51
|
Abstract
Re-emerging and new viral pathogens have caused significant morbidity and mortality around the world, as evidenced by the recent monkeypox, Ebola and Zika virus outbreaks and the ongoing COVID-19 pandemic. Successful viral infection relies on tactical viral strategies to derail or antagonize host innate immune defenses, in particular the production of type I interferons (IFNs) by infected cells. Viruses can thwart intracellular sensing systems that elicit IFN gene expression (that is, RIG-I-like receptors and the cGAS-STING axis) or obstruct signaling elicited by IFNs. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge about the major mechanisms employed by viruses to inhibit the activity of intracellular pattern-recognition receptors and their downstream signaling cascades leading to IFN-based antiviral host defenses. Advancing our understanding of viral immune evasion might spur unprecedented opportunities to develop new antiviral compounds or vaccines to prevent viral infectious diseases.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
52
|
Huang X, Fan W, Sun J, Yang J, Zhang Y, Wang Q, Li P, Zhang Y, Zhang S, Li H, Wang J, Feng L, Zhao J, Chen L, Linbing Q. SARS-CoV-2 induces cardiomyocyte apoptosis and inflammation but can be ameliorated by ACE inhibitor Captopril. Antiviral Res 2023; 215:105636. [PMID: 37207821 DOI: 10.1016/j.antiviral.2023.105636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Although the clinical manifestation of COVID-19 is mainly respiratory symptoms, approximately 20% of patients suffer from cardiac complications. COVID-19 patients with cardiovascular disease have higher severity of myocardial injury and poor outcomes. The underlying mechanism of myocardial injury caused by SARS-CoV-2 infection remains unclear. Using a non-transgenic mouse model infected with Beta variant (B.1.351), we found that the viral RNA could be detected in lungs and hearts of infected mice. Pathological analysis showed thinner ventricular wall, disorganized and ruptured myocardial fiber, mild inflammatory infiltration, and mild epicardia or interstitial fibrosis in hearts of infected mice. We also found that SARS-CoV-2 could infect cardiomyocytes and produce infectious progeny viruses in human pluripotent stem cell-derived cardiomyocyte-like cells (hPSC-CMs). SARS-CoV-2 infection caused apoptosis, reduction of mitochondrial integrity and quantity, and cessation of beating in hPSC-CMs. In order to dissect the mechanism of myocardial injury caused by SARS-CoV-2 infection, we employed transcriptome sequencing of hPSC-CMs at different time points after viral infection. Transcriptome analysis showed robust induction of inflammatory cytokines and chemokines, up-regulation of MHC class I molecules, activation of apoptosis signaling and cell cycle arresting. These may cause aggravate inflammation, immune cell infiltration, and cell death. Furthermore, we found that Captopril (hypotensive drugs targeting ACE) treatment could alleviate SARS-CoV-2 induced inflammatory response and apoptosis in cardiomyocytes via inactivating TNF signaling pathways, suggesting Captopril may be beneficial for reducing COVID-19 associated cardiomyopathy. These findings preliminarily explain the molecular mechanism of pathological cardiac injury caused by SARS-CoV-2 infection, providing new perspectives for the discovery of antiviral therapeutics.
Collapse
Affiliation(s)
- Xiaohan Huang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenxia Fan
- Guangzhou Laboratory, Guangzhou, 510320, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiaqing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou Laboratory, Guangzhou, 510320, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Heying Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou Laboratory, Guangzhou, 510320, China.
| | - Qu Linbing
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
53
|
Chen X, Yang M, Wang L, Wang Y, Tu J, Zhou X, Yuan X. Identification and in vitro and in vivo validation of the key role of GSDME in pyroptosis-related genes signature in hepatocellular carcinoma. BMC Cancer 2023; 23:411. [PMID: 37149620 PMCID: PMC10164321 DOI: 10.1186/s12885-023-10850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/08/2023] Open
Abstract
We used pyroptosis-related genes to establish a risk-score model for prognostic prediction of liver hepatocellular carcinoma (LIHC) patients. A total of 52 pyroptosis-associated genes were identified. Then, data for 374 LIHC patients and 50 normal individuals were acquired from the TCGA database. Through gene expression analyses, differentially expressed genes (DEGs) were determined. The 13 pyroptosis-related genes (PRGs) confirmed as potential prognostic factors through univariate Cox regression analysis were entered into Lasso and multivariate Cox regression to build a PRGs prognostic signature, containing four PRGs (BAK1, GSDME, NLRP6, and NOD2) determined as independent prognostic factors. mRNA levels were evaluated by qRT-PCR, while overall survival (OS) rates were assessed by the Kaplan-Meier method. Enrichment analyses were done to establish the mechanisms associated with differential survival status of LIHC patients from a tumor immunology perspective. Additionally, a risk score determined by the prognostic model could divide LIHC patients into low- and high-risk groups using median risk score as cut-off. A prognostic nomogram, derived from the prognostic model and integrating clinical characteristics of patients, was constructed. The prognostic function of the model was also validated using GEO, ICGC cohorts, and online databases Kaplan-Meier Plotter. Small interfering RNA-mediated knockdown of GSDME, as well as lentivirus-mediated GSDME knockdown, were performed to validate that knockdown of GSDME markedly suppressed growth of HCC cells both in vivo and in vitro. Collectively, our study demonstrated a PRGs prognostic signature that had great clinical value in prognosis assessment.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| |
Collapse
|
54
|
Yu Y, Wang M, Li XW, Mao J, Zhu YJ, Wang N, Yin LH, Guo ZL, Cai H, Li T, Liang TT, Cui J, Zhou T. Meloxicam inhibits STING phosphorylation and alleviates intracellular DNA-mediated autoimmune responses. Cell Biosci 2023; 13:76. [PMID: 37120570 PMCID: PMC10148517 DOI: 10.1186/s13578-023-01025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/05/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is critical for cytosolic DNA-sensing and the subsequent immune responses. The inappropriate activation of this pathway leads to DNA-induced autoimmune response. Understanding the precise regulation of cGAS-STING pathway is important for developing therapeutics to treat several autoimmune diseases caused by self-DNA. RESULTS We report that Meloxicam (MXC) inhibits intracellular DNA-, but not RNA-induced immune responses. We find that MXC inhibits the phosphorylation of STING by examining in different cells with various DNA stimulations. We further find that MXC significantly dampens the expression levels of interferon-stimulated genes (ISGs) by using DNA 3' repair exonuclease 1 (TREX1)-deficient cell, an experimental model for self-DNA-induced autoimmune disease. Importantly, we demonstrate that MXC could promote the survival in Trex1-/- mouse model for Aicardi-Goutières syndrome (AGS). CONCLUSIONS Our study identified a non-steroidal anti-inflammatory drug, MXC, that exhibits potential effect in treating the autoimmunity caused by self-DNA.
Collapse
Affiliation(s)
- Yu Yu
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Miao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xiao-Wei Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jie Mao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ying-Jie Zhu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Na Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Le-Hua Yin
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zeng-Lin Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ting-Ting Liang
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jiuwei Cui
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
55
|
Ding F, Zhang S, Chen Q, Feng H, Ge Z, Zuo X, Fan C, Li Q, Xia Q. Immunomodulation with Nucleic Acid Nanodevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206228. [PMID: 36599642 DOI: 10.1002/smll.202206228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The precise regulation of interactions of specific immunological components is crucial for controllable immunomodulation, yet it remains a great challenge. With the assistance of advanced computer design, programmable nucleic acid nanotechnology enables the customization of synthetic nucleic acid nanodevices with unprecedented geometrical and functional precision, which have shown promising potential for precise immunoengineering. Notably, the inherently immunologic functions of nucleic acids endow these nucleic acid-based assemblies with innate advantages in immunomodulatory engagement. In this review, the roles of nucleic acids in innate immunity are discussed, focusing on the definition, immunologic modularity, and enhanced bioavailability of structural nucleic acid nanodevices. In light of this, molecular programming and precise organization of functional modules with nucleic acid nanodevices for immunomodulation are emphatically reviewed. At last, the present challenges and future perspectives of nucleic acid nanodevices for immunomodulation are discussed.
Collapse
Affiliation(s)
- Fei Ding
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Chen
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Hao Feng
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaolei Zuo
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, P. R. China
| | - Qiang Xia
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
56
|
Wang W, Zhang Y, Guo X, Xu W, Qin Q, Huang Y, Huang X. Singapore grouper iridovirus infection counteracts poly I:C induced antiviral immune response in vitro. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108685. [PMID: 36921879 DOI: 10.1016/j.fsi.2023.108685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Groupers are important mariculture fish in South China and Southeast Asian countries. However, the increasing frequency of infectious disease outbreaks has caused great economic losses in the grouper industry. Among these pathogens, Singapore grouper iridovirus (SGIV) infection causes high mortality in larval and juvenile stages of grouper. However, the mechanism underlying the action of viral manipulation on cellular immune response still remained largely uncertain. Here, using RNA-seq technology, we investigated the regulatory roles of SGIV infection on synthetic RNA duplex poly I:C induced immune response in vitro. Using reporter gene assays, we found that SGIV infection decreased poly I:C induced interferon promoter activation. Transcriptomic analysis showed that the mRNA expression levels of 2238 genes were up-regulated, while 1247 genes were down-regulated in poly I:C transfected grouper spleen (GS) cells. Interestingly, SGIV infection decreased the expression of 1479 up-regulated genes and increased the expression of 297 down-regulated genes in poly I:C transfected cells. The differentially expressed genes (DEGs) down-regulated by SGIV were directly related to immune, inflammation and viral infection, and JUN, STAT1, NFKB1, MAPK14A, TGFB1 and MX were the 6 top hub genes in the down-regulated DEGs' protein-protein interaction (PPI) network. Furthermore, quantitative real-time PCR (qPCR) analysis confirmed that the interferon signaling and inflammatory-related genes, including cGAS, STING, TBK1, MAVS, TNF, IRAK4 and NOD2 were up-regulated by poly I:C stimulation, but all significantly down-regulated after SGIV infection. Thus, we speculated that SGIV infection counteracted poly I:C induced antiviral immune response and this ability helped itself to escape host immune surveillance. Together, our data will contribute greatly to understanding the potential immune evasion mechanism of iridovirus infection in vitro.
Collapse
Affiliation(s)
- Wenji Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xixi Guo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Xu
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Youhua Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaohong Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
57
|
Wang Z, Wang X, Jin R, Liu F, Rao H, Wei L, Chen H, Feng B. LAMP3 expression in the liver is involved in T cell activation and adaptive immune regulation in hepatitis B virus infection. Front Immunol 2023; 14:1127572. [PMID: 37006307 PMCID: PMC10060507 DOI: 10.3389/fimmu.2023.1127572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The disease burden caused by chronic hepatitis B virus (HBV) infection is still heavy, and the current treatment scheme has not achieved a complete cure. Changes in natural and adaptive immunity usually accompany chronic HBV infection. As a marker expressed on dendritic cells (DCs), whether lysosome-associated membrane glycoprotein 3 (LAMP3) participates in chronic HBV infection deserves further analysis. METHODS We retrieved chronic HBV infection transcriptional information from the Gene Expression Omnibus (GEO) database. The LAMP3 expression in the liver of patients with chronic hepatitis B (CHB) was analyzed in three GEO datasets and confirmed in our validation cohort (27 patients with CHB). Differentially expressed genes were obtained from one CHB cohort by comparing LAMP3high and LAMP3low expression subgroups. These genes underwent Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, and Gene Set Enrichment Analysis to decipher the influence of LAMP3 on the biological process and immunity changes in HBV infection. Furthermore, we investigated the potential relationship between LAMP3 levels, the abundance of infiltrating immune cells, and liver dysfunction. RESULTS Compared to healthy controls, LAMP3 expression was upregulated in the transcriptional profiles of the liver in patients with CHB. The high LAMP3 expression was related to T cell activation and the chemokine signaling pathway. The LAMP3 gene was positively linked to marker sets of infiltrating activated regulatory T cells (Treg), T cell exhaustion, monocytes, and DCs. Moreover, CHB patients with high LAMP3 expression had unfavorable liver dysfunction. CONCLUSIONS LAMP3 is a gene related to HBV infection, which might be involved in HBV infection by regulating T cell activation and adaptive immune response.
Collapse
Affiliation(s)
- Zilong Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiaoxiao Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Jin
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Feng Liu
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Lai Wei
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Bo Feng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
58
|
Qin Y, Zhang P, Deng S, Guo W, Zhang M, Liu H, Qiu R, Yao L. Red-grouper nervous necrosis virus B1 protein inhibits fish IFN response by targeting Ser5-phosphorylated RNA polymerase II to promote viral replication. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108578. [PMID: 36740084 DOI: 10.1016/j.fsi.2023.108578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Nervous necrosis virus (NNV) could infect more than 200 fish species worldwide, with almost 100% mortality in affected larvae and juvenile fish. Among different genotypes of NNV, the red-grouper nervous necrosis virus (RGNNV) genotype is the most widely reported with the highest number of susceptible species. Interferon (IFN) is a crucial antiviral cytokine and RGNNV needs to develop some efficient strategies to resist host IFN-stimulated antiviral immune. Although considerable researches on RGNNV, whether RGNNV B1 protein participates in regulating the host's IFN response remains unknown. Here, we reported that B1 protein acted as a transcript inhibition factor to suppress fish IFN production. We firstly found that ectopic expression of B1 protein significantly decreased IFN and IFN-stimulated genes (ISGs) mRNA levels and IFNφ1 promoter activity induced by polyinosinic:polycytidylic acid [poly (I:C)]. Further studies showed that B1 protein inhibited the IFNφ1 promoter activity stimulated by the key RIG-I-like receptors (RLRs) factors, including MDA5, MAVS, TBK1, IRF3, and IRF7 and decreased their protein levels. Moreover, B1 protein significantly inhibited the activity of constitutively active cytomegalovirus (CMV) promoter, which suggested that B1 protein was a transcription inhibitor. Western blot indicated that B1 protein decreased the Ser5 phosphorylation of RNA polymerase II (RNAP II) C-terminal domain (CTD). Together, our data demonstrated that RGNNV B1 protein was a host transcript antagonist, which intervened RNAP II Ser5-phosphorylation, inhibiting host IFN response and facilitating RGNNV replication.
Collapse
Affiliation(s)
- Yinghui Qin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Peipei Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Si Deng
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Wenjing Guo
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Mengfan Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Haixiang Liu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Reng Qiu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Lunguang Yao
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China.
| |
Collapse
|
59
|
Kouwaki T, Nishimura T, Wang G, Nakagawa R, Oshiumi H. K63-linked polyubiquitination of LGP2 by Riplet regulates RIG-I-dependent innate immune response. EMBO Rep 2023; 24:e54844. [PMID: 36515138 PMCID: PMC9900346 DOI: 10.15252/embr.202254844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) exhibit strong antiviral activity and induce the expression of antiviral proteins. Since excessive expression of type I IFNs is harmful to the host, their expression should be turned off at the appropriate time. In this study, we find that post-translational modification of LGP2, a member of the RIG-I-like receptor family, modulates antiviral innate immune responses. The LGP2 protein undergoes K63-linked polyubiquitination in response to cytoplasmic double-stranded RNAs or viral infection. Our mass spectrometry analysis reveals the K residues ubiquitinated by the Riplet ubiquitin ligase. LGP2 ubiquitination occurs with a delay compared to RIG-I ubiquitination. Interestingly, ubiquitination-defective LGP2 mutations increase the expression of type I IFN at a late phase, whereas the mutant proteins attenuate other antiviral proteins, such as SP100, PML, and ANKRD1. Our data indicate that delayed polyubiquitination of LGP2 fine-tunes RIG-I-dependent antiviral innate immune responses at a late phase of viral infection.
Collapse
Affiliation(s)
- Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tasuku Nishimura
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Guanming Wang
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research in KobeKobeJapan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
60
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
61
|
Peng J, Wang Y, Han X, Zhang C, Chen X, Jin Y, Yang Z, An Y, Zhang J, Liu Z, Chen Y, Gao E, Zhang Y, Xu F, Zheng C, Zhou Q, Liu Z. Clinical Implications of a New DDX58 Pathogenic Variant That Causes Lupus Nephritis due to RIG-I Hyperactivation. J Am Soc Nephrol 2023; 34:258-272. [PMID: 36261300 PMCID: PMC10103098 DOI: 10.1681/asn.2022040477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus, with heterogeneous phenotypes and different responses to therapy. Identifying genetic causes of LN can facilitate more individual treatment strategies. METHODS We performed whole-exome sequencing in a cohort of Chinese patients with LN and identified variants of a disease-causing gene. Extensive biochemical, immunologic, and functional analyses assessed the effect of the variant on type I IFN signaling. We further investigated the effectiveness of targeted therapy using single-cell RNA sequencing. RESULTS We identified a novel DDX58 pathogenic variant, R109C, in five unrelated families with LN. The DDX58 R109C variant is a gain-of-function mutation, elevating type I IFN signaling due to reduced autoinhibition, which leads to RIG-I hyperactivation, increased RIG-I K63 ubiquitination, and MAVS aggregation. Transcriptome analysis revealed an increased IFN signature in patient monocytes. Initiation of JAK inhibitor therapy (baricitinib 2 mg/d) effectively suppressed the IFN signal in one patient. CONCLUSIONS A novel DDX58 R109C variant that can cause LN connects IFNopathy and LN, suggesting targeted therapy on the basis of pathogenicity. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Zhaohui Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
62
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
63
|
Song R, Han X, Jie H, Zhang X, Li S, Sun E. Effects and mechanisms of Celastrol on the formation of neutrophil extracellular traps (NETs). ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:16. [PMID: 36760253 PMCID: PMC9906213 DOI: 10.21037/atm-22-5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Background To investigate the effect and mechanism of Celastrol on the formation of neutrophil extracellular traps (NETs), and to provide a theoretical basis for the clinical application of Tripterygium wilfordii. Methods First, we isolated neutrophils from the peripheral blood of healthy volunteers, and then observed the effect of Celastrol on Phorbol Myristate Acetate (PMA)-induced neutrophil release of NETs. The level of NETs was detected by using the membrane-impermeable nucleic acid dye, SytoxGreens. In addition, the levels of reactive oxygen species (ROS) were also examined to determine whether Celastrol affects ROS production during PMA-induced NETs. Results Celastrol produced significant cytotoxicity at a concentration of 5 µM (213.2±75.07), and the effect of stimulant PMA (25 nM) treatment was not statistically different (197.3±25.15) (P=0.9167). Celastrol (1.25, 0.625, and 0.3125 µM) did not exhibit cytotoxicity when treating neutrophils. Compared with the PMA (25 nM) + Celastrol (1.25, 0.625, and 0.3125 µM) group and the PMA (25 nM) monotherapy group, SytoxGreen showed a statistically significant reduction in fluorescence at 528 µM under 485 µM light excitation. Also, under the co-localization marker of Hochest and SytoxGreen double staining, we observed that the release of NETs in the PMA-treated group was higher than that in the control group. The PMA-induced neutrophil release of NETs was markedly reduced compared to the PMA-treated group. The NET release was substantially decreased under double staining with the Hochest and SytoxGreen co-localization markers. The fluorescence intensity of the Celastrol plus PMA group was significantly lower than that of the PMA treatment group alone, indicating a decrease in the level of intracellular ROS. Interestingly, the level of ROS in the treatment group who received Celastrol alone was lower than that in the control group, indicating that Tripterygium wilfordii could inhibit the spontaneous production of ROS by neutrophils in the absence of stimulation. Conclusions The molecular mechanism of Celastrol involves inhibition of PMA-stimulated neutrophil NETs formation in vitro, which is possibly related to the reduction of ROS levels. This indicates that Celastrol, the main component in Tripterygium wilfordii, can inhibit the formation of NETs, which provides a theoretical basis for the study of NETs-related diseases.
Collapse
Affiliation(s)
- Rui Song
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Xiaoming Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Shiqi Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| |
Collapse
|
64
|
Bachmann MF, Speiser DE. Linking Viral DNA to Endosomal Innate Immune Recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:3-4. [PMID: 36542830 DOI: 10.4049/jimmunol.2200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Abstract
This Pillars of Immunology article is a commentary on “Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells,” a pivotal article written by J. Lund, A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki, and published in the Journal of Experimental Medicine, in 2003. https://doi.org/10.1084/jem.20030162.
Collapse
Affiliation(s)
- Martin F Bachmann
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland; and.,The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel E Speiser
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland; and
| |
Collapse
|
65
|
Mocarski ES. Programmed Necrosis in Host Defense. Curr Top Microbiol Immunol 2023; 442:1-40. [PMID: 37563336 DOI: 10.1007/82_2023_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.
Collapse
Affiliation(s)
- Edward S Mocarski
- Robert W. Woodruff Professor Emeritus, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Professor Emeritus, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
66
|
Baboo S, Diedrich JK, Martínez-Bartolomé S, Wang X, Schiffner T, Groschel B, Schief WR, Paulson JC, Yates JR. DeGlyPHER: Highly sensitive site-specific analysis of N-linked glycans on proteins. Methods Enzymol 2022; 682:137-185. [PMID: 36948700 PMCID: PMC11032187 DOI: 10.1016/bs.mie.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | | | - Xiaoning Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
67
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
68
|
Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, Zhang M, Lensch S, Shields CE, Livingston M, Weiss R, Zhao H, Haynes KA, Morsut L, Chen YY, Khalil AS, Wong WW, Collins JJ, Rosser SJ, Polizzi K, Elowitz MB, Fussenegger M, Hilton IB, Leonard JN, Bintu L, Galloway KE, Deans TL. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst 2022; 13:950-973. [PMID: 36549273 PMCID: PMC9880859 DOI: 10.1016/j.cels.2022.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Collapse
Affiliation(s)
- Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey I Edelstein
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fokion Glykofrydis
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Kasey S Love
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Yvonne Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| | - Ahmad S Khalil
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
69
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
70
|
Min J, Liu W, Li J. Emerging Role of Interferon-Induced Noncoding RNA in Innate Antiviral Immunity. Viruses 2022; 14:2607. [PMID: 36560611 PMCID: PMC9780829 DOI: 10.3390/v14122607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Thousands of unique noncoding RNAs (ncRNAs) exist within the genomes of higher eukaryotes. Upon virus infection, the host generates interferons (IFNs), which initiate the expression of hundreds of interferon-stimulated genes (ISGs) through IFN receptors on the cell surface, establishing a barrier as the host's antiviral innate immunity. With the development of novel RNA-sequencing technology, many IFN-induced ncRNAs have been identified, and increasing attention has been given to their functions as regulators involved in the antiviral innate immune response. IFN-induced ncRNAs regulate the expression of viral proteins, IFNs, and ISGs, as well as host genes that are critical for viral replication, cytokine and chemokine production, and signaling pathway activation. This review summarizes the complex regulatory role of IFN-induced ncRNAs in antiviral innate immunity from the above aspects, aiming to improve understanding of ncRNAs and provide reference for the basic research of antiviral innate immunity.
Collapse
Affiliation(s)
- Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
71
|
Weerawardhana A, Uddin MB, Choi JH, Pathinayake P, Shin SH, Chathuranga K, Park JH, Lee JS. Foot-and-mouth disease virus non-structural protein 2B downregulates the RLR signaling pathway via degradation of RIG-I and MDA5. Front Immunol 2022; 13:1020262. [PMID: 36248821 PMCID: PMC9556895 DOI: 10.3389/fimmu.2022.1020262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a single-stranded, positive-sense RNA virus containing at least 13 proteins. Many of these proteins show immune modulation capabilities. As a non-structural protein of the FMDV, 2B is involved in the rearrangement of the host cell membranes and the disruption of the host secretory pathway as a viroporin. Previous studies have also shown that FMDV 2B plays a role in the modulation of host type-I interferon (IFN) responses through the inhibition of expression of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling. However, the exact molecular mechanism is poorly understood. Here, we demonstrated that FMDV 2B modulates host IFN signal pathway by the degradation of RIG-I and MDA5. FMDV 2B targeted the RIG-I for ubiquitination and proteasomal degradation by recruiting E3 ubiquitin ligase ring finger protein 125 (RNF125) and also targeted MDA5 for apoptosis-induced caspase-3- and caspase-8-dependent degradation. Ultimately, FMDV 2B significantly inhibited RNA virus-induced IFN-β production. Importantly, we identified that the C-terminal amino acids 126-154 of FMDV 2B are essential for 2B-mediated degradation of the RIG-I and MDA5. Collectively, these results provide a clearer understanding of the specific molecular mechanisms used by FMDV 2B to inhibit the IFN responses and a rational approach to virus attenuation for future vaccine development.
Collapse
Affiliation(s)
- Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joo-Hyung Choi
- Foot and Mouth Disease Division, Animal Quarantine and Inspection Agency, Anyang, South Korea
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Gwangju, South Korea
| | - Prabuddha Pathinayake
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Sung Ho Shin
- Foot and Mouth Disease Division, Animal Quarantine and Inspection Agency, Anyang, South Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong-Hyeon Park
- Foot and Mouth Disease Division, Animal Quarantine and Inspection Agency, Anyang, South Korea
- *Correspondence: Jong-Hyeon Park, ; Jong-Soo Lee,
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- *Correspondence: Jong-Hyeon Park, ; Jong-Soo Lee,
| |
Collapse
|
72
|
Nicolai M, Steinberg J, Obermann HL, Solis FV, Bartok E, Bauer S, Jung S. Identification of an Optimal TLR8 Ligand by Alternating the Position of 2′-O-Ribose Methylation. Int J Mol Sci 2022; 23:ijms231911139. [PMID: 36232437 PMCID: PMC9570189 DOI: 10.3390/ijms231911139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Recognition of RNA by receptors of the innate immune system is regulated by various posttranslational modifications. Different single 2′-O-ribose (2′-O-) methylations have been shown to convert TLR7/TLR8 ligands into specific TLR8 ligands, so we investigated whether the position of 2′-O-methylation is crucial for its function. To this end, we designed different 2′-O-methylated RNA oligoribonucleotides (ORN), investigating their immune activity in various cell systems and analyzing degradation under RNase T2 treatment. We found that the 18S rRNA-derived TLR7/8 ligand, RNA63, was differentially digested as a result of 2′-O-methylation, leading to variations in TLR8 and TLR7 inhibition. The suitability of certain 2′-O-methylated RNA63 derivatives as TLR8 agonists was further demonstrated by the fact that other RNA sequences were only weak TLR8 agonists. We were thus able to identify specific 2′-O-methylated RNA derivatives as optimal TLR8 ligands.
Collapse
Affiliation(s)
- Marina Nicolai
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Julia Steinberg
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | | | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Stephanie Jung
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
73
|
Jian Z, Ma R, Zhu L, Deng H, Li F, Zhao J, Deng L, Lai S, Sun X, Tang H, Xu Z. Evasion of interferon-mediated immune response by arteriviruses. Front Immunol 2022; 13:963923. [PMID: 36091073 PMCID: PMC9454096 DOI: 10.3389/fimmu.2022.963923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell’s innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
- *Correspondence: Zhiwen Xu,
| |
Collapse
|
74
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
75
|
Wang L, Noyer L, Wang YH, Tao AY, Li W, Zhu J, Saavedra P, Hoda ST, Yang J, Feske S. ORAI3 is dispensable for store-operated Ca2+ entry and immune responses by lymphocytes and macrophages. J Gen Physiol 2022; 154:213360. [PMID: 35861698 PMCID: PMC9532584 DOI: 10.1085/jgp.202213104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/24/2022] [Indexed: 01/23/2023] Open
Abstract
Ca2+ signals regulate the function of many immune cells and promote immune responses to infection, cancer, and autoantigens. Ca2+ influx in immune cells is mediated by store-operated Ca2+ entry (SOCE) that results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels. The CRAC channel is formed by three plasma membrane proteins, ORAI1, ORAI2, and ORAI3. Of these, ORAI1 is the best studied and plays important roles in immune function. By contrast, the physiological role of ORAI3 in immune cells remains elusive. We show here that ORAI3 is expressed in many immune cells including macrophages, B cells, and T cells. To investigate ORAI3 function in immune cells, we generated Orai3-/- mice. The development of lymphoid and myeloid cells in the thymus and bone marrow was normal in Orai3-/- mice, as was the composition of immune cells in secondary lymphoid organs. Deletion of Orai3 did not affect SOCE in B cells and T cells but moderately enhanced SOCE in macrophages. Orai3-deficient macrophages, B cells, and T cells had normal effector functions in vitro. Immune responses in vivo, including humoral immunity (T cell dependent or independent) and antitumor immunity, were normal in Orai3-/- mice. Moreover, Orai3-/- mice showed no differences in susceptibility to septic shock, experimental autoimmune encephalomyelitis, or collagen-induced arthritis. We conclude that despite its expression in myeloid and lymphoid cells, ORAI3 appears to be dispensable or redundant for physiological and pathological immune responses mediated by these cells.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Wenyi Li
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Pedro Saavedra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Syed T. Hoda
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Jun Yang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY,Correspondence to Stefan Feske:
| |
Collapse
|
76
|
Guo D, Xiao J, Liang J, Fan J, Hou P, Li X, Zhang H, Li K, Bu L, Li P, He M, Zhong Y, Guo L, Jia P, Xiao Q, Wu J, Peng H, Li C, Xing F. CDK4/6 inhibition enhances oncolytic virus efficacy by potentiating tumor-selective cell killing and T cell activation in refractory glioblastoma. Cancer Res 2022; 82:3359-3374. [DOI: 10.1158/0008-5472.can-21-3656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive human cancers. Although oncolytic virus (OV) therapy has been proposed as a potential approach to treat GBM, it frequently fails because GBM cells are usually nonpermissive to OV. Here, we describe a dual-step drug screen for identifying chemical enhancers of oncolytic virus in GBM. From a high-throughput screen of 1416 FDA-approved drugs, an inhibitor of CDK4/6 was identified as the top enhancer, selectively increasing potency of two OV strains, VSVΔ51 and Zika virus. Mechanistically, CDK4/6 inhibition promoted autophagic degradation of MAVS, resulting in impaired antiviral responses and enhanced tumor-selective replication of VSVΔ51 in vitro and in vivo. CDK4/6 inhibition cooperated with VSVΔ51 to induce severe DNA damage stress and amplify oncolysis. In GBM xenograft models, combined treatment with CDK4/6 inhibitor and VSVΔ51 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. Further investigation revealed that CDK4/6 inhibitor and VSVΔ51 synergistically induced immunogenic cell death and boosted anti-tumor immunity. Together, this study features a promising approach of treating aggressive GBM through the combination of CDK4/6 inhibitor with OV.
Collapse
Affiliation(s)
- Deyin Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junjie Fan
- Sun Yat-sen University, Guangzhou, China
| | - Panpan Hou
- Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Li
- Guangzhou Medical University, Guangzhou, United States
| | | | - Kai Li
- Sun Yat-sen University, China
| | - Lang Bu
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Ping Li
- Sun Yat-sen University, Guangzhou, China
| | - Miao He
- Sun Yat-sen University, Guangzhou, China
| | | | - Liping Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junyu Wu
- Sun Yat-sen University, Guangzhou, China
| | - Hong Peng
- Sun Yat-sen University, Guangzhou, China
| | - Chunmei Li
- Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
77
|
Badia R, Garcia-Vidal E, Ballana E. Viral-Host Dependency Factors as Therapeutic Targets to Overcome Antiviral Drug-Resistance: A Focus on Innate Immune Modulation. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.935933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The development of antiviral drugs, has provided enormous achievements in our recent history in the fight against viral infections. To date, most of the approved antiviral drugs target virus-encoded proteins to achieve direct antiviral activity. Nonetheless, the inherent idiosyncrasy of viral mutations during their replication cycle, enable many viruses to adapt to the new barriers, becoming resistant to therapies, therefore, representing an ever-present menace and prompting the scientific community towards the development of novel therapeutic strategies. Taking advantage of the increasing knowledge of virus-host cell interactions, the targeting of cellular factors or pathways essential for virus survival turns into an alternative strategy to intervene in almost every step of viral replication cycle. Since host factors are evolutionary conserved, viral evasion to host-directed therapies (HDT) would impose a higher genetic barrier to the emergence of resistant strains. Thus, targeting host factors has long been considered an alternative strategy to overcome viral resistance. Nevertheless, targeting host factors or pathways potentially hints undesired off targets effects, and therefore, a critical risk-benefit evaluation is required. The present review discusses the current state-of-the-art on the identification of viral host dependency factors (HDF) and the workflow required for the development of HDT as antivirals. Then, we focus on the feasibility of using a specific class of host factors, those involved in innate immune modulation, as broad-spectrum antiviral therapeutic strategies. Finally, a brief summary of major roadblocks derived from targeting host cellular proteins and putative future strategies to overcome its major limitations is proposed.
Collapse
|
78
|
Schweiger L, Lelieveld-Fast LA, Mikuličić S, Strunk J, Freitag K, Tenzer S, Clement AM, Florin L. HPV16 Induces Formation of Virus-p62-PML Hybrid Bodies to Enable Infection. Viruses 2022; 14:1478. [PMID: 35891458 PMCID: PMC9315800 DOI: 10.3390/v14071478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Human papillomaviruses (HPVs) inflict a significant burden on the human population. The clinical manifestations caused by high-risk HPV types are cancers at anogenital sites, including cervical cancer, as well as head and neck cancers. Host cell defense mechanisms such as autophagy are initiated upon HPV entry. At the same time, the virus modulates cellular antiviral processes and structures such as promyelocytic leukemia nuclear bodies (PML NBs) to enable infection. Here, we uncover the autophagy adaptor p62, also known as p62/sequestosome-1, as a novel proviral factor in infections by the high-risk HPV type 16 (HPV16). Proteomics, imaging and interaction studies of HPV16 pseudovirus-treated HeLa cells display that p62 is recruited to virus-filled endosomes, interacts with incoming capsids, and accompanies the virus to PML NBs, the sites of viral transcription and replication. Cellular depletion of p62 significantly decreased the delivery of HPV16 viral DNA to PML NBs and HPV16 infection rate. Moreover, the absence of p62 leads to an increase in the targeting of viral components to autophagic structures and enhanced degradation of the viral capsid protein L2. The proviral role of p62 and formation of virus-p62-PML hybrid bodies have also been observed in human primary keratinocytes, the HPV target cells. Together, these findings suggest the previously unrecognized virus-induced formation of p62-PML hybrid bodies as a viral mechanism to subvert the cellular antiviral defense, thus enabling viral gene expression.
Collapse
Affiliation(s)
- Linda Schweiger
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Laura A. Lelieveld-Fast
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Johannes Strunk
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany;
| | - Albrecht M. Clement
- Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128 Mainz, Germany;
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| |
Collapse
|
79
|
Zhao N, Wang F, Kong Z, Shang Y. Pseudorabies Virus Tegument Protein UL13 Suppresses RLR-Mediated Antiviral Innate Immunity through Regulating Receptor Transcription. Viruses 2022; 14:1465. [PMID: 35891444 PMCID: PMC9317333 DOI: 10.3390/v14071465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies virus (PRV) has evolved various strategies to escape host antiviral immune responses. However, it remains unclear whether and how PRV-encoded proteins modulate the RIG-I-like receptor (RLR)-mediated signals for immune evasion. Here, we show that the PRV tegument protein UL13 functions as an antagonist of RLR-mediated antiviral responses via suppression of the transcription of RIG-I and MDA5, but not LGP2. UL13 overexpression significantly inhibits both the mRNA and protein levels of RIG-I and MDA5, along with RIG-I- or MDA5-mediated antiviral immune responses, whereas overexpression of RIG-I or MDA5 counteracts such UL13-induced suppression. Mechanistically, UL13 suppresses the expression of RIG-I and MDA5 by inhibiting activation of the transcription factor NF-κB. Consequently, overexpression of p65 promotes the activation of RIG-I and MDA5 promoters. Moreover, deletion of the p65-binding sites in the promoters of RIG-I or MDA5 abolishes the suppression role of UL13. As a result, mutant PRV lacking UL13 elicits stronger host antiviral immune responses than PRV-WT. Hence, our results provide a novel functional role of UL13-induced suppression of host antiviral immunity through modulating receptors' transcription.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
- Institute of Immunology, Shandong Agricultural University, Taian 271018, China
| | - Fan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Zhengjie Kong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
- Institute of Immunology, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
80
|
Alelq NA, Kubieniec ME, French LE, Prinz JC. Influence of Covid-19 vaccination on immune-mediated skin diseases. J Eur Acad Dermatol Venereol 2022; 36:e965-e968. [PMID: 35771095 PMCID: PMC9349455 DOI: 10.1111/jdv.18388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Narjes A Alelq
- Department of Dermatology and Allergology, University Hospital, LMU Klinikum, Munich, Germany.,Ministry of Health, Dammam, Saudi Arabia
| | - Michaela E Kubieniec
- Department of Dermatology and Allergology, University Hospital, LMU Klinikum, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergology, University Hospital, LMU Klinikum, Munich, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jörg C Prinz
- Department of Dermatology and Allergology, University Hospital, LMU Klinikum, Munich, Germany
| |
Collapse
|
81
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
82
|
Maarifi G, Martin MF, Zebboudj A, Boulay A, Nouaux P, Fernandez J, Lagisquet J, Garcin D, Gaudin R, Arhel NJ, Nisole S. Identifying enhancers of innate immune signaling as broad-spectrum antivirals active against emerging viruses. Cell Chem Biol 2022; 29:1113-1125.e6. [PMID: 35728599 PMCID: PMC9213012 DOI: 10.1016/j.chembiol.2022.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.
Collapse
Affiliation(s)
- Ghizlane Maarifi
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marie-France Martin
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Abderezak Zebboudj
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Aude Boulay
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Pierre Nouaux
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Juliette Fernandez
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Justine Lagisquet
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1211 Geneva 4, Switzerland
| | - Raphael Gaudin
- Membrane Dynamics & Viruses, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Nathalie J Arhel
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France.
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France.
| |
Collapse
|
83
|
Liu XN, Li LW, Gao F, Jiang YF, Yuan WZ, Li GX, Yu LX, Zhou YJ, Tong GZ, Zhao K. cGAS Restricts PRRSV Replication by Sensing the mtDNA to Increase the cGAMP Activity. Front Immunol 2022; 13:887054. [PMID: 35558078 PMCID: PMC9086901 DOI: 10.3389/fimmu.2022.887054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes great economic losses globally to the swine industry. Innate immune RNA receptors mainly sense it during infection. As a DNA sensor, cyclic GMP-AMP synthase (cGAS) plays an important role in sensing cytosolic DNA and activating innate immunity to induce IFN-I and establish an antiviral cellular state. In contrast, the role of innate immune DNA sensors during PRRSV infection has not been elucidated. In this study, we found that cGAS facilitates the production of IFN-β during PRRSV infection. Western blot and virus titer assays suggested that cGAS overexpression suppressed the replication of multiple PRRSV strains, while knockout of cGAS increased viral titer and nucleocapsid protein expression. Besides, our results indicated that the mitochondria were damaged during PRRSV infection and leaked mitochondrial DNA (mtDNA) into the cytoplasm. The mtDNA in the cytoplasm co-localizes with the cGAS, and the cGAMP activity was increased when the cGAS was overexpressed during PRRSV infection. Furthermore, the cGAMP also possesses an anti-PRRSV effect. These results indicate for the first time that cGAS restricts PRRSV replication by sensing the mtDNA in the cytoplasm to increase cGAMP activity, which not only explains the molecular mechanism by which cGAS inhibits PRRSV replication but also provides research ideas for studying the role of the cGAS-STING signaling pathway in the process of RNA virus infection.
Collapse
Affiliation(s)
- Xiao-Na Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Li-Wei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wan-Zhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.,Hebei Veterinary Biotechnology Innovation Center , Hebei Agricultural University, Baoding, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.,Hebei Veterinary Biotechnology Innovation Center , Hebei Agricultural University, Baoding, China
| |
Collapse
|
84
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
85
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Gholami A, Omidifar N, Babapoor A, Vijayakameswara Rao N, Chiang WH. Recent Advances in Plasma-Engineered Polymers for Biomarker-Based Viral Detection and Highly Multiplexed Analysis. BIOSENSORS 2022; 12:286. [PMID: 35624587 PMCID: PMC9138656 DOI: 10.3390/bios12050286] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious diseases remain a pervasive threat to global and public health, especially in many countries and rural urban areas. The main causes of such severe diseases are the lack of appropriate analytical methods and subsequent treatment strategies due to limited access to centralized and equipped medical centers for detection. Rapid and accurate diagnosis in biomedicine and healthcare is essential for the effective treatment of pathogenic viruses as well as early detection. Plasma-engineered polymers are used worldwide for viral infections in conjunction with molecular detection of biomarkers. Plasma-engineered polymers for biomarker-based viral detection are generally inexpensive and offer great potential. For biomarker-based virus detection, plasma-based polymers appear to be potential biological probes and have been used directly with physiological components to perform highly multiplexed analyses simultaneously. The simultaneous measurement of multiple clinical parameters from the same sample volume is possible using highly multiplexed analysis to detect human viral infections, thereby reducing the time and cost required to collect each data point. This article reviews recent studies on the efficacy of plasma-engineered polymers as a detection method against human pandemic viruses. In this review study, we examine polymer biomarkers, plasma-engineered polymers, highly multiplexed analyses for viral infections, and recent applications of polymer-based biomarkers for virus detection. Finally, we provide an outlook on recent advances in the field of plasma-engineered polymers for biomarker-based virus detection and highly multiplexed analysis.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil 56199-11367, Iran;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
86
|
Chen F, Chen L, Li Y, Sang H, Zhang C, Yuan S, Yang J. TRAF3 Positively Regulates Host Innate Immune Resistance to Influenza A Virus Infection. Front Cell Infect Microbiol 2022; 12:839625. [PMID: 35573779 PMCID: PMC9093644 DOI: 10.3389/fcimb.2022.839625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is one of the intracellular adaptor proteins for the innate immune response, which is involved in signaling regulation in various cellular processes, including the immune responses defending against invading pathogens. However, the defense mechanism of TRAF3 against influenza virus infection remains elusive. In this study, we found that TRAF3 could positively regulate innate antiviral response. Overexpression of TRAF3 significantly enhanced virus-induced IRF3 activation, IFN-β production, and antiviral response, while TRAF3 knockdown promoted influenza A virus replication. Moreover, we clarified that inhibiting ubiquitinated degradation of TRAF3 was associated with anti-influenza effect, thereby facilitating antiviral immunity upon influenza A virus infection. We further demonstrated the key domains of TRAF3 involved in anti-influenza effect. Taken together, these results suggested that TRAF3 performs a vital role in host defense against influenza A virus infection by the type-I IFN signaling pathway. Our findings provide insights into the development of drugs to prevent TRAF3 degradation, which could be a novel therapeutic approach for treatment of influenza A virus infection.
Collapse
Affiliation(s)
- Fangzhao Chen
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Liurong Chen
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yinyan Li
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huiting Sang
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chunyu Zhang
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
87
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
88
|
van Gent M, Chiang JJ, Muppala S, Chiang C, Azab W, Kattenhorn L, Knipe DM, Osterrieder N, Gack MU. The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. J Virol 2022; 96:e0151021. [PMID: 34935440 PMCID: PMC8865413 DOI: 10.1128/jvi.01510-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J. Chiang
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Lisa Kattenhorn
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Knipe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
89
|
Price AM, Steinbock RT, Di C, Hayer K, Li Y, Herrmann C, Parenti N, Whelan J, Weiss S, Weitzman M. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res 2022; 50:1201-1220. [PMID: 34671803 PMCID: PMC8860579 DOI: 10.1093/nar/gkab896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert T Steinbock
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao Di
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jillian N Whelan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
90
|
|
91
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 698] [Impact Index Per Article: 232.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
92
|
The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. NATURE CANCER 2022; 2:457-473. [PMID: 35122000 DOI: 10.1038/s43018-021-00196-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/12/2021] [Indexed: 11/09/2022]
Abstract
Although chemotherapy can stimulate antitumor immunity by inducing interferon (IFN) response, the functional role of tumor-associated macrophages in this scenario remains unclear. Here, we found that IFN-activated proinflammatory macrophages after neoadjuvant chemotherapy enhanced antitumor immunity but promoted cancer chemoresistance. Mechanistically, IFN induced expression of cytoplasmic long noncoding RNA IFN-responsive nuclear factor-κB activator (IRENA) in macrophages, which triggered nuclear factor-κB signaling via dimerizing protein kinase R and subsequently increased production of protumor inflammatory cytokines. By constructing macrophage-conditional IRENA-knockout mice, we found that targeting IRENA in IFN-activated macrophages abrogated their protumor effects, while retaining their capacity to enhance antitumor immunity. Clinically, IRENA expression in post-chemotherapy macrophages was associated with poor patient survival. These findings indicate that lncRNA can determine the dichotomy of inflammatory cells on cancer progression and antitumor immunity and suggest that targeting IRENA is an effective therapeutic strategy to reversing tumor-promoting inflammation.
Collapse
|
93
|
Sharma NR, Zheng ZM. RNA Granules in Antiviral Innate Immunity: A Kaposi's Sarcoma-Associated Herpesvirus Journey. Front Microbiol 2022; 12:794431. [PMID: 35069491 PMCID: PMC8767106 DOI: 10.3389/fmicb.2021.794431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
RNA granules are cytoplasmic, non-membranous ribonucleoprotein compartments that form ubiquitously and are often referred to as foci for post-transcriptional gene regulation. Recent research on RNA processing bodies (PB) and stress granules (SG) has shown wide implications of these cytoplasmic RNA granules and their components in suppression of RNA translation as host intracellular innate immunity against infecting viruses. Many RNA viruses either counteract or co-opt these RNA granules; however, many fundamental questions about DNA viruses with respect to their interaction with these two RNA granules remain elusive. Kaposi’s sarcoma-associated herpesvirus (KSHV), a tumor-causing DNA virus, exhibits two distinct phases of infection and encodes ∼90 viral gene products during the lytic phase of infection compared to only a few (∼5) during the latent phase. Thus, productive KSHV infection relies heavily on the host cell translational machinery, which often links to the formation of PB and SG. One major question is how KSHV counteracts the hostile environment of RNA granules for its productive infection. Recent studies demonstrated that KSHV copes with the translational suppression by cellular RNA granules, PB and SG, by expressing ORF57, a viral RNA-binding protein, during KSHV lytic infection. ORF57 interacts with Ago2 and GW182, two major components of PB, and prevents the scaffolding activity of GW182 at the initial stage of PB formation in the infected cells. ORF57 also interacts with protein kinase R (PKR) and PKR-activating protein (PACT) to block PKR dimerization and kinase activation, and thus inhibits eIF2α phosphorylation and SG formation. The homologous immediate-early regulatory protein ICP27 of herpes simplex virus type 1 (HSV-1), but not the EB2 protein of Epstein-Barr virus (EBV), shares this conserved inhibitory function with KSHV ORF57 on PB and SG. Through KSHV ORF57 studies, we have learned much about how a DNA virus in the infected cells is equipped to evade host antiviral immunity for its replication and productive infection. KSHV ORF57 would be an excellent viral target for development of anti-KSHV-specific therapy.
Collapse
Affiliation(s)
- Nishi R Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, New Delhi, India
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
94
|
Englmeier L, Subburayalu J. What's happening where when SARS-CoV-2 infects: are TLR7 and MAFB sufficient to explain patient vulnerability? Immun Ageing 2022; 19:6. [PMID: 35065665 PMCID: PMC8783172 DOI: 10.1186/s12979-022-00262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022]
Abstract
The present COVID-19 pandemic has revealed that several characteristics render patients especially prone to developing severe COVID-19 disease, i.e., the male sex, obesity, and old age. An explanation for the observed pattern of vulnerability has been proposed which is based on the concept of low sensitivity of the TLR7-signaling pathway at the time of infection as a common denominator of vulnerable patient groups. We will discuss whether the concept of established TLR-tolerance in macrophages and dendritic cells of the obese and elderly prior to infection can explain not only the vulnerability of these two demographic groups towards development of a severe infection with SARS-CoV-2, but also the observed cytokine response in these vulnerable patients, which is skewed towards pro-inflammatory cytokines with a missing interferon signature.
Collapse
Affiliation(s)
- Ludwig Englmeier
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany. .,Patent Attorney Dr. Ludwig Englmeier, scrIPtum, Erlenaustrasse 11, 83080, Oberaudorf, Germany. .,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany.,Mildred Scheel Early Career Center, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
95
|
Yin L, Liu X, Hu D, Luo Y, Zhang G, Liu P. Swine Enteric Coronaviruses (PEDV, TGEV, and PDCoV) Induce Divergent Interferon-Stimulated Gene Responses and Antigen Presentation in Porcine Intestinal Enteroids. Front Immunol 2022; 12:826882. [PMID: 35126380 PMCID: PMC8810500 DOI: 10.3389/fimmu.2021.826882] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Swine enteric coronaviruses (SECoVs) including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV), account for the majority of lethal watery diarrhea in neonatal pigs and pose significant economic and public health burdens in the world. While the three SECoVs primarily infect intestinal epithelia in vivo and cause similar clinical signs, there are evident discrepancies in their cellular tropism and pathogenicity. However, the underlying mechanisms to cause the differences remain unclear. Herein, we employed porcine enteroids that are a physiologically relevant model of the intestine to assess the host epithelial responses following infection with the three SECoVs (PEDV, TGEV, and PDCoV). Although SECoVs replicated similarly in jejunal enteroids, a parallel comparison of transcriptomics datasets uncovered that PEDV and TGEV infection induced similar transcriptional profiles and exhibited a more pronounced response with more differentially expressed genes (DEGs) in jejunal enteroids compared with PDCoV infection. Notably, TGEV and PDCoV induced high levels of type I and III IFNs and IFN-stimulated gene (ISG) responses, while PEDV displayed a delayed peak and elicited a much lesser extent of IFN responses. Furthermore, TGEV and PDCoV instead of PEDV elicited a substantial upregulation of antigen-presentation genes and T cell-recruiting chemokines in enteroids. Mechanistically, we demonstrated that IFNs treatment markedly elevated the expression of NOD-like receptor (NLR) family NLRC5 and major histocompatibility complex class I (MHC-I) molecules. Together, our results indicate unique and common viral strategies for manipulating the global IFN responses and antigen presentation utilized by SECoVs, which help us a better understanding of host-SECoVs interactions.
Collapse
|
96
|
Flavivirus recruits the valosin-containing protein-NPL4 complex to induce stress granule disassembly for efficient viral genome replication. J Biol Chem 2022; 298:101597. [PMID: 35063505 PMCID: PMC8857493 DOI: 10.1016/j.jbc.2022.101597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.
Collapse
|
97
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|
98
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
99
|
Macena JC, Renzi DF, Grigoletto DF. Chemical and biological properties of nordihydroguaiaretic acid. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
100
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|