51
|
Christopoulos PF. The future of tumor vaccines in the post-COVID-19 era-Current challenges. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1795-1797. [PMID: 34473900 PMCID: PMC8589397 DOI: 10.1002/iid3.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Pathology, Section of Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
52
|
Boudewijns R, Ma J, Neyts J, Dallmeier K. A novel therapeutic HBV vaccine candidate induces strong polyfunctional cytotoxic T cell responses in mice. JHEP Rep 2021; 3:100295. [PMID: 34159304 PMCID: PMC8203848 DOI: 10.1016/j.jhepr.2021.100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & AIMS Current standard-of-care suppresses HBV replication, but does not lead to a functional cure. Treatment aiming to cure chronic hepatitis B (CHB) is believed to require the induction of strong cellular immune responses, such as by therapeutic vaccination. METHODS We designed a therapeutic HBV vaccine candidate (YF17D/HBc-C) using yellow fever vaccine YF17D as a live-attenuated vector to express HBV core antigen (HBc). Its ability to induce potent cellular immune responses was assessed in a mouse model that supports flavivirus replication. RESULTS Following a HBc protein prime, a booster of YF17D/HBc-C was found to induce vigorous cytotoxic T cell responses. In a direct head-to-head comparison, these HBc-specific responses exceeded those elicited by adenovirus-vectored HBc. Target-specific T cells were not only more abundant, but also showed a higher degree of polyfunctionality, with HBc-specific CD8+ T cells producing interferon γ and tumour necrosis factor α in addition to granzyme B. This immune phenotype translated into a superior cytotoxic effector activity toward HBc-positive cells in YF17D/HBc-C vaccinated animals in vivo. CONCLUSIONS The results presented here show the potential of YF17D/HBc-C as a vaccine candidate to treat CHB, and warrant follow-up studies in preclinical animal models of HBV persistence in which other candidate vaccines have been unable to achieve a sustained virologic response. LAY SUMMARY Resolution of CHB requires the induction of strong cellular immune responses. We used the yellow fever vaccine as a vector for HBV antigens and show that it is capable of inducing high levels of HBV-specific T cells that produce multiple cytokines simultaneously and are cytotoxic in vivo.
Collapse
Key Words
- CAR-T, chimeric antigen receptor T cells
- CFSE, carboxy-fluorescein succinimidyl ester
- CHB, chronic hepatitis B
- CTL, cytotoxic T lymphocyte
- Chronic hepatitis B
- DCs, dendritic cells
- ELISPOT, enzyme-linked ImmunoSpot
- GzmB, granzyme B
- HBV
- HBc, HBV core antigen
- HBp, HBV polymerase antigen
- HBs, HBV surface antigen
- ICS, intracellular cytokine staining
- IFNγ, interferon γ
- MHC, major histocompatibility complex
- NanoLuc, nanoluciferase
- STAT2, signal transducer and activator of transcription 2
- TNFα, tumour necrosis factor α
- Therapeutic vaccination
- YF, yellow fever
- Yellow fever vaccine
- aa, amino acids
- cccDNA, covalently closed circular DNA
- ifnar, IFN-α/β receptor
- pfu, plaque-forming units
- rHBc, recombinant HBc
- t-SNE, t-stochastic neighbour embedding
- wt, wild-type
Collapse
Affiliation(s)
- Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
53
|
Kim E, Weisel FJ, Balmert SC, Khan MS, Huang S, Erdos G, Kenniston TW, Carey CD, Joachim SM, Conter LJ, Weisel NM, Okba NMA, Haagmans BL, Percivalle E, Cassaniti I, Baldanti F, Korkmaz E, Shlomchik MJ, Falo LD, Gambotto A. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol 2021; 51:1774-1784. [PMID: 33772778 PMCID: PMC8250272 DOI: 10.1002/eji.202149167] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.
Collapse
Affiliation(s)
- Eun Kim
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Florian J. Weisel
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen C. Balmert
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Muhammad S. Khan
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| | - Shaohua Huang
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Geza Erdos
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Thomas W. Kenniston
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Cara Donahue Carey
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen M. Joachim
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Laura J. Conter
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nadine M. Weisel
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nisreen M. A. Okba
- Department of ViroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Bart L. Haagmans
- Department of ViroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Elena Percivalle
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
| | - Irene Cassaniti
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
| | - Fausto Baldanti
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
- Department of ClinicalSurgicalDiagnostic and Pediatric SciencesUniversity of PaviaPaviaItaly
| | - Emrullah Korkmaz
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPAUSA
| | - Mark J. Shlomchik
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Louis D. Falo
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPAUSA
- Clinical and Translational Science InstituteUniversity of PittsburghPittsburghPAUSA
- The McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Andrea Gambotto
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
- Department of MedicineDivision of Infectious DiseaseUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Microbiology and Molecular Genetics University of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
54
|
Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021; 9:vaccines9060668. [PMID: 34207062 PMCID: PMC8233841 DOI: 10.3390/vaccines9060668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Collapse
|
55
|
Bayat M, Asemani Y, Najafi S. Essential considerations during vaccine design against COVID-19 and review of pioneering vaccine candidate platforms. Int Immunopharmacol 2021; 97:107679. [PMID: 33930707 PMCID: PMC8049400 DOI: 10.1016/j.intimp.2021.107679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
The calamity of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), COVID-19, is still a global human tragedy. To date, no specific antiviral drug or therapy has been able to break the widespread of SARS-CoV2. It has been generally believed that stimulating protective immunity via universal vaccination is the individual strategy to manage this pandemic. Achieving an effective COVID-19 vaccine requires attention to the immunological and non-immunological standpoints mentioned in this article. Here, we try to introduce the considerable immunological aspects, potential antigen targets, appropriate adjuvants as well as key points in the various stages of COVID-19 vaccine development. Also, the principal features of the preclinical and clinical studies of pioneering COVID-19 vaccine candidates were pointed out by reviewing the available information. Finally, we discuss the key challenges in the successful design of the COVID-19 vaccine and address the most fundamental strengths and weaknesses of common vaccine platforms.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Darwish RM. COVID-19 immunity and vaccines: what a pharmacist needs to know. ASIAN BIOMED 2021; 15:51-67. [PMID: 37551403 PMCID: PMC10388771 DOI: 10.2478/abm-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
COVID-19 vaccines are being produced using different platforms by different companies, some of which are entering Phase 3 and 4 trials. Due to the pandemic, this production has been accelerated, which leaves a window for speculation on the method of production and safety. Pharmacists are familiar with vaccination; however, COVID-19 vaccines are still new and further work is needed to clarify many aspects, including side effects, methods of storage, and number of doses. Prioritization of vaccination has been implemented to a certain extent, but no clear strategy is available. A comprehensive overview on immunity and immunological principles for the design of COVID-19 vaccine strategies is provided in this narrative review and the current COVID-19 vaccine landscape is discussed, in addition to exploring the principles for prioritization of vaccination using data from articles available in PubMed and from health organizations. Pharmacists should have a better understanding of COVID-19 vaccines and their manufacture. This would also allow better counseling of the public on COVID 19, immunization, and explaining prioritization basis and vaccination programs.
Collapse
Affiliation(s)
- Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Aljubeiha, Amman00962, Jordan
| |
Collapse
|
57
|
Sari‐Ak D, Bufton J, Gupta K, Garzoni F, Fitzgerald D, Schaffitzel C, Berger I. VLP-factory™ and ADDomer © : Self-assembling Virus-Like Particle (VLP) Technologies for Multiple Protein and Peptide Epitope Display. Curr Protoc 2021; 1:e55. [PMID: 33729713 PMCID: PMC9733710 DOI: 10.1002/cpz1.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virus-like particles (VLPs) play a prominent role in vaccination as safe and highly versatile alternatives to attenuated or inactivated viruses or subunit vaccines. We present here two innovations, VLP-factory™ and ADDomer© , for creating VLPs displaying entire proteins or peptide epitopes as antigens, respectively, to enable efficient vaccination. For producing these VLPs, we use MultiBac, a baculovirus expression vector system (BEVS) that we developed for producing complex protein biologics in insect cells transfected with an engineered baculovirus. VLPs are protein assemblies that share features with viruses but are devoid of genetic material, and thus considered safe. VLP-factory™ represents a customized MultiBac baculovirus tailored to produce enveloped VLPs based on the M1 capsid protein of influenza virus. We apply VLP-factory™ to create an array of influenza-derived VLPs presenting functional mutant influenza hemagglutinin (HA) glycoprotein variants. Moreover, we describe MultiBac-based production of ADDomer© , a synthetic self-assembling adenovirus-derived protein-based VLP platform designed to display multiple copies of pathogenic epitopes at the same time on one particle for highly efficient vaccination. © 2021 The Authors. Basic Protocol 1: VLP-factory™ baculoviral genome generation Basic Protocol 2: Influenza VLP array generation using VLP-factory™ Basic Protocol 3: Influenza VLP purification Basic Protocol 4: ADDomer© BioBrick design, expression, and purification Basic Protocol 5: ADDomer© candidate vaccines against infectious diseases.
Collapse
Affiliation(s)
- Duygu Sari‐Ak
- Department of Medical Biology, School of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Joshua Bufton
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Frederic Garzoni
- Imophoron Ltd, St. Philips CentralSt. PhilipsBristolUnited Kingdom
| | | | - Christiane Schaffitzel
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom,School of ChemistryUniversity of BristolBristolUnited Kingdom,Max Planck Bristol Centre for Minimal BiologyUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
58
|
COVID-19 Vaccines (Revisited) and Oral-Mucosal Vector System as a Potential Vaccine Platform. Vaccines (Basel) 2021; 9:vaccines9020171. [PMID: 33670630 PMCID: PMC7922043 DOI: 10.3390/vaccines9020171] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
There are several emerging strategies for the vaccination of COVID-19 (SARS-CoV-2) however, only a few have yet shown promising effects. Thus, choosing the right pathway and the best prophylactic options in preventing COVID-19 is still challenging at best. Approximately, more than two-hundred vaccines are being tested in different countries, and more than fifty clinical trials are currently undergoing. In this review, we have summarized the immune-based strategies for the development of COVID-19 vaccines and the different vaccine candidate platforms that are in clinical stages of evaluation, and up to the recently licensed mRNA-based COVID-19 vaccines of Pfizer-BioNtech and Moderna's. Lastly, we have briefly included the potentials of using the 'RPS-CTP vector system' for the development of a safe and effective oral mucosal COVID-19 vaccine as another vaccine platform.
Collapse
|
59
|
Olsen HE, Lynn GM, Valdes PA, Cerecedo Lopez CD, Ishizuka AS, Arnaout O, Bi WL, Peruzzi PP, Chiocca EA, Friedman GK, Bernstock JD. Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neurooncol Adv 2021; 3:vdab027. [PMID: 33860227 PMCID: PMC8034661 DOI: 10.1093/noajnl/vdab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Though outcomes for pediatric cancer patients have significantly improved over the past several decades, too many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after conventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of immunotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition of tumor antigens, thereby minimizing off-target toxicity. As such, cancer vaccines are orthogonal to conventional cancer treatments and can therefore be used alone or in combination with other therapeutic modalities to maximize efficacy. To date, cancer vaccination has remained largely understudied in the pediatric population. In this review, we discuss the different types of tumor antigens and vaccine technologies (dendritic cells, peptides, nucleic acids, and viral vectors) evaluated in clinical trials, with a focus on those used in children. We conclude with perspectives on how advances in combination therapies, tumor antigen (eg, neoantigen) selection, and vaccine platform optimization can be translated into clinical practice to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Hannah E Olsen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian D Cerecedo Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Avidea Technologies, Inc., Baltimore, Maryland, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
60
|
Lin S, Liu C, Han X, Zhong H, Cheng C. Viral Nanoparticle System: An Effective Platform for Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms22041728. [PMID: 33572365 PMCID: PMC7916136 DOI: 10.3390/ijms22041728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy due to its efficiency and accuracy. The photosensitizer is delivered to the target lesion and locally activated. Viral nanoparticles (VNPs) have been explored as delivery vehicles for PDT in recent years because of their favorable properties, including simple manufacture and good safety profile. They have great potential as drug delivery carriers in medicine. Here, we review the development of PDT photosensitizers and discuss applications of VNP-mediated photodynamic therapies and the performance of VNPs in the treatment of tumor cells and antimicrobial therapy. Furthermore, future perspectives are discussed for further developing novel viral nanocarriers or improving existing viral vectors.
Collapse
Affiliation(s)
| | - Chun Liu
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| | - Xiao Han
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| | | | - Cui Cheng
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| |
Collapse
|
61
|
A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature 2021; 590:320-325. [PMID: 33260195 DOI: 10.1038/s41586-020-3035-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.
Collapse
|
62
|
Investigation of Kluyveromyces marxianus as a novel host for large-scale production of porcine parvovirus virus-like particles. Microb Cell Fact 2021; 20:24. [PMID: 33494762 PMCID: PMC7836160 DOI: 10.1186/s12934-021-01514-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Porcine Parvovirus (PPV) is a Parvovirinae virus that can cause embryonic and fetal loss and death and mummification in affected fetal pigs. Unlike conventional vaccines, virus-like particles (VLPs) inherit the natural structure of their authentic virions and highly immunostimulatory that can induce strong humoral immune and T cell responses with no risk of pathogenicity. The production of PPV VLPs is still a challenge based on traditional expression platforms due to their low yields and high culture costs. Kluyveromyces marxianus is a safe and fast-growing eukaryote that can get high biomass with low-cost cultures. In this study, we investigated the expression and downstream processes of PPV VLPs in K. marxianus, and the potential for effective stand-alone vaccines. Results After optimization according to the codon bias of K. marxianus, the VP2 protein from Kresse strain was highly expressed. In a 5 L fermentator, the yield of PPV VLPs reached 2.5 g/L, quantified by HPLC, using a defined mineral medium after 48 h fermentation. Two strategies were established to purify intracellular PPV VLPs: (i) Using the cation exchange chromatography coupled with Sephacryl® S-500 HR chromatography to purify VLPs from the supernatants of pH adjusted cell lysates. (ii) Using anion exchange chromatography followed by cross-flow diafiltration to recover the VLPs precipitated in pH adjusted cell lysates. The purity of PPV VLPs reached about 95%, and total recovery was more than 60%. Vaccination of mice with the purified PPV VLPs induced high titers of specific IgG antibodies in sera, and showed hemagglutination inhibitions on both swine and guinea pig erythrocytes. Spleen lymphocyte proliferation and cytokines detection suggested the PPV VLPs produced by K. marxianus provoked the cellular immune and humoral immunity responses in mice. Conclusions This is the highest production of recombinant PPV VLPs achieved to date. The superiorities, Generally Recognized As Safe (GRAS), high production, short lead time, and low cost, make K. marxianus a greatly competitive platform for bioproduction of PPV VLPs vaccine.
Collapse
|
63
|
Coffey JW, Gaiha GD, Traverso G. Oral Biologic Delivery: Advances Toward Oral Subunit, DNA, and mRNA Vaccines and the Potential for Mass Vaccination During Pandemics. Annu Rev Pharmacol Toxicol 2021; 61:517-540. [PMID: 32466690 PMCID: PMC8057107 DOI: 10.1146/annurev-pharmtox-030320-092348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oral vaccination enables pain-free and self-administrable vaccine delivery for rapid mass vaccination during pandemic outbreaks. Furthermore, it elicits systemic and mucosal immune responses. This protects against infection at mucosal surfaces, which may further enhance protection and minimize the spread of disease. The gastrointestinal (GI) tract presents a number of prospective mucosal inductive sites for vaccine targeting, including the oral cavity, stomach, and small intestine. However, currently available oral vaccines are effectively limited to live-attenuated and inactivated vaccines against enteric diseases. The GI tract poses a number of challenges,including degradative processes that digest biologics and mucosal barriers that limit their absorption. This review summarizes the approaches currently under development and future opportunities for oral vaccine delivery to established (intestinal) and relatively new (oral cavity, stomach) mucosal targets. Special consideration is given to recent advances in oral biologic delivery that offer promise as future platforms for the administration of oral vaccines.
Collapse
Affiliation(s)
- Jacob William Coffey
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunology, University of Melbourne, Victoria, 3000, Australia
| | - Gaurav Das Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
64
|
Ivanov V, Bezgin V, Shvets O. Study of immunogenic properties of associated inactivated vaccine against horse influenza and petanus. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An associated inactivated vaccine has been developed for the specific prophylaxis of tetanus and equine influenza caused by various influenza viruses of the H3N8 serotype. The strain composition of the associated vaccine was determined considering the recommendations of the International Epizootic Bureau, as well as the virus circulating in Russia, isolated in 2007 and therefore posing a certain danger to horse breeding in the Russian Federation. The immunogenic properties of the new associated vaccine were studied in a laboratory model and horses. The results of studies of the associated vaccine FFE Kurskaya Biofabrika showed that the investigated vaccine preparation has high immunogenic activity and can cause a long-term intense immune response against influenza and tetanus in laboratory animals and horses.
Collapse
|
65
|
Yasmin H, Saha S, Butt MT, Modi RK, George AJT, Kishore U. SARS-CoV-2: Pathogenic Mechanisms and Host Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:99-134. [PMID: 34661893 DOI: 10.1007/978-3-030-67452-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped, positive-sense RNA coronavirus responsible for the COVID-19 pandemic. Since December 2019, coronavirus disease 2019 (COVID-19) has affected more than 127 million people, 2.7 million deaths globally (as per WHO dashboard, dated 31 March, 2020), the virus is capable of transmitting from human to human via inhalation of infected respiratory droplets or aerosols or contact with infected fomites. Clinically, patients with COVID-19 present with severe respiratory distress syndrome, which is very similar to the presentation of other respiratory viral infections. A huge variation in the host response exists, with the resulting symptoms varying from mild to moderate. Comorbidities such as cardiovascular disease, hypertension, diabetes, coagulation dysfunction, stroke, malignant tumor and multiple organ dysfunction syndrome, as well as age and sex, are associated with severe COVID-19 cases. So far, no targeted therapies have been developed to treat this disease and existing drugs are being investigated for repurposing. This chapter discusses the epidemiology, clinical features of COVID-19, pathogenesis and the innate and adaptive immune response mounted by the host to the SARS-CoV-2 infection. A deeper understanding of the host-pathogen interaction is fundamental to the development of a vaccine.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sudipta Saha
- Amity Institute of Physiology and Allied Sciences, Amity University Campus, Noida, Uttar Pradesh, India
| | - Mariam Tariq Butt
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rishab Kumar Modi
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Andrew J T George
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| |
Collapse
|
66
|
Recent developments in vaccines strategies against human viral pathogens. RECENT DEVELOPMENTS IN APPLIED MICROBIOLOGY AND BIOCHEMISTRY 2021. [PMCID: PMC7564847 DOI: 10.1016/b978-0-12-821406-0.00001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, several viruses have emerged or reemerged from obscurity to become serious global health threats, raising alarm regarding their sustained epidemic transmission. One of the main public health concerns of these emerging viruses is their sustained circulation among populations of immunologically naïve, susceptible hosts. With every new viral emergence or reemergence, comes the call for rapid vaccine development and the induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Vaccines are considered a critical component of disease prevention against emerging viral infections because, in many cases, other medical options are limited or nonexistent. While the classic approaches to vaccine development are still amenable to emerging viruses, the advent of latest technologies in molecular techniques has profoundly influenced our understanding of virus biology, and immune responses and vaccination methods based on replicating, attenuated, and nonreplicating virus vector approaches have become useful vaccine platforms. Together with a growing understanding in the biology of newly emerging virus diseases, a range of new vaccine strategies, vaccines against new and reemerging viruses may become a possibility.
Collapse
|
67
|
Won JH, Lee H. The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic. Int J Mol Sci 2020; 21:E9775. [PMID: 33371468 PMCID: PMC7767501 DOI: 10.3390/ijms21249775] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) was first identified, the world has vehemently worked to develop treatments and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at an unprecedented speed. Few of the repositioned drugs for COVID-19 have shown that they were efficacious and safe. In contrast, a couple of vaccines against SARS-CoV-2 will be ready for mass rollout early next year. Despite successful vaccine development for COVID-19, the world will face a whole new set of challenges including scale-up manufacturing, cold-chain logistics, long-term safety, and low vaccine acceptance. We highlighted the importance of knowledge sharing and collaboration to find innovative answers to these challenges and to prepare for newly emerging viruses.
Collapse
Affiliation(s)
- Jung-Hyun Won
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea;
- Center for Convergence Approaches in Drug Development, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Howard Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea;
- Center for Convergence Approaches in Drug Development, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul 03080, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
| |
Collapse
|
68
|
Mirzaei R, Mohammadzadeh R, Mahdavi F, Badrzadeh F, Kazemi S, Ebrahimi M, Soltani F, Kazemi S, Jeda AS, Darvishmotevalli M, Yousefimashouf R, Keyvani H, Karampoor S. Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Int Immunopharmacol 2020; 88:106928. [PMID: 32862110 PMCID: PMC7444935 DOI: 10.1016/j.intimp.2020.106928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by the novel coronavirus called SARS-CoV-2. There is a gap in our understanding regarding the immunopathogenesis of COVID-19. However, many clinical trials are underway across the world for screening effective drugs against COVID-19. Nevertheless, currently, no proven effective therapies for this virus exists. The vaccines are deemed as a significant part of disease prevention for emerging viral diseases, since, in several cases, other therapeutic choices are limited or non-existent, or that diseases result in such an accelerated clinical worsening that the efficacy of treatments is restricted. Therefore, effective vaccines against COVID-19 are urgently required to overcome the tremendous burden of mortality and morbidity correlated with SARS-CoV-2. In this review, we will describe the latest evidence regarding outstanding vaccine approaches and the challenges for vaccine production.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Badrzadeh
- Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Sheida Kazemi
- Students' Seientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Environmental Health, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soltani
- Health Safety and Environment Management Department, Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishmotevalli
- Research Center For Health, Safety And Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
69
|
Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS NANO 2020; 14:12522-12537. [PMID: 33034449 PMCID: PMC7553041 DOI: 10.1021/acsnano.0c07197] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
Humanity is experiencing a catastrophic pandemic. SARS-CoV-2 has spread globally to cause significant morbidity and mortality, and there still remain unknowns about the biology and pathology of the virus. Even with testing, tracing, and social distancing, many countries are struggling to contain SARS-CoV-2. COVID-19 will only be suppressible when herd immunity develops, either because of an effective vaccine or if the population has been infected and is resistant to reinfection. There is virtually no chance of a return to pre-COVID-19 societal behavior until there is an effective vaccine. Concerted efforts by physicians, academic laboratories, and companies around the world have improved detection and treatment and made promising early steps, developing many vaccine candidates at a pace that has been unmatched for prior diseases. As of August 11, 2020, 28 of these companies have advanced into clinical trials with Moderna, CanSino, the University of Oxford, BioNTech, Sinovac, Sinopharm, Anhui Zhifei Longcom, Inovio, Novavax, Vaxine, Zydus Cadila, Institute of Medical Biology, and the Gamaleya Research Institute having moved beyond their initial safety and immunogenicity studies. This review analyzes these frontrunners in the vaccine development space and delves into their posted results while highlighting the role of the nanotechnologies applied by all the vaccine developers.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Veronique Beiss
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Steven N. Fiering
- Geisel School of Medicine, Dartmouth
College, Hanover, New Hampshire 03755, United
States
- Norris Cotton Cancer Center,
Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766,
United States
| | - Nicole F. Steinmetz
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of Radiology, University of
California San Diego, La Jolla, California 92093, United
States
- Moores Cancer Center, University of California
San Diego, La Jolla, California 92093, United
States
- Center for Nano-ImmunoEngineering,
University of California San Diego, La Jolla, California
92093, United States
| |
Collapse
|
70
|
Ye T, Zhong Z, García‐Sastre A, Schotsaert M, De Geest BG. Current Status of COVID-19 (Pre)Clinical Vaccine Development. Angew Chem Int Ed Engl 2020; 59:18885-18897. [PMID: 32663348 PMCID: PMC7405471 DOI: 10.1002/anie.202008319] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/29/2022]
Abstract
The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.
Collapse
Affiliation(s)
- Tingting Ye
- Department of PharmaceuticsGhent UniversityBelgium
| | - Zifu Zhong
- Department of PharmaceuticsGhent UniversityBelgium
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of MedicineDivision of Infectious DiseasesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- The Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Michael Schotsaert
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | | |
Collapse
|
71
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
72
|
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol 2020; 20:615-632. [PMID: 32887954 PMCID: PMC7472682 DOI: 10.1038/s41577-020-00434-6] [Citation(s) in RCA: 659] [Impact Index Per Article: 164.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most formidable challenge to humanity in a century. It is widely believed that prepandemic normalcy will never return until a safe and effective vaccine strategy becomes available and a global vaccination programme is implemented successfully. Here, we discuss the immunological principles that need to be taken into consideration in the development of COVID-19 vaccine strategies. On the basis of these principles, we examine the current COVID-19 vaccine candidates, their strengths and potential shortfalls, and make inferences about their chances of success. Finally, we discuss the scientific and practical challenges that will be faced in the process of developing a successful vaccine and the ways in which COVID-19 vaccine strategies may evolve over the next few years.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunity, Herd/drug effects
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Patient Safety
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
73
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
74
|
Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020; 7:559-587. [PMID: 32991265 PMCID: PMC8018517 DOI: 10.1146/annurev-virology-010720-052252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - He Hu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Hui Cai
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Christine E Boone
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul L Chariou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center and Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
75
|
Abstract
Prophylactic and therapeutic vaccines for the alphaherpesviruses including varicella zoster virus (VZV) and herpes simplex virus types 1 and 2 have been the focus of enormous preclinical and clinical research. A live viral vaccine for prevention of chickenpox and a subunit therapeutic vaccine to prevent zoster are highly successful. In contrast, progress towards the development of effective prophylactic or therapeutic vaccines against HSV-1 and HSV-2 has met with limited success. This review provides an overview of the successes and failures, the different types of immune responses elicited by various vaccine modalities, and the need to reconsider the preclinical models and immune correlates of protection against HSV.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C. Herald
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
76
|
Li Z, Zheng C, Terreni M, Tanzi L, Sollogoub M, Zhang Y. Novel Vaccine Candidates against Tuberculosis. Curr Med Chem 2020; 27:5095-5118. [DOI: 10.2174/0929867326666181126112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and
killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi-
Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine
BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently,
it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper
provides an overall review of the TB prevalence, immune system response against TB and recent
progress of TB vaccine research and development. Several vaccines in clinical trials are described as
well as LAM-based candidates.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lisa Tanzi
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
77
|
Trovato M, Sartorius R, D’Apice L, Manco R, De Berardinis P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front Immunol 2020; 11:2130. [PMID: 33013898 PMCID: PMC7494754 DOI: 10.3389/fimmu.2020.02130] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the last decades, a number of infectious viruses have emerged from wildlife or re-emerged, generating serious threats to the global health and to the economy worldwide. Ebola and Marburg hemorrhagic fevers, Lassa fever, Dengue fever, Yellow fever, West Nile fever, Zika, and Chikungunya vector-borne diseases, Swine flu, Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the recent Coronavirus disease 2019 (COVID-19) are examples of zoonoses that have spread throughout the globe with such a significant impact on public health that the scientific community has been called for a rapid intervention in preventing and treating emerging infections. Vaccination is probably the most effective tool in helping the immune system to activate protective responses against pathogens, reducing morbidity and mortality, as proven by historical records. Under health emergency conditions, new and alternative approaches in vaccine design and development are imperative for a rapid and massive vaccination coverage, to manage a disease outbreak and curtail the epidemic spread. This review gives an update on the current vaccination strategies for some of the emerging/re-emerging viruses, and discusses challenges and hurdles to overcome for developing efficacious vaccines against future pathogens.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Enhancement/immunology
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Communicable Diseases, Emerging/prevention & control
- Communicable Diseases, Emerging/virology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Cross Reactions/immunology
- Humans
- Immunization, Passive
- Pandemics/prevention & control
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- SARS-CoV-2
- Vaccination
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Subunit/immunology
- Viral Vaccines/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Maria Trovato
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | | | | |
Collapse
|
78
|
Ye T, Zhong Z, García‐Sastre A, Schotsaert M, De Geest BG. Current Status of COVID‐19 (Pre)Clinical Vaccine Development. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics Ghent University Belgium
| | - Zifu Zhong
- Department of Pharmaceutics Ghent University Belgium
| | - Adolfo García‐Sastre
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Global Health and Emerging Pathogens Institute Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Department of Medicine Division of Infectious Diseases Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- The Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | - Michael Schotsaert
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Global Health and Emerging Pathogens Institute Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | | |
Collapse
|
79
|
Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y, Satchi-Fainaro R. Immune-mediated approaches against COVID-19. NATURE NANOTECHNOLOGY 2020; 15:630-645. [PMID: 32661375 PMCID: PMC7355525 DOI: 10.1038/s41565-020-0732-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 05/05/2023]
Abstract
The coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The long incubation period of this new virus, which is mostly asymptomatic yet contagious, is a key reason for its rapid spread across the world. Currently, there is no worldwide-approved treatment for COVID-19. Therefore, the clinical and scientific communities have joint efforts to reduce the severe impact of the outbreak. Research on previous emerging infectious diseases have created valuable knowledge that is being exploited for drug repurposing and accelerated vaccine development. Nevertheless, it is important to generate knowledge on SARS-CoV-2 mechanisms of infection and its impact on host immunity, to guide the design of COVID-19 specific therapeutics and vaccines suitable for mass immunization. Nanoscale delivery systems are expected to play a paramount role in the success of these prophylactic and therapeutic approaches. This Review provides an overview of SARS-CoV-2 pathogenesis and examines immune-mediated approaches currently explored for COVID-19 treatments, with an emphasis on nanotechnological tools.
Collapse
Affiliation(s)
- Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
80
|
Honap S, Johnston E, Agrawal G, Al-Hakim B, Hermon-Taylor J, Sanderson J. Anti- Mycobacterium paratuberculosis (MAP) therapy for Crohn's disease: an overview and update. Frontline Gastroenterol 2020; 12:397-403. [PMID: 35401965 PMCID: PMC8989010 DOI: 10.1136/flgastro-2020-101471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
The role of Mycobacterium avium subspecies paratuberculosis (MAP) in the pathogenesis of Crohn's disease (CD) has been strongly debated for many years. MAP is the known aetiological agent of Johne's disease, a chronic enteritis affecting livestock. At present, due to the paucity of high-quality data, anti-MAP therapy (AMT) is not featured in international guidelines as a treatment for CD. Although the much-quoted randomised trial of AMT did not show sustained benefits over placebo, questions have been raised regarding trial design, antibiotic dosing and the formulation used. There are several lines of evidence supporting the CD and MAP association with uncontrolled and controlled trials demonstrating effectiveness, including a retrospective review of cases treated at our own institution. Here, we provide an overview of the evidence supporting and refuting AMT in CD before focussing on updates of the current research in the field, including the ongoing trials with the novel RHB-104 formulation and the MAP vaccine trial. While controversial, gastroenterologists are often asked about long-term combination antibiotic therapy for CD. There has been broadcast and social media coverage surrounding this, particularly with regard to current trials. Although patients should not be deterred from treatments of proven effectiveness, this review aims to help with commonly asked questions and highlights our own approach for the use of anti-MAP in specific circumstances.
Collapse
Affiliation(s)
- Sailish Honap
- IBD Centre, Guy's and Saint Thomas' NHS Foundation Trust, London, UK
| | - Emma Johnston
- Department of Gastroenterology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Gaurav Agrawal
- IBD Centre, Guy's and Saint Thomas' NHS Foundation Trust, London, UK,Department of Nutritional Sciences, King's College London, London, UK
| | - Bahij Al-Hakim
- IBD Centre, Guy's and Saint Thomas' NHS Foundation Trust, London, UK
| | | | - Jeremy Sanderson
- IBD Centre, Guy's and Saint Thomas' NHS Foundation Trust, London, UK,Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
81
|
Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8:vaccines8020273. [PMID: 32503232 PMCID: PMC7350001 DOI: 10.3390/vaccines8020273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/21/2023] Open
Abstract
Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
| | - Steven B. Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 505, USA;
| | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
- Correspondence:
| |
Collapse
|
82
|
Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, Mayer-Barber KD, Mhlanga MM, Nemes E, Schlesinger LS, van Crevel R, Vankayalapati R(K, Xavier RJ, Netea MG. Targeting innate immunity for tuberculosis vaccination. J Clin Invest 2019; 129:3482-3491. [PMID: 31478909 PMCID: PMC6715374 DOI: 10.1172/jci128877] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccine development against tuberculosis (TB) is based on the induction of adaptive immune responses endowed with long-term memory against mycobacterial antigens. Memory B and T cells initiate a rapid and robust immune response upon encounter with Mycobacterium tuberculosis, thus achieving long-lasting protection against infection. Recent studies have shown, however, that innate immune cell populations such as myeloid cells and NK cells also undergo functional adaptation after infection or vaccination, a de facto innate immune memory that is also termed trained immunity. Experimental and epidemiological data have shown that induction of trained immunity contributes to the beneficial heterologous effects of vaccines such as bacille Calmette-Guérin (BCG), the licensed TB vaccine. Moreover, increasing evidence argues that trained immunity also contributes to the anti-TB effects of BCG vaccination. An interaction among immunological signals, metabolic rewiring, and epigenetic reprogramming underlies the molecular mechanisms mediating trained immunity in myeloid cells and their bone marrow progenitors. Future studies are warranted to explore the untapped potential of trained immunity to develop a future generation of TB vaccines that would combine innate and adaptive immune memory induction.
Collapse
Affiliation(s)
- Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, and Department of Pathology, McGill International TB Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Willem Hanekom
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Philip C. Hill
- Centre for International Health, Department of Preventive and Social Medicine, University of Otago Medical School, Dunedin, New Zealand
| | - Markus Maeurer
- Department of Oncology/Haematology, Krankenhaus Nordwest (KHNW), Frankfurt, Germany
- ImmunoSurgery Unit, Champalimaud Foundation, Lisbon, Portugal
| | - Karen W. Makar
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Musa M. Mhlanga
- Division of Chemical Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Faculty of Health Sciences, Department of Integrative Biomedical Sciences, and
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raman (Krishna) Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology and
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | |
Collapse
|
83
|
Vragniau C, Bufton JC, Garzoni F, Stermann E, Rabi F, Terrat C, Guidetti M, Josserand V, Williams M, Woods CJ, Viedma G, Bates P, Verrier B, Chaperot L, Schaffitzel C, Berger I, Fender P. Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display. SCIENCE ADVANCES 2019; 5:eaaw2853. [PMID: 31620562 PMCID: PMC6763337 DOI: 10.1126/sciadv.aaw2853] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Self-assembling virus-like particles represent highly attractive tools for developing next-generation vaccines and protein therapeutics. We created ADDomer, an adenovirus-derived multimeric protein-based self-assembling nanoparticle scaffold engineered to facilitate plug-and-play display of multiple immunogenic epitopes from pathogens. We used cryo-electron microscopy at near-atomic resolution and implemented novel, cost-effective, high-performance cloud computing to reveal architectural features in unprecedented detail. We analyzed ADDomer interaction with components of the immune system and developed a promising first-in-kind ADDomer-based vaccine candidate to combat emerging Chikungunya infectious disease, exemplifying the potential of our approach.
Collapse
Affiliation(s)
- Charles Vragniau
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Joshua C. Bufton
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
| | - Frédéric Garzoni
- Imophoron Ltd., Unit DX, St. Philips Central, Albert Road, Bristol BS2 OXJ, UK
| | - Emilie Stermann
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Fruzsina Rabi
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
| | - Céline Terrat
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305, Université Lyon 1, CNRS, Institut de Biologie et Chimie des Protéines (IBCP), Lyon, France
| | - Mélanie Guidetti
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Véronique Josserand
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Matt Williams
- Advanced Computing Research Centre, University of Bristol, 31 Great George Street, Bristol BS1 5QD, UK
| | - Christopher J. Woods
- Advanced Computing Research Centre, University of Bristol, 31 Great George Street, Bristol BS1 5QD, UK
| | - Gerardo Viedma
- Oracle Cloud Development Centre, Tower Wharf, Cheese Lane, Bristol BS2 2JJ, UK
| | - Phil Bates
- Oracle Cloud Development Centre, Tower Wharf, Cheese Lane, Bristol BS2 2JJ, UK
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305, Université Lyon 1, CNRS, Institut de Biologie et Chimie des Protéines (IBCP), Lyon, France
| | - Laurence Chaperot
- Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, 38700 Grenoble, France
| | - Christiane Schaffitzel
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
| | - Imre Berger
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Max Planck-Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Pascal Fender
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
84
|
Iglesias-Lopez C, Agustí A, Obach M, Vallano A. Regulatory Framework for Advanced Therapy Medicinal Products in Europe and United States. Front Pharmacol 2019; 10:921. [PMID: 31543814 PMCID: PMC6728416 DOI: 10.3389/fphar.2019.00921] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 12/04/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) are a fast-growing field of innovative therapies. The European Union (EU) and the United States (US) are fostering their development. For both regions, ATMPs fall under the regulatory framework of biological products, which determines the legal basis for their development. Sub-classifications of advanced therapies are different between regions, while in EU, there are four major groups, i.e., gene therapy, somatic cell therapy, tissue-engineered therapies, and combined advanced therapies; in US, the sub-classification covers two major groups of products, i.e., gene therapy and cellular therapy. The inclusion criteria that define a gene therapy are equivalent in both regions, and the exclusion criteria are directly related to the indications of the product. In the EU, there is a clear differentiation between cell- and tissue-based products regarding their classification as advanced therapies or coverage by other legal frameworks, whereas in US, there is a broader classification about whether or not these products can be categorized as biologic products. Both in EU and in US, in order to classify a cell- or a tissue-based product as an advanced therapy, it must be ensured that the processing of the cells implies a manipulation that alters their biological characteristics, although the term of manipulation in US differentiates between structural and non-structural cells and tissues. The regulatory terminology used to define ATMPs and their sub-classification reveals some differences between EU and US.
Collapse
Affiliation(s)
- Carolina Iglesias-Lopez
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonia Agustí
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Pharmacology Service, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Mercè Obach
- Medicines Department, Catalan Healthcare Service, Barcelona, Spain
| | - Antonio Vallano
- Medicines Department, Catalan Healthcare Service, Barcelona, Spain
- Pathology and Experimental Therapeutics Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
85
|
Jaramillo Ortiz JM, Paoletta MS, Gravisaco MJ, López Arias LS, Montenegro VN, de la Fournière SAM, Valenzano MN, Guillemi EC, Valentini B, Echaide I, Farber MD, Wilkowsky SE. Immunisation of cattle against Babesia bovis combining a multi-epitope modified vaccinia Ankara virus and a recombinant protein induce strong Th1 cell responses but fails to trigger neutralising antibodies required for protection. Ticks Tick Borne Dis 2019; 10:101270. [PMID: 31445874 DOI: 10.1016/j.ttbdis.2019.101270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
Protection against the intraerythrocytic protozoan parasite Babesia bovis depends on both strong innate and adaptive immune response, this latter involving the presentation of parasite antigens to CD4+ T-lymphocytes by professional antigen-presenting cells. Secretion of Th1 cytokines by CD4+ T cell is also very important for isotype switching to IgG2, the best opsonising antibody isotype in cattle, to target extracellular parasites and parasite antigens displayed at the erythrocyte surface. In the field of vaccinology, heterologous prime-boost schemes combining protein-adjuvant formulations with a modified vaccinia Ankara vector expressing the same antigen have demonstrated the induction of both humoral and cellular immune responses. It has been previously demonstrated that MVA-infected dendritic cells can present antigens in the context of MHC II and activate CD4+ T cell. These results support the use of the MVA viral vector for a pathogen like Babesia bovis, which only resides within erythrocytes. In this study, 13-15-months-old Holstein-Friesian steers were immunised with a subunit vaccine as a prime and a modified vaccinia Ankara vector as a boost, both expressing a chimeric multi-antigen (rMABbo - rMVA). This antigen includes the immunodominant B and T cell epitopes of three B. bovis proteins: merozoite surface antigen - 2c (MSA - 2c), rhoptry associated protein 1 (RAP - 1) and heat shock protein 20 (HSP20). Responses were compared with the Babesia bovis live attenuated vaccine used in Argentina (R1A). Eleven weeks after the first immunisation, all bovines were challenged by the inoculation of a virulent B. bovis strain. All groups were monitored daily for hyperthermia and reduction of packed cell volume. Both the rMABbo - rMVA and R1A vaccinated animals developed high titters of total IgG antibodies and an antigen-specific Th1 cellular response before and after challenge. However, all rMABbo - rMVA steers showed clinical signs of disease upon challenge. Only the R1A live vaccine group developed an immune response associated with in vitro neutralising antibodies at a level that significantly inhibited the parasite invasion. The lack of protection observed with this recombinant formulation indicates the need to perform further basic and clinical studies in the bovine model in order to achieve the desired effectiveness. This is the first report in which a novel vaccine candidate against Babesia bovis was constructed based on a recombinant and rationally designed viral vector and evaluated in the biological model of the disease.
Collapse
Affiliation(s)
- José Manuel Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Ludmila Sol López Arias
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Sofía Ana María de la Fournière
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Magalí Nicole Valenzano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Eliana Carolina Guillemi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Beatriz Valentini
- Laboratorio de Inmunología y Parasitología Veterinaria, EEA Rafaela, INTA, RN 34, Km 227, CC 22, 2300, Rafaela, Santa Fe, Argentina
| | - Ignacio Echaide
- Laboratorio de Inmunología y Parasitología Veterinaria, EEA Rafaela, INTA, RN 34, Km 227, CC 22, 2300, Rafaela, Santa Fe, Argentina
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
86
|
Kugler F, Drexler I, Protzer U, Hoffmann D, Moeini H. Generation of recombinant MVA-norovirus: a comparison study of bacterial artificial chromosome- and marker-based systems. Virol J 2019; 16:100. [PMID: 31399106 PMCID: PMC6688233 DOI: 10.1186/s12985-019-1212-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant Modified Vaccinia Virus Ankara has been employed as a safe and potent viral vector vaccine against infectious diseases and cancer. We generated recMVAs encoding norovirus GII.4 genotype capsid protein by using a marker-based approach and a BAC-based system. In the marker-based approach, the capsid gene together with a reporter gene was introduced into the MVA genome in DF-1 cells. Several rounds of plaque purification were carried out to get rid of the WT-MVA. In the BAC-based approach, recMVA-BAC was produced by en passant recombineering in E. coli. Subsequently, the recMVAs were rescued in DF-1 cells using a helper rabbit fibroma virus. The BAC backbone and the helper virus were eliminated by passaging in DF-1 cells. Biochemical characteristics of the recMVAs were studied. RESULTS We found the purification of the rare spontaneous recombinants time-consuming in the marker-based system. In contrast, the BAC-based system rapidly inserted the gene of interest in E. coli by en passant recombineering before virion production in DF-1 cells. The elimination of the reporter gene was found to be faster and more efficient in the BAC-based approach. With Western blotting and electron microscopy, we could prove successful capsid protein expression and proper virus-assembly, respectively. The MVA-BAC produced higher recombinant virus titers and infected DF-1 cells more efficiently. CONCLUSIONS Comparing both methods, we conclude that, in contrast to the tedious and time-consuming traditional method, the MVA-BAC system allows us to quickly generate high titer recMVAs.
Collapse
Affiliation(s)
- Franziska Kugler
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Ingo Drexler
- Institute for Virology, Universitätklinikum Düsseldorf, Heinrich Heine Universität, Düsseldorf, Germany
| | - Ulrike Protzer
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany.
| | - Hassan Moeini
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
87
|
Xie X, Zhao C, He Q, Qiu T, Yuan S, Ding L, Liu L, Jiang L, Wang J, Zhang L, Zhang C, Wang X, Zhou D, Zhang X, Xu J. Influenza Vaccine With Consensus Internal Antigens as Immunogens Provides Cross-Group Protection Against Influenza A Viruses. Front Microbiol 2019; 10:1630. [PMID: 31379782 PMCID: PMC6647892 DOI: 10.3389/fmicb.2019.01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Given that continuing antigenic shift and drift of influenza A viruses result in the escape from previous vaccine-induced immune protection, a universal influenza vaccine has been actively sought. However, there were very few vaccines capable of eliciting cross-group ant-influenza immunity. Here, we designed two novel composite immunogens containing highly conserved T-cell epitopes of six influenza A virus internal antigens, and expressed them in DNA, recombinant adenovirus-based (AdC68) and recombinant vaccinia vectors, respectively, to formulate three vaccine forms. The introduction of the two immunogens via a DNA priming and viral vectored vaccine boosting modality afforded cross-group protection from both PR8 and H7N9 influenza virus challenges in mice. Both respiratory residential and systemic T cells contributed to the protective efficacy. Intranasal but not intramuscular administration of AdC68 based vaccine was capable of raising both T cell subpopulations to confer a full protection from lethal PR8 and H7N9 challenges, and blocking the lymphatic egress of T cells during challenges attenuated the protection. Thus, by targeting highly conserved internal viral epitopes to efficiently generate both respiratory and systemic memory T cells, the sequential vaccination strategy reported here represented a new promising candidate for the development of T-cell based universal influenza vaccines.
Collapse
Affiliation(s)
- Xinci Xie
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Wang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
88
|
Totsch SK, Schlappi C, Kang KD, Ishizuka AS, Lynn GM, Fox B, Beierle EA, Whitley RJ, Markert JM, Gillespie GY, Bernstock JD, Friedman GK. Oncolytic herpes simplex virus immunotherapy for brain tumors: current pitfalls and emerging strategies to overcome therapeutic resistance. Oncogene 2019; 38:6159-6171. [PMID: 31289361 PMCID: PMC6771414 DOI: 10.1038/s41388-019-0870-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/25/2022]
Abstract
Malignant tumors of the central nervous system (CNS) continue to be a leading cause of cancer-related mortality in both
children and adults. Traditional therapies for malignant brain tumors consist of surgical resection and adjuvant chemoradiation;
such approaches are often associated with extreme morbidity. Accordingly, novel, targeted therapeutics for neoplasms of the CNS,
such as immunotherapy with oncolytic engineered herpes simplex virus (HSV) therapy, are urgently warranted. Herein, we discuss
treatment challenges related to HSV virotherapy delivery, entry, replication, and spread, and in so doing focus on host antiviral
immune responses and the immune microenvironment. Strategies to overcome such challenges including viral re-engineering,
modulation of the immunoregulatory microenvironment and combinatorial therapies with virotherapy, such as checkpoint inhibitors,
radiation, and vaccination are also examined in detail.
Collapse
Affiliation(s)
- Stacie K Totsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles Schlappi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyung-Don Kang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Brandon Fox
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard J Whitley
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua D Bernstock
- Avidea Technologies, Inc, Baltimore, MD, USA. .,Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
89
|
Khanna M, Manocha N, Himanshi, Joshi G, Saxena L, Saini S. Role of retroviral vector-based interventions in combating virus infections. Future Virol 2019. [DOI: 10.2217/fvl-2018-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deployment of viruses as vaccine-vectors has witnessed recent developments owing to a better understanding of viral genomes and mechanism of interaction with the immune system. Vaccine delivery by viral vectors offers various advantages over traditional approaches. Viral vector vaccines are one of the best candidates for activating the cellular arm of the immune system, coupled with the induction of significant humoral responses. Hence, there is a broad scope for the development of effective vaccines against many diseases using viruses as vectors. Further studies are required before an ideal vaccine-vector is developed and licensed for use in humans. In this article, we have outlined the use of retroviral vectors in developing vaccines against various viral diseases.
Collapse
Affiliation(s)
- Madhu Khanna
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Nilanshu Manocha
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Himanshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Garima Joshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Latika Saxena
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Sanjesh Saini
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| |
Collapse
|
90
|
Lynn GM, Laga R, Jewell CM. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett 2019; 459:192-203. [PMID: 31185250 DOI: 10.1016/j.canlet.2019.114427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nanomedicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
Collapse
Affiliation(s)
- Geoffrey M Lynn
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Avidea Technologies, Baltimore, MD, 21205, USA
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague, Czech Republic
| | - Christopher M Jewell
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA; Robert E. Fischell Institute for Biomedical Devices, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, Executive Office, Suite N9E17, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
91
|
Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors. AMB Express 2019; 9:70. [PMID: 31127400 PMCID: PMC6534633 DOI: 10.1186/s13568-019-0794-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Gene therapy and viral vaccine are becoming attractive therapeutic options for the treatment of different malignant diseases. Viral vector productions are often using static culture vessels and small volume stainless steel bioreactors (SSB). However, the yield of each vessel can be relatively low and multiple vessels often need to be operated simultaneously. This significantly increases labor intensity, production costs, contamination risks, and limits its ability to be scaled up, thus, creating challenges to meet the quantities required once the gene therapy or viral vaccine medicine goes into clinical phases or to market. Single-use bioreactor combining with microcarrier provides a good option for viral vector and vaccine production. The goal of the present studies was to develop the microcarrier bead-to-bead expansion and transfer process for HEK293T cells and Vero cells and scale-up the cultures to 50–200 l single-use bioreactors. Following microcarrier bead-to-bead transfer, the peak cell concentration of HEK293T cells reached 1.5 × 106 cells/ml in XDR-50 bioreactor, whereas Vero cells reached 3.1 × 106 cells/ml and 3.3 × 106 cells/ml in XDR-50 bioreactor and XDR-200 bioreactor, respectively. The average growth rates reached 0.61–0.68/day. The successful microcarrier-based scaleup of these two cell lines in single-use bioreactors demonstrates potential large-scale production capabilities of viral vaccine and vector for current and future vaccines and gene therapy.
Collapse
|
92
|
Safety and Immunogenicity of a Novel Recombinant Simian Adenovirus ChAdOx2 as a Vectored Vaccine. Vaccines (Basel) 2019; 7:vaccines7020040. [PMID: 31096710 PMCID: PMC6630572 DOI: 10.3390/vaccines7020040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Adenovirus vectored vaccines are a highly effective strategy to induce cellular immune responses which are particularly effective against intracellular pathogens. Recombinant simian adenovirus vectors were developed to circumvent the limitations imposed by the use of human adenoviruses due to widespread seroprevalence of neutralising antibodies. We have constructed a replication deficient simian adenovirus-vectored vaccine (ChAdOx2) expressing 4 genes from the Mycobacterium avium subspecies paratuberculosis (AhpC, Gsd, p12 and mpa). Safety and T-cell immunogenicity results of the first clinical use of the ChAdOx2 vector are presented here. The trial was conducted using a ‘three-plus-three’ dose escalation study design. We demonstrate the vaccine is safe, well tolerated and immunogenic.
Collapse
|
93
|
Pliquet E, Ruffie C, Escande M, Thalmensi J, Najburg V, Combredet C, Bestetti T, Julithe M, Liard C, Huet T, Wain-Hobson S, Tangy F, Langlade-Demoyen P. Strong antigen-specific T-cell immunity induced by a recombinant human TERT measles virus vaccine and amplified by a DNA/viral vector prime boost in IFNAR/CD46 mice. Cancer Immunol Immunother 2019; 68:533-544. [PMID: 30656384 PMCID: PMC11028090 DOI: 10.1007/s00262-018-2272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome telomere shortening. Tolerance to hTERT can be easily broken both naturally and experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. DNA prime/boost strategies have been widely developed to immunize efficiently against infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector to boost DNA priming as recombinant live attenuated measles virus has an impressive safety and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene did not impact MV replication or induction of cell-mediated responses. These findings validate the MV-TERT vector to boost cell-mediated responses following DNA priming in humans.
Collapse
Affiliation(s)
- Elodie Pliquet
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France.
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France.
| | - Claude Ruffie
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Marie Escande
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Jessie Thalmensi
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Valérie Najburg
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Thomas Bestetti
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Marion Julithe
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Christelle Liard
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Thierry Huet
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Simon Wain-Hobson
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Pierre Langlade-Demoyen
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France
| |
Collapse
|
94
|
Alcazer V, Bonaventura P, Tonon L, Wittmann S, Caux C, Depil S. Neoepitopes-based vaccines: challenges and perspectives. Eur J Cancer 2019; 108:55-60. [DOI: 10.1016/j.ejca.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
|
95
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
96
|
Abstract
RNA-sequencing (RNA-Seq) using next-generation sequencing (NGS) technique is a powerful tool for simultaneous analysis of global transcripts from both vaccinia virus and host cell. Here, we describe an RNA-Seq method for analyzing the vaccinia virus transcriptome from virus-infected HeLa cells. We pay particular attention to vaccinia virus-specific aspects of sample preparation, sequencing, and data analyses, but our method could be modified to analyze transcriptomes of other cells or tissues infected with different poxviruses.
Collapse
Affiliation(s)
- Shuai Cao
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Yongquan Lin
- Division of Biology, Kansas State University, Manhattan, KS, USA.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
97
|
Zhu F, Wang Y, Xu Z, Qu H, Zhang H, Niu L, Xue H, Jing D, He H. Novel adeno‑associated virus‑based genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Mol Med Rep 2018; 19:1016-1023. [PMID: 30569131 PMCID: PMC6323296 DOI: 10.3892/mmr.2018.9739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue despite the introduction of several direct-acting antiviral agents (DAAs), with some 185 million individuals infected with HCV worldwide. There is an urgent need for an effective prophylactic HCV vaccine. In the present study, we constructed genetic vaccines based on novel recombinant adeno-associated viral (rAAV) vectors (AAV2/8 or AAV2/rh32.33) that express the envelope glycoprotein E2 from the HCV genotype 1b. Expression of HCV E2 protein in 293 cells was confirmed by western blot analysis. rAAV2/8.HCV E2 vaccine or rAAV2/rh32.33.HCV E2 vaccine was intramuscularly injected into C57BL/6 mice. HCV E2-specific antigen was produced, and long-lasting specific antibody responses remained detectable XVI weeks following immunization. In addition, the rAAV2/rh32.33 vaccine induced higher antigen-specific antibody levels than the rAAV2/8 vaccine or AAV plasmid. Moreover, both AAV vaccines induced neutralizing antibodies against HCV genotypes 1a and 1b. Finally, it is worth mentioning that neutralizing antibody levels directed against AAV2/rh32.33 were lower than those against AAV2/8 in both mouse and human serum. These results demonstrate that AAV vectors, especially the AAVrh32.33, have particularly favorable immunogenicity for development into an effective HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haiyang Qu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingling Niu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
98
|
Warimwe GM, Purushotham J, Perry BD, Hill AV, Gilbert SC, Dungu B, Charleston B. Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Res 2018; 1:18. [PMID: 32259020 PMCID: PMC7118973 DOI: 10.12688/aasopenres.12877.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 07/27/2023] Open
Abstract
Africa bears the brunt of many of the world's most devastating human and animal infectious diseases, a good number of which have no licensed or effective vaccines available. The continent's potential to generate novel interventions against these global health threats is however largely untapped. Strengthening Africa's vaccine research and development (R&D) sector could accelerate discovery, development and deployment of effective countermeasures against locally prevalent infectious diseases, many of which are neglected and have the capacity to spread to new geographical settings. Here, we review Africa's human and veterinary vaccine R&D sectors and identify key areas that should be prioritized for investment, and synergies that could be exploited from Africa's veterinary vaccine industry, which is surprisingly strong and has close parallels with human vaccine R&D.
Collapse
Affiliation(s)
- George M. Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Brian D. Perry
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | | | | |
Collapse
|
99
|
Warimwe GM, Purushotham J, Perry BD, Hill AVS, Gilbert SC, Dungu B, Charleston B. Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Res 2018; 1:18. [PMID: 32259020 PMCID: PMC7118973 DOI: 10.12688/aasopenres.12877.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Africa bears the brunt of many of the world's most devastating human and animal infectious diseases, a good number of which have no licensed or effective vaccines available. The continent's potential to generate novel interventions against these global health threats is however largely untapped. Strengthening Africa's vaccine research and development (R&D) sector could accelerate discovery, development and deployment of effective countermeasures against locally prevalent infectious diseases, many of which are neglected and have the capacity to spread to new geographical settings. Here, we review Africa's human and veterinary vaccine R&D sectors and identify key areas that should be prioritized for investment, and synergies that could be exploited from Africa's veterinary vaccine industry, which is surprisingly strong and has close parallels with human vaccine R&D.
Collapse
Affiliation(s)
- George M Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Brian D Perry
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
100
|
Prow NA, Jimenez Martinez R, Hayball JD, Howley PM, Suhrbier A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev Vaccines 2018; 17:925-934. [PMID: 30300041 DOI: 10.1080/14760584.2018.1522255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.
Collapse
Affiliation(s)
- Natalie A Prow
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| | - Rocio Jimenez Martinez
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - John D Hayball
- c Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences , University of South Australia Cancer Research Institute , Adelaide , Australia
| | - Paul M Howley
- d Inflammation Biology , Sementis Ltd , Berwick , Australia
| | - Andreas Suhrbier
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| |
Collapse
|