51
|
Tian G, Wang Z, Wang C, Chen J, Liu G, Xu H, Lu Y, Han Z, Zhao Y, Li Z, Luo X, Peng L. A deep ensemble learning-based automated detection of COVID-19 using lung CT images and Vision Transformer and ConvNeXt. Front Microbiol 2022; 13:1024104. [PMID: 36406463 PMCID: PMC9672374 DOI: 10.3389/fmicb.2022.1024104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 09/19/2023] Open
Abstract
Since the outbreak of COVID-19, hundreds of millions of people have been infected, causing millions of deaths, and resulting in a heavy impact on the daily life of countless people. Accurately identifying patients and taking timely isolation measures are necessary ways to stop the spread of COVID-19. Besides the nucleic acid test, lung CT image detection is also a path to quickly identify COVID-19 patients. In this context, deep learning technology can help radiologists identify COVID-19 patients from CT images rapidly. In this paper, we propose a deep learning ensemble framework called VitCNX which combines Vision Transformer and ConvNeXt for COVID-19 CT image identification. We compared our proposed model VitCNX with EfficientNetV2, DenseNet, ResNet-50, and Swin-Transformer which are state-of-the-art deep learning models in the field of image classification, and two individual models which we used for the ensemble (Vision Transformer and ConvNeXt) in binary and three-classification experiments. In the binary classification experiment, VitCNX achieves the best recall of 0.9907, accuracy of 0.9821, F1-score of 0.9855, AUC of 0.9985, and AUPR of 0.9991, which outperforms the other six models. Equally, in the three-classification experiment, VitCNX computes the best precision of 0.9668, an accuracy of 0.9696, and an F1-score of 0.9631, further demonstrating its excellent image classification capability. We hope our proposed VitCNX model could contribute to the recognition of COVID-19 patients.
Collapse
Affiliation(s)
- Geng Tian
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Ziwei Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Chang Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Jianhua Chen
- Hunan Storm Information Technology Co., Ltd., Changsha, China
| | - Guangyi Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - He Xu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Yuankang Lu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Zhuoran Han
- High School Attached to Northeast Normal University, Changchun, China
| | - Yubo Zhao
- No. 2 Middle School of Shijiazhuang, Shijiazhuang, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Xueming Luo
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
52
|
Jose AM. Analyzing the Impermeable Structure and Myriad of Antiviral Therapies for SARS-CoV-2. JOURNAL OF THE ASSOCIATION OF PHYSICIANS OF INDIA 2022. [DOI: 10.5005/japi-11001-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Chen S, Qian G, Ghanem B, Wang Y, Shu Z, Zhao X, Yang L, Liao X, Zheng Y. Quantitative and Real-Time Evaluation of Human Respiration Signals with a Shape-Conformal Wireless Sensing System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203460. [PMID: 36089657 PMCID: PMC9661834 DOI: 10.1002/advs.202203460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Respiration signals reflect many underlying health conditions, including cardiopulmonary functions, autonomic disorders and respiratory distress, therefore continuous measurement of respiration is needed in various cases. Unfortunately, there is still a lack of effective portable electronic devices that meet the demands for medical and daily respiration monitoring. This work showcases a soft, wireless, and non-invasive device for quantitative and real-time evaluation of human respiration. This device simultaneously captures respiration and temperature signatures using customized capacitive and resistive sensors, encapsulated by a breathable layer, and does not limit the user's daily life. Further a machine learning-based respiration classification algorithm with a set of carefully studied features as inputs is proposed and it is deployed into mobile clients. The body status of users, such as being quiet, active and coughing, can be accurately recognized by the algorithm and displayed on clients. Moreover, multiple devices can be linked to a server network to monitor a group of users and provide each user with the statistical duration of physiological activities, coughing alerts, and body health advice. With these devices, individual and group respiratory health status can be quantitatively collected, analyzed, and stored for daily physiological signal detections as well as medical assistance.
Collapse
Affiliation(s)
- Sicheng Chen
- School of Electrical and Electronic Engineering Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Guocheng Qian
- Visual Computing CenterKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Bernard Ghanem
- Visual Computing CenterKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Yongqing Wang
- School of Geophysics and Information TechnologyChina University of GeosciencesBeijing100084P. R. China
| | - Zhou Shu
- School of Electrical and Electronic Engineering Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Xuefeng Zhao
- Shanghai Institute of Intelligent Electronics & SystemsSchool of MicroelectronicsFudan UniversityShanghai200433P. R. China
| | - Lei Yang
- Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing SystemXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Xinqin Liao
- School of Electronic Science and EngineeringXiamen University422 Siming South RoadXiamen361005P. R. China
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering Nanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
54
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
55
|
Siniavin AE, Novikov MS, Gushchin VA, Terechov AA, Ivanov IA, Paramonova MP, Gureeva ES, Russu LI, Kuznetsova NA, Shidlovskaya EV, Luyksaar SI, Vasina DV, Zolotov SA, Zigangirova NA, Logunov DY, Gintsburg AL. Antiviral Activity of N 1,N 3-Disubstituted Uracil Derivatives against SARS-CoV-2 Variants of Concern. Int J Mol Sci 2022; 23:ijms231710171. [PMID: 36077564 PMCID: PMC9456261 DOI: 10.3390/ijms231710171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the widespread use of the COVID-19 vaccines, the search for effective antiviral drugs for the treatment of patients infected with SARS-CoV-2 is still relevant. Genetic variability leads to the continued circulation of new variants of concern (VOC). There is a significant decrease in the effectiveness of antibody-based therapy, which raises concerns about the development of new antiviral drugs with a high spectrum of activity against VOCs. We synthesized new analogs of uracil derivatives where uracil was substituted at the N1 and N3 positions. Antiviral activity was studied in Vero E6 cells against VOC, including currently widely circulating SARS-CoV-2 Omicron. All synthesized compounds of the panel showed a wide antiviral effect. In addition, we determined that these compounds inhibit the activity of recombinant SARS-CoV-2 RdRp. Our study suggests that these non-nucleoside uracil-based analogs may be of future use as a treatment for patients infected with circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Andrei E. Siniavin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (A.E.S.); (V.A.G.)
| | - Mikhail S. Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400131 Volgograd, Russia
| | - Vladimir A. Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Virology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (A.E.S.); (V.A.G.)
| | - Alexander A. Terechov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Igor A. Ivanov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria P. Paramonova
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400131 Volgograd, Russia
| | - Elena S. Gureeva
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400131 Volgograd, Russia
| | - Leonid I. Russu
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Nadezhda A. Kuznetsova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Elena V. Shidlovskaya
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Sergei I. Luyksaar
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Daria V. Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Sergei A. Zolotov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Nailya A. Zigangirova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Denis Y. Logunov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Alexander L. Gintsburg
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
56
|
Ultrastructural Characterization of Human Bronchial Epithelial Cells during SARS-CoV-2 Infection: Morphological Comparison of Wild-Type and CFTR-Modified Cells. Int J Mol Sci 2022; 23:ijms23179724. [PMID: 36077122 PMCID: PMC9455986 DOI: 10.3390/ijms23179724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 replicates in host cell cytoplasm. People with cystic fibrosis, considered at risk of developing severe symptoms of COVID-19, instead, tend to show mild symptoms. We, thus, analyzed at the ultrastructural level the morphological effects of SARS-CoV-2 infection on wild-type (WT) and F508del (ΔF) CFTR-expressing CFBE41o- cells at early and late time points post infection. We also investigated ACE2 expression through immune-electron microscopy. At early times of infection, WT cells exhibited double-membrane vesicles, representing typical replicative structures, with granular and vesicular content, while at late time points, they contained vesicles with viral particles. ∆F cells exhibited double-membrane vesicles with an irregular shape and degenerative changes and at late time of infection, showed vesicles containing viruses lacking a regular structure and a well-organized distribution. ACE2 was expressed at the plasma membrane and present in the cytoplasm only at early times in WT, while it persisted even at late times of infection in ΔF cells. The autophagosome content also differed between the cells: in WT cells, it comprised vesicles associated with virus-containing structures, while in ΔF cells, it comprised ingested material for lysosomal digestion. Our data suggest that CFTR-modified cells infected with SARS-CoV-2 have impaired organization of normo-conformed replicative structures.
Collapse
|
57
|
Lin F, Zhang H, Li L, Yang Y, Zou X, Chen J, Tang X. PEDV: Insights and Advances into Types, Function, Structure, and Receptor Recognition. Viruses 2022; 14:v14081744. [PMID: 36016366 PMCID: PMC9416423 DOI: 10.3390/v14081744] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has been endemic in most parts of the world since its emergence in the 1970s. It infects the small intestine and intestinal villous cells, spreads rapidly, and causes infectious intestinal disease characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and causing massive economic losses to the pig industry. The entry of PEDV into cells is mediated by the binding of its spike protein (S protein) to a host cell receptor. Here, we review the structure of PEDV, its strains, and the structure and function of the S protein shared by coronaviruses, and summarize the progress of research on possible host cell receptors since the discovery of PEDV.
Collapse
Affiliation(s)
- Feng Lin
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence:
| |
Collapse
|
58
|
Ovais M, You M, Ahmad J, Djellabi R, Ali A, Akhtar MH, Abbas M, Chen C. Engineering carbon nanotubes for sensitive viral detection. Trends Analyt Chem 2022; 153:116659. [PMID: 35527799 PMCID: PMC9054723 DOI: 10.1016/j.trac.2022.116659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
Abstract
Viral infections have been proven a severe threat to human beings, and the pandemic of Coronavirus Disease 2019 (COVID-19) has become a societal health concern, including mental distress and morbidity. Therefore, the early diagnosis and differentiation of viral infections are the prerequisite for curbing the local and global spread of viruses. To this end, carbon nanotubes (CNTs) based virus detection strategies are developed that provide feasible alternatives to conventional diagnostic techniques. Here in this review, an overview of the design and engineering of CNTs-based sensors for virus detection is summarized, followed by the nano-bio interactions used in developing biosensors. Then, we classify the viral sensors into covalently engineered CNTs, non-covalently engineered CNTs, and size-tunable CNTs arrays for viral detection, based on the type of CNTs-based nano-bio interfaces. Finally, the current challenges and prospects of CNTs-based sensors for virus detection are discussed.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, PR China
| | - Jalal Ahmad
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Ridha Djellabi
- Università degli Studi di Milano, Dipartimento di Chimica, Via Gogi 19, 20133, Milano, Italy
| | - Arbab Ali
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Mahmood Hassan Akhtar
- Department of Chemistry, School of Applied Sciences and Humanities, National University of Technology, Islamabad, 42000, Pakistan
| | - Manzar Abbas
- Institute for Molecules and Materials, Radboud University Nijmegen Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China,University of Chinese Academy of Sciences, Beijing, 100049, PR China,GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, PR China,Corresponding author. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| |
Collapse
|
59
|
Kabi AK, Pal M, Gujjarappa R, Malakar CC, Roy M. Overview of Hydroxychloroquine and Remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Heterocycl Chem 2022; 60:JHET4541. [PMID: 35942205 PMCID: PMC9349740 DOI: 10.1002/jhet.4541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the ongoing pandemic named COVID-19 which causes a serious emergency on public health hazards of international concern. In the face of a critical medical emergency, repositioning of drugs is one of the most authentic options to design an adequate treatment for infected patients immediately. In this strategy, Remdesivir (Veklury), Hydroxychloroquine appears to be the drug of choice and garnered unprecedented attention as potential therapeutic agents against the pandemic realized worldwide due to SARS-CoV-2 infection. These are the breathtaking instances of possible repositioning of drugs, whose pharmacokinetics and optimal dosage are familiar. In this review, we provide an overview of these medications, their synthesis, and the possible mechanism of action against SARS-CoV-2.
Collapse
Affiliation(s)
- Arup K. Kabi
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Maynak Pal
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Raghuram Gujjarappa
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Chandi C. Malakar
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Mithun Roy
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| |
Collapse
|
60
|
Fan C, Wu Y, Rui X, Yang Y, Ling C, Liu S, Liu S, Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther 2022; 7:220. [PMID: 35798699 PMCID: PMC9261903 DOI: 10.1038/s41392-022-01087-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is the most consequential pandemic of this century. Since the outbreak in late 2019, animal models have been playing crucial roles in aiding the rapid development of vaccines/drugs for prevention and therapy, as well as understanding the pathogenesis of SARS-CoV-2 infection and immune responses of hosts. However, the current animal models have some deficits and there is an urgent need for novel models to evaluate the virulence of variants of concerns (VOC), antibody-dependent enhancement (ADE), and various comorbidities of COVID-19. This review summarizes the clinical features of COVID-19 in different populations, and the characteristics of the major animal models of SARS-CoV-2, including those naturally susceptible animals, such as non-human primates, Syrian hamster, ferret, minks, poultry, livestock, and mouse models sensitized by genetically modified, AAV/adenoviral transduced, mouse-adapted strain of SARS-CoV-2, and by engraftment of human tissues or cells. Since understanding the host receptors and proteases is essential for designing advanced genetically modified animal models, successful studies on receptors and proteases are also reviewed. Several improved alternatives for future mouse models are proposed, including the reselection of alternative receptor genes or multiple gene combinations, the use of transgenic or knock-in method, and different strains for establishing the next generation of genetically modified mice.
Collapse
Affiliation(s)
- Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Xiong Rui
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yuansong Yang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Chen Ling
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- College of Life Sciences, Northwest University; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Shunan Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| |
Collapse
|
61
|
Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep 2022; 39:110969. [PMID: 35679864 PMCID: PMC9148931 DOI: 10.1016/j.celrep.2022.110969] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Harbin 150069, China.
| | - Jiumeng Sun
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Dongyan Li
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Ningning Wang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lifang Wang
- College of Veterinary Medicine, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, China
| | - Chang Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaorong Meng
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St., Charles Avenue, New Orleans, LA 70118, USA
| | - Marc A Suchard
- Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, Geffen Hall 885 Tiverton Drive, Los Angeles, CA 90095, USA
| | - Xu Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, 400 East Main St., Frankfort, KY 40601, USA
| | - Shuo Su
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany.
| |
Collapse
|
62
|
Cruz-Pulido D, Ouma WZ, Kenney SP. Differing coronavirus genres alter shared host signaling pathways upon viral infection. Sci Rep 2022; 12:9744. [PMID: 35697915 PMCID: PMC9189807 DOI: 10.1038/s41598-022-13396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Coronaviruses are important viral pathogens across a range of animal species including humans. They have a high potential for cross-species transmission as evidenced by the emergence of COVID-19 and may be the origin of future pandemics. There is therefore an urgent need to study coronaviruses in depth and to identify new therapeutic targets. This study shows that distant coronaviruses such as Alpha-, Beta-, and Deltacoronaviruses can share common host immune associated pathways and genes. Differentially expressed genes (DEGs) in the transcription profile of epithelial cell lines infected with swine acute diarrhea syndrome, severe acute respiratory syndrome coronavirus 2, or porcine deltacoronavirus, showed that DEGs within 10 common immune associated pathways were upregulated upon infection. Twenty Three pathways and 21 DEGs across 10 immune response associated pathways were shared by these viruses. These 21 DEGs can serve as focused targets for therapeutics against newly emerging coronaviruses. We were able to show that even though there is a positive correlation between PDCoV and SARS-CoV-2 infections, these viruses could be using different strategies for efficient replication in their cells from their natural hosts. To the best of our knowledge, this is the first report of comparative host transcriptome analysis across distant coronavirus genres.
Collapse
Affiliation(s)
- Diana Cruz-Pulido
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, Wooster, OH, 44691, USA
| | | | - Scott P Kenney
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
63
|
Tan H, Hu Y, Jadhav P, Tan B, Wang J. Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease. J Med Chem 2022; 65:7561-7580. [PMID: 35620927 PMCID: PMC9159073 DOI: 10.1021/acs.jmedchem.2c00303] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. The approval of vaccines and small-molecule antivirals is vital in combating the pandemic. The viral polymerase inhibitors remdesivir and molnupiravir and the viral main protease inhibitor nirmatrelvir/ritonavir have been approved by the U.S. FDA. However, the emergence of variants of concern/interest calls for additional antivirals with novel mechanisms of action. The SARS-CoV-2 papain-like protease (PLpro) mediates the cleavage of viral polyprotein and modulates the host's innate immune response upon viral infection, rendering it a promising antiviral drug target. This Perspective highlights major achievements in structure-based design and high-throughput screening of SARS-CoV-2 PLpro inhibitors since the beginning of the pandemic. Encouraging progress includes the design of non-covalent PLpro inhibitors with favorable pharmacokinetic properties and the first-in-class covalent PLpro inhibitors. In addition, we offer our opinion on the knowledge gaps that need to be filled to advance PLpro inhibitors to the clinic.
Collapse
Affiliation(s)
- Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yanmei Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
64
|
Cimini E, Agrati C. γδ T Cells in Emerging Viral Infection: An Overview. Viruses 2022; 14:v14061166. [PMID: 35746638 PMCID: PMC9230790 DOI: 10.3390/v14061166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
New emerging viruses belonging to the Coronaviridae, Flaviviridae, and Filoviridae families are serious threats to public health and represent a global concern. The surveillance to monitor the emergence of new viruses and their transmission is an important target for public health authorities. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an excellent example of a pathogen able to cause a pandemic. In a few months, SARS-CoV-2 has spread globally from China, and it has become a world health problem. Gammadelta (γδ) T cell are sentinels of innate immunity and are able to protect the host from viral infections. They enrich many tissues, such as the skin, intestines, and lungs where they can sense and fight the microbes, thus contributing to the protective immune response. γδ T cells perform their direct antiviral activity by cytolytic and non-cytolytic mechanisms against a wide range of viruses, and they are able to orchestrate the cellular interplay between innate and acquired immunity. For their pleiotropic features, γδ T cells have been proposed as a target for immunotherapies in both cancer and viral infections. In this review, we analyzed the role of γδ T cells in emerging viral infections to define the profile of the response and to better depict their role in the host protection.
Collapse
|
65
|
Lee JK, Shin OS. Coronavirus disease 2019 (COVID-19) vaccine platforms: how novel platforms can prepare us for future pandemics: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:89-97. [PMID: 35152616 PMCID: PMC8913917 DOI: 10.12701/jyms.2021.01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 11/14/2022]
Abstract
More than 2 years after the explosion of the coronavirus disease 2019 (COVID-19) pandemic, extensive efforts have been made to develop safe and efficacious vaccines against infections with severe acute respiratory syndrome coronavirus 2. The pandemic has opened a new era of vaccine development based on next-generation platforms, including messenger RNA (mRNA)-based technologies, and paved the way for the future of mRNA-based therapeutics to provide protection against a wide range of infectious diseases. Multiple vaccines have been developed at an unprecedented pace to protect against COVID-19 worldwide. However, important knowledge gaps remain to be addressed, especially in terms of how vaccines induce immunogenicity and efficacy in those who are elderly. Here, we discuss the various vaccine platforms that have been utilized to combat COVID-19 and emphasize how these platforms can be a powerful tool to react quickly to future pandemics.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
- Corresponding author: Ok Sarah Shin, MD Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea Tel: +82-2-2626-3280 • Fax: +82-2-2626-1962 • E-mail:
| |
Collapse
|
66
|
Zhang Y, Hu M, Wang J, Wang P, Shi P, Zhao W, Liu X, Peng Q, Meng B, Feng X, Zhang L. A Bibliometric Analysis of Personal Protective Equipment and COVID-19 Researches. Front Public Health 2022; 10:855633. [PMID: 35570977 PMCID: PMC9099374 DOI: 10.3389/fpubh.2022.855633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/29/2022] [Indexed: 01/09/2023] Open
Abstract
COVID-19, which occurred at the end of December 2019, has evolved into a global public health threat and affects every aspect of human life. COVID-19's high infectivity and mortality prompted governments and the scientific community to respond quickly to the pandemic outbreak. The application of personal protective equipment (PPE) is of great significance in overcoming the epidemic situation. Since the discovery of severe acute respiratory coronavirus 2 (SARS-CoV-2), bibliometric analysis has been widely used in many aspects of the COVID-19 epidemic. Although there are many reported studies about PPE and COVID-19, there is no study on the bibliometric analysis of these studies. The citation can be used as an indicator of the scientific influence of an article in its field. The aim of this study was to track the research trends and latest hotspots of COVID-19 in PPE by means of bibliometrics and visualization maps.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Man Hu
- Department of Orthopedics, Dalian Medical University, Dalian, China
| | - Junwu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Pingchuan Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Pengzhi Shi
- Department of Orthopedics, Dalian Medical University, Dalian, China
| | - Wenjie Zhao
- Department of Orthopedics, Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Qing Peng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Bo Meng
- Department of Orthopedics, Dalian Medical University, Dalian, China
| | - Xinmin Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
- *Correspondence: Liang Zhang
| |
Collapse
|
67
|
Veerasamy R, Karunakaran R. Molecular docking unveils the potential of andrographolide derivatives against COVID-19: an in silico approach. J Genet Eng Biotechnol 2022; 20:58. [PMID: 35420322 PMCID: PMC9008396 DOI: 10.1186/s43141-022-00339-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection cause high mortality and there is an emergency need to develop a specific drug to treat the novel coronavirus disease, COVID-19. However, some natural and synthetic products with action against SARS-CoV-2 have been reported in recent research, there is no specific drug available for treating COVID-19. In the present study, molecular interaction analysis was performed for 16 semisynthetic andrographolides (AGP) against 5 SARS-CoV-2 enzymes main protease (Mpro, PDB: 6LU7), papain-like protease (PLpro, PDB: 6WUU), spike glycoprotein (S, PDB: 6VXX), NSP15 endoribonuclease (NSP15, PDB: 6VWW), and RNA-dependent RNA polymerase (RdRp, PDB: 6M71). Moreover, the compounds pharmacokinetic and toxic profiles were also analyzed using computational tools. RESULTS The protein-ligand docking score (kcal/mol) revealed that all the tested AGP derivatives showed a better binding affinity towards all the tested enzymes than hydroxychloroquine (HCQ). Meanwhile, all the tested AGP derivatives showed a better binding score with RdRp and S than remdesivir (REM). Interestingly, compounds 12, 14, and 15 showed a better binding affinity towards the all the tested enzyme than AGP, REM, and HCQ. AGP-16 had shown - 8.7 kcal/mol binding/docking score for Mpro, AGP-15 showed - 8.6 kcal/mol for NSP15, and AGP-10, 13, and 15 exhibited - 8.7, - 8.9, and - 8.7 kcal/mol, respectively, for S. CONCLUSION Overall results of the present study concluded that AGP derivatives 14 and 15 could be the best 'lead' candidate for the treatment against SARS-CoV-2 infection. However, molecular dynamic studies and pharmacological screenings are essential to developing AGP derivatives 14 and 15 as a drug against COVID-19.
Collapse
Affiliation(s)
- Ravichandran Veerasamy
- Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, 08100, Semeling, Malaysia. .,Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India. .,Centre of Excellence for Biomaterials Science, AIMST University, 08100, Semeling, Bedong, Malaysia.
| | - Rohini Karunakaran
- Centre of Excellence for Biomaterials Science, AIMST University, 08100, Semeling, Bedong, Malaysia.,Faculty of Medicine, AIMST University, 08100, Semeling, Kedah, Malaysia
| |
Collapse
|
68
|
Khazaneha M, Tajedini O, Esmaeili O, Abdi M, Khasseh AA, Sadatmoosavi A. Thematic evolution of coronavirus disease: a longitudinal co-word analysis. LIBRARY HI TECH 2022. [DOI: 10.1108/lht-10-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PurposeUsing science mapping analysis approach and co-word analysis, the present study explores and visualizes research fields and thematic evolution of the coronavirus. Based on this method, one can get a picture of the real content of the themes in the mentioned thematic area and identify the main minor and emerging themes.Design/methodology/approachThis study was conducted based on co-word science mapping analysis under a longitudinal study (from 1988 to 2020). The collection of documents in this study was further divided into three subperiods: 1988–1998, 1999–2009 and 2010–2020. In order to perform science mapping analysis based on co-word bibliographic networks, SciMAT was utilized as a bibliometric tool. Moreover, WoS, PubMed and Scopus bibliographic databases were used to download all records.FindingsIn this study, strategic diagrams were demonstrated for the coronavirus research for a chronological period to assess the most relevant themes. Each diagram depended on the sum of documents linked to each research topic. In the first period (1988–1998), the most centralizations were on virology and evaluation of coronavirus structure and its structural and nonstructural proteins. In the second period (1999–2009), with due attention to high population density in eastern Asia and the increasing number of people affected with the new generation of coronavirus (named severe acute respiratory syndrome virus or SARS virus), publications have been concentrated on “antiviral activity.” In the third period (2010–2020), there was a tendency to investigate clinical syndromes, and most of the publications and citations were about hot topics like “severe acute respiratory syndrome,” “coronavirus” and “respiratory tract disease.” Scientometric analysis of the field of coronavirus can be regarded as a roadmap for future research and policymaking in this important area.Originality/valueThe originality of this research can be considered in two ways. First, the strategic diagrams of coronavirus are drawn in four thematic areas including motor cluster, basic and transversal cluster, highly developed cluster and emerging and declining cluster. Second, COVID-19 is mentioned as a hot topic of research.
Collapse
|
69
|
Rabiu Abubakar A, Ahmad R, Rowaiye AB, Rahman S, Iskandar K, Dutta S, Oli AN, Dhingra S, Tor MA, Etando A, Kumar S, Irfan M, Gowere M, Chowdhury K, Akter F, Jahan D, Schellack N, Haque M. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life (Basel) 2022; 12:life12040478. [PMID: 35454970 PMCID: PMC9031737 DOI: 10.3390/life12040478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19-infected patients require an intact immune system to suppress viral replication and prevent complications. However, the complications of SARS-CoV-2 infection that led to death were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome. This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3) inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6 with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflammatory chemokines and cytokines and or blockade of their receptors. Consequently, the actions of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio. Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance lung function and reduce mortality due to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, PMB 3452, Kano 700233, Nigeria;
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | | | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown BB11114, Barbados;
| | - Katia Iskandar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot 360001, Gujrat, India;
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Nigeria;
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India;
| | - Maryam Abba Tor
- Department of Health and Biosciences, University of East London, University Way, London E16 2RD, UK;
| | - Ayukafangha Etando
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, P.O. Box A624 Swazi Plaza Mbabane, Mbabane H101, Hhohho, Eswatini;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Adalaj Uvarsad Road, Gandhinagar 382422, Gujarat, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, R. Gomes Carneiro, 1-Centro, Pelotas 96010-610, RS, Brazil;
| | - Marshall Gowere
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Kona Chowdhury
- Department of Paediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
70
|
Li G, Zhai SL, Zhou X, Chen TB, Niu JW, Xie YS, Si GB, Cong F, Chen RA, He DS. Phylogeography and evolutionary dynamics analysis of porcine delta-coronavirus with host expansion to humans. Transbound Emerg Dis 2022; 69:e1670-e1681. [PMID: 35243794 DOI: 10.1111/tbed.14503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
From 2003 onwards, three pandemics have been caused by coronaviruses: severe acute respiratory syndrome coronavirus (SARS-CoV); middle east respiratory syndrome coronavirus (MERS-CoV); and, most recently, SARS-CoV-2. Notably, all three were transmitted from animals to humans. This would suggest that animals are potential sources of epidemics for humans. The emerging porcine delta-coronavirus was reported to infect children. This is a red flag that marks the ability of PDCoV to break barriers of cross-species transmission to humans. Therefore, we conducted molecular genetic analysis of global clade PDCoV to characterize spatio-temporal patterns of viral diffusion and genetic diversity. PDCoV was classified into three major lineages, according to distribution and phylogenetic analysis of PDCoV. It can be inferred based on the analysis results of the currently known PDCoV strains that PDCoV might originate in Asia. We also selected six special spike amino acid sequences to align and analyze to find seven significant mutation sites. The accumulation of these mutations may enhance dynamic movements, accelerating spike protein membrane fusion events and transmission. Altogether, our study offers a novel insight into the diversification, evolution, and interspecies transmission and origin of PDCoV and emphasizes the need to study the zoonotic potential of the PDCoV and comprehensive surveillance and enhanced biosecurity precautions for PDCoV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Shao-Lun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Xia Zhou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Tian-Bao Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Jia-Wei Niu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Yong-Sheng Xie
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Guang-Bin Si
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong, Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Rui-Ai Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China
| | - Dong-Sheng He
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China
| |
Collapse
|
71
|
Consecutive deletions in a unique Uruguayan SARS-CoV-2 lineage evidence the genetic variability potential of accessory genes. PLoS One 2022; 17:e0263563. [PMID: 35176063 PMCID: PMC8853529 DOI: 10.1371/journal.pone.0263563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Deletions frequently occur in the six accessory genes of SARS-CoV-2, but most genomes with deletions are sporadic and have limited spreading capability. Here, we analyze deletions in the ORF7a of the N.7 lineage, a unique Uruguayan clade from the Brazilian B.1.1.33 lineage. Thirteen samples collected during the early SARS-CoV-2 wave in Uruguay had deletions in the ORF7a. Complete genomes were obtained by Illumina next-generation sequencing, and deletions were confirmed by Sanger sequencing and capillary electrophoresis. The N.7 lineage includes several individuals with a 12-nucleotide deletion that removes four amino acids of the ORF7a. Notably, four individuals underwent an additional 68-nucleotide novel deletion that locates 44 nucleotides downstream in the terminal region of the same ORF7a. The simultaneous occurrence of the 12 and 68-nucleotide deletions fuses the ORF7a and ORF7b, two contiguous accessory genes that encode transmembrane proteins with immune-modulation activity. The fused ORF retains the signal peptide and the complete Ig-like fold of the 7a protein and the transmembrane domain of the 7b protein, suggesting that the fused protein plays similar functions to original proteins in a single format. Our findings evidence the remarkable dynamics of SARS-CoV-2 and the possibility that single and consecutive deletions occur in accessory genes and promote changes in the genomic organization that help the virus explore genetic variations and select for new, higher fit changes.
Collapse
|
72
|
Antiviral effects of azithromycin: A narrative review. Biomed Pharmacother 2022; 147:112682. [PMID: 35131658 PMCID: PMC8813546 DOI: 10.1016/j.biopha.2022.112682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Viral infections have a great impact on human health. The urgent need to find a cure against different viruses led us to investigations in a vast range of drugs. Azithromycin (AZT), classified as a macrolide, showed various effects on different known viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV), Zika, Ebola, Enterovirus (EVs) and Rhinoviruses (RVs), and Influenza A previously; namely, these viruses, which caused global concerns, are considered as targets for AZT different actions. Due to AZT background in the treatment of known viral infections mentioned above (which is described in this study), in the early stages of COVID-19 (a new zoonotic disease caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) development, AZT drew attention to itself due to its antiviral and immunomodulatory effects as a valuable candidate for COVID-19 treatment. AZT usage instructions for treating different viral infections have always been under observation, and COVID-19 is no exception. There are still debates about the use of AZT in COVID-19 treatment. However, eventually, novel researches convinced WHO to announce the discontinuation of AZT use (alone or in combination with hydroxychloroquine) in treating SARS-CoV-2 infection. This research aims to study the structure of all of the viruses mentioned above and the molecular and clinical effects of AZT against the virus.
Collapse
|
73
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
74
|
Jiang H, Yang P, Zhang J. Potential Inhibitors Targeting Papain-Like Protease of SARS-CoV-2: Two Birds With One Stone. Front Chem 2022; 10:822785. [PMID: 35281561 PMCID: PMC8905519 DOI: 10.3389/fchem.2022.822785] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the pathogen of the Coronavirus disease-19 (COVID-19), is still devastating the world causing significant chaos to the international community and posing a significant threat to global health. Since the first outbreak in late 2019, several lines of intervention have been developed to prevent the spread of this virus. Nowadays, some vaccines have been approved and extensively administered. However, the fact that SARS-CoV-2 rapidly mutates makes the efficacy and safety of this approach constantly under debate. Therefore, antivirals are still needed to combat the infection of SARS-CoV-2. Papain-like protease (PLpro) of SARS-CoV-2 supports viral reproduction and suppresses the innate immune response of the host, which makes PLpro an attractive pharmaceutical target. Inhibition of PLpro could not only prevent viral replication but also restore the antiviral immunity of the host, resulting in the speedy recovery of the patient. In this review, we describe structural and functional features on PLpro of SARS-CoV-2 and the latest development in searching for PLpro inhibitors. Currently available inhibitors targeting PLpro as well as their structural basis are also summarized.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Haihai Jiang, ; Jin Zhang,
| | - Peiyao Yang
- Queen Mary School, Nanchang University, Nanchang, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Haihai Jiang, ; Jin Zhang,
| |
Collapse
|
75
|
Dey D, Singh S, Khan S, Martin M, Schnicker NJ, Gakhar L, Pierce BG, Hasan SS. An extended motif in the SARS-CoV-2 spike modulates binding and release of host coatomer in retrograde trafficking. Commun Biol 2022; 5:115. [PMID: 35136165 PMCID: PMC8825798 DOI: 10.1038/s42003-022-03063-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
β-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking. The cytosolic tail of β-coronavirus spike proteins contains dibasic motifs that must be able to bind to the host’s coatomer protein-I (COPI) for trafficking and be released for viral assembly in the ER-Golgi intermediate compartment. The critical residues in both the spike cytosolic tail and COPI are identified that modulate the association-dissociation kinetics.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saif Khan
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,PAQ Therapeutics, Cambridge, MA, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA. .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA. .,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, USA.
| |
Collapse
|
76
|
Zou Y, Cao X, Yang B, Deng L, Xu Y, Dong S, Li W, Wu C, Cao G. In Silico Infection Analysis (iSFA) Identified Coronavirus Infection and Potential Transmission Risk in Mammals. Front Mol Biosci 2022; 9:831876. [PMID: 35211513 PMCID: PMC8861533 DOI: 10.3389/fmolb.2022.831876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
Coronaviruses are a great source of threat to public health which could infect various species and cause diverse diseases. However, the epidemic’s spreading among different species remains elusive. This study proposed an in silico infection analysis (iSFA) system that includes pathogen genome or transcript mining in transcriptome data of the potential host and performed a comprehensive analysis about the infection of 38 coronaviruses in wild animals, based on 2,257 transcriptome datasets from 89 mammals’ lung and intestine, and revealed multiple potential coronavirus infections including porcine epidemic diarrhea virus (PEDV) infection in Equus burchellii. Then, through our transmission network analysis, potential intermediate hosts of five coronaviruses were identified. Notably, iSFA results suggested that the expression of coronavirus receptor genes tended to be downregulated after infection by another virus. Finally, binding affinity and interactive interface analysis of S1 protein and ACE2 from different species demonstrated the potential inter-species transmission barrier and cross-species transmission of SARS-CoV-2. Meanwhile, the iSFA system developed in this study could be further applied to conduct the source tracing and host prediction of other pathogen-induced diseases, thus contributing to the epidemic prevention and control.
Collapse
Affiliation(s)
- Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lulu Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengchao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chengchao Wu, ; Gang Cao,
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Bio-Medical Center, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chengchao Wu, ; Gang Cao,
| |
Collapse
|
77
|
Bai Y, Wang Q, Liu M, Bian L, Liu J, Gao F, Mao Q, Wang Z, Wu X, Xu M, Liang Z. The next major emergent infectious disease: reflections on vaccine emergency development strategies. Expert Rev Vaccines 2022; 21:471-481. [PMID: 35080441 DOI: 10.1080/14760584.2022.2027240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Major emergent infectious diseases (MEID) pose the most serious threat to human health. The research proposes targeted response strategies for the prevention and control of potential MEID. AREAS COVERED Based on the analysis of infectious diseases, this research analyzes pandemics that have a high probability of occurrence and aims to synthesize the past experience and lessons learned of controlling infectious diseases such as coronavirus, influenza, Ebola, etc. In addition, by integrating major infectious disease response guidelines developed by WHO, the European Union, the United States, and the United Kingdom, we intend to bring forward national vaccine R&D development strategies for emergency use. EXPERT OPINION We advise to establish and improve existing laws, regulations, and also prevention and control systems for the emergent R&D and application of vaccines in response to potential infectious diseases. The strategies would not only help increase the various abilities in response to the research, development, evaluation, production, and supervision of emergency vaccines, but also establish surrogate endpoint of immunogenicity protection in early clinical studies to enable a rapid evaluation of the efficacy of emergency vaccines.
Collapse
Affiliation(s)
- Yu Bai
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qian Wang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Mingchen Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Lianlian Bian
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Jianyang Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Fan Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qunying Mao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Zhongfang Wang
- Guangzhou Laboratory. No. 9 XingDaoHuanBei Road, Guangzhou, China
| | - Xing Wu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Miao Xu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Zhenglun Liang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| |
Collapse
|
78
|
Feng Y, Tang K, Lai Q, Liang J, Feng M, Zhou ZW, Cui H, Du X, Zhang H, Sun L. The Landscape of Aminoacyl-tRNA Synthetases Involved in Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Physiol 2022; 12:818297. [PMID: 35153822 PMCID: PMC8826553 DOI: 10.3389/fphys.2021.818297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in translation by linking amino acids onto their cognate tRNAs during protein synthesis. During evolution, aaRSs develop numerous non-canonical functions that expand the roles of aaRSs in eukaryotic organisms. Although aaRSs have been implicated in viral infection, the function of aaRSs during infections with coronaviruses (CoVs) remains unclear. Here, we analyzed the data from transcriptomic and proteomic database on human cytoplasmic (cyto) and mitochondrial (mt) aaRSs across infections with three highly pathogenic human CoVs, with a particular focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found an overall downregulation of aaRSs at mRNA levels, while the protein levels of some mt-aaRSs and the phosphorylation of certain aaRSs were increased in response to SARS-CoV-2 infection. Strikingly, interaction network between SARS-CoV-2 and human aaRSs displayed a strong involvement of mt-aaRSs. Further co-immunoprecipitation (co-IP) experiments confirmed the physical interaction between SARS-CoV-2 M protein and TARS2. In addition, we identified the intermediate nodes and potential pathways involved in SARS-CoV-2 infection. This study provides an unbiased, overarching perspective on the correlation between aaRSs and SARS-CoV-2. More importantly, this work identifies TARS2, HARS2, and EARS2 as potential key factors involved in COVID-19.
Collapse
Affiliation(s)
- Yajuan Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qi Lai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jingxian Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- *Correspondence: Han Zhang,
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Litao Sun,
| |
Collapse
|
79
|
Siddiq MM, Chan AT, Miorin L, Yadaw AS, Beaumont KG, Kehrer T, Cupic A, White KM, Tolentino RE, Hu B, Stern AD, Tavassoly I, Hansen J, Sebra R, Martinez P, Prabha S, Dubois N, Schaniel C, Iyengar-Kapuganti R, Kukar N, Giustino G, Sud K, Nirenberg S, Kovatch P, Albrecht RA, Goldfarb J, Croft L, McLaughlin MA, Argulian E, Lerakis S, Narula J, García-Sastre A, Iyengar R. Functional Effects of Cardiomyocyte Injury in COVID-19. J Virol 2022; 96:e0106321. [PMID: 34669512 PMCID: PMC8791272 DOI: 10.1128/jvi.01063-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1β. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.
Collapse
Affiliation(s)
- Mustafa M. Siddiq
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angel T. Chan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arjun S. Yadaw
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosa E. Tolentino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alan D. Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Iman Tavassoly
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jens Hansen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, a Mount Sinai Venture, Stamford, Connecticut, USA
| | - Pedro Martinez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Som Prabha
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicole Dubois
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christoph Schaniel
- Black Family Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Hematology & Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rupa Iyengar-Kapuganti
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Kukar
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gennaro Giustino
- Black Family Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Hematology & Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karan Sud
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Nirenberg
- Department of Scientific Computing and Data Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia Kovatch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Scientific Computing and Data Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph Goldfarb
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lori Croft
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maryann A. McLaughlin
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edgar Argulian
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stamatios Lerakis
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jagat Narula
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
80
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
81
|
Nie A, Su X, Dong M, Guan W. Are nurses prepared to respond to next infectious disease outbreak: A narrative synthesis. Nurs Open 2022; 9:908-919. [PMID: 34994079 PMCID: PMC8859039 DOI: 10.1002/nop2.1170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Aim The review aimed to present a synthesis of nurses' preparedness for infectious disease and the components of emergency preparedness. Design Narrative synthesis. Methods A systematic search and screening for relevant studies were conducted to locate the relevant articles. The included studies were examined for scientific quality using the Mixed Methods Appraisal Tool. The findings of included studies were synthesized by a narrative synthesis approach. Results Totally 15 studies were included, and 4 themes associated with nurses' preparedness for pandemic were identified: knowledge and skills, psychological preparation, external resources, and attitude and intention. Conclusions Most nurses express a positive willingness to respond to epidemics, although they do not believe they are adequately prepared. Some measures should be taken for improving nurses' emergency preparedness, including providing ongoing training, protective equipment, safe working environment and psychological intervention, improving nurses' resilience and accelerating the sharing of scientific information about epidemics.
Collapse
Affiliation(s)
- Anliu Nie
- Department of Emergency, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangfen Su
- Department of Emergency, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengyuan Dong
- Department of Urinary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenjie Guan
- Department of Emergency, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
82
|
Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, Zhang X, Wang L, Zhang L. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med (Lausanne) 2021; 8:628370. [PMID: 34950674 PMCID: PMC8688360 DOI: 10.3389/fmed.2021.628370] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has been spreading rapidly in China and the Chinese government took a series of policies to control the epidemic. Studies found that severe COVID-19 is characterized by pneumonia, lymphopenia, exhausted lymphocytes and a cytokine storm. Studies have showen that SARS-CoV2 has significant genomic similarity to the severe acute respiratory syndrome (SARS-CoV), which was a pandemic in 2002. More importantly, some diligent measures were used to limit its spread according to the evidence of hospital spread. Therefore, the Public Health Emergency of International Concern (PHEIC) has been established by the World Health Organization (WHO) with strategic objectives for public health to curtail its impact on global health and economy. The purpose of this paper is to review the transmission patterns of the three pneumonia: SARS-CoV2, SARS-CoV, and MERS-CoV. We compare the new characteristics of COVID-19 with those of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Huan Zhou
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China.,School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chang Zhou
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuo Chen
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xianzheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Linding Wang
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
83
|
Abstract
Pulmonary fibrosis is the end stage of a broad range of heterogeneous interstitial lung diseases and more than 200 factors contribute to it. In recent years, the relationship between virus infection and pulmonary fibrosis is getting more and more attention, especially after the outbreak of SARS-CoV-2 in 2019, however, the mechanisms underlying the virus-induced pulmonary fibrosis are not fully understood. Here, we review the relationship between pulmonary fibrosis and several viruses such as Human T-cell leukemia virus (HTLV), Human immunodeficiency virus (HIV), Cytomegalovirus (CMV), Epstein–Barr virus (EBV), Murine γ-herpesvirus 68 (MHV-68), Influenza virus, Avian influenza virus, Middle East Respiratory Syndrome (MERS)-CoV, Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 as well as the mechanisms underlying the virus infection induced pulmonary fibrosis. This may shed new light on the potential targets for anti-fibrotic therapy to treat pulmonary fibrosis induced by viruses including SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Jie Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. .,Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
84
|
Mahomoodally MF, Jugreet BS, Zengin G, Lesetja LJ, Abdallah HH, Ezzat MO, Gallo M, Montesano D. Seven Compounds from Turmeric Essential Oil Inhibit Three Key Proteins Involved in SARS-CoV-2 Cell Entry and Replication in silico. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Turmeric rhizome (Cucurma longa L.) has showed great potential as a traditional drug in folk medicine of several countries. In light of the prominent use of turmeric rhizome in treating both respiratory and viral diseases, we aimed to dock major compounds from the essential oil of turmeric against three key proteins involved in COVID-19 cell entry and replication. Methods: The essential oil of turmeric rhizome was obtained using a hydrodistillation technique, and the chemical characterization of the oil was investigated using GC-MS/GC-FID. Then, main compounds were docked with the key proteins of COVID-19. Results: A total of 26 components were identified in the essential oil extracted from the rhizomes via GC-MS/GC-FID. Seven dominant compounds (turmerone (31.4%), ar-turmerone (16.1%), turmerol (14.6%), terpinolene (11.0%), [Formula: see text]-zingiberene (5.2%), [Formula: see text]-sesquiphellandrene (4.8%), and [Formula: see text]-caryophyllene (3.5%)) were docked against COVID-19 main protease, papain-like protease (PLpro), spike protein and 3C-like protease (3CLpro), and the best inhibitor was picked according to the calculated binding affinity and non-bonding interactions with the protein active site. [Formula: see text]-sesquiphellandrene and [Formula: see text]-zingiberene showed highest besides the same binding affinity towards COVID-19 virus ([Formula: see text] and [Formula: see text][Formula: see text]kcal/mol, respectively). [Formula: see text]-zingiberene was found to bind at the active site of the COVID-19 protein and interacted with different non-bonding interactions, while turmerol showed the highest affinity ([Formula: see text][Formula: see text]kcal/mol) against CLpro enzyme by binding with Met165, Leu141, Met49, Ser144, Cys145, and Glu166 residues. Conclusion: The essential oil of turmeric harbors a blend of potentially bioactive compounds that may be considered as a good target against COVID-19 virus and warrants further experimental studies.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Bibi Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Legoabe J. Lesetja
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, 31001, Ramadi, Anbar, Iraq
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131, Naples, Italy
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 1, 06126 Perugia, Italy
| |
Collapse
|
85
|
Melton A, Doyle-Meyers LA, Blair RV, Midkiff C, Melton HJ, Russell-Lodrigue K, Aye PP, Schiro F, Fahlberg M, Szeltner D, Spencer S, Beddingfield BJ, Goff K, Golden N, Penney T, Picou B, Hensley K, Chandler KE, Plante JA, Plante KS, Weaver SC, Roy CJ, Hoxie JA, Gao H, Montefiori DC, Mankowski JL, Bohm RP, Rappaport J, Maness NJ. The pigtail macaque (Macaca nemestrina) model of COVID-19 reproduces diverse clinical outcomes and reveals new and complex signatures of disease. PLoS Pathog 2021; 17:e1010162. [PMID: 34929014 PMCID: PMC8722729 DOI: 10.1371/journal.ppat.1010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.
Collapse
Affiliation(s)
- Alexandra Melton
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Biomedical Science Training Program, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Hunter J. Melton
- Florida State University, Department of Statistics, Tallahassee, Florida, United States of America
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Marissa Fahlberg
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Dawn Szeltner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Skye Spencer
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | | | - Kelly Goff
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Toni Penney
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Krystle Hensley
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Kristin E. Chandler
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - James A. Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongmei Gao
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rudolf P. Bohm
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
86
|
Discovery of SARS-CoV-2 Nsp14 and Nsp16 Methyltransferase Inhibitors by High-Throughput Virtual Screening. Pharmaceuticals (Basel) 2021; 14:ph14121243. [PMID: 34959647 PMCID: PMC8705538 DOI: 10.3390/ph14121243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses mRNA capping to evade the human immune system. The cap formation is performed by the SARS-CoV-2 mRNA cap methyltransferases (MTases) nsp14 and nsp16, which are emerging targets for the development of broad-spectrum antiviral agents. Here, we report results from high-throughput virtual screening against these two enzymes. The docking of seven million commercially available drug-like compounds and S-adenosylmethionine (SAM) co-substrate analogues against both MTases resulted in 80 virtual screening hits (39 against nsp14 and 41 against nsp16), which were purchased and tested using an enzymatic homogeneous time-resolved fluorescent energy transfer (HTRF) assay. Nine compounds showed micromolar inhibition activity (IC50 < 200 μM). The selectivity of the identified inhibitors was evaluated by cross-checking their activity against human glycine N-methyltransferase. The majority of the compounds showed poor selectivity for a specific MTase, no cytotoxic effects, and rather poor cell permeability. Nevertheless, the identified compounds represent good starting points that have the potential to be developed into efficient viral MTase inhibitors.
Collapse
|
87
|
Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021; 9:1387. [PMID: 34960133 PMCID: PMC8708628 DOI: 10.3390/vaccines9121387] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Irfan Jawad
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Bushra Ayat Meghla
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Taslima Akter Tisha
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Mohib Ullah Khondoker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar 1344, Bangladesh
| | - Md. Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Shahana Sharmin
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mohd. Raeed Jamiruddin
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur 57000, Malaysia
| | - Nihad Adnan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| |
Collapse
|
88
|
Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. ANIMAL DISEASES 2021; 1:5. [PMID: 34778878 PMCID: PMC8062217 DOI: 10.1186/s44149-021-00005-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The frequent emergence of coronavirus (CoV) epidemics has seriously threatened public health and stock farming. The major hosts for CoVs are birds and mammals. Although most CoVs inhabit their specific natural hosts, some may occasionally cross the host barrier to infect livestock and even people, causing a variety of diseases. Since the beginning of the new century, increasing attention has been given to research on CoVs due to the emergence of highly pathogenic and genetically diverse CoVs that have caused several epidemics, including the recent COVID-19 pandemic. CoVs belong to the Coronaviridae family of the Nidovirales order. Recently, advanced techniques for viral detection and viral genome analyses have enabled characterization of many new nidoviruses than ever and have greatly expanded the Nidovirales order with new classification and nomenclature. Here, we first provide an overview of the latest research progress in the classification of the Nidovirales order and then introduce the host range, genetic variation, genomic pattern and pathogenic features of epidemic CoVs and other epidemic viruses. This information will promote understanding of the phylogenetic relationship and infectious transmission of various pathogenic nidoviruses, including epidemic CoVs, which will benefit virological research and viral disease control.
Collapse
Affiliation(s)
- Zhijian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| |
Collapse
|
89
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
90
|
Abstract
The acute course of COVID-19 is variable and ranges from asymptomatic infection to fulminant respiratory failure. Patients recovering from COVID-19 can have persistent symptoms and CT abnormalities of variable severity. At 3 months after acute infection, a subset of patients will have CT abnormalities that include ground-glass opacity (GGO) and subpleural bands with concomitant pulmonary function abnormalities. At 6 months after acute infection, some patients have persistent CT changes to include the resolution of GGOs seen in the early recovery phase and the persistence or development of changes suggestive of fibrosis, such as reticulation with or without parenchymal distortion. The etiology of lung disease after COVID-19 may be a sequela of prolonged mechanical ventilation, COVID-19-induced acute respiratory distress syndrome (ARDS), or direct injury from the virus. Predictors of lung disease after COVID-19 include need for intensive care unit admission, mechanical ventilation, higher inflammatory markers, longer hospital stay, and a diagnosis of ARDS. Treatments of lung disease after COVID-19 are being investigated, including the potential of antifibrotic agents for prevention of lung fibrosis after COVID-19. Future research is needed to determine the long-term persistence of lung disease after COVID-19, its impact on patients, and methods to either prevent or treat it. © RSNA, 2021.
Collapse
Affiliation(s)
| | - Brooke Heyman
- Division of Pulmonary, Sleep and Critical Care Medicine, Department
of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York,
NY
| | - Jane P. Ko
- Department of Radiology, NYU Langone Health, NYU Grossman School of
Medicine, New York, NY
| | - Rany Condos
- Division of Pulmonary, Sleep and Critical Care Medicine, Department
of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York,
NY
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, CO,
USA
| |
Collapse
|
91
|
Rowland R, Brandariz-Nuñez A. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Microbiol Spectr 2021; 9:e0119921. [PMID: 34494876 PMCID: PMC8557876 DOI: 10.1128/spectrum.01199-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Human angiotensin I-converting enzyme 2 (hACE2) is a type I transmembrane glycoprotein that serves as the major cell entry receptor for SARS-CoV and SARS-CoV-2. The viral spike (S) protein is required for the attachment to ACE2 and subsequent virus-host cell membrane fusion. Previous work has demonstrated the presence of N-linked glycans in ACE2. N-glycosylation is implicated in many biological activities, including protein folding, protein activity, and cell surface expression of biomolecules. However, the contribution of N-glycosylation to ACE2 function is poorly understood. Here, we examined the role of N-glycosylation in the activity and localization of two species with different susceptibility to SARS-CoV-2 infection, porcine ACE2 (pACE2) and hACE2. The elimination of N-glycosylation by tunicamycin (TM) treatment, or mutagenesis, showed that N-glycosylation is critical for the proper cell surface expression of ACE2 but not for its carboxiprotease activity. Furthermore, nonglycosylable ACE2 was localized predominantly in the endoplasmic reticulum (ER) and not at the cell surface. Our data also revealed that binding of SARS-CoV or SARS-CoV-2 S protein to porcine or human ACE2 was not affected by deglycosylation of ACE2 or S proteins, suggesting that N-glycosylation does not play a role in the interaction between SARS coronaviruses and the ACE2 receptor. Impairment of hACE2 N-glycosylation decreased cell-to-cell fusion mediated by SARS-CoV S protein but not that mediated by SARS-CoV-2 S protein. Finally, we found that hACE2 N-glycosylation is required for an efficient viral entry of SARS-CoV/SARS-CoV-2 S pseudotyped viruses, which may be the result of low cell surface expression of the deglycosylated ACE2 receptor. IMPORTANCE Understanding the role of glycosylation in the virus-receptor interaction is important for developing approaches that disrupt infection. In this study, we showed that deglycosylation of both ACE2 and S had a minimal effect on the spike-ACE2 interaction. In addition, we found that the removal of N-glycans of ACE2 impaired its ability to support an efficient transduction of SARS-CoV and SARS-CoV-2 S pseudotyped viruses. Our data suggest that the role of deglycosylation of ACE2 on reducing infection is likely due to a reduced expression of the viral receptor on the cell surface. These findings offer insight into the glycan structure and function of ACE2 and potentially suggest that future antiviral therapies against coronaviruses and other coronavirus-related illnesses involving inhibition of ACE2 recruitment to the cell membrane could be developed.
Collapse
Affiliation(s)
- Raymond Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
92
|
Zamzami MA, Rabbani G, Ahmad A, Basalah AA, Al-Sabban WH, Nate Ahn S, Choudhry H. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry 2021; 143:107982. [PMID: 34715586 PMCID: PMC8518145 DOI: 10.1016/j.bioelechem.2021.107982] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The large-scale diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for traceability and treatment during pandemic outbreaks. We developed a fast (2–3 min), easy-to-use, low-cost, and quantitative electrochemical biosensor based on carbon nanotube field-effect transistor (CNT-FET) that allows digital detection of the SARS-CoV-2 S1 in fortifited saliva samples for quick and accurate detection of SARS-CoV-2 S1 antigens. The biosensor was developed on a Si/SiO2 surface by CNT printing with the immobilization of a anti-SARS-CoV-2 S1. SARS-CoV-2 S1 antibody was immobilized on the CNT surface between the S-D channel area using a linker 1-pyrenebutanoic acid succinimidyl ester (PBASE) through non-covalent interaction. A commercial SARS-CoV-2 S1 antigen was used to characterize the electrical output of the CNT-FET biosensor. The SARS-CoV-2 S1 antigen in the 10 mM AA buffer pH 6.0 was effectively detected by the CNT-FET biosensor at concentrations from 0.1 fg/mL to 5.0 pg/mL. The limit of detection (LOD) of the developed CNT-FET biosensor was 4.12 fg/mL. The selectivity test was performed by using target SARS-CoV-2 S1 and non-target SARS-CoV-1 S1 and MERS-CoV S1 antigens in the 10 mM AA buffer pH 6.0. The biosensor showed high selectivity (no response to SARS-CoV-1 S1 or MERS-CoV S1 antigen) with SARS-CoV-2 S1 antigen detection in the 10 mM AA buffer pH 6.0. The biosensor is highly sensitive, saves time, and could be a helpful platform for rapid detection of SARS-CoV-2 S1 antigen from the patients saliva.
Collapse
Affiliation(s)
- Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad A Basalah
- Department of Mechanical Engineering, College of Engineering & Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam H Al-Sabban
- Department of Information Systems, College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea; Fuzbien Technology Institute, 13 Taft Court, suite 222, Rockville, MD 20850, USA.
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
93
|
Sahoo A, Fuloria S, Swain SS, Panda SK, Sekar M, Subramaniyan V, Panda M, Jena AK, Sathasivam KV, Fuloria NK. Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines 2021; 9:biomedicines9111505. [PMID: 34829734 PMCID: PMC8614725 DOI: 10.3390/biomedicines9111505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
In an emergency, drug repurposing is the best alternative option against newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, several bioactive natural products have shown potential against SARS-CoV-2 in recent studies. The present study selected sixty-eight broad-spectrum antiviral marine terpenoids and performed molecular docking against two novel SARS-CoV-2 enzymes (main protease or Mpro or 3CLpro) and RNA-dependent RNA polymerase (RdRp). In addition, the present study analysed the physiochemical-toxicity-pharmacokinetic profile, structural activity relationship, and phylogenetic tree with various computational tools to select the 'lead' candidate. The genomic diversity study with multiple sequence analyses and phylogenetic tree confirmed that the newly emerged SARS-CoV-2 strain was up to 96% structurally similar to existing CoV-strains. Furthermore, the anti-SARS-CoV-2 potency based on a protein-ligand docking score (kcal/mol) exposed that the marine terpenoid brevione F (-8.4) and stachyflin (-8.4) exhibited similar activity with the reference antiviral drugs lopinavir (-8.4) and darunavir (-7.5) against the target SARS-CoV-Mpro. Similarly, marine terpenoids such as xiamycin (-9.3), thyrsiferol (-9.2), liouvilloside B (-8.9), liouvilloside A (-8.8), and stachyflin (-8.7) exhibited comparatively higher docking scores than the referral drug remdesivir (-7.4), and favipiravir (-5.7) against the target SARS-CoV-2-RdRp. The above in silico investigations concluded that stachyflin is the most 'lead' candidate with the most potential against SARS-CoV-2. Previously, stachyflin also exhibited potential activity against HSV-1 and CoV-A59 within IC50, 0.16-0.82 µM. Therefore, some additional pharmacological studies are needed to develop 'stachyflin' as a drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (S.F.); (N.K.F.)
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR–Regional Medical Research Centre, Bhubaneswar 751023, Odisha, India;
| | - Sujogya K. Panda
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Ajaya K. Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Kathiresan V. Sathasivam
- Faculty of Applied Science, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (S.F.); (N.K.F.)
| |
Collapse
|
94
|
The PERK/PKR-eIF2α pathway negatively regulates porcine hemagglutinating encephalomyelitis virus replication by attenuating global protein translation and facilitating stress granule formation. J Virol 2021; 96:e0169521. [PMID: 34643429 PMCID: PMC8754228 DOI: 10.1128/jvi.01695-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)–eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.
Collapse
|
95
|
Sun S, Karki C, Aguilera J, Hernandez AEL, Sun J, Li L. Computational Study on the Function of Palmitoylation on the Envelope Protein in SARS-CoV-2. J Chem Theory Comput 2021; 17:6483-6490. [PMID: 34516136 PMCID: PMC8457325 DOI: 10.1021/acs.jctc.1c00359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Indexed: 01/02/2023]
Abstract
SARS-CoV-2 that caused COVID-19 has spread since the end of 2019. Its major effects resulted in over four million deaths around the whole world by August 2021. Therefore, understanding virulence mechanisms is important to prevent future outbreaks and for COVID-19 drug development. The envelope (E) protein is an important structural protein, affecting virus assembly and budding. The E protein pentamer is a viroporin, serving as an ion transferring channel in cells. In this work, we applied molecular dynamic simulations and topological and electrostatic analyses to study the effects of palmitoylation on the E protein pentamer. The results indicate that the cation transferring direction is more from the lumen to the cytosol. The structure of the palmitoylated E protein pentamer is more stable while the loss of palmitoylation caused the pore radius to reduce and even collapse. The electrostatic forces on the two sides of the palmitoylated E protein pentamer are more beneficial to attract cations in the lumen and to release cations into the cytosol. The results indicate the importance of palmitoylation, which can help the drug design for the treatment of COVID-19.
Collapse
Affiliation(s)
- Shengjie Sun
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Chitra Karki
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Javier Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Alan E Lopez Hernandez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Lin Li
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
- Department of Physics, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| |
Collapse
|
96
|
Utilizing the VirIdAl Pipeline to Search for Viruses in the Metagenomic Data of Bat Samples. Viruses 2021; 13:v13102006. [PMID: 34696436 PMCID: PMC8541124 DOI: 10.3390/v13102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
Abstract
According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.
Collapse
|
97
|
Shi Y, Nguyen KT, Chin LK, Li Z, Xiao L, Cai H, Yu R, Huang W, Feng S, Yap PH, Liu J, Zhang Y, Liu AQ. Trapping and Detection of Single Viruses in an Optofluidic Chip. ACS Sens 2021; 6:3445-3450. [PMID: 34505501 DOI: 10.1021/acssensors.1c01350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accurate single virus detection is critical for disease diagnosis and early prevention, especially in view of current pandemics. Numerous detection methods have been proposed with the single virus sensitivity, including the optical approaches and immunoassays. However, few of them hitherto have the capability of both trapping and detection of single viruses in the microchannel. Here, we report an optofluidic potential well array to trap nanoparticles stably in the flow stream. The nanoparticle is bound with single viruses and fluorescence quantum dots through an immunolabeling protocol. Single viruses can be swiftly captured in the microchannel by optical forces and imaged by a camera. The number of viruses in solution and on each particle can be quantified via image processing. Our method can trap and detect single viruses in the 1 mL serum or water in 2 h, paving an avenue for the advanced, fast, and accurate clinical diagnosis, as well as the study of virus infectivity, mutation, drug inhibition, etc.
Collapse
Affiliation(s)
- Yuzhi Shi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Kim Truc Nguyen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Zhenyu Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Limin Xiao
- Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis
Tower, 138634 Singapore
| | - Ruozhen Yu
- Chinese Research Academy of Environmental Science, 8, Anwai Dayanfang, Beijing 100012, China
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
98
|
Doody JS, Reid JA, Bilali K, Diaz J, Mattheus N. In the post-COVID-19 era, is the illegal wildlife trade the most serious form of trafficking? CRIME SCIENCE 2021; 10:19. [PMID: 34540528 PMCID: PMC8436868 DOI: 10.1186/s40163-021-00154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 05/05/2023]
Abstract
Despite the immense impact of wildlife trafficking, comparisons of the profits, costs, and seriousness of crime consistently rank wildlife trafficking lower relative to human trafficking, drug trafficking and weapons trafficking. Using the published literature and current events, we make the case, when properly viewed within the context of COVID-19 and other zoonotic diseases transmitted from wildlife, that wildlife trafficking is the most costly and perhaps the most serious form of trafficking. Our synthesis should raise awareness of the seriousness of wildlife trafficking for humans, thereby inducing strategic policy decisions that boost criminal justice initiatives and resources to combat wildlife trafficking.
Collapse
Affiliation(s)
- J. Sean Doody
- Department of Integrative Biology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Joan A. Reid
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Klejdis Bilali
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Jennifer Diaz
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Nichole Mattheus
- Department of Integrative Biology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| |
Collapse
|
99
|
Luo L, Qiu Q, Huang F, Liu K, Lan Y, Li X, Huang Y, Cui L, Luo H. Drug repurposing against coronavirus disease 2019 (COVID-19): A review. J Pharm Anal 2021; 11:683-690. [PMID: 34513115 PMCID: PMC8416689 DOI: 10.1016/j.jpha.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 has been found to be the culprit in the coronavirus disease 2019 (COVID-19), causing a global pandemic. Despite the existence of many vaccine programs, the number of confirmed cases and fatalities due to COVID-19 is still increasing. Furthermore, a number of variants have been reported. Because of the absence of approved anti-coronavirus drugs, the treatment and management of COVID-19 has become a global challenge. Under these circumstances, drug repurposing is an effective method to identify candidate drugs with a shorter cycle of clinical trials. Here, we summarize the current status of the application of drug repurposing in COVID-19, including drug repurposing based on virtual computer screening, network pharmacology, and bioactivity, which may be a beneficial COVID-19 treatment. Mechanism of SARS-CoV-2 infection and drug targets were reviewed. Drug repurposing against COVID-19 based on computer virtual screening, network pharmacology, bioactivity were summarized. The use of drug repurposing in COVID-19 was addressed.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang, 524023, Guangdong, China
| | - Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Fangfang Huang
- Graduate School, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yongqi Lan
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yuge Huang
- Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| |
Collapse
|
100
|
Fang M, Hu W, Liu B. Characterization of bat coronaviruses: a latent global threat. J Vet Sci 2021; 22:e72. [PMID: 34553517 PMCID: PMC8460465 DOI: 10.4142/jvs.2021.22.e72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
It has been speculated that bats serve as reservoirs of a huge variety of emerging coronaviruses (CoVs) that have been responsible for severe havoc in human health systems as well as negatively affecting human economic and social systems. A prime example is the currently active severe acute respiratory syndrome (SARS)-CoV2, which presumably originated from bats, demonstrating that the risk of a new outbreak of bat coronavirus is always latent. Therefore, an in-depth investigation to better comprehend bat CoVs has become an important issue within the international community, a group that aims to attenuate the consequences of future outbreaks. In this review, we present a concise introduction to CoVs found in bats and discuss their distribution in Southeast Asia. We also discuss the unique adaptation features in bats that confer the ability to be a potential coronavirus reservoir. In addition, we review the bat coronavirus-linked diseases that have emerged in the last two decades. Finally, we propose key factors helpful in the prediction of a novel coronavirus outbreak and present the most recent methods used to forecast an evolving outbreak.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co., Ltd, Yichun 336000, Jiangxi, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun 336000, Jiangxi, China.
| |
Collapse
|