51
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
52
|
Iacobucci GJ, Wen H, Helou M, Liu B, Zheng W, Popescu GK. Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors. Proc Natl Acad Sci U S A 2021; 118:e2007511118. [PMID: 33384330 PMCID: PMC7812756 DOI: 10.1073/pnas.2007511118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NMDA receptors are excitatory channels with critical functions in the physiology of central synapses. Their activation reaction proceeds as a series of kinetically distinguishable, reversible steps, whose structural bases are currently under investigation. Very likely, the earliest steps include glutamate binding to glycine-bound receptors and subsequent constriction of the ligand-binding domain. Later, three short linkers transduce this movement to open the gate by mechanical pulling on transmembrane helices. Here, we used molecular and kinetic simulations and double-mutant cycle analyses to show that a direct chemical interaction between GluN1-I642 (on M3 helix) and GluN2A-L550 (on L1-M1 linker) stabilizes receptors after they have opened and thus represents one of the structural changes that occur late in the activation reaction. This native interaction extends the current decay, and its absence causes deficits in charge transfer by GluN1-I642L, a pathogenic human variant.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203
| | - Han Wen
- Department of Physics, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY 14260
| | - Matthew Helou
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203
| | - Beiying Liu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203
| | - Wenjun Zheng
- Department of Physics, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY 14260
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203;
| |
Collapse
|
53
|
Bertocchi I, Eltokhi A, Rozov A, Chi VN, Jensen V, Bus T, Pawlak V, Serafino M, Sonntag H, Yang B, Burnashev N, Li SB, Obenhaus HA, Both M, Niewoehner B, Single FN, Briese M, Boerner T, Gass P, Rawlins JNP, Köhr G, Bannerman DM, Sprengel R. Voltage-independent GluN2A-type NMDA receptor Ca 2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice. Commun Biol 2021; 4:59. [PMID: 33420383 PMCID: PMC7794508 DOI: 10.1038/s42003-020-01538-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126, Torino, Italy
- Neuroscience Institute-Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regionale Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Ahmed Eltokhi
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Otfried-Müller Str. 27, 72076, Tübingen, Germany
| | - Andrey Rozov
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 8 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- Federal Center of Brain Research and Neurotechnologies, Ostrovityanova Str 1/10, Moscow, 117997, Russia
| | - Vivan Nguyễn Chi
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Thorsten Bus
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Verena Pawlak
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Behavior and Brain Organization, Research Center Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Marta Serafino
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- FARMA-DERMA s.r.l. Via dell'Artigiano 6-8, 40010, Sala Bolognese, Italy
| | - Hannah Sonntag
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Boyi Yang
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Road, Wuhan, Hubei, 430030, China
| | - Nail Burnashev
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- INSERM UMR 1249 Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, 163 avenue de Luminy BP13, 13273, Marseille Cedex 09, France
| | - Shi-Bin Li
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford Way, Rm E152, Stanford, CA, 94305, USA
| | - Horst A Obenhaus
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, NTNU, Postboks 8905, NO-7491, Trondheim, Norway
| | - Martin Both
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Burkhard Niewoehner
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Frank N Single
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| | - Michael Briese
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacherstraße 5, 97080, Wuerzburg, Germany
| | - Thomas Boerner
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Peter Gass
- RG Animal Models in Psychiatry, Animal Models Psychatry, Central Institute of Mental Health (CIMH), Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - John Nick P Rawlins
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Georg Köhr
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK.
| | - Rolf Sprengel
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
54
|
Popescu GK. FRET-ting over Inactivation. Biophys J 2020; 119:2139-2140. [PMID: 33159893 PMCID: PMC7732768 DOI: 10.1016/j.bpj.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022] Open
|
55
|
Bhatia NK, Carrillo E, Durham RJ, Berka V, Jayaraman V. Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Biophys J 2020; 119:2349-2359. [PMID: 33098865 DOI: 10.1016/j.bpj.2020.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate synaptic excitatory signaling in the mammalian central nervous system by forming calcium-permeable transmembrane channels upon binding glutamate and coagonist glycine. Ca2+ influx through NMDA receptors leads to channel inactivation through a process mediated by resident calmodulin bound to the intracellular C-terminal segment of the GluN1 subunit of the receptor. Using single-molecule FRET investigations, we show that in the presence of calcium-calmodulin, the distance across the two GluN1 subunits at the entrance of the first transmembrane segment is shorter and the bilobed cleft of the glycine-binding domain in GluN1 is more closed when bound to glycine and glutamate relative to what is observed in the presence of barium-calmodulin. Consistent with these observations, the glycine deactivation rate is slower in the presence of calcium-calmodulin. Taken together, these results show that the binding of calcium-calmodulin to the C-terminus has long-range allosteric effects on the extracellular segments of the receptor that may contribute to the calcium-dependent inactivation.
Collapse
Affiliation(s)
- Nidhi Kaur Bhatia
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
56
|
Activity Dependent Inhibition of AMPA Receptors by Zn 2. J Neurosci 2020; 40:8629-8636. [PMID: 33046551 DOI: 10.1523/jneurosci.1481-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
Zn2+ has been shown to have a wide range of modulatory effects on neuronal AMPARs. However, the mechanism of modulation is largely unknown. Here we show that Zn2+ inhibits GluA2(Q) homomeric receptors in an activity- and voltage-dependent manner, indicating a pore block mechanism. The rate of inhibition is slow, in the hundreds of milliseconds at millimolar Zn2+ concentrations; hence, the inhibition is only observed in the residual nondesensitizing currents. Consequently, the inhibition is higher for GluA2 receptors in complex with auxiliary subunits γ2 and γ8 where the residual activation is larger. The extent of inhibition is also dependent on charge at site 607, the site that undergoes RNA editing in GluA2 subunits replacing glutamine to arginine, with the percent inhibition being lower and IC50 being higher for the edited GluA2(R) relative to unedited GluA2(Q) and to GluA2(Q607E), a mutation observed in the genetic screen of a patient exhibiting developmental delays. We also show that Zn2+ inhibition is significant during rapid repetitive activity with pulses of millimolar concentrations of glutamate in both receptors expressed in HEK cells as well as in native receptors in cortical neurons of C57BL/6J mice of either sex, indicating a physiological relevance of this inhibition.SIGNIFICANCE STATEMENT Zn2+ is present along with glutamate in synaptic vesicles and coreleased during synaptic transmission, modulating the postsynaptic ionotropic glutamate receptors. While Zn2+ inhibition of the NMDA subtype of the ionotropic glutamate receptors is well characterized, the mechanism of modulation of the AMPA subtype is much less known. Here we have systematically studied Zn2+ inhibition of AMPARs by varying calcium permeability, auxiliary subunits, and activation levels and show that Zn2+ inhibits AMPARs in an activity-dependent manner, opening up this pathway as a means to pharmacologically modulate the receptors.
Collapse
|
57
|
Martins RS, Rombo DM, Gonçalves-Ribeiro J, Meneses C, Borges-Martins VPP, Ribeiro JA, Vaz SH, Kubrusly RCC, Sebastião AM. Caffeine has a dual influence on NMDA receptor-mediated glutamatergic transmission at the hippocampus. Purinergic Signal 2020; 16:503-518. [PMID: 33025424 DOI: 10.1007/s11302-020-09724-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30-200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.
Collapse
Affiliation(s)
- Robertta S Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Meneses
- Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Vladimir P P Borges-Martins
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Regina C C Kubrusly
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. .,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
58
|
Lin YY, Yu TY, Quan H, Chen YJ, Liu XY, Huang DY. Association Between PSD95 Gene 3′UTR Single Nucleotide Polymorphism and Risk of Acute Ischemic Stroke in Chinese Han Population. J Mol Neurosci 2020; 70:1389-1402. [DOI: 10.1007/s12031-020-01559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
|
59
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
60
|
Ishola AO, Imam A, Ajao MS. Datumetine exposure alters hippocampal neurotransmitters system in C57BL/6 mice. Drug Chem Toxicol 2020; 45:785-798. [PMID: 32847421 DOI: 10.1080/01480545.2020.1776315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our previous study showed that datumetine modulates NMDAR activity with long term exposure leading to memory deficit and altered NMDAR signaling. We aim to explore the neurotransmitters perturbations of acute datumetine-NMDAR interaction. Fifteen C57/BL6 mice were used for the study, they are divided into three groups of 5 animals each. Animals were administered DMSO (DMSO/Control), 0.25 mg/kg body weight of datumetine (0.25 Datumetine) and 1 mg/kg bodyweight of datumetine (1.0 Datumetine) intraperitoneally for 14 days. At the end of treatment, animals were euthanized in isofluorane chamber, perfused transcardially with 1XPBS followed by PFA. Immunofluorescence procedure was done to check the distribution of neurons, astrocytes, microglia and major neuronal subtypes in the hippocampus. Expansion and electron microscopy techniques were used to assess the condition of the synapses. Quantitative data were expressed as mean ± SEM and analyzed using ANOVA with Tukey post hoc using p < 0.05 as significant. Datumetine increased the expression of CD11b, GFAP, vGlut1, GABA, CHRNA7 and TH while expression of TrPH and NeuN were reduced in the hippocampus compared to control animals. Synaptic loss was evident in datumetine exposed animals with reduced synaptic vesicles accompanied by a thickness of postsynaptic density than that of control animals. This study concludes that acute datumetine exposure alters hippocampal neurotransmitter systems.
Collapse
Affiliation(s)
- Azeez Olakunle Ishola
- Department of Anatomy, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Aminu Imam
- Department of Anatomy, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
61
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
62
|
Chin AC, Yovanno RA, Wied TJ, Gershman A, Lau AY. D-Serine Potently Drives Ligand-Binding Domain Closure in the Ionotropic Glutamate Receptor GluD2. Structure 2020; 28:1168-1178.e2. [PMID: 32735769 DOI: 10.1016/j.str.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Despite their classification as ionotropic glutamate receptors, GluD receptors are not functional ligand-gated ion channels and do not bind glutamate. GluD2 receptors bind D-serine and coordinate transsynaptic complexes that regulate synaptic plasticity. Instead of opening the ion channel pore, mechanical tension produced from closure of GluD2 ligand-binding domains (LBDs) drives conformational rearrangements for non-ionotropic signaling. We report computed conformational free energy landscapes for the GluD2 LBD in apo and D-serine-bound states. Unexpectedly, the conformational free energy associated with GluD2 LBD closure upon D-serine binding is greater than that for AMPA, NMDA, and kainate receptor LBDs upon agonist binding. This excludes insufficient force generation as an explanation for lack of ion channel activity in GluD2 receptors and suggests that non-ionotropic conformational rearrangements do more work than pore opening. We also report free energy landscapes for GluD2 LBD harboring a neurodegenerative mutation and demonstrate selective stabilization of closed conformations in the apo state.
Collapse
Affiliation(s)
- Alfred C Chin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Remy A Yovanno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tyler J Wied
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ariel Gershman
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
63
|
Khan A, Khan S, Kim YS. Insight into Pain Modulation: Nociceptors Sensitization and Therapeutic Targets. Curr Drug Targets 2020; 20:775-788. [PMID: 30706780 DOI: 10.2174/1389450120666190131114244] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Pain is a complex multidimensional concept that facilitates the initiation of the signaling cascade in response to any noxious stimuli. Action potential generation in the peripheral nociceptor terminal and its transmission through various types of nociceptors corresponding to mechanical, chemical or thermal stimuli lead to the activation of receptors and further neuronal processing produces the sensation of pain. Numerous types of receptors are activated in pain sensation which vary in their signaling pathway. These signaling pathways can be regarded as a site for modulation of pain by targeting the pain transduction molecules to produce analgesia. On the basis of their anatomic location, transient receptor potential ion channels (TRPV1, TRPV2 and TRPM8), Piezo 2, acid-sensing ion channels (ASICs), purinergic (P2X and P2Y), bradykinin (B1 and B2), α-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA), N-methyl-D-aspartate (NMDA), metabotropic glutamate (mGlu), neurokinin 1 (NK1) and calcitonin gene-related peptide (CGRP) receptors are activated during pain sensitization. Various inhibitors of TRPV1, TRPV2, TRPM8, Piezo 2, ASICs, P2X, P2Y, B1, B2, AMPA, NMDA, mGlu, NK1 and CGRP receptors have shown high therapeutic value in experimental models of pain. Similarly, local inhibitory regulation by the activation of opioid, adrenergic, serotonergic and cannabinoid receptors has shown analgesic properties by modulating the central and peripheral perception of painful stimuli. This review mainly focused on various classes of nociceptors involved in pain transduction, transmission and modulation, site of action of the nociceptors in modulating pain transmission pathways and the drugs (both clinical and preclinical data, relevant to targets) alleviating the painful stimuli by exploiting nociceptor-specific channels and receptors.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
64
|
Cohen Y, Shen J, Semu D, Leman DP, Liberti WA, Perkins LN, Liberti DC, Kotton DN, Gardner TJ. Hidden neural states underlie canary song syntax. Nature 2020; 582:539-544. [PMID: 32555461 PMCID: PMC7380505 DOI: 10.1038/s41586-020-2397-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/26/2020] [Indexed: 01/12/2023]
Abstract
Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identity and order of past actions. Canary songs are comprised of repeated syllables, called phrases, and the ordering of these phrases follows long-range rules1, where the choice of what to sing depends on song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC2–4 as canaries explore various phrase sequences in their repertoire. We find neurons that encode past transitions, extending over 4 phrases and spanning up to 4 seconds and 40 syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than a single song history, and occur mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that HVC dynamics includes “hidden states” not reflected in ongoing behavior – states that carry information about prior actions. These states provide a possible substrate to control syntax transitions governed by long-range rules.
Collapse
Affiliation(s)
- Yarden Cohen
- Department of Biology, Boston University, Boston, MA, USA.
| | - Jun Shen
- Boston University Center for Systems Neuroscience, Boston, MA, USA
| | - Dawit Semu
- Department of Biology, Boston University, Boston, MA, USA
| | - Daniel P Leman
- Department of Biology, Boston University, Boston, MA, USA
| | - William A Liberti
- Department of Biology, Boston University, Boston, MA, USA.,Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Derek C Liberti
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA.,The Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA.,The Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Timothy J Gardner
- Department of Biology, Boston University, Boston, MA, USA. .,Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
65
|
Warnet XL, Bakke Krog H, Sevillano-Quispe OG, Poulsen H, Kjaergaard M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 2020; 54:6713-6739. [PMID: 32464691 DOI: 10.1111/ejn.14842] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023]
Abstract
NMDA receptors are part of the ionotropic glutamate receptor family, and are crucial for neurotransmission and memory. At the cellular level, the effects of activating these receptors include long-term potentiation (LTP) or depression (LTD). The NMDA receptor is a stringently gated cation channel permeable to Ca2+ , and it shares the molecular architecture of a tetrameric ligand-gated ion channel with the other family members. Its subunits, however, have uniquely long cytoplasmic C-terminal domains (CTDs). While the molecular gymnastics of the extracellular domains have been described in exquisite detail, much less is known about the structure and function of these CTDs. The CTDs vary dramatically in length and sequence between receptor subunits, but they all have a composition characteristic of intrinsically disordered proteins. The CTDs affect channel properties, trafficking and downstream signalling output from the receptor, and these functions are regulated by alternative splicing, protein-protein interactions, and post-translational modifications such as phosphorylation and palmitoylation. Here, we review the roles of the CTDs in synaptic plasticity with a focus on biochemical mechanisms. In total, the CTDs play a multifaceted role as a modifier of channel function, a regulator of cellular location and abundance, and signalling scaffold control the downstream signalling output.
Collapse
Affiliation(s)
- Xavier L Warnet
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Helle Bakke Krog
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Oscar G Sevillano-Quispe
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
66
|
γ-Glutamylcysteine synthetase and γ-glutamyl transferase as differential enzymatic sources of γ-glutamylpeptides in mice. Amino Acids 2020; 52:555-566. [PMID: 32170467 DOI: 10.1007/s00726-020-02835-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Some γ-glutamylpeptides in blood plasma are putative biomarkers for pathological conditions of the liver. γ-Glutamyltransferase (GGT) and γ-glutamylcysteine synthetase (γ-GCS) are two such potential enzymes that are responsible for the production of γ-glutamylpeptides. GGT produces γ-glutamylpeptides by transferring the γ-glutamyl moiety from glutathione to an amino acid or a peptide. γ-GCS normally catalyzes the production of γ-glutamylcysteine from glutamate and cysteine in the glutathione-synthesizing reaction, but other amino acids can also serve as an acceptor of a γ-glutamyl group, thus resulting in the formation of a variety of γ-glutamylpeptides. Based on liquid chromatography-mass spectrometry analyses, we observed differences in the distribution of γ-glutamylpeptides between the liver and kidney and were able to measure the activities of γ-GCS as well as the GGT reactions by quantifying the resulting γ-glutamylpeptides. The enzymatic characterization of γ-GCS in liver homogenates indicated that several γ-glutamylpeptides including γ-glutamyltaurine are actually produced. Cys showed the lowest Km value (0.06 mM) while other amino acids had much higher Km values (ranging from 21 to 1800 mM). The moderate Km values for these amino acids suggest that they were not the preferred amino acids in this conversion but were utilized as acceptor substrates for the production of the corresponding γ-glutamylpeptides by the γ-GCS reaction under Cys-deficient conditions. Thus, the production of these γ-glutamylpeptides by γ-GCS is directly correlated with a low Cys content, suggesting that their measurement in blood plasma could be useful for predicting the presymptomatic disease state of the liver with a defect in GSH redox balance.
Collapse
|
67
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|
68
|
Durham RJ, Paudyal N, Carrillo E, Bhatia NK, Maclean DM, Berka V, Dolino DM, Gorfe AA, Jayaraman V. Conformational spread and dynamics in allostery of NMDA receptors. Proc Natl Acad Sci U S A 2020; 117:3839-3847. [PMID: 32015122 PMCID: PMC7035515 DOI: 10.1073/pnas.1910950117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Allostery can be manifested as a combination of repression and activation in multidomain proteins allowing for fine tuning of regulatory mechanisms. Here we have used single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics simulations to study the mechanism of allostery underlying negative cooperativity between the two agonists glutamate and glycine in the NMDA receptor. These data show that binding of one agonist leads to conformational flexibility and an increase in conformational spread at the second agonist site. Mutational and cross-linking studies show that the dimer-dimer interface at the agonist-binding domain mediates the allostery underlying the negative cooperativity. smFRET on the transmembrane segments shows that they are tightly coupled in the unliganded and single agonist-bound form and only upon binding both agonists the transmembrane domain explores looser packing which would facilitate activation.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nidhi Kaur Bhatia
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David M Maclean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Drew M Dolino
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Alemayehu A Gorfe
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
69
|
Macrophage Migration Inhibitory Factor Alters Functional Properties of CA1 Hippocampal Neurons in Mouse Brain Slices. Int J Mol Sci 2019; 21:ijms21010276. [PMID: 31906137 PMCID: PMC6981710 DOI: 10.3390/ijms21010276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in a host of neurological insults, such as traumatic brain injury (TBI), ischemic stroke, Alzheimer's disease, Parkinson's disease, and epilepsy. The immune response to central nervous system (CNS) injury involves sequelae including the release of numerous cytokines and chemokines. Macrophage migration inhibitory factor (MIF), is one such cytokine that is elevated following CNS injury, and is associated with the prognosis of TBI, and ischemic stroke. MIF has been identified in astrocytes and neurons, and some of the trophic actions of MIF have been related to its direct and indirect actions on astrocytes. However, the potential modulation of CNS neuronal function by MIF has not yet been explored. This study tests the hypothesis that MIF can directly influence hippocampal neuronal function. MIF was microinjected into the hippocampus and the genetically encoded calcium indicator, GCaMP6f, was used to measure Ca2+ events in acute adult mouse brain hippocampal slices. Results demonstrated that a single injection of 200 ng MIF into the hippocampus significantly increased baseline calcium signals in CA1 pyramidal neuron somata, and altered calcium responses to N-methyl-d-aspartate (NMDA) + D-serine in pyramidal cell apical dendrites located in the stratum radiatum. These data are the first to show direct effects of MIF on hippocampal neurons and on NMDA receptor function. Considering that MIF is elevated after brain insults such as TBI, the data suggest that, in addition to the previously described role of MIF in astrocyte reactivity, elevated MIF can have significant effects on neuronal function in the hippocampus.
Collapse
|
70
|
Goldsmith PJ. NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites. Curr Top Med Chem 2019; 19:2239-2253. [PMID: 31660834 DOI: 10.2174/1568026619666191011095341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.
Collapse
Affiliation(s)
- Paul J Goldsmith
- Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| |
Collapse
|
71
|
Ahmed H, Haider A, Varisco J, Stanković M, Wallimann R, Gruber S, Iten I, Häne S, Müller Herde A, Keller C, Schibli R, Schepmann D, Mu L, Wünsch B, Ametamey SM. Structure–Affinity Relationships of 2,3,4,5-Tetrahydro-1H-3-benzazepine and 6,7,8,9-Tetrahydro-5H-benzo[7]annulen-7-amine Analogues and the Discovery of a Radiofluorinated 2,3,4,5-Tetrahydro-1H-3-benzazepine Congener for Imaging GluN2B Subunit-Containing N-Methyl-d-aspartate Receptors. J Med Chem 2019; 62:9450-9470. [DOI: 10.1021/acs.jmedchem.9b00812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jasmine Varisco
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Maja Stanković
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Irina Iten
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Surya Häne
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Adrienne Müller Herde
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Simon M. Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
72
|
Özgün A, Marote A, Behie LA, Salgado A, Garipcan B. Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation. J Neural Transm (Vienna) 2019; 126:1281-1290. [PMID: 31317262 DOI: 10.1007/s00702-019-02045-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Magnetic fields with different frequency and intensity parameters exhibit a wide range of effects on different biological models. Extremely low frequency magnetic field (ELF MF) exposure is known to augment or even initiate neuronal differentiation in several in vitro and in vivo models. This effect holds potential for clinical translation into treatment of neurodegenerative conditions such as autism, Parkinson's disease and dementia by promoting neurogenesis, non-invasively. However, the lack of information on underlying mechanisms hinders further investigation into this phenomenon. Here, we examine involvement of glutamatergic Ca2+ channel, N-methyl-D-aspartate (NMDA) receptors in the process of human neuronal differentiation under ELF MF exposure. We show that human neural progenitor cells (hNPCs) differentiate more efficiently under ELF MF exposure in vitro, as demonstrated by the abundance of neuronal markers. Furthermore, they exhibit higher intracellular Ca2+ levels as evidenced by c-fos expression and more elongated mature neurites. We were able to neutralize these effects by blocking NMDA receptors with memantine. As a result, we hypothesize that the effects of ELF MF exposure on neuronal differentiation originate from the effects on NMDA receptors, which sequentially triggers Ca2+-dependent cascades that lead to differentiation. Our findings identify NMDA receptors as a new key player in this field that will aid further research in the pursuit of effect mechanisms of ELF MFs.
Collapse
Affiliation(s)
- Alp Özgün
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Leo A Behie
- Canada Research Chair in Biomedical Engineering (Emeritus), Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal.
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
73
|
Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int J Mol Sci 2019; 20:ijms20143439. [PMID: 31336935 PMCID: PMC6678825 DOI: 10.3390/ijms20143439] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.
Collapse
|
74
|
Leptin-induced Trafficking of K ATP Channels: A Mechanism to Regulate Pancreatic β-cell Excitability and Insulin Secretion. Int J Mol Sci 2019; 20:ijms20112660. [PMID: 31151172 PMCID: PMC6600549 DOI: 10.3390/ijms20112660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
The adipocyte hormone leptin was first recognized for its actions in the central nervous system to regulate energy homeostasis but has since been shown to have direct actions on peripheral tissues. In pancreatic β-cells leptin suppresses insulin secretion by increasing KATP channel conductance, which causes membrane hyperpolarization and renders β-cells electrically silent. However, the mechanism by which leptin increases KATP channel conductance had remained unresolved for many years following the initial observation. Recent studies have revealed that leptin increases surface abundance of KATP channels by promoting channel trafficking to the β-cell membrane. Thus, KATP channel trafficking regulation has emerged as a mechanism by which leptin increases KATP channel conductance to regulate β-cell electrical activity and insulin secretion. This review will discuss the leptin signaling pathway that underlies KATP channel trafficking regulation in β-cells.
Collapse
|
75
|
The STEP 61 interactome reveals subunit-specific AMPA receptor binding and synaptic regulation. Proc Natl Acad Sci U S A 2019; 116:8028-8037. [PMID: 30936304 DOI: 10.1073/pnas.1900878116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein phosphatase that regulates a variety of synaptic proteins, including NMDA receptors (NAMDRs). To better understand STEP's effect on other receptors, we used mass spectrometry to identify the STEP61 interactome. We identified a number of known interactors, but also ones including the GluA2 subunit of AMPA receptors (AMPARs). We show that STEP61 binds to the C termini of GluA2 and GluA3 as well as endogenous AMPARs in hippocampus. The synaptic expression of GluA2 and GluA3 is increased in STEP-KO mouse brain, and STEP knockdown in hippocampal slices increases AMPAR-mediated synaptic currents. Interestingly, STEP61 overexpression reduces the synaptic expression and synaptic currents of both AMPARs and NMDARs. Furthermore, STEP61 regulation of synaptic AMPARs is mediated by lysosomal degradation. Thus, we report a comprehensive list of STEP61 binding partners, including AMPARs, and reveal a central role for STEP61 in differentially organizing synaptic AMPARs and NMDARs.
Collapse
|
76
|
Idiart MAP, Villavicencio A, Katz B, Rennó-Costa C, Lisman J. How the Brain Represents Language and Answers Questions? Using an AI System to Understand the Underlying Neurobiological Mechanisms. Front Comput Neurosci 2019; 13:12. [PMID: 30930761 PMCID: PMC6430033 DOI: 10.3389/fncom.2019.00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
To understand the computations that underlie high-level cognitive processes we propose a framework of mechanisms that could in principle implement START, an AI program that answers questions using natural language. START organizes a sentence into a series of triplets, each containing three elements (subject, verb, object). We propose that the brain similarly defines triplets and then chunks the three elements into a spatial pattern. A complete sentence can be represented using up to 7 triplets in a working memory buffer organized by theta and gamma oscillations. This buffer can transfer information into long-term memory networks where a second chunking operation converts the serial triplets into a single spatial pattern in a network, with each triplet (with corresponding elements) represented in specialized subregions. The triplets that define a sentence become synaptically linked, thereby encoding the sentence in synaptic weights. When a question is posed, there is a search for the closest stored memory (having the greatest number of shared triplets). We have devised a search process that does not require that the question and the stored memory have the same number of triplets or have triplets in the same order. Once the most similar memory is recalled and undergoes 2-level dechunking, the sought for information can be obtained by element-by-element comparison of the key triplet in the question to the corresponding triplet in the retrieved memory. This search may require a reordering to align corresponding triplets, the use of pointers that link different triplets, or the use of semantic memory. Our framework uses 12 network processes; existing models can implement many of these, but in other cases we can only suggest neural implementations. Overall, our scheme provides the first view of how language-based question answering could be implemented by the brain.
Collapse
Affiliation(s)
- Marco A. P. Idiart
- Department of Physics, Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil,*Correspondence: Marco A. P. Idiart
| | - Aline Villavicencio
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil,School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Boris Katz
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - César Rennó-Costa
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - John Lisman
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| |
Collapse
|
77
|
Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A 2019; 116:6379-6384. [PMID: 30765523 DOI: 10.1073/pnas.1817391116] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies have shown that insulin and IGF-1 signaling in the brain, especially the hypothalamus, is important for regulation of systemic metabolism. Here, we develop mice in which we have specifically inactivated both insulin receptors (IRs) and IGF-1 receptors (IGF1Rs) in the hippocampus (Hippo-DKO) or central amygdala (CeA-DKO) by stereotaxic delivery of AAV-Cre into IRlox/lox/IGF1Rlox/lox mice. Consequently, both Hippo-DKO and CeA-DKO mice have decreased levels of the GluA1 subunit of glutamate AMPA receptor and display increased anxiety-like behavior, impaired cognition, and metabolic abnormalities, including glucose intolerance. Hippo-DKO mice also display abnormal spatial learning and memory whereas CeA-DKO mice have impaired cold-induced thermogenesis. Thus, insulin/IGF-1 signaling has common roles in the hippocampus and central amygdala, affecting synaptic function, systemic glucose homeostasis, behavior, and cognition. In addition, in the hippocampus, insulin/IGF-1 signaling is important for spatial learning and memory whereas insulin/IGF-1 signaling in the central amygdala controls thermogenesis via regulation of neural circuits innervating interscapular brown adipose tissue.
Collapse
|
78
|
Tsoka P, Barbisan PR, Kataoka K, Chen XN, Tian B, Bouzika P, Miller JW, Paschalis EI, Vavvas DG. NLRP3 inflammasome in NMDA-induced retinal excitotoxicity. Exp Eye Res 2019; 181:136-144. [PMID: 30707890 DOI: 10.1016/j.exer.2019.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
N-methyl-D-aspartate (NMDA)-induced excitotoxicity is an acute form of experimental retinal injury as a result of overactivation of glutamate receptors. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain containing-3) inflammasome, one of the most studied sensors of innate immunity, has been reported to play a critical role in retinal neurodegeneration with controversial implications regarding neuroprotection and cell death. Thus far, it has not been elucidated whether NMDA-mediated excitotoxicity can trigger NLRP3 inflammasome in vivo. Moreover, it is unknown if NLRP3 is beneficial or detrimental to NMDA-mediated retinal cell death. Here, we employed a murine model of NMDA-induced retinal excitotoxicity by administering 100 nmoles of NMDA intravitreally, which resulted in massive TUNEL+ (TdT-dUTP terminal nick-end labelling) cell death in all retinal layers and especially in retinal ganglion cells (RGCs) 24 h post injection. NMDA insult in the retina potentiates macrophage/microglia cell infiltration, primes the NLRP3 inflammasome in a transcription-dependent manner and induces the expression of interleukin-1β (IL-1β). However, despite NLRP3 inflammasome upregulation, systemic deletion of Nlrp3 or Casp1 (caspase-1) did not significantly alter the NMDA-induced, excitotoxicity-mediated TUNEL+ retinal cell death at 24 h (acute phase). Similarly, the deletion of the two aforementioned genes did not alter the survival of the Brn3a+ (brain-specific homeobox/POU domain protein 3A) RGCs in a significant way at 3- or 7-days post injection (long-term phase). Our results indicate that NMDA-mediated retinal excitotoxicity induces immune cell recruitment and NLRP3 inflammasome activity even though inflammasome-mediated neuroinflammation is not a leading contributing factor to cell death in this type of retinal injury.
Collapse
Affiliation(s)
- Pavlina Tsoka
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Paulo R Barbisan
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Keiko Kataoka
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Xiaohong Nancy Chen
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Bo Tian
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Peggy Bouzika
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Joan W Miller
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Eleftherios I Paschalis
- Boston Keratoprosthesis Laboratory, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
79
|
Dissecting diverse functions of NMDA receptors by structural biology. Curr Opin Struct Biol 2019; 54:34-42. [PMID: 30703613 DOI: 10.1016/j.sbi.2018.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels, which are critically involved in brain development, learning and memory, cognition, as well as a number of neurological diseases and disorders. Structural biology of NMDARs has been challenging due to technical difficulties associated with assembling a number of different membrane protein subunits. Here, we review historical X-ray crystallographic studies on isolated extracellular domains, which are still the most effective mean to delineate compound binding modes, as well as the most recent studies using electron cryo-microscopy (cryo-EM). A number of NMDAR structures accumulated over the past 15 years provide insights into the hetero-tetrameric assembly pattern, pharmacological specificities elicited by subtypes and alternative splicing, and potential patterns of conformational dynamics; however, many more important unanswered questions remain.
Collapse
|
80
|
Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors. Cell Rep 2018; 25:3582-3590.e4. [DOI: 10.1016/j.celrep.2018.11.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
|
81
|
Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chem Neurosci 2018; 9:2722-2730. [PMID: 29767953 DOI: 10.1021/acschemneuro.8b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This work reports the synthesis and pharmacological and electrophysiological evaluation of new N-methyl-d-aspartic acid receptor (NMDAR) channel blocking antagonists featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage dependence of inhibition. Two of the new antagonists display properties comparable to those of memantine, a clinically approved NMDAR antagonist.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Matthew B. Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Lara León-García
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Francesc X. Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - David Soto
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
82
|
Kapur J. Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open 2018; 3:165-168. [PMID: 30564775 PMCID: PMC6293062 DOI: 10.1002/epi4.12270] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
This review considers the role of N-methyl-d-aspartate receptors in the pathophysiology and treatment of status epilepticus (SE). NMDA receptors play a critical role in sustaining SE by mediating the plasticity of γ-aminobutyric acid (GABA)-A and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, neuronal loss, and epileptogenesis. In parallel, there is growing interest in using the NMDA receptor antagonist ketamine in the treatment of refractory SE. Ketamine has proved to be safe for use in refractory and super-refractory SE in patients. The pilot studies also suggest that ketamine may be efficacious for termination of refractory SE.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology Department of Neuroscience, Brain Institute University of Virginia Charlottesville Virginia U.S.A
| |
Collapse
|
83
|
MacLean DM, Durham RJ, Jayaraman V. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. Trends Neurosci 2018; 42:128-139. [PMID: 30385052 DOI: 10.1016/j.tins.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The ionotropic glutamate receptors mediate excitatory neurotransmission in the mammalian central nervous system. These receptors provide a range of temporally diverse signals which stem from subunit composition and also from the inherent ability of each member to occupy multiple functional states, the distribution of which can be altered by small molecule modulators and binding partners. Hence it becomes essential to characterize the conformational landscape of the receptors under this variety of different conditions. This has recently become possible due to single molecule fluorescence resonance energy transfer measurements, along with the rich foundation of existing structures allowing for direct correlations between conformational and functional diversity.
Collapse
Affiliation(s)
- David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
84
|
Subedi GP, Sinitskiy AV, Roberts JT, Patel KR, Pande VS, Barb AW. Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Structure 2018; 27:55-65.e3. [PMID: 30482728 DOI: 10.1016/j.str.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
The structural and functional roles of highly conserved asparagine-linked (N)-glycans on the extracellular ligand-binding domain (LBD) of the N-methyl-D-aspartate receptors are poorly understood. We applied solution- and computation-based methods that identified N-glycan-mediated intradomain and interglycan interactions. Nuclear magnetic resonance (NMR) spectra of the GluN1 LBD showed clear signals corresponding to each of the three N-glycans and indicated the reducing end of glycans at N440 and N771 potentially contacted nearby amino acids. Molecular dynamics simulations identified contacts between nearby amino acids and the N440- and N771-glycans that were consistent with the NMR spectra. The distal portions of the N771-glycan also contacted the core residues of the nearby N471-glycan. This result was consistent with mass spectrometry data indicating the limited N471-glycan core fucosylation and reduced branch processing of the N771-glycan could be explained by interglycan contacts. We discuss a potential role for the GluN1 LBD N-glycans in interdomain contacts formed in NMDA receptors.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Anton V Sinitskiy
- Department of Bioengineering, Stanford University, 318 Campus Drive, Room S295, Stanford, CA 94305, USA
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, 318 Campus Drive, Room S295, Stanford, CA 94305, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA.
| |
Collapse
|
85
|
Morris PG, Mishina M, Jones S. Altered Synaptic and Extrasynaptic NMDA Receptor Properties in Substantia Nigra Dopaminergic Neurons From Mice Lacking the GluN2D Subunit. Front Cell Neurosci 2018; 12:354. [PMID: 30364232 PMCID: PMC6193106 DOI: 10.3389/fncel.2018.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ubiquitously expressed in the mammalian brain and are essential for neuronal development, survival and plasticity. GluN2 subunit composition has a profound effect on the properties of NMDARs. In substantia nigra dopaminergic (SNc-DA) neurons, pharmacological experiments suggest that the relatively rare GluN2D subunits form functional synaptic and extrasynaptic NMDARs. Given the importance of establishing this point, mice lacking the GluN2D subunit (Grin2D-null) were used in this study to further explore the contribution of the GluN2D subunit to NMDAR responses. Significantly less DQP-1105-sensitive NMDAR-EPSC and significantly more ifenprodil-sensitive NMDAR-EPSC was observed in SNc-DA neurons from Grin2D-null mice, indicating that in these animals a small population of synaptic GluN2D subunits is replaced with GluN2B. Significantly larger currents were seen in response to higher concentrations (1–10 mM) of NMDA in SNc-DA neurons from Grin2D-null mice, as well as significantly more desensitization: these data are consistent with the presence of GluN2D-containing whole-cell NMDARs in SNc-DA neurons, with low conductance and little desensitization. Brief applications of NMDA evoked responses that were significantly less sensitive to DQP-1105 in slices from Grin2D-null mice. Tonic NMDAR activity in response to ambient extracellular glutamate, determined by the sensitivity of tonic current to D-AP5 (50 μM), was significantly less in SNc-DA neurons from Grin2D-null mice. In the presence of the glutamate transporter blocker TBOA (30 μM), the D-AP5-sensitive current was also significantly less in Grin2D-null mice. Taken together, these data support the evidence for GluN2D subunit expression in functional NMDARs at both synaptic and extrasynaptic locations in SNc-DA neurons.
Collapse
Affiliation(s)
- Paul G Morris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
86
|
Kurauchi Y, Noma K, Hisatsune A, Seki T, Katsuki H. Na +, K +-ATPase inhibition induces neuronal cell death in rat hippocampal slice cultures: Association with GLAST and glial cell abnormalities. J Pharmacol Sci 2018; 138:167-175. [PMID: 30322800 DOI: 10.1016/j.jphs.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Na+, K+-ATPase is a highly expressed membrane protein. Dysfunction of Na+, K+-ATPase has been implicated in the pathophysiology of several neurodegenerative and psychiatric disorders, however, the underlying mechanism of neuronal cell death resulting from Na+, K+-ATPase dysfunction is poorly understood. Here, we investigated the mechanism of neurotoxicity due to Na+, K+-ATPase inhibition using rat organotypic hippocampal slice cultures. Treatment with ouabain, a Na+, K+-ATPase inhibitor, increased the ratio of propidium iodide-positive cells among NeuN-positive cells in the hippocampal CA1 region, which was prevented by MK-801 and d-AP5, specific blockers of the N-methyl-d-aspartate (NMDA) receptor. EGTA, a Ca2+-chelating agent, also protected neurons from ouabain-induced injury. We observed that astrocytes expressed the glutamate aspartate transporter (GLAST), and ouabain changed the immunoreactive area of GFAP-positive astrocytes as well as GLAST. We also observed that ouabain increased the number of Iba1-positive microglial cells in a time-dependent manner. Furthermore, lithium carbonate, a mood-stabilizing drug, protected hippocampal neurons and reduced disturbances of astrocytes and microglia after ouabain treatment. Notably, lithium carbonate improved ouabain-induced decreases in GLAST intensity in astrocytes. These results suggest that glial cell abnormalities resulting in excessive extracellular concentrations of glutamate contribute to neurotoxicity due to Na+, K+-ATPase dysfunction in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazuki Noma
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
87
|
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK.
| |
Collapse
|
88
|
Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF. A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 2018; 596:4057-4089. [PMID: 29917241 PMCID: PMC6117563 DOI: 10.1113/jp276093] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Key points The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Abstract NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine‐binding GluN1 and two glutamate‐binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di‐ and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist‐bound subunit undergoes some rate‐limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre‐M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit‐specific conformational changes may influence these pre‐gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non‐identical subunits. The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Collapse
Affiliation(s)
- Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin K Ogden
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Miranda J McDaniel
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katie M Vance
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Steven A Kell
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Chris Butch
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Pieter Burger
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The goal of this focused review is to describe recent studies supporting a critical role of microRNAs in the regulation of ion channels and discuss the resulting implications for the modulation of neuronal excitability in epilepsy. RECENT FINDINGS MicroRNA-induced silencing of ion channels has been shown in several different studies in recent years, and some of these reports suggest a prominent role in epilepsy. The ion channels regulated by microRNAs include ligand- and voltage-gated channels and are not only limited to the central nervous system but have also been found in the peripheral nervous system. Ion channel-targeting microRNAs can regulate the intrinsic excitability of neurons, and thus influence entire networks in the brain. Their dysregulation in epilepsy may contribute to the disease phenotype. More research is needed to better understand the molecular mechanisms of how microRNAs regulate ion channels to control neuronal excitability, and how these processes are altered in epilepsy.
Collapse
|
90
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
91
|
Glasgow NG, Wilcox MR, Johnson JW. Effects of Mg 2+ on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site. Neuropharmacology 2018; 137:344-358. [PMID: 29793153 PMCID: PMC6050087 DOI: 10.1016/j.neuropharm.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023]
Abstract
Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg2+ also binds. Under physiological conditions, Mg2+ increases the IC50s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg2+.
Collapse
Affiliation(s)
- Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Madeleine R Wilcox
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
92
|
Sinitskiy AV, Pande VS. Computer Simulations Predict High Structural Heterogeneity of Functional State of NMDA Receptors. Biophys J 2018; 115:841-852. [PMID: 30029773 DOI: 10.1016/j.bpj.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs)-i.e., transmembrane proteins expressed in neurons-play a central role in the molecular mechanisms of learning and memory formation. It is unclear how the known atomic structures of NMDARs determined by x-ray crystallography and electron cryomicroscopy (18 published Protein Data Bank entries) relate to the functional states of NMDARs inferred from electrophysiological recordings (multiple closed, open, preopen, etc. states). We address this problem by using molecular dynamics simulations at atomic resolution, a method successfully applied in the past to much smaller biomolecules. Our simulations predict that several conformations of NMDARs with experimentally determined geometries, including four "nonactive" electron cryomicroscopy structures, rapidly interconvert on submicrosecond timescales and therefore may correspond to the same functional state of the receptor (specifically, one of the closed states). This conclusion is not trivial because these conformational transitions involve changes in certain interatomic distances as large as tens of Å. The simulations also predict differences in the conformational dynamics of the apo and holo (i.e., agonist and coagonist bound) forms of the receptor on the microsecond timescale. To our knowledge, five new conformations of NMDARs, with geometries joining various features from different known experimental structures, are also predicted by the model. The main limitation of this work stems from its limited sampling (30 μs of aggregate length of molecular dynamics trajectories). Though this level significantly exceeds the sampling in previous simulations of parts of NMDARs, it is still much lower than the sampling recently achieved for smaller biomolecules (up to a few milliseconds), thus precluding, in particular, the observation of transitions between different functional states of NMDARs. Despite this limitation, such computational predictions may guide further experimental studies on the structure, dynamics, and function of NMDARs, for example by suggesting optimal locations of spectroscopic probes. Overall, atomic resolution simulations provide, to our knowledge, a novel perspective on the structure and dynamics of NMDARs, complementing information obtained by experimental methods.
Collapse
Affiliation(s)
- Anton V Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California.
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, Stanford, California.
| |
Collapse
|
93
|
O'Neil DA, Nicholas MA, Lajud N, Kline AE, Bondi CO. Preclinical Models of Traumatic Brain Injury: Emerging Role of Glutamate in the Pathophysiology of Depression. Front Pharmacol 2018; 9:579. [PMID: 29910733 PMCID: PMC5992468 DOI: 10.3389/fphar.2018.00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
More than 10 million people worldwide incur a traumatic brain injury (TBI) each year, with two million cases occurring in the United States. TBI survivors exhibit long-lasting cognitive and affective sequelae that are associated with reduced quality of life and work productivity, as well as mental and emotional disturbances. While TBI-related disabilities often manifest physically and conspicuously, TBI has been linked with a "silent epidemic" of psychological disorders, including major depressive disorder (MDD). The prevalence of MDD post-insult is approximately 50% within the 1st year. Furthermore, given they are often under-reported when mild, TBIs could be a significant overall cause of MDD in the United States. The emergence of MDD post-TBI may be rooted in widespread disturbances in the modulatory role of glutamate, such that glutamatergic signaling becomes excessive and deleterious to neuronal integrity, as reported in both clinical and preclinical studies. Following this acute glutamatergic storm, regulators of glutamatergic function undergo various manipulations, which include, but are not limited to, alterations in glutamatergic subunit composition, release, and reuptake. This review will characterize the glutamatergic functional and signaling changes that emerge and persist following experimental TBI, utilizing evidence from clinical, molecular, and rodent behavioral investigations. Special care will be taken to speculate on how these manipulations may correlate with the development of MDD following injury in the clinic, as well as pharmacotherapies to date. Indisputably, TBI is a significant healthcare issue that warrants discovery and subsequent refinement of therapeutic strategies to improve neurobehavioral recovery and mental health.
Collapse
Affiliation(s)
- Darik A O'Neil
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa A Nicholas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
94
|
Aguilera-Portillo G, Rangel-López E, Villeda-Hernández J, Chavarría A, Castellanos P, Elmazoglu Z, Karasu Ç, Túnez I, Pedraza G, Königsberg M, Santamaría A. The Pharmacological Inhibition of Fatty Acid Amide Hydrolase Prevents Excitotoxic Damage in the Rat Striatum: Possible Involvement of CB1 Receptors Regulation. Mol Neurobiol 2018; 56:844-856. [DOI: 10.1007/s12035-018-1129-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|
95
|
Káradóttir RT, Kuo CT. Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 2018; 41:139-161. [PMID: 29618286 DOI: 10.1146/annurev-neuro-072116-031054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of new neurons and oligodendroglia in the postnatal and adult mammalian brain presents distinct forms of gray and white matter plasticity. Substantial effort has been devoted to understanding the cellular and molecular mechanisms controlling postnatal neurogenesis and gliogenesis, revealing important parallels to principles governing the embryonic stages. While during central nervous system development, scripted temporal and spatial patterns of neural and glial progenitor proliferation and differentiation are necessary to create the nervous system architecture, it remains unclear what driving forces maintain and sustain postnatal neural stem cell (NSC) and oligodendrocyte progenitor cell (OPC) production of new neurons and glia. In recent years, neuronal activity has been identified as an important modulator of these processes. Using the distinct properties of neurotransmitter ionotropic and metabotropic channels to signal downstream cellular events, NSCs and OPCs share common features in their readout of neuronal activity patterns. Here we review the current evidence for neuronal activity-dependent control of NSC/OPC proliferation and differentiation in the postnatal brain, highlight some potential mechanisms used by the two progenitor populations, and discuss future studies that might advance these research areas further.
Collapse
Affiliation(s)
- Ragnhildur T Káradóttir
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom; .,Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Chay T Kuo
- Departments of Cell Biology and Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA.,Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
96
|
Lu J, Lu L, Yu Y, Cluette-Brown J, Martin CR, Claud EC. Effects of Intestinal Microbiota on Brain Development in Humanized Gnotobiotic Mice. Sci Rep 2018; 8:5443. [PMID: 29615691 PMCID: PMC5882882 DOI: 10.1038/s41598-018-23692-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
Poor growth in the Neonatal Intensive Care Unit is associated with an increased risk for poor neurodevelopmental outcomes for preterm infants, however the mechanism is unclear. The microbiome has increasingly been recognized as a modifiable environmental factor to influence host development. Here we explore the hypothesis that the microbiome influences both growth phenotype and brain development. A germ free mouse transfaunation model was used to examine the effects of preterm infant microbiotas known to induce either high growth or low growth phenotypes on postnatal brain development. The microbiome which induced the low growth phenotype was associated with decreases in the neuronal markers NeuN and neurofilament-L as well as the myelination marker MBP when compared to the microbiome associated with the high growth phenotype. Additionally, poor growth phenotype-associated microbiota was associated with increased neuroinflammation marked by increased Nos1, as well as alteration in IGF-1 pathway including decreased circulating and brain IGF-1, decreased circulating IGFBP3, and increased Igfbp3 brain mRNA expression. This study suggests that growth-associated microbiota can influence early neuron and oligodendrocyte development and that this effect may be mediated by effects on neuroinflammation and circulating IGF-1.
Collapse
Affiliation(s)
- Jing Lu
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA
| | - Lei Lu
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA
| | - Yueyue Yu
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA
| | - Joanne Cluette-Brown
- Beth Israel Deaconess Medical Center, Division of Gastroenterology, Boston, MA, 02215, USA
| | - Camilia R Martin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Neonatology and Division of Translational Research, Boston, MA, 02215, USA
| | - Erika C Claud
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA.
| |
Collapse
|
97
|
Li J, Yan D, Liu X, Wang Y, Zhao X, Zhang Y, Zhang C. U0126 protects hippocampal CA1 neurons against forebrain ischemia-induced apoptosis via the ERK1/2 signaling pathway and NMDA receptors. Neurol Res 2018; 40:318-323. [DOI: 10.1080/01616412.2018.1441693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianguo Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Deping Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ye Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xin Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ce Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
98
|
Iacobucci GJ, Popescu GK. Kinetic models for activation and modulation of NMDA receptor subtypes. CURRENT OPINION IN PHYSIOLOGY 2018; 2:114-122. [PMID: 29978141 DOI: 10.1016/j.cophys.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NMDA receptors are a diverse family of excitatory channels with critical roles in central synaptic transmission, development, and plasticity. Controlled expression of seven subunits and their combinatorial assembly into tetrameric receptors produces a range of molecularly distinct receptor subtypes. Despite relatively similar atomic structures, each subtype has input-output functions with unique biophysical and pharmacologic profiles. Here, we briefly summarize recent advances in understanding how gating and allosteric modulation are similar or distinct across NMDA receptor isoforms and identify open questions that will focus research in this area going forward.
Collapse
|
99
|
Schoenberger M, Schroeder FA, Placzek MS, Carter RL, Rosen BR, Hooker JM, Sander CY. In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates. ACS Chem Neurosci 2018; 9:298-305. [PMID: 29050469 PMCID: PMC5894869 DOI: 10.1021/acschemneuro.7b00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the major excitatory ion channels in the brain, NMDA receptors have been a leading research target for neuroscientists, physicians, medicinal chemists, and pharmaceutical companies for decades. Molecular imaging of NMDA receptors by means of positron emission tomography (PET) with [18F]GE-179 quickly progressed to clinical PET studies, but a thorough understanding of its binding specificity has been missing and has thus limited signal interpretation. Here a preclinical study with [18F]GE-179 in rodents and nonhuman primates (NHPs) is presented in an attempt to characterize [18F]GE-179 signal specificity. Rodent PET/CT was used to study drug occupancy and functional manipulation in rats by pretreating animals with NMDA targeted blocking/modulating drug doses followed by a single bolus of [18F]GE-179. Binding competition with GE-179, MK801, PCP, and ketamine, allosteric inhibition by ifenprodil, and brain activation with methamphetamine did not alter the [18F]GE-179 brain signal in rats. In addition, multimodal imaging with PET/MRI in NHPs was used to evaluate changes in radiotracer binding as a function of pharmacological challenges. Drug-induced hemodynamic changes were monitored simultaneously using functional MRI (fMRI). Comparisons of baseline and signal after drug challenge in NHPs demonstrated that the [18F]GE-179 signal cannot be manipulated in a predictable fashion in vivo. fMRI data acquired simultaneously with PET data supported this finding and provided evidence that radiotracer delivery is not altered by blood flow changes. In conclusion, the [18F]GE-179 brain signal is not readily interpretable in the context of NMDA receptor binding on the basis of the results shown in this study.
Collapse
Affiliation(s)
- Matthias Schoenberger
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Chemical Biology and Imaging, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Department of Psychiatry, McLean Imaging Center, McLean Hospital , Belmont, Massachusetts 02478, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
100
|
Wang Y, Bugge K, Kragelund BB, Lindorff-Larsen K. Role of protein dynamics in transmembrane receptor signalling. Curr Opin Struct Biol 2018; 48:74-82. [DOI: 10.1016/j.sbi.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|