51
|
Sbrana F, Chellini F, Tani A, Parigi M, Garella R, Palmieri F, Zecchi-Orlandini S, Squecco R, Sassoli C. Label-free three-dimensional imaging and quantitative analysis of living fibroblasts and myofibroblasts by holotomographic microscopy. Microsc Res Tech 2024; 87:2757-2773. [PMID: 38984377 DOI: 10.1002/jemt.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Holotomography (HT) is a cutting-edge fast live-cell quantitative label-free imaging technique. Based on the principle of quantitative phase imaging, it combines holography and tomography to record a three-dimensional map of the refractive index, used as intrinsic optical and quantitative imaging contrast parameter of biological samples, at a sub-micrometer spatial resolution. In this study HT has been employed for the first time to analyze the changes of fibroblasts differentiating towards myofibroblasts - recognized as the main cell player of fibrosis - when cultured in vitro with the pro-fibrotic factor, namely transforming growth factor-β1. In parallel, F-actin, vinculin, α-smooth muscle actin, phospho-myosin light chain 2, type-1 collagen, peroxisome proliferator-activated receptor-gamma coactivator-1α expression and mitochondria were evaluated by confocal laser scanning microscopy. Plasmamembrane passive properties and transient receptor potential canonical channels' currents were also recorded by whole-cell patch-clamp. The fluorescence images and electrophysiological results have been compared to the data obtained by HT and their congruence has been discussed. HT turned out to be a valid approach to morphologically distinguish fibroblasts from well differentiated myofibroblasts while obtaining objective measures concerning volume, surface area, projection area, surface index and dry mass (i.e., the mass of the non-aqueous content inside the cell including proteins and subcellular organelles) of the entire cell, nuclei and nucleoli with the major advantage to monitor outer and inner features in living cells in a non-invasive, rapid and label-free approach. HT might open up new research opportunities in the field of fibrotic diseases. RESEARCH HIGHLIGHTS: Holotomography (HT) is a label-free laser interferometric imaging technology exploiting the intrinsic optical property of cells namely refractive index (RI) to enable a direct imaging and analysis of whole cells or intracellular organelles. HT turned out a valid approach to distinguish morphological features of living unlabeled fibroblasts from differentiated myofibroblasts. HT provided quantitative information concerning volume, surface area, projection area, surface index and dry mass of the entire fibroblasts/myofibroblasts, nuclei and nucleoli.
Collapse
Affiliation(s)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| |
Collapse
|
52
|
Singh SR, Pandav SS, Kaushik S, Nada R, Gautam N, Kaur S, Thattaruthody F. Biodegradable material for glaucoma drainage devices - A pilot study in rabbits. Indian J Ophthalmol 2024; 72:1624-1629. [PMID: 38770604 PMCID: PMC11668220 DOI: 10.4103/ijo.ijo_1092_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE To study the morphological and histological characteristics of the fibrous capsule formed around a novel biodegradable glaucoma drainage device (GDD) implant made of oxidized regenerated cellulose (ORC) after 1 and 3 months of its implantation. METHODS It was a prospective, interventional, preclinical experimental study using New Zealand white rabbits. All animals underwent GDD implantation with a novel biodegradable device. The device's body was made of ORC and attached to a silicone tube, connecting the body to the anterior chamber. Histopathology (hematoxylin and eosin/Masson's trichrome staining) and immunohistochemistry (Alpha-Smooth Muscle Actin expression) characteristics of the bleb formed around the novel device were noted at 1 and 3 months. RESULTS One month post implantation, the biodegradable material produced a significant foreign body type of reaction evidenced by the exuberant infiltration by macrophages, lymphocytes, and multinucleated giant cells. The granulomatous response subsided by 3 months with disorganized collagen deposition on Masson's trichrome staining. The silicone tube was an internal control, and histopathology demonstrated well-organized collagen deposition around it at 3 months. Immunohistochemistry for α-smooth muscle actin also demonstrated more myofibroblast transformation at the site of the tube than the biodegradable implant. CONCLUSIONS Our results indicate that the tissue response around a biodegradable GDD was different from the response to conventional devices. A diffuse, loose vascularized mesh was observed to develop, which may be more compatible with sustained IOP control over a longer period, in contrast to the usual thick and dense capsule formed around the non-biodegradable devices.
Collapse
Affiliation(s)
- Simar Rajan Singh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surinder Singh Pandav
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Kaushik
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Natasha Gautam
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Savleen Kaur
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Faisal Thattaruthody
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
53
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
54
|
Gao Y, Li J, Cheng W, Diao T, Liu H, Bo Y, Liu C, Zhou W, Chen M, Zhang Y, Liu Z, Han W, Chen R, Peng J, Zhu L, Hou W, Zhang Z. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 2024; 42:1764-1783.e10. [PMID: 39303725 DOI: 10.1016/j.ccell.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Fibroblasts, known for their functional diversity, play crucial roles in inflammation and cancer. In this study, we conduct comprehensive single-cell RNA sequencing analyses on fibroblast cells from 517 human samples, spanning 11 tissue types and diverse pathological states. We identify distinct fibroblast subpopulations with universal and tissue-specific characteristics. Pathological conditions lead to significant shifts in fibroblast compositions, including the expansion of immune-modulating fibroblasts during inflammation and tissue-remodeling myofibroblasts in cancer. Within the myofibroblast category, we identify four transcriptionally distinct subpopulations originating from different developmental origins, with LRRC15+ myofibroblasts displaying terminally differentiated features. Both LRRC15+ and MMP1+ myofibroblasts demonstrate pro-tumor potential that contribute to the immune-excluded and immune-suppressive tumor microenvironments (TMEs), whereas PI16+ fibroblasts show potential anti-tumor functions in adjacent non-cancerous regions. Fibroblast-subtype compositions define patient subtypes with distinct clinical outcomes. This study advances our understanding of fibroblast biology and suggests potential therapeutic strategies for targeting specific fibroblast subsets in cancer treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jianan Li
- Changping Laboratory, Beijing 102206, China
| | - Wenfeng Cheng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tian Diao
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Huilan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Minmin Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanyuan Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510180, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenhong Hou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
55
|
Jiang L, Koh JHZ, Seah SHY, Dan YS, Wang Z, Chan X, Zhou L, Barathi VA, Hoang QV. Key role for inflammation-related signaling in the pathogenesis of myopia based on evidence from proteomics analysis. Sci Rep 2024; 14:23486. [PMID: 39379387 PMCID: PMC11461836 DOI: 10.1038/s41598-024-67337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanisms underlying myopia pathogenesis are not well understood. Using publicly-available human and animal datasets, we expound on the roles of known, implicated proteins, and new myopia-related signaling pathways were hypothesized. Proteins identified from human serum or ocular fluids, and from ocular tissues in myopic animal models, were uploaded and analyzed with the QIAGEN Ingenuity Pathway Analysis (IPA) software (March 2023). With each IPA database update, more potentially-relevant proteins and signaling pathways previously unavailable during data acquisition are added, allowing extraction of novel conclusions from existing data. Canonical pathway analysis was used to analyze these data and calculate an IPA activation z-score-which indicates not only whether an association is significant, but also whether the pathway is likely activated or inhibited. Cellular immune response and cytokine signaling were frequently found to be affected in both human and animal myopia studies. Analysis of two publicly-available proteomic datasets highlighted a potential role of the innate immune system and inflammation in myopia development, detailing specific signaling pathways involved such as Granzyme A (GzmA) and S100 family signaling in the retina, and activation of myofibroblast trans-differentiation in the sclera. This perspective in myopia research may facilitate development of more effective and targeted therapeutic agents.
Collapse
Affiliation(s)
- Liqin Jiang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - James H Z Koh
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Sherlyn H Y Seah
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Shan Dan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Zhaoran Wang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Xavier Chan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
56
|
Graham AJ, Partipilo G, Dundas CM, Miniel Mahfoud IE, Halwachs KN, Holwerda AJ, Simmons TR, FitzSimons TM, Coleman SM, Rinehart R, Chiu D, Tyndall AE, Sajbel KC, Rosales AM, Keitz BK. Transcriptional regulation of living materials via extracellular electron transfer. Nat Chem Biol 2024; 20:1329-1340. [PMID: 38783133 DOI: 10.1038/s41589-024-01628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Engineered living materials combine the advantages of biological and synthetic systems by leveraging genetic and metabolic programming to control material-wide properties. Here, we demonstrate that extracellular electron transfer (EET), a microbial respiration process, can serve as a tunable bridge between live cell metabolism and synthetic material properties. In this system, EET flux from Shewanella oneidensis to a copper catalyst controls hydrogel cross-linking via two distinct chemistries to form living synthetic polymer networks. We first demonstrate that synthetic biology-inspired design rules derived from fluorescence parameterization can be applied toward EET-based regulation of polymer network mechanics. We then program transcriptional Boolean logic gates to govern EET gene expression, which enables design of computational polymer networks that mechanically respond to combinations of molecular inputs. Finally, we control fibroblast morphology using EET as a bridge for programmed material properties. Our results demonstrate how rational genetic circuit design can emulate physiological behavior in engineered living materials.
Collapse
Affiliation(s)
- Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ismar E Miniel Mahfoud
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Kathleen N Halwachs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Alexis J Holwerda
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rebecca Rinehart
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Darian Chiu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Avery E Tyndall
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth C Sajbel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
57
|
Kwon S, Cheon S, Kim KH, Seo A, Bae E, Lee JW, Cha RH, Hwang JH, Kim YC, Kim DK, Kim YS, Han D, Yang SH. Unveiling the role of transgelin as a prognostic and therapeutic target in kidney fibrosis via a proteomic approach. Exp Mol Med 2024; 56:2296-2308. [PMID: 39375532 PMCID: PMC11542076 DOI: 10.1038/s12276-024-01319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 10/09/2024] Open
Abstract
Chronic kidney disease (CKD) progression involves tubulointerstitial fibrosis, a process characterized by excessive extracellular matrix accumulation. To identify potential biomarkers for kidney fibrosis, we performed mass spectrometry-based proteomic profiling of human kidney tubular epithelial cells and kidney tissue from a 5/6 nephrectomy rat model. Multidisciplinary analysis across kidney fibrosis models revealed 351 differentially expressed proteins associated with kidney fibrosis, and they were enriched in processes related to the extracellular matrix, kidney aging, and mitochondrial functions. Network analysis of the selected proteins revealed five crucial proteins, of which transgelin emerged as a candidate protein that interacts with known fibrosis-related proteins. Concordantly, the gene expression of transgelin in the kidney tissue from the 5/6 nephrectomy model was elevated. Transgelin expression in kidney tissue gradually increased from intermediate to advanced fibrosis stages in 5/6 Nx rats and mice with unilateral ureteral obstruction. Subsequent validation in kidney tissue and urine samples from patients with CKD confirmed the upregulation of transgelin, particularly under advanced disease stages. Moreover, we investigated whether blocking TAGLN ameliorated kidney fibrosis and reduced reactive oxygen species levels in cellular models. In conclusion, our proteomic approach identified TAGLN as a potential noninvasive biomarker and therapeutic target for CKD-associated kidney fibrosis, suggesting its role in modulating mitochondrial dysfunction and oxidative stress responses.
Collapse
Affiliation(s)
- Soie Kwon
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Kyu-Hong Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Areum Seo
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Gyeongsang University Changwon Hospital, Gyeongsang, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Seung-Hee Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
58
|
Lin M, Lee Y, Liao J, Chou C, Yang Y. PTGES is involved in myofibroblast differentiation via HIF-1α-dependent glycolysis pathway. J Cell Mol Med 2024; 28:e70157. [PMID: 39417702 PMCID: PMC11484478 DOI: 10.1111/jcmm.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Patients with lung cancer usually exhibit poor prognoses and low 5-year survival rates. Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both chronic lung dysfunctions resulting in lung fibrosis and increased risk of lung cancer. Myofibroblasts contribute to the progression of asthma, COPD and IPF, leading to fibrosis in the airway and lungs. A growing body of evidence demonstrates that metabolic reprogramming is a major hallmark of fibrosis, being important in the progression of fibrosis. Using gene expression microarray, we identified and validated that the lipid metabolic pathway was upregulated in lung fibroblasts upon interleukin (IL)-4, IL-13 and tumour necrosis factor (TNF)-α treatment. In this study, we described that prostaglandin E synthase (PTGES) was upregulated in lung fibroblasts after IL-4, IL-13 and TNF-α treatments. PTGES increased α-SMA levels and promoted lung fibroblast cell migration and invasion abilities. Furthermore, PTGES was upregulated in a lung fibrosis rat model in vivo. PTGES increased AKT phosphorylation, leading to activation of the HIF-1α-glycolysis pathway in lung fibroblast cells. HIF-1α inhibitor or 2-DG treatments reduced α-SMA expression in recombinant PTGES (rPTGES)-treated lung fibroblast cells. Targeting PGE2 signalling in PTGES-overexpressing cells by a PTGES inhibitor reduced α-SMA expression. In conclusion, the results of this study demonstrate that PTGES increases the expression of myofibroblast marker via HIF-1α-dependent glycolysis and contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Min‐Hsi Lin
- Division of Chest MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Chen Lee
- Department of Anatomy, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jia‐Bin Liao
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Chih‐Yu Chou
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| |
Collapse
|
59
|
Kamath RR, Basavanthappa PN, Bindu BJ, Murthy CN, Rajeev GP, Raisa S. Evaluation of the Role of Myofibroblast and Fibronectin in the Aetiopathogenesis of Cholesteatoma. Indian J Otolaryngol Head Neck Surg 2024; 76:4064-4073. [PMID: 39376278 PMCID: PMC11455809 DOI: 10.1007/s12070-024-04784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 10/09/2024] Open
Abstract
Background Primary acquired Cholesteatoma is a complex issue for otolaryngologists, with its development mechanisms still unclear due to the intricate anatomy of this region. It's aetiopathogenesis remains poorly understood and this aggressive clinical condition often leads to various complications. Recent research explores myofibroblast and fibronectin's potential roles in pathomechanisms of Cholesteatoma. Objective To determine and analyze the role of myofibroblast and fibronectin in the aetiopathogenesis of Cholesteatoma. Methodology In a cross-sectional study at a tertiary care hospital, 30 patients with chronic suppurative otitis media with cholesteatoma were surgically treated, and intraoperative biopsy specimens were collected. These specimens were processed and subjected to histopathological examination, including immunohistochemical staining with Alpha-smooth muscle actin and anti-fibronectin antibody to identify myofibroblast and fibronectin presence. The data were then analyzed to investigate the aetiopathogenesis of cholesteatoma in this cohort. Results On immunostaining, 25 blocks (83.33%) were positively stained for Alpha-SMA (p-value-0.0007), whereas 29 blocks (96.67%) were positively stained for fibronectin (p-value < 0.0001), suggesting a statistically significant association between the presence of both myofibroblast and fibronectin with cholesteatoma perimatrix. Additionally, a statistically significant association was noted between complications and positive staining for myofibroblast (p-value - 0.0415) and positive staining for fibronectin (p-value-0.0254). Conclusions Our study indicates that Cholesteatoma retraction and progression are driven by myofibroblast and fibronectin mechanisms, and also links them to disease severity. This understanding opens avenues for innovative diagnostics and treatments targeting these biomarkers.
Collapse
Affiliation(s)
| | | | - B. J. Bindu
- Department of Pathology, Basaveshwara Medical College & Hospital, Chitradurga, 577501 Karnataka India
| | - C. Narayana Murthy
- Department of ENT-Head & Neck Surgery, Basaveshwara Medical College & Hospital, Chitradurga, 577501 Karnataka India
- Department of Pathology, Basaveshwara Medical College & Hospital, Chitradurga, 577501 Karnataka India
| | - Gouri Priya Rajeev
- Department of ENT-Head & Neck Surgery, Basaveshwara Medical College & Hospital, Chitradurga, 577501 Karnataka India
- Department of Pathology, Basaveshwara Medical College & Hospital, Chitradurga, 577501 Karnataka India
| | - S. Raisa
- Department of ENT-Head & Neck Surgery, Basaveshwara Medical College & Hospital, Chitradurga, 577501 Karnataka India
| |
Collapse
|
60
|
Xiao A, Jiang X, Hu Y, Li H, Jiao Y, Yin D, Wang Y, Sun H, Wu H, Lin L, Chang T, Liu F, Yang K, Huang Z, Sun Y, Zhai P, Fu Y, Kong S, Mu W, Wang Y, Yu X, Chang L. A Degradable Bioelectronic Scaffold for Localized Cell Transfection toward Enhancing Wound Healing in a 3D Space. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404534. [PMID: 39183503 DOI: 10.1002/adma.202404534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Indexed: 08/27/2024]
Abstract
Large skin wounds, with extensive surface area and deep vertical full-thickness involvement, can pose significant challenges in clinical settings. Traditional routes for repairing skin wounds encompass three hallmarks: 1) scab formation for hemostasis; 2) proliferation and migration of epidermal cells for wound closure; 3) proliferation, migration, and functionalization of fibroblasts and endothelial cells for dermal remodeling. However, this route face remarkable challenges to healing large wounds, usually leading to disordered structures and loss of functions in the regenerated skin, due to limited control on the transition among the three stages. In this work, an implantable bioelectronics is developed that enables the synchronization of the three stages, offering accelerated and high-quality healing of large skin wounds. The system efficiently electro-transfect local cells near the wounds, forcing cellular proliferation, while providing a 3D porous environments for synchronized migration of epidermal and dermal cells. In vivo experiments demonstrated that the system achieved synchronous progression of multiple layers within the wounds, leading to the reconstruction of a complete skin structure similar to healthy skin, which presents a new avenue for the clinical translation of large wound healing.
Collapse
Affiliation(s)
- Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yongyan Hu
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Dedong Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Yuqiong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Tianrui Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Penghua Zhai
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yao Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Shenshen Kong
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yi Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
61
|
O'Brien A, Stevenson A, Barrett L, Lawler NB, Hortin N, Deng Z, Allahham A, Quondamatteo F, Smith N, Iyer KS, Wood FM, Fear MW. Reduced WNT4 expression in normal skin fibroblasts leads to 'Dupuytren-like' changes in the transcriptome. Heliyon 2024; 10:e38016. [PMID: 39381224 PMCID: PMC11458971 DOI: 10.1016/j.heliyon.2024.e38016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Background Dupuytren's disease (DD) is a fibro-proliferative disorder of unknown aetiology. Previous studies have implicated multiple WNT signalling genes/proteins in Dupuytren pathology, including WNT4. However, it is not yet clear whether WNT signalling dysregulation plays an important role in the initiation of the disease or progression. The aim of this study was to determine if loss of WNT4 expression triggered 'Dupuytren-like' changes in the transcriptome of healthy skin fibroblasts. Methods Fibroblasts were isolated from the wrists of healthy adult males and from the wrists and disease cord tissue from males in a family positive for Dupuytren's disease. Normal skin fibroblasts from healthy controls were treated with WNT4 siRNA and scrambled controls. RNASeq was used to analyse the transcriptomes of disease and non-disease fibroblasts from patients with Dupuytren's as well as in siRNA treated and non-treated control fibroblasts. Results Analysis of the transcriptomes from DD patient and normal skin fibroblasts showed significant differences, including in WNT4 expression. Downregulation of WNT4 in normal skin fibroblasts using siRNA led to 'DD-like' changes in the transcriptome. Conclusion In people susceptible to DD WNT4 is downregulated even in non-fibrotic fibroblasts. Knockdown of WNT4 in normal fibroblasts led to changes that made cells 'DD-like'. This study shows that WNT4 is down regulated in 'non-disease' cells, and that downregulating WNT4 in normal skin fibroblasts leads to widespread 'DD like' changes in the transcriptome, suggesting WNT4 downregulation is a key driver of DD.
Collapse
Affiliation(s)
- Aoife O'Brien
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons, Ireland
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
| | - Andrew Stevenson
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
| | - Lucy Barrett
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
| | - Nicholas B. Lawler
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nicole Hortin
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
| | - Amira Allahham
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
| | - Fabio Quondamatteo
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons, Ireland
| | - Nicole Smith
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Fiona M. Wood
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
- Burns Service of Western Australia, WA Department of Health, Perth, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
| | - Mark W. Fear
- Burn Injury Research Unit (BIRU), School of Biomedical Sciences, University of Western Australia, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
| |
Collapse
|
62
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
63
|
Zhang X, Huang Y, Luo T, Hu C, Li H, Fan X, Wang K, Liang J, Chen Y, Fan Y. Advanced Wound Healing and Scar Reduction Using an Innovative Anti-ROS Polysaccharide Hydrogel with Recombinant Human Collagen Type III. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50305-50320. [PMID: 39255049 DOI: 10.1021/acsami.4c09890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Excessive fibrotic scar formation during skin defect repair poses a formidable challenge, impeding the simultaneous acceleration of wound healing and prevention of scar formation and hindering the restoration of skin integrity and functionality. Drawing inspiration from the structural, compositional, and biological attributes of skin, we developed a hydrogel containing modified recombinant human collagen type III and thiolated hyaluronic acid to address the challenges of regenerating skin appendages and improving the recovery of skin functions after injury by reducing fibrotic scarring. The hydrogel displayed favorable biocompatibility, antioxidant properties, angiogenic potential, and fibroblast migration stimulation in vitro. In a rat full-layer defect model, it reduced inflammation, promoted microvascular formation, and significantly enhanced the wound healing speed and effectiveness. Additionally, by upregulating fibrosis-associated genes, such as TGFB1, it facilitated collagen accumulation and a beneficial balance between type I and type III collagen, potentially expediting skin regeneration and functional recovery. In conclusion, the utilization of rhCol III-HS demonstrated considerable potential as a wound dressing, offering a highly effective strategy for the restoration and rejuvenation of complete skin defects.
Collapse
Affiliation(s)
- Xinyue Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Tao Luo
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Chen Hu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Haihang Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- Jiangsu Trautec Medical Technology Co., Ltd, 18# Jincheng Road, Changzhou, Jiangsu 213251, China
| | - Xiaoju Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- Jiangsu Trautec Medical Technology Co., Ltd, 18# Jincheng Road, Changzhou, Jiangsu 213251, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Chengdu 610064, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China
| |
Collapse
|
64
|
Patten J, Halligan P, Bashiri G, Kegel M, Bonadio JD, Wang K. EDA Fibronectin Microarchitecture and YAP Translocation During Wound Closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614581. [PMID: 39386582 PMCID: PMC11463502 DOI: 10.1101/2024.09.23.614581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fibronectin (Fn) is an extracellular matrix glycoprotein with mechanosensitive structure-function. EDA Fn, a Fn isoform, is not present in adult tissue but is required for tissue repair. Curiously, EDA Fn is linked to both regenerative and fibrotic tissue repair. Given that Fn mechanoregulates cell behavior, Fn EDA organization during wound closure might play a role in mediating these differing responses. One mechanism by which cells sense and respond to their microenvironment is by activating a transcriptional co-activator, Yes-associated protein (YAP). Interestingly, YAP activity is not only required for wound closure, but similarly linked to both regenerative and fibrotic repair. Therefore, this study aims to evaluate how, during normal and fibrotic wound closure, EDA Fn organization might modulate YAP translocation by culturing human dermal fibroblasts on polydimethylsiloxane (PDMS) substrates mimicking normal (soft: 18 kPa) and fibrotic (stiff: 146 kPa) wounded skin. On stiffer substrates mimicking fibrotic wounds, fibroblasts assembled an aligned EDA Fn matrix comprising thinner fibers, suggesting increased microenvironmental tension. To evaluate if cell binding to the EDA domain of Fn was essential to overall matrix organization, fibroblasts were treated with Irigenin, which inhibits binding to the EDA domain within Fn. Blocking adhesion to EDA led to randomly organized EDA Fn matrices with thicker fibers, suggesting reduced microenvironmental tension even during fibrotic wound closure. To evaluate if YAP signaling plays a role in EDA Fn organization, fibroblasts were treated with CA3, which suppresses YAP activity in a dose-dependent manner. Treatment with CA3 also led to randomly organized EDA Fn matrices with thicker fibers, suggesting a potential connected mechanism of reducing tension during fibrotic wound closure. Next, YAP activity was assessed to evaluate the impact of EDA Fn organization. Interestingly, fibroblasts migrating on softer substrates mimicking normal wounds increased YAP activity but on stiffer substrates, decreased YAP activity. When fibroblasts on stiffer substrates were treated with Irigenin or CA3, fibroblasts increased YAP activity. These results suggest there may be disrupted signaling between EDA Fn organization and YAP translocation during fibrotic wound closure that could be restored when reestablishing normal EDA Fn matrix organization to instead drive regenerative wound repair.
Collapse
Affiliation(s)
- Jennifer Patten
- Department of Bioengineering, Temple University, Pennsylvania
| | | | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Pennsylvania
| | - Michael Kegel
- Department of Bioengineering, Temple University, Pennsylvania
| | - Jacob D Bonadio
- Department of Bioengineering, Temple University, Pennsylvania
| | - Karin Wang
- Department of Bioengineering, Temple University, Pennsylvania
| |
Collapse
|
65
|
Kim J, Won C, Ham S, Han H, Shin S, Jang J, Lee S, Kwon C, Cho S, Park H, Lee D, Lee WJ, Lee T, Lee JH. Increased Susceptibility to Mechanical Stretch Drives the Persistence of Keloid Fibroblasts: An Investigation Using a Stretchable PDMS Platform. Biomedicines 2024; 12:2169. [PMID: 39457482 PMCID: PMC11504861 DOI: 10.3390/biomedicines12102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. We aimed to establish a preclinical platform to elucidate the underlying mechanism of keloid development and its clinical persistence. METHODS We fabricated a mechanically stretchable polydimethylsiloxane cell culture platform; with its mimicry of the in vivo cyclic stretch of skeletal muscles, cells showed higher proliferation compared with conventional modalities. RESULTS In response to mechanical strain, TGF-β and type 1 collagen showed significant increases, suggesting possible TGF-β/Smad pathway activation via mechanical stimulation. Protein candidates selected by proteomic analysis were evaluated, indicating that key molecules involved in cell signaling and oxidative stress were significantly altered. Additionally, the cytoskeletal network of keloid fibroblasts showed increased expression of its components after periodic mechanical stimulation. CONCLUSIONS Herein, we demonstrated and validated the existing body of knowledge regarding profibrotic mechanotransduction signaling pathways in keloid fibroblasts. Cyclic stretch, as a driving force, could help to decipher the tension-mediated biomechanical processes, leading to the development of optimized therapeutic targets.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Seoyoon Ham
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Heetak Han
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungsik Shin
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Jieun Jang
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Sanghyeon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Chaebeen Kwon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungjoon Cho
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Hyeonjoo Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Dongwon Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Ju Hee Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| |
Collapse
|
66
|
Liu Y, Ji J, Zheng S, Wei A, Li D, Shi B, Han X, Chen X. Senescent lung-resident mesenchymal stem cells drive pulmonary fibrogenesis through FGF-4/FOXM1 axis. Stem Cell Res Ther 2024; 15:309. [PMID: 39289765 PMCID: PMC11409797 DOI: 10.1186/s13287-024-03866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related disease featured with abnormal fibrotic response and compromised lung function. Cellular senescence is now considered as an essential driving mechanism for IPF. Given the poor knowledge of the mechanisms underpinning IPF progression, understanding the cellular processes and molecular pathways is critical for developing effective therapies of IPF. METHODS Lung fibrosis was induced using bleomycin in C57BL/6 mice. Cellular senescence was measured by immunofluorescence. The effects of FGF-4 on fibroblast activation markers and signaling molecules were assessed with western blot and qPCR. RESULTS We demonstrated elevated abundance of senescent mesenchymal stem cells (MSCs) in IPF lung tissues, which was tightly correlated with the severity of pulmonary fibrosis in vivo. In addition, senescent MSCs could effectively induce the phenotype of pulmonary fibrosis both in vitro and in vivo. To further confirm how senescent MSCs regulate IPF progression, we demonstrate that FGF-4 is significantly elevated in senescent MSCs, which can induce the activation of pulmonary fibroblasts. In vitro, FGF-4 can activate Wnt signaling in a FOXM1-dependent manner. Inhibition of FOXM1 via thiostrepton effectively impairs FGF-4-induced activation of pulmonary fibroblast and dramatically suppresses the development of pulmonary fibrosis. CONCLUSION These findings reveal that FGF-4 plays a crucial role in senescent MSCs-mediated pulmonary fibrogenesis, and suggests that strategies aimed at deletion of senescent MSCs or blocking the FGF-4/FOXM1 axis could be effective in the therapy of IPF.
Collapse
Affiliation(s)
- Yuxin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ji
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shudan Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Ai Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Shi
- Pulmonary and Critical Care Medicine, Suqian People's Hospital of Nanjing Gulou Hospital Group, Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian, Jiangsu, 223800, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
67
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
68
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
69
|
Xu H, Che Y, Zhou R, Wang L, Huang J, Kong W, Liu C, Guo L, Tang Y, Wang X, Yang X, Wang E, Xu C. Research progress of natural polysaccharide-based and natural protein-based hydrogels for bacteria-infected wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 496:153803. [DOI: 10.1016/j.cej.2024.153803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
70
|
Son DO, Benitez R, Diao L, Hinz B. How to Keep Myofibroblasts under Control: Culture of Mouse Skin Fibroblasts on Soft Substrates. J Invest Dermatol 2024; 144:1923-1934. [PMID: 39078357 DOI: 10.1016/j.jid.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024]
Abstract
During the physiological healing of skin wounds, fibroblasts recruited from the uninjured adjacent dermis and deeper subcutaneous fascia layers are transiently activated into myofibroblasts to first secrete and then contract collagen-rich extracellular matrix into a mechanically resistant scar. Scar tissue restores skin integrity after damage but comes at the expense of poor esthetics and loss of tissue function. Stiff scar matrix also mechanically activates various precursor cells into myofibroblasts in a positive feedback loop. Persistent myofibroblast activation results in pathologic accumulation of fibrous collagen and hypertrophic scarring, called fibrosis. Consequently, the mechanisms of fibroblast-to-myofibroblast activation and persistence are studied to develop antifibrotic and prohealing treatments. Mechanistic understanding often starts in a plastic cell culture dish. This can be problematic because contact of fibroblasts with tissue culture plastic or glass surfaces invariably generates myofibroblast phenotypes in standard culture. We describe a straight-forward method to produce soft cell culture surfaces for fibroblast isolation and continued culture and highlight key advantages and limitations of the approach. Adding a layer of elastic silicone polymer tunable to the softness of normal skin and the stiffness of pathologic scars allows to control mechanical fibroblast activation while preserving the simplicity of conventional 2-dimensional cell culture.
Collapse
Affiliation(s)
- Dong Ok Son
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Li Diao
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada; Faculty of Dentistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
71
|
Zhu B, Liang L, Hui L, Lu Y. Exploring the role of dermal sheath cells in wound healing and fibrosis. Wound Repair Regen 2024; 32:735-745. [PMID: 39129718 DOI: 10.1111/wrr.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lu Liang
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lihua Hui
- Burn Research Institute of Inner Mongolia Autonomous Region, affiliated with Inner Mongolia Baogang Hospital, Baotou, China
| | - Yaojun Lu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| |
Collapse
|
72
|
Martins KH, Javaroni JB, Barbeiro CO, Barbeiro RH, Reyes MRT, Anbinder AL, Guardia RS, Silva EV, León JE, De Rossi A. High frequency of stromal myofibroblasts in odontogenic keratocyst associated with an impacted tooth. Oral Dis 2024; 30:3966-3970. [PMID: 38438329 DOI: 10.1111/odi.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Karina Helen Martins
- Department of Pediatric Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Biliato Javaroni
- Department of Pediatric Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Oliveira Barbeiro
- Department of Diagnosis and Surgery, Araraquara Dental School, Sao Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Roberto Henrique Barbeiro
- Department of Diagnosis and Surgery, Araraquara Dental School, Sao Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Magdalena Raquel Torres Reyes
- Department of Pediatric Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Rafaella Souza Guardia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Evânio Vilela Silva
- Department of Diagnosis and Surgery, Araraquara Dental School, Sao Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral Health and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School (FMRP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andiara De Rossi
- Department of Pediatric Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
73
|
Fang M, Allen A, Luo C, Finn JD. Unlocking the potential of iPSC-derived immune cells: engineering iNK and iT cells for cutting-edge immunotherapy. Front Immunol 2024; 15:1457629. [PMID: 39281684 PMCID: PMC11392856 DOI: 10.3389/fimmu.2024.1457629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a revolutionary tool in cell therapies due to their ability to differentiate into various cell types, unlimited supply, and potential as off-the-shelf cell products. New advances in iPSC-derived immune cells have generated potent iNK and iT cells which showed robust killing of cancer cells in animal models and clinical trials. With the advent of advanced genome editing technologies that enable the development of highly engineered cells, here we outline 12 strategies to engineer iPSCs to overcome limitations and challenges of current cell-based immunotherapies, including safety switches, stealth edits, avoiding graft-versus-host disease (GvHD), targeting, reduced lymphodepletion, efficient differentiation, increased in vivo persistence, stemness, metabolic fitness, homing/trafficking, and overcoming suppressive tumor microenvironment and stromal cell barrier. With the development of advanced genome editing techniques, it is now possible to insert large DNA sequences into precise genomic locations without the need for DNA double strand breaks, enabling the potential for multiplexed knock out and insertion. These technological breakthroughs have made it possible to engineer complex cell therapy products at unprecedented speed and efficiency. The combination of iPSC derived iNK, iT and advanced gene editing techniques provides new opportunities and could lead to a new era for next generation of cell immunotherapies.
Collapse
Affiliation(s)
- Minggang Fang
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Alexander Allen
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Chong Luo
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Jonathan D Finn
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| |
Collapse
|
74
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. RESEARCH SQUARE 2024:rs.3.rs-4746078. [PMID: 39184103 PMCID: PMC11343171 DOI: 10.21203/rs.3.rs-4746078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
75
|
Chen CY, Yang SH, Chang PY, Chen SF, Nieh S, Huang WY, Lin YC, Lee OKS. Cancer-Associated-Fibroblast-Mediated Paracrine and Autocrine SDF-1/CXCR4 Signaling Promotes Stemness and Aggressiveness of Colorectal Cancers. Cells 2024; 13:1334. [PMID: 39195225 PMCID: PMC11352219 DOI: 10.3390/cells13161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.
Collapse
Affiliation(s)
- Chao-Yang Chen
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ping-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 40433, Taiwan;
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40402, Taiwan
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
76
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
77
|
Ascione R, Bruno VD, Johnson T, Sammut E, Bond A, Lopez-Baz D, Deutsch J, Bailey M, Chiribiri A, Patel A, Baker A, Modarai B. Intramyocardial immunomodulation with human CD16 + monocytes to treat myocardial infarction in pig: a blind randomized preclinical trial. Front Cardiovasc Med 2024; 11:1427023. [PMID: 39171324 PMCID: PMC11335517 DOI: 10.3389/fcvm.2024.1427023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background Human CD16+ monocytes (hCD16+ Ms) have proangiogenic properties. We assessed the feasibility, safety and efficacy of hCD16+ Ms in a porcine model of myocardial infarction (MI). Methods and results A total of 27 female Large White pigs underwent MI with reperfusion and cardiac magnetic resonance (CMR). Five days later, animals received intramyocardial injections of hCD16+ Ms in saline (n = 13) or saline only (n = 14). hCD16+ Ms were selected from leucocyte cones. Feasibility/safety endpoints included injury at injected sites, malignant arrhythmias, cancer, haematoma, left ventricular (LV) dilatation, troponin release and downstream organ injury. Co-primary efficacy outcome included LV scar and ejection fraction (LVEF) at 30-day post-injections by CMR. Immunohistochemistry included neo-angiogenesis, fibrosis, markers of myofibroblast and inflammation. Four animals were excluded before injections due to untreatable malignant arrhythmias or lung injury. Median cell number and viability were 48.75 million and 87%, respectively. No feasibility/safety concerns were associated with the use of hCD16+ Ms. The LV scar dropped by 14.5gr (from 25.45 ± 8.24 to 10.8 ± 3.4 gr; -55%) and 6.4gr (from 18.83 ± 5.06 to 12.4 ± 3.9gr; -30%) in the hCD16+ Ms and control groups, respectively (p = 0.015). The 30-day LVEF did not differ between groups, but a prespecified sub-analysis within the hCD16+ Ms group showed that LVEF was 2.8% higher and LV scar 1.9gr lower in the subgroup receiving a higher cell dose. Higher tissue levels of neo-angiogenesis, myofibroblast and IL-6 and lower levels of TGF-β were observed in the hCD16+ Ms group. Conclusions The use of hCD16+ Ms in acute MI is feasible, safe and associated with reduced LV scar size, increased tissue levels of neo-angiogenesis, myofibroblasts and IL-6 and reduced pro-fibrotic TGF-β at 30-day post-injections. A higher cell dose might increase the LVEF effect while reducing scar size, but this warrants validation in future studies.
Collapse
Affiliation(s)
- Raimondo Ascione
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Vito D. Bruno
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Tom Johnson
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Eva Sammut
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Andrew Bond
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Daniel Lopez-Baz
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Julia Deutsch
- Faculty of Health Science, Langford Vets and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Faculty of Health Science, Langford Vets and Translational Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ashish Patel
- Vascular Surgery, King’s College London, London, United Kingdom
| | - Andrew Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bijan Modarai
- Vascular Surgery, King’s College London, London, United Kingdom
| |
Collapse
|
78
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
79
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
80
|
Li J, Kong Z, Qi Y, Wang W, Su Q, Huang W, Zhang Z, Li S, Du E. Single-cell and bulk RNA-sequence identified fibroblasts signature and CD8 + T-cell - fibroblast subtype predicting prognosis and immune therapeutic response of bladder cancer, based on machine learning: bioinformatics multi-omics study. Int J Surg 2024; 110:4911-4931. [PMID: 38759695 PMCID: PMC11325897 DOI: 10.1097/js9.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are found in primary and advanced tumours. They are primarily involved in tumour progression through complex mechanisms with other types of cells in the tumour microenvironment. However, essential fibroblasts-related genes (FRG) in bladder cancer still need to be explored, and there is a shortage of an ideal predictive model or molecular subtype for the progression and immune therapeutic assessment for bladder cancer, especially muscular-invasive bladder cancer based on the FRG. MATERIALS AND METHODS CAF-related genes of bladder cancer were identified by analysing single-cell RNA sequence datasets, and bulk transcriptome datasets and gene signatures were used to characterize them. Then, 10 types of machine learning algorithms were utilised to determine the hallmark FRG and construct the FRG index (FRGI) and subtypes. Further molecular subtypes combined with CD8+ T-cells were established to predict the prognosis and immune therapy response. RESULTS Fifty-four BLCA-related FRG were screened by large-scale scRNA-sequence datasets. The machine learning algorithm established a 3-genes FRGI. High FRGI represented a worse outcome. Then, FRGI combined clinical variables to construct a nomogram, which shows high predictive performance for the prognosis of bladder cancer. Furthermore, the BLCA datasets were separated into two subtypes - fibroblast hot and cold types. In five independent BLCA cohorts, the fibroblast hot type showed worse outcomes than the cold type. Multiple cancer-related hallmark pathways are distinctively enriched in these two types. In addition, high FRGI or fibroblast hot type shows a worse immune therapeutic response. Then, four subtypes called CD8-FRG subtypes were established under the combination of FRG signature and activity of CD8+ T-cells, which turned out to be effective in predicting the prognosis and immune therapeutic response of bladder cancer in multiple independent datasets. Pathway enrichment analysis, multiple gene signatures, and epigenetic alteration characterize the CD8-FRG subtypes and provide a potential combination strategy method against bladder cancer. CONCLUSIONS In summary, the authors established a novel FRGI and CD8-FRG subtype by large-scale datasets and organised analyses, which could accurately predict clinical outcomes and immune therapeutic response of BLCA after surgery.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zheng Kong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Qiang Su
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Huang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Shuai Li
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
81
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
82
|
Ramkissoon R, Cao S, Shah VH. The Pathophysiology of Portal Hypertension. Clin Liver Dis 2024; 28:369-381. [PMID: 38945632 DOI: 10.1016/j.cld.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article reviews the pathophysiology of portal hypertension that includes multiple mechanisms internal and external to the liver. This article starts with a review of literature describing the cellular and molecular mechanisms of portal hypertension, microvascular thrombosis, sinusoidal venous congestion, portal angiogenesis, vascular hypocontractility, and hyperdynamic circulation. Mechanotransduction and the gut-liver axis, which are newer areas of research, are reviewed. Dysfunction of this axis contributes to chronic liver injury, inflammation, fibrosis, and portal hypertension. Sequelae of portal hypertension are discussed in subsequent studies.
Collapse
Affiliation(s)
- Resham Ramkissoon
- Department of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA
| | - Sheng Cao
- Mayo College of Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA
| | - Vijay H Shah
- Department of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA; Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA.
| |
Collapse
|
83
|
D’Urso M, Jorba I, van der Pol A, Bouten CVC, Kurniawan NA. Spatial regulation of substrate adhesion directs fibroblast morphotype and phenotype. PNAS NEXUS 2024; 3:pgae289. [PMID: 39131910 PMCID: PMC11316223 DOI: 10.1093/pnasnexus/pgae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
The switching of the fibroblast phenotype to myofibroblast is a hallmark of a wide variety of tissue pathologies. This phenotypical switch is known to be influenced not only by humoral factors such as TGF-β, but also by mechanical and physical cues in the cellular environment, and is accompanied by distinctive changes in cell morphology. However, the causative link between these cues, the concomitant morphological changes, and the resulting phenotypic switch remain elusive. Here, we use protein micropatterning to spatially control dermal fibroblast adhesion without invoking exogenous mechanical changes and demonstrate that varying the spatial configuration of focal adhesions (FAs) is sufficient to direct fibroblast phenotype. We further developed an automated morphometry analysis pipeline, which revealed FA eccentricity as the primary determinant of cell-state positioning along the spectrum of fibroblast phenotype. Moreover, linear fibronectin patterns that constrain the FAs were found to promote a further phenotype transition, characterized by dispersed expression of alpha-smooth muscle actin, pointing to an interesting possibility of controlling fibroblast phenotype beyond the canonical fibroblast-myofibroblast axis. Together, our study reveals that the spatial configuration of adhesion to the cellular microenvironment is a key factor governing fibroblast morphotype and phenotype, shedding new light on fibroblast phenotype regulation.
Collapse
Affiliation(s)
- Mirko D’Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Facultat de Medicina i Ciències de la Salut, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
84
|
Pratticò F, Garajová I. Focus on Pancreatic Cancer Microenvironment. Curr Oncol 2024; 31:4241-4260. [PMID: 39195299 PMCID: PMC11352508 DOI: 10.3390/curroncol31080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments.
Collapse
Affiliation(s)
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| |
Collapse
|
85
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
86
|
Assayag M, Obedeyah T, Abutbul A, Berkman N. The integrin receptor beta 7 subunit mediates airway remodeling and hyperresponsiveness in allergen exposed mice. Respir Res 2024; 25:273. [PMID: 38997751 PMCID: PMC11241790 DOI: 10.1186/s12931-024-02899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Fibroblast differentiation to a myofibroblast phenotype is a feature of airway remodeling in asthma. Lung fibroblasts express the integrin receptor α4β7 and fibronectin induces myofibroblast differentiation via this receptor. OBJECTIVES To investigate the role of the β7 integrin receptor subunit and α4β7 integrin complex in airway remodeling and airway hyperresponsiveness (AHR) in a murine model of chronic allergen exposure. METHODS C57BL/6 wild type (WT) and β7 integrin null mice (β7 -/-) were sensitized (days 1,10) and challenged with ovalbumin (OVA) three times a week for one or 4 weeks. Similar experiments were performed with WT mice in the presence or absence of α4β7 blocking antibodies. Bronchoalveolar (BAL) cell counts, AHR, histological evaluation, soluble collagen content, Transforming growth factor-β (TGFβ) and Interleukin-13 (IL13) were measured. Phenotype of fibroblasts cultured from WT and β7 -/- saline (SAL) and OVA treated mice was evaluated. RESULTS Eosinophil numbers were similar in WT vs β7-/- mice. Prolonged OVA exposure in β7-/- mice was associated with reduced AHR, lung collagen content, peribronchial smooth muscle, lung tissue TGFβ and IL13 expression as compared to WT. Similar findings were observed in WT mice treated with α4β7 blocking antibodies. Fibroblast migration was enhanced in response to OVA in WT but not β7 -/- fibroblasts. α-SMA and fibronectin expression were reduced in β7-/- fibroblasts relative to WT. CONCLUSIONS The β7 integrin subunit and the α4β7 integrin complex modulate AHR and airway remodeling in a murine model of allergen exposure. This effect is, at least in part, explained by inhibition of fibroblast activation and is independent of eosinophilic inflammation.
Collapse
Affiliation(s)
- Miri Assayag
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Tahrir Obedeyah
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Avraham Abutbul
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Neville Berkman
- Department of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel.
| |
Collapse
|
87
|
Ullm F, Renner A, Freudenberg U, Werner C, Pompe T. The Influence of Sulfation Degree of Glycosaminoglycan-Functionalized 3D Collagen I Networks on Cytokine Profiles of In Vitro Macrophage-Fibroblast Cocultures. Gels 2024; 10:450. [PMID: 39057473 PMCID: PMC11276094 DOI: 10.3390/gels10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell-cell communication of the fibroblast-macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond.
Collapse
Affiliation(s)
- Franziska Ullm
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Alexander Renner
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Uwe Freudenberg
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| |
Collapse
|
88
|
Chandrasegaran S, Sluka JP, Shanley D. Modelling the spatiotemporal dynamics of senescent cells in wound healing, chronic wounds, and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602041. [PMID: 39026713 PMCID: PMC11257496 DOI: 10.1101/2024.07.04.602041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence is known to drive age-related pathology through the senescence-associated secretory phenotype (SASP). However, it also plays important physiological roles such as cancer suppression, embryogenesis and wound healing. Wound healing is a tightly regulated process which when disrupted results in conditions such as fibrosis and chronic wounds. Senescent cells appear during the proliferation phase of the healing process where the SASP is involved in maintaining tissue homeostasis after damage. Interestingly, SASP composition and functionality was recently found to be temporally regulated, with distinct SASP profiles involved: a fibrogenic, followed by a fibrolytic SASP, which could have important implications for the role of senescent cells in wound healing. Given the number of factors at play a full understanding requires addressing the multiple levels of complexity, pertaining to the various cell behaviours, individually followed by investigating the interactions and influence each of these elements have on each other and the system as a whole. Here, a systems biology approach was adopted whereby a multi-scale model of wound healing that includes the dynamics of senescent cell behaviour and corresponding SASP composition within the wound microenvironment was developed. The model was built using the software CompuCell3D, which is based on a Cellular Potts modelling framework. We used an existing body of data on healthy wound healing to calibrate the model and validation was done on known disease conditions. The model provides understanding of the spatiotemporal dynamics of different senescent cell phenotypes and the roles they play within the wound healing process. The model also shows how an overall disruption of tissue-level coordination due to age-related changes results in different disease states including fibrosis and chronic wounds. Further specific data to increase model confidence could be used to explore senolytic treatments in wound disorders.
Collapse
Affiliation(s)
- Sharmilla Chandrasegaran
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James P Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University Bloomington, Bloomington, IN, USA
| | - Daryl Shanley
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
89
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
90
|
Li S, Liu Z, Jiao X, Gu J, Liu Z, Meng L, Li W, Zhang T, Liu J, Chai D, Liu J, Yang Z, Liu Y, Jiao R, Li X, Zhou H, Zhang Y. Selpercatinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β1 signaling pathway. Biochem Pharmacol 2024; 225:116282. [PMID: 38762147 DOI: 10.1016/j.bcp.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
IPF is a chronic, progressive, interstitial lung disease with high mortality. Current drugs have limited efficacy in curbing disease progression and improving quality of life. Selpercatinib, a highly selective inhibitor of receptor tyrosine kinase RET (rearranged during transfection), was approved in 2020 for the treatment of a variety of solid tumors with RET mutations. In this study, the action and mechanism of Selpercatinib in pulmonary fibrosis were evaluated in vivo and in vitro. In vivo experiments demonstrated that Selpercatinib significantly ameliorated bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro, Selpercatinib inhibited the proliferation, migration, activation and extracellular matrix deposition of fibroblasts by inhibiting TGF-β1/Smad and TGF-β1/non-Smad pathway, and suppressed epithelial-mesenchymal transition (EMT) like process of lung epithelial cells via inhibiting TGF-β1/Smad pathway. The results of in vivo pharmacological tests corroborated the results obtained from the in vitro experiments. Further studies revealed that Selpercatinib inhibited abnormal phenotypes of lung fibroblasts and epithelial cells in part by regulating its target RET. In short, Selpercatinib inhibited the activation of fibroblasts and EMT-like process of lung epithelial cells by inhibiting TGF-β1/Smad and TGF-β1/non-Smad pathways, thus alleviating BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhichao Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xiaodan Jiao
- The Second Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jinying Gu
- Tianjin Jikun Technology Co., Ltd., Tianjin 301700, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Jiaai Liu
- The Second Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Yanping Zhang
- The Second Department of Respiratory and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
91
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
92
|
Lee CE, Kim JY, Yoon JS, Ko J. Role of Inositol-Requiring Enzyme 1 and Autophagy in the Pro-Fibrotic Mechanism Underlying Graves' Orbitopathy. Yonsei Med J 2024; 65:397-405. [PMID: 38910302 PMCID: PMC11199180 DOI: 10.3349/ymj.2023.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE Orbital fibroblasts play key roles in the pathogenesis of Graves' orbitopathy (GO), and previous findings have shown that endoplasmic reticulum (ER) stress and autophagy also contribute to GO. In this study, we investigated the presently unclear roles of inositol-requiring enzyme 1 (IRE1) and related autophagy processes in the pro-fibrotic mechanism of GO. MATERIALS AND METHODS Orbital adipose/connective tissues were obtained from eight GO patients and six normal individuals during surgery. GO fibroblasts were transfected with IRE1 small-interfering RNA and treated with bafilomycin A1 (Baf-A1) to evaluate the inhibitory effects of ER stress and autophagy, and protein-expression levels were analyzed through western blotting after stimulation with transforming growth factor (TGF)-β. RESULTS TGF-β stimulation upregulated IRE1 in GO orbital fibroblasts, whereas silencing IRE1 suppressed fibrosis and autophagy responses. Similarly, Baf-A1, an inhibitor of late-phase autophagy, decreased the expression of pro-fibrotic proteins. CONCLUSION IRE1 mediates autophagy and the pro-fibrotic mechanism of GO, which provides a more comprehensive interpretation of GO pathogenesis and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- Siloam Eye Hospital, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
93
|
Zhao F, Zhang M, Nizamoglu M, Kaper HJ, Brouwer LA, Borghuis T, Burgess JK, Harmsen MC, Sharma PK. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel. Acta Biomater 2024; 182:67-80. [PMID: 38750915 DOI: 10.1016/j.actbio.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Large skin injuries heal as scars. Stiffness gradually increases from normal skin to scar tissue (20x higher), due to excessive deposition and crosslinking of extracellular matrix (ECM) mostly produced by (myo)fibroblasts. Using a custom mold, skin-derived ECM hydrogels (dECM) were UV crosslinked after diffusion of ruthenium (Ru) to produce a Ru-dECM gradient hydrogel. The Ru diffusion gradient equates to a stiffness gradient and models physiology of the scarred skin. Crosslinking in Ru-dECM hydrogels results in a 23-fold increase in stiffness from a stiffness similar to that of normal skin. Collagen fiber density increases in a stiffness-dependent fashion while stress relaxation also alters, with one additional Maxwell element necessary for characterizing Ru-dECM. Alignment of fibroblasts encapsulated in hydrogels suggests that the stiffness gradient directs fibroblasts to orientate at ∼45 ° in regions below 120 kPa. In areas above 120 kPa, fibroblasts decrease the stiffness prior to adjusting their orientation. Furthermore, fibroblasts remodel their surrounding ECM in a gradient-dependent fashion, with rearrangement of cell-surrounding ECM in high-stiffness areas, and formation of interlaced collagen bundles in low-stiffness areas. Overall, this study shows that fibroblasts remodel their local environment to generate an optimal ECM mechanical and topographical environment. STATEMENT OF SIGNIFICANCE: This study developed a versatile in vitro model with a gradient stiffness using skin-derived ECM hydrogel with unchanged biochemical environment. Using Ruthenium crosslinking, a 20-fold stiffness increase was achieved as observed in fibrotic skin. The interaction between fibroblasts and matrix depends on changes in the matrix stiffness. The stiffness gradient directed the alignment of fibroblasts with ∼45° in regions with≤ 120 kPa. The cells in regions with the higher stiffness decreased stiffness first and then oriented themselves. Furthermore, fibroblasts remodeled surrounding ECM and regulated its mechanics in a gradient-dependent fashion to reach an optimal condition. Our study highlights the dynamic interplay between cells and surrounding matrix, shedding light on potential mechanisms and strategies to target scar formation and remodeling.
Collapse
Affiliation(s)
- Fenghua Zhao
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Technology-FB40, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Meng Zhang
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, the Netherlands
| | - Hans J Kaper
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Technology-FB40, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Linda A Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, the Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, the Netherlands
| | - Prashant K Sharma
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Technology-FB40, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
94
|
Condorelli AG, Nobili R, Muglia A, Scarpelli G, Marzuolo E, De Stefanis C, Rota R, Diociaiuti A, Alaggio R, Castiglia D, Odorisio T, El Hachem M, Zambruno G. Gamma-Secretase Inhibitors Downregulate the Profibrotic NOTCH Signaling Pathway in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1522-1533.e10. [PMID: 38237731 DOI: 10.1016/j.jid.2023.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 03/03/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-β1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-β1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Rebecca Nobili
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anita Muglia
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giorgia Scarpelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Diociaiuti
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - May El Hachem
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
95
|
Zhu M, Hu Z, Liu N, Yao K, Hong G, Li Y, Chen Y, He H, Wu W, Zhou Y, Shi J, He Y. A Cyclical Magneto-Responsive Massage Dressing for Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400644. [PMID: 38326079 DOI: 10.1002/smll.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Tissue development is mediated by a combination of mechanical and biological signals. Currently, there are many reports on biological signals regulating repair. However, insufficient attention is paid to the process of mechanical regulation, especially the active mechanical regulation in vivo, which has not been realized. Herein, a novel dynamically regulated repair system for both in vitro and in vivo applications is developed, which utilizes magnetic nanoparticles as non-contact actuators to activate hydrogels. The magnetic hydrogel can be periodically activated and deformed to different amplitudes by a dynamic magnetic system. An in vitro skin model is used to explore the impact of different dynamic stimuli on cellular mechano-transduction signal activation and cell differentiation. Specifically, the effect of mechanical stimulation on the phenotypic transition of fibroblasts to myofibroblasts is investigated. Furthermore, in vivo results verify that dynamic massage can simulate and enhance the traction effect in skin defects, thereby accelerating the wound healing process by promoting re-epithelialization and mediating dermal contraction.
Collapse
Affiliation(s)
- Meng Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Gaoying Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Honghui He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, P. R China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
96
|
Mushtaq I, Hsieh TH, Chen YC, Kao YH, Chen YJ. MicroRNA-452-5p regulates fibrogenesis via targeting TGF-β/SMAD4 axis in SCN5A-knockdown human cardiac fibroblasts. iScience 2024; 27:110084. [PMID: 38883840 PMCID: PMC11179076 DOI: 10.1016/j.isci.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The mutated SCN5A gene encoding defective Nav1.5 protein causes arrhythmic ailments and is associated with enhanced cardiac fibrosis. This study investigated whether SCN5A mutation directly affects cardiac fibroblasts and explored how defective SCN5A relates to cardiac fibrosis. SCN5A knockdown (SCN5AKD) human cardiac fibroblasts (HCF) had higher collagen, α-SMA, and fibronectin expressions. Micro-RNA deep sequencing and qPCR analysis revealed the downregulation of miR-452-5p and bioinformatic analysis divulged maladaptive upregulation of transforming growth factor β (TGF-β) signaling in SCN5AKD HCF. Luciferase reporter assays validated miR-452-5p targets SMAD4 in SCN5AKD HCF. Moreover, miR-452-5p mimic transfection in SCN5AKD HCF or AAV9-mediated miR-452-5p delivery in isoproterenol-induced heart failure (HF) rats, resulted in the attenuation of TGF-β signaling and fibrogenesis. The exogenous miR-452-5p significantly improved the poor cardiac function in HF rats. In conclusion, miR-452-5p regulates cardiac fibrosis progression by targeting the TGF-β/SMAD4 axis under the loss of the SCN5A gene.
Collapse
Affiliation(s)
- Iqra Mushtaq
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
97
|
Leask A, Nguyen J, Naik A, Chitturi P, Riser BL. The role of yes activated protein (YAP) in melanoma metastasis. iScience 2024; 27:109864. [PMID: 38770136 PMCID: PMC11103372 DOI: 10.1016/j.isci.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hippo was first identified in a genetic screen as a protein that suppressed proliferation and cell growth. Subsequently, it was shown that hippo acted in a so-called canonical cascade to suppress Yorkie, the Drosophila equivalent of Yes-activated protein (YAP), a mechanosensitive transcriptional cofactor that enhances the activity of the TEAD family of transcription factors. YAP promotes fibrosis, activation of cancer-associated fibroblasts, angiogenesis and cancer cell invasion. YAP activates the expression of the matricellular proteins CCN1 (cyr61) and CCN2 (ctgf), themselves mediators of fibrogenesis and oncogenesis, and coordination of matrix deposition and angiogenesis. This review discusses how therapeutically targeting YAP through YAP inhibitors verteporfin and celastrol and its downstream mediators CCN1 and CCN2 might be useful in treating melanoma.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Bruce L. Riser
- Department of Physiology & Biophysics, Center for Cancer Cell Biology, Immunology & Infection, Rosalind Franklin University, 3333 N. Green Bay Road, Chicago, IL 60064, USA
- BLR Bio, LLC, Kenosha, WI 53140, USA
| |
Collapse
|
98
|
Ho Thanh MT, Poudel A, Ameen S, Carroll B, Wu M, Soman P, Zhang T, Schwarz JM, Patteson AE. Vimentin promotes collective cell migration through collagen networks via increased matrix remodeling and spheroid fluidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599259. [PMID: 38948855 PMCID: PMC11212918 DOI: 10.1101/2024.06.17.599259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.
Collapse
Affiliation(s)
- Minh Tri Ho Thanh
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Arun Poudel
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Shabeeb Ameen
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Bobby Carroll
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - M Wu
- Department of Biological and Environmental Engineering, Cornell University; Ithaca, New York, USA
| | - Pranav Soman
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Tao Zhang
- Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J M Schwarz
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Indian Creek Farm, Ithaca, New York, USA
| | - Alison E Patteson
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| |
Collapse
|
99
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Nishikiori N, Umetsu A, Ogawa T, Furuhashi M, Ohguro H. Lysophosphatidic Acid Modulates TGF-β2-Induced Biological Phenotype in Human Conjunctival Fibroblasts. Life (Basel) 2024; 14:770. [PMID: 38929752 PMCID: PMC11204428 DOI: 10.3390/life14060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although lysophosphatidic acid (LPA) is known to have multiple pathophysiological roles, its contributions to ocular tissues, especially conjunctival fibrogenesis, remain to be elucidated. METHODS To study this issue, the effects of LPA on transforming growth factor-β2 (TGF-β2)-induced fibrogenesis of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblasts (HconF) were examined by the following analyses: (1) planar proliferation determined by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability measurements, (2) real-time metabolic analyses, (3) measurements of the size and stiffness of 3D spheroids, and (4) mRNA expression of extracellular matrix (ECM) molecules and their modulators. RESULTS LPA had no effect on TGF-β2-induced increase in the planar proliferation of HconF cells. LPA induced a more quiescent metabolic state in 2D HconF cells, but this metabolic suppression by LPA was partially blunted in the presence of TGF-β2. In contrast, LPA caused a substantial decrease in the hardness of 3D HconF spheroids independently of TGF-β2. In agreement with these different LPA-induced effects between 2D and 3D cultured HconF cells, mRNA expressions of ECM and their modulators were differently modulated. CONCLUSION The findings that LPA induced the inhibition of both TGF-β2-related and -unrelated subepithelial proliferation of HconF cells may be clinically applicable.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| |
Collapse
|
100
|
Cai X, Wang B, Nian L, Cheng T, Zhang C, Li L, Zhang G, Xiao J. Simultaneous fingerprinting of multiplex collagen biomarkers in connective tissues by multicolor quantum dots-based peptide probes. Mater Today Bio 2024; 26:101026. [PMID: 38525311 PMCID: PMC10959700 DOI: 10.1016/j.mtbio.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The accurate detection of multiplex collagen biomarkers is vital for diagnosing and treating various critical diseases such as tumors and fibrosis. Despite the attractive optical properties of quantum dots (QDs), it remains technically challenging to create stable and specific QDs-based probes for multiplex biological imaging. We report for the first time the construction of multi-color QDs-based peptide probes for the simultaneous fingerprinting of multiplex collagen biomarkers in connective tissues. A bipeptide system composed of a glutathione (GSH) host peptide and a collagen-targeting guest peptide (CTP) has been developed, yielding CTP-QDs probes that exhibit exceptional luminescence stability when exposed to ultraviolet irradiation and mildly acidic conditions. The versatile bipeptide system allows for facile one-pot synthesis of high-quality multicolor CTP-QDs probes, exhibiting superior selectivity in targeting critical collagen biomarkers including denatured collagen, type I collagen, type II collagen, and type IV collagen. The multicolor CTP-QDs probes have demonstrated remarkable efficacy in simultaneously fingerprinting multiple collagen types in diverse connective tissues, irrespective of their status, whether affected by injury, diseases, or undergoing remodeling processes. The innovative multicolor CTP-QDs probes offer a robust toolkit for the multiplex fingerprinting of the collagen suprafamily, demonstrating significant potential in the diagnosis and treatment of collagen-related diseases.
Collapse
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Bo Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Tao Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Chunxia Zhang
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, PR China
| | - Lu Li
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, PR China
| | - Guangrui Zhang
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|