Disease Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Amy Siemon
- Nationwide Children's Hospital (NCH) and The Ohio State University College of Medicine Section of Genetic and Genomic Medicine, Columbus, OH, 43205, USA
| | - Josh Silver
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shayna Svihovec
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Christina L Grant
- Rare Disease Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Jordan Lerner-Ellis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kandamurugu Manickam
- Nationwide Children's Hospital (NCH) and The Ohio State University College of Medicine Section of Genetic and Genomic Medicine, Columbus, OH, 43205, USA
| | - Suneeta Madan-Khetarpal
- Department of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
| | - Shawn E McCandless
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Chantal F Morel
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - G Bradley Schaefer
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72701, USA
| | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ryan Gates
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, 77021, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, 77021, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nan Wu
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor Genetics Laboratories, Houston, TX, 77021, USA.
- Seattle Children's Hospital, Seattle, WA, 98105, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, UW, 98105, USA.
| |
Collapse
|
53
|
Lai D, Huang X, Wang C, Ow DW. Arabidopsis OXIDATIVE STRESS 3 enhances stress tolerance in Schizosaccharomyces pombe by promoting histone subunit replacement that upregulates drug-resistant genes. Genetics 2021; 219:6371188. [PMID: 34740252 DOI: 10.1093/genetics/iyab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/04/2021] [Indexed: 11/14/2022] Open
Abstract
Histone replacement in chromatin-remodeling plays an important role in eukaryotic gene expression. New histone variants replacing their canonical counterparts often lead to a change in transcription, including responses to stresses caused by temperature, drought, salinity, and heavy metals. In this study, we describe a chromatin-remodeling process triggered by eviction of Rad3/Tel1-phosphorylated H2Aα, in which a heterologous plant protein AtOXS3 can subsequently bind fission yeast HA2.Z and Swc2, a component of the SWR1 complex, to facilitate replacement of H2Aα with H2A.Z. The histone replacement increases occupancy of the oxidative stress-responsive transcription factor Pap1 at the promoters of at least three drug-resistant genes, which enhances their transcription and hence primes the cell for higher stress tolerance.
Collapse
Affiliation(s)
- Dingwang Lai
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Huang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changhu Wang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
54
|
Kumar VC, Pai R. Genes of the month: H3.3 histone genes: H3F3A and H3F3B. J Clin Pathol 2021; 74:753-758. [PMID: 34667098 DOI: 10.1136/jclinpath-2021-207857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/04/2022]
Abstract
Histones constitute the chief protein component of DNA. They help to maintain chromatin structure and regulate gene expression. The long double-stranded DNA molecule winds around histone octamers to form nucleosomes which serve the purpose of compacting DNA within the confines of the nuclear membrane. There are five major types of histones, namely H1/H5, H2, H3 and H4. H3.3 is a subtype of H3 histone and can be encoded either by the H3F3A or H3F3B genes independently. Amino acids such as lysine and arginine found in the histone tails are sites of post-translational modifications (PTMs) such as methylation and acetylation. These PTMs in histones are involved in the regulation of gene expression by chromatin remodelling and by controlling DNA methylation patterns. Mutations in histone genes can affect sites of PTMs causing changes in local and global DNA methylation status. These effects are directly linked to neoplastic transformation by altered gene expression. Recurrent H3.3 histone mutations are increasingly identified in several malignancies and developmental disorders. The following review attempts to shed light on the diseases associated with H3.3 histone mutations.
Collapse
Affiliation(s)
- Vishnu Chandra Kumar
- General Pathology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Rekha Pai
- General Pathology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
55
|
Bano D, Salomoni P, Ehninger D, Nicotera P. The histone code in dementia: Transcriptional and chromatin plasticity fades away. Curr Opin Pharmacol 2021; 60:117-122. [PMID: 34411982 PMCID: PMC8519393 DOI: 10.1016/j.coph.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 01/16/2023]
Abstract
With the aging of the population, Alzheimer's disease and other forms of dementia represent major challenges for health care systems globally. To date, the molecular mechanisms underlying the pathophysiology of dementia remain elusive, with a consequent negative impact in developing efficient disease modifiers. New exciting findings suggest that modulation of the histone code may influence transcriptional networks at the root of neuronal plasticity and cognitive performance. Although most of the current conclusions require further mechanistic evidence, it appears that chromatin perturbations actually correlate with Alzheimer's disease onset and progression. Thus, a better understanding of the epigenetic contribution to normal brain function and dementia pathogenesis may help to identify new epigenetic targets for the inhibition of disease trajectories associated with cognitive decline.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
56
|
Sun KY, Guo SM, Cheng GP, Yin Y, He X, Zhou LQ. Cleavage-embryo genes and transposable elements are regulated by histone variant H2A.X. J Reprod Dev 2021; 67:307-312. [PMID: 34393157 PMCID: PMC8568613 DOI: 10.1262/jrd.2021-065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mammalian preimplantation development, stimulation of zygotic genome activation (ZGA) and transposable elements (TEs) shapes totipotency profiling. A rare mouse embryonic stem cells (mESCs) subpopulation is capable of transiently entering a state resembling 2-cell stage embryos, with subtypes of TEs expressed and ZGA genes transiently activated. In this study, we found that deletion of H2A.X in mESCs led to a significant upregulation of ZGA genes and misregulated TEs. ChIP-seq analysis indicated a direct association of H2A.X at the Dux locus for silencing the Dux gene and its downstream ZGA genes in mESCs. We also demonstrated that histone variant H2A.X is highly enriched in human cleavage embryos when ZGA genes and TEs are active. Therefore, we propose that H2A.X plays an important role in regulating ZGA genes and TEs to establish totipotency.
Collapse
Affiliation(s)
- Kai-Yi Sun
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Gui-Ping Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| |
Collapse
|
57
|
Murdaugh RL, Hoegenauer KA, Kitano A, Holt MV, Hill MC, Shi X, Tiessen JF, Chapple R, Hu T, Tseng YJ, Lin A, Martin JF, Young NL, Nakada D. The histone H3.3 chaperone HIRA restrains erythroid-biased differentiation of adult hematopoietic stem cells. Stem Cell Reports 2021; 16:2014-2028. [PMID: 34242617 PMCID: PMC8365107 DOI: 10.1016/j.stemcr.2021.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
Histone variants contribute to the complexity of the chromatin landscape and play an integral role in defining DNA domains and regulating gene expression. The histone H3 variant H3.3 is incorporated into genic elements independent of DNA replication by its chaperone HIRA. Here we demonstrate that Hira is required for the self-renewal of adult hematopoietic stem cells (HSCs) and to restrain erythroid differentiation. Deletion of Hira led to rapid depletion of HSCs while differentiated hematopoietic cells remained largely unaffected. Depletion of HSCs after Hira deletion was accompanied by increased expression of bivalent and erythroid genes, which was exacerbated upon cell division and paralleled increased erythroid differentiation. Assessing H3.3 occupancy identified a subset of polycomb-repressed chromatin in HSCs that depends on HIRA to maintain the inaccessible, H3.3-occupied state for gene repression. HIRA-dependent H3.3 incorporation thus defines distinct repressive chromatin that represses erythroid differentiation of HSCs.
Collapse
Affiliation(s)
- Rebecca L Murdaugh
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin A Hoegenauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayumi Kitano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew V Holt
- Graduate Program in Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiangguo Shi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan F Tiessen
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard Chapple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tianyuan Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu-Jung Tseng
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angelique Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA
| | - Nicolas L Young
- Graduate Program in Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daisuke Nakada
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
58
|
Brien GL, Bressan RB, Monger C, Gannon D, Lagan E, Doherty AM, Healy E, Neikes H, Fitzpatrick DJ, Deevy O, Grant V, Marqués-Torrejón MA, Alfazema N, Pollard SM, Bracken AP. Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nat Genet 2021; 53:1221-1232. [PMID: 34294917 DOI: 10.1038/s41588-021-00897-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Driver mutations in genes encoding histone H3 proteins resulting in p.Lys27Met substitutions (H3-K27M) are frequent in pediatric midline brain tumors. However, the precise mechanisms by which H3-K27M causes tumor initiation remain unclear. Here, we use human hindbrain neural stem cells to model the consequences of H3.3-K27M on the epigenomic landscape in a relevant developmental context. Genome-wide mapping of epitope-tagged histone H3.3 revealed that both the wild type and the K27M mutant incorporate abundantly at pre-existing active enhancers and promoters, and to a lesser extent at Polycomb repressive complex 2 (PRC2)-bound regions. At active enhancers, H3.3-K27M leads to focal H3K27ac loss, decreased chromatin accessibility and reduced transcriptional expression of nearby neurodevelopmental genes. In addition, H3.3-K27M deposition at a subset of PRC2 target genes leads to increased PRC2 and PRC1 binding and augmented transcriptional repression that can be partially reversed by PRC2 inhibitors. Our work suggests that, rather than imposing de novo transcriptional circuits, H3.3-K27M drives tumorigenesis by locking initiating cells in their pre-existing, immature epigenomic state, via disruption of PRC2 and enhancer functions.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Raul Bardini Bressan
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Dáire Gannon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Eimear Lagan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Anthony M Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannah Neikes
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Vivien Grant
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria-Angeles Marqués-Torrejón
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Neza Alfazema
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
59
|
Abstract
Substance use disorders (SUDs) are chronic brain diseases characterized by transitions from recreational to compulsive drug use and aberrant drug craving that persists for months to years after abstinence is achieved. The transition to compulsive drug use implies that plasticity is occurring, altering the physiology of the brain to precipitate addicted states. Epigenetic phenomena represent a varied orchestra of transcriptional tuning mechanisms that, in response to environmental stimuli, create and maintain gene expression-mediated physiological outcomes. Therefore, epigenetic mechanisms represent a convergent regulatory framework through which the plasticity required to achieve an addicted state can arise and then persist long after drug use has ended. In the first section, we will introduce basic concepts in epigenetics, such as chromatin architecture, histones and their posttranslational modifications, DNA methylation, noncoding RNAs, and transcription factors, along with methods for their investigation. We will then examine the implications of these mechanisms in SUDs, with a particular focus on cocaine-mediated neuroepigenetic plasticity across multiple behavioral models of addiction.
Collapse
Affiliation(s)
- Andrew F Stewart
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sasha L Fulton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
60
|
Hsu CJ, Meers O, Buschbeck M, Heidel FH. The Role of MacroH2A Histone Variants in Cancer. Cancers (Basel) 2021; 13:cancers13123003. [PMID: 34203934 PMCID: PMC8232725 DOI: 10.3390/cancers13123003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The structural unit of chromatin is the nucleosome that is composed of DNA wrapped around a core of eight histone proteins. Histone variants can replace ‘standard’ histones at specific sites of the genome. Thus, histone variants modulate all functions in the context of chromatin, such as gene expression. Here, we provide a concise review on a group of histone variants termed macroH2A. They contain two additional domains that contribute to their increased size. We discuss how these domains mediate molecular functions in normal cells and the role of macroH2As in gene expression and cancer. Abstract The epigenome regulates gene expression and provides a molecular memory of cellular events. A growing body of evidence has highlighted the importance of epigenetic regulation in physiological tissue homeostasis and malignant transformation. Among epigenetic mechanisms, the replacement of replication-coupled histones with histone variants is the least understood. Due to differences in protein sequence and genomic distribution, histone variants contribute to the plasticity of the epigenome. Here, we focus on the family of macroH2A histone variants that are particular in having a tripartite structure consisting of a histone fold, an intrinsically disordered linker and a globular macrodomain. We discuss how these domains mediate different molecular functions related to chromatin architecture, transcription and DNA repair. Dysregulated expression of macroH2A histone variants has been observed in different subtypes of cancer and has variable prognostic impact, depending on cellular context and molecular background. We aim to provide a concise review regarding the context- and isoform-dependent contributions of macroH2A histone variants to cancer development and progression.
Collapse
Affiliation(s)
- Chen-Jen Hsu
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| | - Florian H. Heidel
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| |
Collapse
|
61
|
Lu C, Coradin M, Janssen KA, Sidoli S, Garcia BA. Combinatorial Histone H3 Modifications Are Dynamically Altered in Distinct Cell Cycle Phases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1300-1311. [PMID: 33818074 PMCID: PMC8380055 DOI: 10.1021/jasms.0c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cell cycle is a highly regulated and evolutionary conserved process that results in the duplication of cell content and the equal distribution of the duplicated chromosomes into a pair of daughter cells. Histones are fundamental structural components of chromatin in eukaryotic cells, and their post-translational modifications (PTMs) benchmark DNA readout and chromosome condensation. Aberrant regulation of the cell cycle associated with dysregulation of histone PTMs is the cause of critical diseases such as cancer. Monitoring changes of histone PTMs could pave the way to understanding the molecular mechanisms associated with epigenetic regulation of cell proliferation. Previously, our lab established a novel middle-down workflow using porous graphitic carbon (PGC) as a stationary phase to analyze histone PTMs, which utilizes the same reversed-phase chromatography for gradient separation as canonical proteomics coupled with online mass spectrometry (MS). Here, we applied this novel workflow for high-throughput analysis of histone modifications of H3.1 and H3.2 during the cell cycle. Collectively, we identified 1133 uniquely modified canonical histone H3 N-terminal tails. Consistent with previous findings, histone H3 phosphorylation increased significantly during the mitosis (M) phase. Histone H3 variant-specific and cell-cycle-dependent expressions of PTMs were observed, underlining the need to not combine H3.1 and H3.2 together as H3. We confirmed previously known H3 PTM crosstalk (e.g., K9me-S10ph) and revealed new information in this area as well. These findings imply that the combinatorial PTMs play a role in cell cycle control, and they may serve as markers for proliferation.
Collapse
Affiliation(s)
- Congcong Lu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biochemistry and Molecular Biophysics graduate group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin A. Janssen
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biochemistry and Molecular Biophysics graduate group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- To whom correspondence should be addressed.
| |
Collapse
|
62
|
Leske H, Dalgleish R, Lazar AJ, Reifenberger G, Cree IA. A common classification framework for histone sequence alterations in tumours: an expert consensus proposal. J Pathol 2021; 254:109-120. [PMID: 33779999 DOI: 10.1002/path.5666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
The description of genetic alterations in tumours is of increasing importance. In human genetics, and in pathology reports, sequence alterations are given using the human genome variation society (HGVS) guidelines for the description of such variants. However, there is less adherence to these guidelines for sequence variations in histone genes. Due to early cleavage of the N-terminal methionine in most histones, the description of histone sequence alterations follows their own nomenclature and differs from the HGVS-compliant numbering by omitting this first amino acid. Next generation sequencing reports, however, follow the HGVS guidelines and as a result, an unambiguous description of sequence variants in histones cannot be provided. The coexistence of these two nomenclatures leads to confusions for pathologists, oncologists, and researchers. This review provides an overview of tumour entities with sequence alterations of the H3-3A gene (HGNC ID = HGNC:4764), highlights the problems associated with the coexistence of these two nomenclatures, and proposes a standard for the reporting of histone sequence variants that allows an unambiguous description of these variants according to HGVS principles. We hope that scientific journals will adopt the new notation, and that both geneticists and pathologists will include it in their reports. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- University of Oslo (UiO), Oslo, Norway
| | - Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Ian A Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| |
Collapse
|
63
|
Casati P, Gomez MS. Chromatin dynamics during DNA damage and repair in plants: new roles for old players. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4119-4131. [PMID: 33206978 DOI: 10.1093/jxb/eraa551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The genome of plants is organized into chromatin. The chromatin structure regulates the rates of DNA metabolic processes such as replication, transcription, DNA recombination, and repair. Different aspects of plant growth and development are regulated by changes in chromatin status by the action of chromatin-remodeling activities. Recent data have also shown that many of these chromatin-associated proteins participate in different aspects of the DNA damage response, regulating DNA damage and repair, cell cycle progression, programmed cell death, and entry into the endocycle. In this review, we present different examples of proteins and chromatin-modifying enzymes with roles during DNA damage responses, demonstrating that rapid changes in chromatin structure are essential to maintain genome stability.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha, Rosario, Argentina
| | - Maria Sol Gomez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera, Cantoblanco, Madrid, Spain
| |
Collapse
|
64
|
Matsuo Y. The Adenine/Thymine Deleterious Selection Model for GC Content Evolution at the Third Codon Position of the Histone Genes in Drosophila. Genes (Basel) 2021; 12:721. [PMID: 34065869 PMCID: PMC8150595 DOI: 10.3390/genes12050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
The evolution of the GC (guanine cytosine) content at the third codon position of the histone genes (H1, H2A, H2B, H3, H4, H2AvD, H3.3A, H3.3B, and H4r) in 12 or more Drosophila species is reviewed. For explaining the evolution of the GC content at the third codon position of the genes, a model assuming selection with a deleterious effect for adenine/thymine and a size effect is presented. The applicability of the model to whole-genome genes is also discussed.
Collapse
Affiliation(s)
- Yoshinori Matsuo
- Division of Science and Technology, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
65
|
Smith R, Pickering SJ, Kopakaki A, Thong KJ, Anderson RA, Lin CJ. HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype. Reproduction 2021; 161:697-707. [PMID: 33835048 PMCID: PMC8188263 DOI: 10.1530/rep-20-0636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/08/2021] [Indexed: 11/08/2022]
Abstract
Elucidating the mechanisms underpinning fertilisation is essential to optimising IVF procedures. One of the critical steps involves paternal chromatin reprogramming, in which compacted sperm chromatin packed by protamines is removed by oocyte factors and new histones, including histone H3.3, are incorporated. HIRA is the main H3.3 chaperone governing this protamine-to-histone exchange. Failure of this step results in abnormally fertilised zygotes containing only one pronucleus (1PN), in contrast to normal two-pronuclei (2PN) zygotes. 1PN zygotes are frequently observed in IVF treatments, but the genotype-phenotype correlation remains elusive. We investigated the maternal functions of two other molecules of the HIRA complex, Cabin1 and Ubn1, in mouse. Loss-of-function Cabin1 and Ubn1 mouse models were developed: their zygotes displayed an abnormal 1PN zygote phenotype. We then studied human 1PN zygotes and found that the HIRA complex was absent in 1PN zygotes that lacked the male pronucleus. This shows that the role of the HIRA complex in male pronucleus formation potentially has coherence from mice to humans. Furthermore, rescue experiments in mouse showed that the abnormal 1PN phenotype derived from Hira mutants could be resolved by overexpression of HIRA. We have demonstrated that HIRA complex regulates male pronucleus formation in mice and is implicated in humans, that both CABIN1 and UBN1 components of the HIRA complex are equally essential for male pronucleus formation, and that rescue is feasible.
Collapse
Affiliation(s)
- Rowena Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
| | - Sue J Pickering
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Anna Kopakaki
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - K J Thong
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
| |
Collapse
|
66
|
Mylonas C, Lee C, Auld AL, Cisse II, Boyer LA. A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat Struct Mol Biol 2021; 28:435-442. [PMID: 33972784 DOI: 10.1038/s41594-021-00589-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
RNA polymerase II (RNAPII) pausing immediately downstream of the transcription start site is a critical rate-limiting step for the expression of most metazoan genes. During pause release, RNAPII encounters a highly conserved +1 H2A.Z nucleosome, yet how this histone variant contributes to transcription is poorly understood. Here, using an inducible protein degron system combined with genomic approaches and live cell super-resolution microscopy, we show that H2A.Z.1 modulates RNAPII dynamics across most genes in murine embryonic stem cells. Our quantitative analysis shows that H2A.Z.1 slows the rate of RNAPII pause release and consequently impacts negative elongation factor dynamics as well as nascent transcription. Consequently, H2A.Z.1 also impacts re-loading of the pre-initiation complex components TFIIB and TBP. Altogether, this work provides a critical mechanistic link between H2A.Z.1 and the proper induction of mammalian gene expression programs through the regulation of RNAPII dynamics and pause release.
Collapse
Affiliation(s)
- Constantine Mylonas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Choongman Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander L Auld
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
67
|
Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: genomic organization and role of oncohistones in cancer. Clin Epigenetics 2021; 13:71. [PMID: 33827674 PMCID: PMC8025322 DOI: 10.1186/s13148-021-01057-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background The oncogenic role of histone mutations is one of the most relevant discovery in cancer epigenetics. Recurrent mutations targeting histone genes have been described in pediatric brain tumors, chondroblastoma, giant cell tumor of bone and other tumor types. The demonstration that mutant histones can be oncogenic and drive the tumorigenesis in pediatric tumors, led to the coining of the term “oncohistones.” The first identified histone mutations were localized at or near residues normally targeted by post-translational modifications (PTMs) in the histone N-terminal tails and suggested a possible interference with histone PTMs regulation and reading. Main body In this review, we describe the peculiar organization of the multiple genes that encode histone proteins, and the latter advances in both the identification and the biological role of histone mutations in cancer. Recent works show that recurrent somatic mutations target both N-terminal tails and globular histone fold domain in diverse tumor types. Oncohistones are often dominant-negative and occur at higher frequencies in tumors affecting children and adolescents. Notably, in many cases the mutations target selectively only some of the genes coding the same histone protein and are frequently associated with specific tumor types or, as documented for histone variant H3.3 in pediatric glioma, with peculiar tumors arising from specific anatomic locations. Conclusion The overview of the most recent advances suggests that the oncogenic potential of histone mutations can be exerted, together with the alteration of histone PTMs, through the destabilization of nucleosome and DNA–nucleosome interactions, as well as through the disruption of higher-order chromatin structure. However, further studies are necessary to fully elucidate the mechanism of action of oncohistones, as well as to evaluate their possible application to cancer classification, prognosis and to the identification of new therapies.
Collapse
Affiliation(s)
- Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| | - Simona Tavolaro
- Fredis Associazione, Via Edoardo Jenner 30, 00151, Rome, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| |
Collapse
|
68
|
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis 2021; 12:311. [PMID: 33762579 PMCID: PMC7991640 DOI: 10.1038/s41419-021-03597-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
The histone H3.3K36M mutation, identified in over 90% of chondroblastoma cases, reprograms the H3K36 methylation landscape and gene expression to promote tumorigenesis. However, it's still unclear how the H3K36M mutation preferentially occurs in the histone H3 variant H3.3 in chondroblastomas. Here, we report that H3.3K36M-, but not H3.1K36M-, mutant cells showed increased colony formation ability and differentiation defects. H3K36 methylations and enhancers were reprogrammed to different status in H3.3K36M- and H3.1K36M-mutant cells. The reprogramming of H3K36 methylation and enhancers was depended on the specific loci at which H3.3K36M and H3.1K36M were incorporated. Moreover, targeting H3K36M-mutant proteins to the chromatin inhibited the H3K36 methylation locally. Taken together, these results highlight the roles of the chromatic localization of H3.3K36M-mutant protein in the reprogramming of the epigenome and the subsequent induction of tumorigenesis, and shed light on the molecular mechanisms by which the H3K36M mutation mainly occurs in histone H3.3 in chondroblastomas.
Collapse
|
69
|
Guimaraes de Souza Melo C, Nelisis Zanoni J, Raquel Garcia de Souza S, Zignani I, de Lima Leite A, Domingues Heubel A, Vanessa Colombo Martins Perles J, Afonso Rabelo Buzalaf M. Global Proteomic Profile Integrated to Quantitative and Morphometric Assessment of Enteric Neurons: Investigation of the Mechanisms Involved in the Toxicity Induced by Acute Fluoride Exposure in the Duodenum. Neurotox Res 2021; 39:800-814. [PMID: 33689147 DOI: 10.1007/s12640-020-00296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 10/21/2022]
Abstract
The enteric nervous system is responsible for controlling the gastrointestinal tract (GIT) functions. Enteric neuropathies are highly correlated to the development of several intestinal disturbances. Fluoride (F) is extensively applied for dental health improvement and its ingestion can promote systemic toxicity with mild to severe GIT symptomatology and neurotoxicity. Although F harmful effects have been published, there is no information regarding noxiousness of a high acute F exposure (25 mg F/kg) on enteric neurons and levels of expression of intestinal proteins in the duodenum. Quantitative proteomics of the duodenum wall associated to morphometric and quantitative analysis of enteric neurons displayed F effects of a high acute exposure. F-induced myenteric neuroplasticity was characterized by a decrease in the density of nitrergic neurons and morphometric alterations in the general populations of neurons, nitrergic neurons, and substance P varicosities. Proteomics demonstrated F-induced alterations in levels of expression of 356 proteins correlated to striated muscle cell differentiation; generation of precursor metabolites and energy; NADH and glutathione metabolic process and purine ribonucleoside triphosphate biosynthesis. The neurochemical role of several intestinal proteins was discussed specially related to the modulation of enteric neuroplasticity. The results provide a new perspective on cell signaling pathways of gastrointestinal symptomatology promoted by acute F toxicity.
Collapse
Affiliation(s)
| | | | | | - Isabela Zignani
- Department of Morphophysiological Sciences, State University of Maringá, Paraná, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
70
|
Ávila-López PA, Guerrero G, Nuñez-Martínez HN, Peralta-Alvarez CA, Hernández-Montes G, Álvarez-Hilario LG, Herrera-Goepfert R, Albores-Saavedra J, Villegas-Sepúlveda N, Cedillo-Barrón L, Montes-Gómez AE, Vargas M, Schnoor M, Recillas-Targa F, Hernández-Rivas R. H2A.Z overexpression suppresses senescence and chemosensitivity in pancreatic ductal adenocarcinoma. Oncogene 2021; 40:2065-2080. [PMID: 33627784 PMCID: PMC7979544 DOI: 10.1038/s41388-021-01664-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/11/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most intractable and devastating malignant tumors. Epigenetic modifications such as DNA methylation and histone modification regulate tumor initiation and progression. However, the contribution of histone variants in PDAC is unknown. Here, we demonstrated that the histone variant H2A.Z is highly expressed in PDAC cell lines and PDAC patients and that its overexpression correlates with poor prognosis. Moreover, all three H2A.Z isoforms (H2A.Z.1, H2A.Z.2.1, and H2A.Z.2.2) are highly expressed in PDAC cell lines and PDAC patients. Knockdown of these H2A.Z isoforms in PDAC cell lines induces a senescent phenotype, cell cycle arrest in phase G2/M, increased expression of cyclin-dependent kinase inhibitor CDKN2A/p16, SA-β-galactosidase activity and interleukin 8 production. Transcriptome analysis of H2A.Z-depleted PDAC cells showed altered gene expression in fatty acid biosynthesis pathways and those that regulate cell cycle and DNA damage repair. Importantly, depletion of H2A.Z isoforms reduces the tumor size in a mouse xenograft model in vivo and sensitizes PDAC cells to gemcitabine. Overexpression of H2A.Z.1 and H2A.Z.2.1 more than H2A.Z.2.2 partially restores the oncogenic phenotype. Therefore, our data suggest that overexpression of H2A.Z isoforms enables cells to overcome the oncoprotective barrier associated with senescence, favoring PDAC tumor grow and chemoresistance. These results make H2A.Z a potential candidate as a diagnostic biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- P. A. Ávila-López
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - G. Guerrero
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - H. N. Nuñez-Martínez
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - C. A. Peralta-Alvarez
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - G. Hernández-Montes
- grid.9486.30000 0001 2159 0001Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - L. G. Álvarez-Hilario
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - R. Herrera-Goepfert
- grid.419167.c0000 0004 1777 1207Departamento de Patología, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - J. Albores-Saavedra
- Departamento de Patología, Medica Sur Clínica y Fundación, Ciudad de México, Mexico
| | - N. Villegas-Sepúlveda
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - L. Cedillo-Barrón
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - A. E. Montes-Gómez
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - M. Vargas
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - M. Schnoor
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - F. Recillas-Targa
- grid.9486.30000 0001 2159 0001Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - R. Hernández-Rivas
- grid.418275.d0000 0001 2165 8782Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
71
|
Stevens KM, Swadling JB, Hocher A, Bang C, Gribaldo S, Schmitz RA, Warnecke T. Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proc Natl Acad Sci U S A 2020; 117:33384-33395. [PMID: 33288720 PMCID: PMC7776873 DOI: 10.1073/pnas.2007056117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nucleosomes in eukaryotes act as platforms for the dynamic integration of epigenetic information. Posttranslational modifications are reversibly added or removed and core histones exchanged for paralogous variants, in concert with changing demands on transcription and genome accessibility. Histones are also common in archaea. Their role in genome regulation, however, and the capacity of individual paralogs to assemble into histone-DNA complexes with distinct properties remain poorly understood. Here, we combine structural modeling with phylogenetic analysis to shed light on archaeal histone paralogs, their evolutionary history, and capacity to generate combinatorial chromatin states through hetero-oligomeric assembly. Focusing on the human commensal Methanosphaera stadtmanae as a model archaeal system, we show that the heteromeric complexes that can be assembled from its seven histone paralogs vary substantially in DNA binding affinity and tetramer stability. Using molecular dynamics simulations, we go on to identify unique paralogs in M. stadtmanae and Methanobrevibacter smithii that are characterized by unstable interfaces between dimers. We propose that these paralogs act as capstones that prevent stable tetramer formation and extension into longer oligomers characteristic of model archaeal histones. Importantly, we provide evidence from phylogeny and genome architecture that these capstones, as well as other paralogs in the Methanobacteriales, have been maintained for hundreds of millions of years following ancient duplication events. Taken together, our findings indicate that at least some archaeal histone paralogs have evolved to play distinct and conserved functional roles, reminiscent of eukaryotic histone variants. We conclude that combinatorially complex histone-based chromatin is not restricted to eukaryotes and likely predates their emergence.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Jacob B Swadling
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Antoine Hocher
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Corinna Bang
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell," Institut Pasteur, 75015 Paris, France
| | - Ruth A Schmitz
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
| | - Tobias Warnecke
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
72
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
73
|
Lu C, Coradin M, Porter EG, Garcia BA. Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry-Based Approaches. Mol Cell Proteomics 2020; 20:100006. [PMID: 33203747 PMCID: PMC7950153 DOI: 10.1074/mcp.r120.002257] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Histone post-translational modifications (PTMs) are one of the main mechanisms of epigenetic regulation. Dysregulation of histone PTMs leads to many human diseases, such as cancer. Because of its high throughput, accuracy, and flexibility, mass spectrometry (MS) has emerged as a powerful tool in the epigenetic histone modification field, allowing the comprehensive and unbiased analysis of histone PTMs and chromatin-associated factors. Coupled with various techniques from molecular biology, biochemistry, chemical biology, and biophysics, MS has been used to characterize distinct aspects of histone PTMs in the epigenetic regulation of chromatin functions. In this review, we will describe advancements in the field of MS that have facilitated the analysis of histone PTMs and chromatin biology. Middle–down is the most suitable to study histone combinatorial post-translational modifications. Crosslinking MS has a variety of potential applications in exploring histone post-translational modifications. Hydrogen–deuterium exchange MS holds great promise to study the compaction of nucleosome. Multi-omics approaches are useful to study complex regulatory networks.
Collapse
Affiliation(s)
- Congcong Lu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
74
|
Lone IN, Sengez B, Hamiche A, Dimitrov S, Alotaibi H. The Role of Histone Variants in the Epithelial-To-Mesenchymal Transition. Cells 2020; 9:cells9112499. [PMID: 33213091 PMCID: PMC7698467 DOI: 10.3390/cells9112499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a physiological process activated during early embryogenesis, which continues to shape tissues and organs later on. It is also hijacked by tumor cells during metastasis. The regulation of EMT has been the focus of many research groups culminating in the last few years and resulting in an elaborate transcriptional network buildup. However, the implication of epigenetic factors in the control of EMT is still in its infancy. Recent discoveries pointed out that histone variants, which are key epigenetic players, appear to be involved in EMT control. This review summarizes the available data on histone variants' function in EMT that would contribute to a better understanding of EMT itself and EMT-related diseases.
Collapse
Affiliation(s)
- Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
| | - Burcu Sengez
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67400 Illkirch, France;
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
- Correspondence: ; Tel.: +90-232-299-4100 (ext. 5071)
| |
Collapse
|
75
|
Abe S, Nagatomo H, Sasaki H, Ishiuchi T. A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation. Epigenetics 2020; 16:1123-1134. [PMID: 33135541 DOI: 10.1080/15592294.2020.1841873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone lysine-to-methionine (K-to-M) mutations have been identified as driver mutations in human cancers. Interestingly, these 'oncohistone' mutations inhibit the activity of histone methyltransferases. Therefore, they can potentially be used as versatile tools to investigate the roles of histone modifications. In this study, we generated a genetically engineered mouse line in which an H3.3K36M mutation could be induced in the endogenous H3f3b gene. Since H3.3K36M has been identified as a causative mutation of human chondroblastoma, we induced this mutation in the chondrocyte lineage in mouse embryonic limbs. We found that H3.3K36M causes a global reduction in H3K36me2 and defects in chondrocyte differentiation. Importantly, the reduction of H3K36me2 was accompanied by a collapse of normal H3K27me3 distribution. Furthermore, the changes in H3K27me3, especially the loss of H3K27me3 at gene regulatory elements, were associated with the mis-regulated expression of a set of genes important for limb development, including HoxA cluster genes. Thus, through the in vivo induction of the H3.3K36M mutation, we reveal the importance of maintaining the balance between H3K36me2 and H3K27me3 during chondrocyte differentiation and limb development.
Collapse
Affiliation(s)
- Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroaki Nagatomo
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan.,Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
76
|
Paik S, Maule F, Gallo M. Dysregulation of chromatin organization in pediatric and adult brain tumors: oncoepigenomic contributions to tumorigenesis and cancer stem cell properties. Genome 2020; 64:326-336. [PMID: 33075237 DOI: 10.1139/gen-2020-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional (3D) organization of the genome is a crucial enabler of cell fate, identity, and function. In this review, we will focus on the emerging role of altered 3D genome organization in the etiology of disease, with a special emphasis on brain cancers. We discuss how different genetic alterations can converge to disrupt the epigenome in childhood and adult brain tumors, by causing aberrant DNA methylation and by affecting the amounts and genomic distribution of histone post-translational modifications. We also highlight examples that illustrate how epigenomic alterations have the potential to affect 3D genome architecture in brain tumors. Finally, we will propose the concept of "epigenomic erosion" to explain the transition from stem-like cells to differentiated cells in hierarchically organized brain cancers.
Collapse
Affiliation(s)
- Seungil Paik
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francesca Maule
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
77
|
Kurumizaka H, Kujirai T, Takizawa Y. Contributions of Histone Variants in Nucleosome Structure and Function. J Mol Biol 2020; 433:166678. [PMID: 33065110 DOI: 10.1016/j.jmb.2020.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
Chromatin compacts genomic DNA in eukaryotes. The primary chromatin unit is the nucleosome core particle, composed of four pairs of the core histones, H2A, H2B, H3, and H4, and 145-147 base pairs of DNA. Since replication, recombination, repair, and transcription take place in chromatin, the structure and dynamics of the nucleosome must be versatile. These nucleosome characteristics underlie the epigenetic regulation of genomic DNA. In higher eukaryotes, many histone variants have been identified as non-allelic isoforms, which confer nucleosome diversity. In this article, we review the manifold types of nucleosomes produced by histone variants, which play important roles in the epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
78
|
Behrends M, Engmann O. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa013. [PMID: 33214908 PMCID: PMC7660118 DOI: 10.1093/eep/dvaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Human histone H1.5, in mice called H1b, belongs to the family of linker histones (H1), which are key players in chromatin organization. These proteins sit on top of nucleosomes, in part to stabilize them, and recruit core histone modifying enzymes. Through subtype-specific deposition patterns and numerous post-translational modifications, they fine-tune gene expression and chromatin architecture, and help to control cell fate and homeostasis. However, even though it is increasingly implicated in mammalian development, H1.5 has not received as much research attention as its relatives. Recent studies have focused on its prognostic value in cancer patients and its contribution to tumorigenesis through specific molecular mechanisms. However, many functions of H1.5 are still poorly understood. In this review, we will summarize what is currently known about H1.5 and its function in cell differentiation and carcinogenesis. We will suggest key experiments that are required to understand the molecular network, in which H1.5 is embedded. These experiments will advance our understanding of the epigenetic reprogramming occurring in developmental and carcinogenic processes.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen 07747, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen 07747, Germany
| |
Collapse
|
79
|
Shahid M, Kim J. Exercise May Affect Metabolism in Cancer-Related Cognitive Impairment. Metabolites 2020; 10:E377. [PMID: 32962184 PMCID: PMC7570125 DOI: 10.3390/metabo10090377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a significant comorbidity for cancer patients and survivors. Physical activity (PA) has been found to be a strong gene modulator that can induce structural and functional changes in the brain. PA and exercise reduce the risk of cancer development and progression and has been shown to help in overcoming post-treatment syndromes. Exercise plays a role in controlling cancer progression through direct effects on cancer metabolism. In this review, we highlight several priorities for improving studies on CRCI in patients and its underlying potential metabolic mechanisms.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Davis 5071, 8700 Beverly Blvd., Los Angeles, CA 90048, USA;
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Davis 5071, 8700 Beverly Blvd., Los Angeles, CA 90048, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon 461-701, Korea
| |
Collapse
|
80
|
Mechanistic and structural insights into histone H2A–H2B chaperone in chromatin regulation. Biochem J 2020; 477:3367-3386. [DOI: 10.1042/bcj20190852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Histone chaperones include a wide variety of proteins which associate with histones and regulate chromatin structure. The classic H2A–H2B type of histone chaperones, and the chromatin remodeling complex components possessing H2A–H2B chaperone activity, show a broad range of structures and functions. Rapid progress in the structural and functional study of H2A–H2B chaperones extends our knowledge about the epigenetic regulation of chromatin. In this review, we summarize the most recent advances in the understanding of the structure and function of H2A–H2B chaperones that interact with either canonical or variant H2A–H2B dimers. We discuss the current knowledge of the H2A–H2B chaperones, which present no preference for canonical and variant H2A–H2B dimers, describing how they interact with H2A–H2B to fulfill their functions. We also review recent advances of H2A variant-specific chaperones, demarcating how they achieve specific recognition for histone variant H2A.Z and how these interactions regulate chromatin structure by nucleosome editing. We highlight the universal mechanism underlying H2A–H2B dimers recognition by a large variety of histone chaperones. These findings will shed insight into the biological impacts of histone chaperone, chromatin remodeling complex, and histone variants in chromatin regulation.
Collapse
|
81
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
82
|
Sex-specific effects of the histone variant H2A.Z on fear memory, stress-enhanced fear learning and hypersensitivity to pain. Sci Rep 2020; 10:14331. [PMID: 32868857 PMCID: PMC7458907 DOI: 10.1038/s41598-020-71229-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence suggests that histone variants are novel epigenetic regulators of memory, whereby histone H2A.Z suppresses fear memory. However, it is not clear if altered fear memory can also modify risk for PTSD, and whether these effects differ in males and females. Using conditional-inducible H2A.Z knockout (cKO) mice, we showed that H2A.Z binding is higher in females and that H2A.Z cKO enhanced fear memory only in males. However, H2A.Z cKO improved memory on the non-aversive object-in-place task in both sexes, suggesting that H2A.Z suppresses non-stressful memory irrespective of sex. Given that risk for fear-related disorders, such as PTSD, is biased toward females, we examined whether H2A.Z cKO also has sex-specific effects on fear sensitization in the stress-enhanced fear learning (SEFL) model of PTSD, as well as associated changes in pain sensitivity. We found that H2A.Z cKO reduced stress-induced sensitization of fear learning and pain responses preferentially in female mice, indicating that the effects of H2A.Z depend on sex and the type of task, and are influenced by history of stress. These data suggest that H2A.Z may be a sex-specific epigenetic risk factor for PTSD susceptibility, with implications for developing sex-specific therapeutic interventions.
Collapse
|
83
|
Hallaj T, Amjadi M, Qiu X, Susumu K, Medintz IL, Hildebrandt N. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. NANOSCALE 2020; 12:13719-13730. [PMID: 32573632 DOI: 10.1039/d0nr03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of rapid, simple, and versatile biosensors for monitoring the activity of histone modifying enzymes (HMEs) is needed for the improvement of diagnostic assays, screening of HME inhibitors, and a better understanding of HME kinetics in different environments. Nanoparticles can play an important role in this regard by improving or complementing currently available enzyme detection technologies. Here, we present the development and application of a homogeneous methyltransferase (SET7/9) assay based on time-gated Förster resonance energy transfer (TG-FRET) between terbium complexes (Tb) and luminescent semiconductor quantum dots (QDs). Specific binding of a Tb-antibody conjugate to a SET7/9-methylated Lys4 on a histone H3(1-21) peptide substrate attached to the QD surface resulted in efficient FRET and provided the mechanism for monitoring the SET7/9 activity. Two common peptide-QD attachment strategies (biotin-streptavidin and polyhistidine-mediated self-assembly), two different QD colors (625 and 705 nm), and enzyme sensing with post- or pre-assembled QD-peptide conjugates demonstrated the broad applicability of this assay design. Limits of detection in the low picomolar concentration range, high selectivity tested against non-specific antibodies, enzymes, and co-factors, determination of the inhibition constants of the SET7/9 inhibitors SAH and (R)-PFI-2, and analysis of the co-factor (SAM) concentration-dependent enzyme kinetics of SET7/9 which followed the Michaelis-Menten model highlighted the excellent performance of this TG-FRET HME activity assay.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran. and Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and School of Medicine and Pharmacy, Ocean University of China. 5, Yushan Road, 266003 Qingdao, Shandong, China
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA and KeyW Corporation, Hanover, Maryland 21076, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
84
|
Dong C, Liu Y, Lyu TJ, Beldar S, Lamb KN, Tempel W, Li Y, Li Z, James LI, Qin S, Wang Y, Min J. Structural Basis for the Binding Selectivity of Human CDY Chromodomains. Cell Chem Biol 2020; 27:827-838.e7. [DOI: 10.1016/j.chembiol.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 01/22/2023]
|
85
|
Abstract
Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.
Collapse
|
86
|
Greenberg RS, Long HK, Swigut T, Wysocka J. Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. Cell 2020; 178:1421-1436.e24. [PMID: 31491386 DOI: 10.1016/j.cell.2019.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 03/27/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The developmental disorder Floating-Harbor syndrome (FHS) is caused by heterozygous truncating mutations in SRCAP, a gene encoding a chromatin remodeler mediating incorporation of histone variant H2A.Z. Here, we demonstrate that FHS-associated mutations result in loss of SRCAP nuclear localization, alter neural crest gene programs in human in vitro models and Xenopus embryos, and cause craniofacial defects. These defects are mediated by one of two H2A.Z subtypes, H2A.Z.2, whose knockdown mimics and whose overexpression rescues the FHS phenotype. Selective rescue by H2A.Z.2 is conferred by one of the three amino acid differences between the H2A.Z subtypes, S38/T38. We further show that H2A.Z.1 and H2A.Z.2 genomic occupancy patterns are qualitatively similar, but quantitatively distinct, and H2A.Z.2 incorporation at AT-rich enhancers and expression of their associated genes are both sensitized to SRCAP truncations. Altogether, our results illuminate the mechanism underlying a human syndrome and uncover selective functions of H2A.Z subtypes during development.
Collapse
Affiliation(s)
- Rachel S Greenberg
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah K Long
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
87
|
Cavalieri V. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front Cell Dev Biol 2020; 8:456. [PMID: 32582716 PMCID: PMC7289917 DOI: 10.3389/fcell.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental epigenetics. In this review, I focus on the dynamic roles recently emerged for histone post-translational modifications (PTMs), histone modifying enzymes, histone variants and histone themselves in the coordination between the precise execution of transcriptional programs and developmental progression in zebrafish. In particular, I first outline a synopsis of the current state of knowledge in this field during early embryogenesis. Then, I present a survey of histone-based epigenetic mechanisms occurring throughout morphogenesis, with a stronger emphasis on cardiac formation. Undoubtedly, the issues addressed in this review take on particular importance in the emerging field of comparative biology of epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| |
Collapse
|
88
|
Khan KA, Ng MK, Cheung P. The Use of Mononucleosome Immunoprecipitation for Analysis of Combinatorial Histone Post-translational Modifications and Purification of Nucleosome-Interacting Proteins. Front Cell Dev Biol 2020; 8:331. [PMID: 32457909 PMCID: PMC7225312 DOI: 10.3389/fcell.2020.00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
The nucleosome is the principal structural unit of chromatin. Although many studies focus on individual histone post-translational modifications (PTMs) in isolation, it is important to recognize that multiple histone PTMs can function together or cross-regulate one another within the nucleosome context. In addition, different modifications or histone-binding surfaces can synergize to stabilize the binding of nuclear factors to nucleosomes. To facilitate these types of studies, we present here a step-by-step protocol for isolating high yields of mononucleosomes for biochemical analyses. Furthermore, we discuss differences and variations of the basic protocol used in different publications and characterize the relative abundance of selected histone PTMs and chromatin-binding proteins in the different chromatin fractions obtained by this method.
Collapse
Affiliation(s)
| | - Marlee K Ng
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter Cheung
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
89
|
Wang Y, Li Y, Luan D, Kang J, He R, Zhang Y, Quan F. Dynamic replacement of H3.3 affects nuclear reprogramming in early bovine SCNT embryos. Theriogenology 2020; 154:43-52. [PMID: 32480063 DOI: 10.1016/j.theriogenology.2020.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023]
Abstract
The histone variant H3.3 is an important maternal factor in fertilization of oocytes and reprogramming of somatic cell nuclear transfer (SCNT) embryos. As a crucial replacement histone, maternal H3.3 is involved in chromatin remodeling and zygote genome activation. Litte is, however, known about the replacement of H3.3 in the bovine SCNT embryos. In this study, the maternal H3.3 in mature ooplasm was labeled with HA tag and the donor cells H3.3 was labeled with Flag tag, in order to observe the replacement of H3.3 in the bovine SCNT embryos. Meanwhile, maternal H3.3 knockdown was performed by microinjecting two different interfering fragments before nucleus transfer. It was showed that the dynamic replacement between maternal- and donor nucleus-derived H3.3 was detected after SCNT. And it could be observed that the blastocyst development rate of the cloned embryos decreased from 22.3% to 8.2-10.3% (P < 0.05), the expression of Pou5f1 and Sox2 was down-regulated and the level of H3K9me3 was increased in the interfered embryos. In summary, H3.3 replacement impacted on the process of reprogramming, including embryonic development potential, activation of pluripotency genes and epigenetic modification in bovine SCNT embryos.
Collapse
Affiliation(s)
- Yile Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanhe Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Deji Luan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rongjun He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
90
|
Belotti E, Lacoste N, Simonet T, Papin C, Padmanabhan K, Scionti I, Gangloff YG, Ramos L, Dalkara D, Hamiche A, Dimitrov S, Schaeffer L. H2A.Z is dispensable for both basal and activated transcription in post-mitotic mouse muscles. Nucleic Acids Res 2020; 48:4601-4613. [PMID: 32266374 PMCID: PMC7229818 DOI: 10.1093/nar/gkaa157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.
Collapse
Affiliation(s)
- Edwige Belotti
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Thomas Simonet
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Kiran Padmanabhan
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 32-34 Avenue Tony Garnier, 69007 Lyon, France
| | - Isabella Scionti
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Yann-Gaël Gangloff
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Lorrie Ramos
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Defne Dalkara
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Laurent Schaeffer
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
91
|
Olson NM, Kroc S, Johnson JA, Zahid H, Ycas PD, Chan A, Kimbrough JR, Kalra P, Schönbrunn E, Pomerantz WCK. NMR Analyses of Acetylated H2A.Z Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex. Biochemistry 2020; 59:1871-1880. [PMID: 32356653 DOI: 10.1021/acs.biochem.0c00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene specific recruitment of bromodomain-containing proteins to chromatin is affected by post-translational acetylation of lysine on histones. Whereas interactions of the bromodomain with acetylation patterns of native histones (H2A, H2B, H3, and H4) have been well characterized, the motif for recognition for histone variants H2A.Z I and H2A.Z II by bromodomains has yet to be fully investigated. Elucidating these molecular mechanisms is crucial for understanding transcriptional regulation in cellular processes involved in both development and disease. Here, we have used protein-observed fluorine NMR to fully characterize the affinities of H2A.Z I and II acetylation patterns for BPTF's bromodomain and found the diacetylated mark of lysine 7 and 13 on H2A.Z II to have the strongest interaction with K7ac preferentially engaging the binding site. We further examined the selectivity of H2A.Z histones against a variety of bromodomains, revealing that the bromodomain of CECR2 binds with the highest affinity and specificity for acetylated H2A.Z I over isoform II. These results support a possible role for different H2A.Z transcriptional activation mechanisms that involve recruitment of chromatin remodeling complexes.
Collapse
Affiliation(s)
- Noelle M Olson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Samantha Kroc
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
92
|
Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nat Commun 2020; 11:1256. [PMID: 32152320 PMCID: PMC7062693 DOI: 10.1038/s41467-020-15084-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/09/2020] [Indexed: 01/04/2023] Open
Abstract
Vertebrates exhibit specific requirements for replicative H3 and non-replicative H3.3 variants during development. To disentangle whether this involves distinct modes of deposition or unique functions once incorporated into chromatin, we combined studies in Xenopus early development with chromatin assays. Here we investigate the extent to which H3.3 mutated at residues that differ from H3.2 rescue developmental defects caused by H3.3 depletion. Regardless of the deposition pathway, only variants at residue 31-a serine that can become phosphorylated-failed to rescue endogenous H3.3 depletion. Although an alanine substitution fails to rescue H3.3 depletion, a phospho-mimic aspartate residue at position 31 rescues H3.3 function. To explore mechanisms involving H3.3 S31 phosphorylation, we identified factors attracted or repulsed by the presence of aspartate at position 31, along with modifications on neighboring residues. We propose that serine 31-phosphorylated H3.3 acts as a signaling module that stimulates the acetylation of K27, providing a chromatin state permissive to the embryonic development program.
Collapse
|
93
|
Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, Fang D. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 2020; 10:9. [PMID: 32021684 PMCID: PMC6995143 DOI: 10.1186/s13578-020-0374-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone marks control many cellular processes including DNA damage repair. This review will focus primarily on the active histone mark H3K36me3 in the regulation of DNA damage repair and the maintenance of genomic stability after DNA damage. There are diverse clues showing H3K36me3 participates in DNA damage response by directly recruiting DNA repair machinery to set the chromatin at a “ready” status, leading to a quick response upon damage. Reduced H3K36me3 is associated with low DNA repair efficiency. This review will also place a main emphasis on the H3K36me3-mediated DNA damage repair in the tumorigenesis of the newly found oncohistone mutant tumors. Gaining an understanding of different aspects of H3K36me3 in DNA damage repair, especially in cancers, would share the knowledge of chromatin and DNA repair to serve to the drug discovery and patient care.
Collapse
Affiliation(s)
- Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongfei Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
94
|
Chen Y, Bravo JI, Son JM, Lee C, Benayoun BA. Remodeling of the H3 nucleosomal landscape during mouse aging. TRANSLATIONAL MEDICINE OF AGING 2020; 4:22-31. [PMID: 32462102 DOI: 10.1016/j.tma.2019.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and deregulation of gene expression correlates with aging. A key layer in the study of gene regulation mechanisms lies at the level of chromatin: cellular chromatin states (i.e. the 'epigenome') can tune transcriptional profiles, and, in line with the prevalence of transcriptional alterations with aging, accumulating evidence suggests that the chromatin landscape is altered with aging across cell types and species. However, although alterations in the chromatin make-up of cells are considered to be a hallmark of aging, little is known of the genomic loci that are specifically affected by age-related chromatin state remodeling and of their biological significance. Here, we report the analysis of genome-wide profiles of core histone H3 occupancy in aging male mouse tissues (i.e. heart, liver, cerebellum and olfactory bulb) and primary cultures of neural stem cells. We find that, although no drastic changes in H3 levels are observed, local changes in H3 occupancy occur with aging across tissues and cells with both regions of increased or decreased occupancy. These changes are compatible with a general increase in chromatin accessibility at pro-inflammatory genes and may thus mechanistically underlie known shift in gene expression programs during aging.
Collapse
Affiliation(s)
- Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Master of Science in Nutrition, Healthspan, and Longevity, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA.,Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA.,USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
95
|
Sperm RNA: Quo vadis? Semin Cell Dev Biol 2020; 97:123-130. [DOI: 10.1016/j.semcdb.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
|
96
|
Liu J, Zhao W, Ou X, Zhao Z, Hu C, Sun M, Liu F, Deng J, Gu W, An J, Zhang Q, Zhang X, Xie J, Li S, Chen R, Yu S, Zhong N. Mutation spectrums of TSC1 and TSC2 in Chinese women with lymphangioleiomyomatosis (LAM). PLoS One 2019; 14:e0226400. [PMID: 31856217 PMCID: PMC6922431 DOI: 10.1371/journal.pone.0226400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of our study was to elucidate the landscapes of genetic alterations of TSC1 and TSC2 as well as other possible non-TSC1/2 in Lymphangioleiomyomatosis (LAM) patients. Sixty-one Chinese LAM patients’ clinical information was collected. Tumor biopsies and matched leukocytes from these patients were retrospectively analyzed by next generation sequencing (NGS), chromosomal microarray analysis (CMA), and multiplex ligation-dependent probe amplification (MLPA). Eighty-six TSC1/2 variants were identified in 46 of the 61 LAM patients (75.4%) in which TSC2 and TSC1 variants were 88.37% and 11.63% respectively. The 86 variants are composed of (i) 52 single nucleotide variants (SNVs) (including 30 novel variants), (ii) 23 indels (including 21deletions, and 2 insertions), (iii) a germline duplication of exon 31–42 of TSC2, (iv) a 2.68 Mb somatic duplication containing TSC2, and (v) 9 regions with copy-neutral loss of heterogeneity (CN-LOHs) present only in the LAM patients with single TSC1/2 mutations. Sixty-one non-TSC1/2 variants in 31 genes were identified in 37 LAM patients. Combined applications of different techniques are necessary to achieve maximal detection rate of TSC1/2 variants in LAM patients. Thirty novel TSC1/2 variants expands the spectrum of TSC1/2 in LAM patients. Identification of 61 non-TSC1/2 variants suggests that alternative genes might have contributed to the initiation and progression of LAM.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Weiwei Zhao
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, Guangdong, China
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Xiaohua Ou
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Zhen Zhao
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Changming Hu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
| | - Mingming Sun
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Feifei Liu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Junhao Deng
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
| | - Weili Gu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
| | - Jiaying An
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
| | - Qingling Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiaoxian Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
| | - Jiaxing Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Shihui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, Guangdong, China
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
- KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, Guangdong, China
- * E-mail: (SY); (NZ)
| | - Nanshan Zhong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
- * E-mail: (SY); (NZ)
| |
Collapse
|
97
|
Kim J, Shin Y, Lee S, Kim M, Punj V, Lu JF, Shin H, Kim K, Ulmer TS, Koh J, Jeong D, An W. Regulation of Breast Cancer-Induced Osteoclastogenesis by MacroH2A1.2 Involving EZH2-Mediated H3K27me3. Cell Rep 2019; 24:224-237. [PMID: 29972783 DOI: 10.1016/j.celrep.2018.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/18/2018] [Accepted: 06/03/2018] [Indexed: 01/27/2023] Open
Abstract
Breast cancer cells relocate to bone and activate osteoclast-induced bone resorption. Soluble factors secreted by breast cancer cells trigger a cascade of events that stimulate osteoclast differentiation in the bone microenvironment. MacroH2A is a unique histone variant with a C-terminal non-histone domain and plays a crucial role in modulating chromatin organization and gene transcription. Here, we show that macroH2A1.2, one of the macroH2A isoforms, has an intrinsic ability to inhibit breast cancer-derived osteoclastogenesis. This repressive effect requires macroH2A1.2-dependent attenuation of expression and secretion of lysyl oxidase (LOX) in breast cancer cells. Furthermore, our mechanistic studies reveal that macroH2A1.2 physically and functionally interacts with the histone methyltransferase EZH2 and elevates H3K27me3 levels to keep LOX gene in a repressed state. Collectively, this study unravels a role for macroH2A1.2 in regulating osteoclastogenic potential of breast cancer cells, suggesting possibilities for developing therapeutic tools to treat osteolytic bone destruction.
Collapse
Affiliation(s)
- Jinman Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sunyoung Lee
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Miyeong Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Vasu Punj
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jason F Lu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Hongin Shin
- Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | - Kyunghwan Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Jungmin Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Daewon Jeong
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
98
|
Brumbaugh J, Kim IS, Ji F, Huebner AJ, Di Stefano B, Schwarz BA, Charlton J, Coffey A, Choi J, Walsh RM, Schindler JW, Anselmo A, Meissner A, Sadreyev RI, Bernstein BE, Hock H, Hochedlinger K. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat Cell Biol 2019; 21:1449-1461. [PMID: 31659274 PMCID: PMC6858577 DOI: 10.1038/s41556-019-0403-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
Development and differentiation are associated with profound changes to histone modifications, yet their in vivo function remains incompletely understood. Here, we generated mouse models expressing inducible histone H3 lysine-to-methionine (K-to-M) mutants, which globally inhibit methylation at specific sites. Mice expressing H3K36M developed severe anaemia with arrested erythropoiesis, a marked haematopoietic stem cell defect, and rapid lethality. By contrast, mice expressing H3K9M survived up to a year and showed expansion of multipotent progenitors, aberrant lymphopoiesis and thrombocytosis. Additionally, some H3K9M mice succumbed to aggressive T cell leukaemia/lymphoma, while H3K36M mice exhibited differentiation defects in testis and intestine. Mechanistically, induction of either mutant reduced corresponding histone trimethylation patterns genome-wide and altered chromatin accessibility as well as gene expression landscapes. Strikingly, discontinuation of transgene expression largely restored differentiation programmes. Our work shows that individual chromatin modifications are required at several specific stages of differentiation and introduces powerful tools to interrogate their roles in vivo.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO, USA
| | - Ik Soo Kim
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin A Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Amy Coffey
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiho Choi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan M Walsh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Schindler
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanno Hock
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
99
|
Hurd YL, Manzoni OJ, Pletnikov MV, Lee FS, Bhattacharyya S, Melis M. Cannabis and the Developing Brain: Insights into Its Long-Lasting Effects. J Neurosci 2019; 39:8250-8258. [PMID: 31619494 PMCID: PMC6794936 DOI: 10.1523/jneurosci.1165-19.2019] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
The recent shift in sociopolitical debates and growing liberalization of cannabis use across the globe has raised concern regarding its impact on vulnerable populations, such as pregnant women and adolescents. Epidemiological studies have long demonstrated a relationship between developmental cannabis exposure and later mental health symptoms. This relationship is especially strong in people with particular genetic polymorphisms, suggesting that cannabis use interacts with genotype to increase mental health risk. Seminal animal research directly linked prenatal and adolescent exposure to delta-9-tetrahydrocannabinol, the major psychoactive component of cannabis, with protracted effects on adult neural systems relevant to psychiatric and substance use disorders. In this article, we discuss some recent advances in understanding the long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal, perinatal, and adolescent exposure to cannabis/delta-9-tetrahydrocannabinol. Insights are provided from both animal and human studies, including in vivo neuroimaging strategies.
Collapse
Affiliation(s)
- Yasmin L Hurd
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| | - Olivier J Manzoni
- Aix Marseille University, Institut National de la Santé et de la Recherche Médicale, Institut de neurobiologie de la méditerranée, 13273 Marseille, France, and Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale, 13273 Marseille, France
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Francis S Lee
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, New York 10065
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom, and
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
100
|
Flex E, Martinelli S, Van Dijck A, Ciolfi A, Cecchetti S, Coluzzi E, Pannone L, Andreoli C, Radio FC, Pizzi S, Carpentieri G, Bruselles A, Catanzaro G, Pedace L, Miele E, Carcarino E, Ge X, Chijiwa C, Lewis MES, Meuwissen M, Kenis S, Van der Aa N, Larson A, Brown K, Wasserstein MP, Skotko BG, Begtrup A, Person R, Karayiorgou M, Roos JL, Van Gassen KL, Koopmans M, Bijlsma EK, Santen GWE, Barge-Schaapveld DQCM, Ruivenkamp CAL, Hoffer MJV, Lalani SR, Streff H, Craigen WJ, Graham BH, van den Elzen APM, Kamphuis DJ, Õunap K, Reinson K, Pajusalu S, Wojcik MH, Viberti C, Di Gaetano C, Bertini E, Petrucci S, De Luca A, Rota R, Ferretti E, Matullo G, Dallapiccola B, Sgura A, Walkiewicz M, Kooy RF, Tartaglia M. Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging. Am J Hum Genet 2019; 105:493-508. [PMID: 31447100 DOI: 10.1016/j.ajhg.2019.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023] Open
Abstract
Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.
Collapse
Affiliation(s)
- Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium; Department of Neurology, Antwerp University Hospital, Edegem, 2650 Belgium
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Elisa Coluzzi
- Department of Science, University Roma Tre, Rome, 00146 Italy
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | | | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Elena Carcarino
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy; Current affiliation: Cordeliers Research Centre, Inserm 1138, Sorbonne Université, Paris, 75006 France
| | - Xiaoyan Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Current affiliation: Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium
| | - Sandra Kenis
- Department of Neurology, Antwerp University Hospital, Edegem, 2650 Belgium
| | | | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathleen Brown
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Melissa P Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Brian G Skotko
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - Maria Karayiorgou
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - J Louw Roos
- Department of Psychiatry, University of Pretoria, Weskoppies Hospital, Pretoria, 0001 South Africa
| | - Koen L Van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 AB the Netherlands
| | - Marije Koopmans
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 AB the Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Daan J Kamphuis
- Departement of Neurology, Reinier de Graaf Ziekenhuis, Delft, 2600 GA the Netherlands
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Cornelia Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, 00189 Italy; Division of Medical Genetics, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, 71013 Italy
| | - Alessandro De Luca
- Division of Medical Genetics, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, 71013 Italy
| | - Rossella Rota
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, 00161 Italy; Istituto Neuromed, IRCCS, Pozzilli, 86077 Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Antonella Sgura
- Department of Science, University Roma Tre, Rome, 00146 Italy
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Current affiliation: National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy.
| |
Collapse
|