51
|
Townley RA, Graff-Radford J, Mantyh WG, Botha H, Polsinelli AJ, Przybelski SA, Machulda MM, Makhlouf AT, Senjem ML, Murray ME, Reichard RR, Savica R, Boeve BF, Drubach DA, Josephs KA, Knopman DS, Lowe VJ, Jack CR, Petersen RC, Jones DT. Progressive dysexecutive syndrome due to Alzheimer's disease: a description of 55 cases and comparison to other phenotypes. Brain Commun 2020; 2:fcaa068. [PMID: 32671341 PMCID: PMC7325839 DOI: 10.1093/braincomms/fcaa068] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
We report a group of patients presenting with a progressive dementia syndrome characterized by predominant dysfunction in core executive functions, relatively young age of onset and positive biomarkers for Alzheimer's pathophysiology. Atypical frontal, dysexecutive/behavioural variants and early-onset variants of Alzheimer's disease have been previously reported, but no diagnostic criteria exist for a progressive dysexecutive syndrome. In this retrospective review, we report on 55 participants diagnosed with a clinically defined progressive dysexecutive syndrome with 18F-fluorodeoxyglucose-positron emission tomography and Alzheimer's disease biomarkers available. Sixty-two per cent of participants were female with a mean of 15.2 years of education. The mean age of reported symptom onset was 53.8 years while the mean age at diagnosis was 57.2 years. Participants and informants commonly referred to initial cognitive symptoms as 'memory problems' but upon further inquiry described problems with core executive functions of working memory, cognitive flexibility and cognitive inhibitory control. Multi-domain cognitive impairment was evident in neuropsychological testing with executive dysfunction most consistently affected. The frontal and parietal regions which overlap with working memory networks consistently demonstrated hypometabolism on positron emission tomography. Genetic testing for autosomal dominant genes was negative in all eight participants tested and at least one APOE ε4 allele was present in 14/26 participants tested. EEG was abnormal in 14/17 cases with 13 described as diffuse slowing. Furthermore, CSF or neuroimaging biomarkers were consistent with Alzheimer's disease pathophysiology, although CSF p-tau was normal in 24% of cases. Fifteen of the executive predominate participants enrolled in research neuroimaging protocols and were compared to amnestic (n = 110), visual (n = 18) and language (n = 7) predominate clinical phenotypes of Alzheimer's disease. This revealed a consistent pattern of hypometabolism in parieto-frontal brain regions supporting executive functions with relative sparing of the medial temporal lobe (versus amnestic phenotype), occipital (versus visual phenotype) and left temporal (versus language phenotype). We propose that this progressive dysexecutive syndrome should be recognized as a distinct clinical phenotype disambiguated from behavioural presentations and not linked specifically to the frontal lobe or a particular anatomic substrate without further study. This clinical presentation can be due to Alzheimer's disease but is likely not specific for any single aetiology. Diagnostic criteria are proposed to facilitate additional research into this understudied clinical presentation.
Collapse
Affiliation(s)
- Ryan A Townley
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | | | - Hugo Botha
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | - Scott A Przybelski
- Department of Biomedical Statistics, Mayo Clinic, Rochester, MN 55902, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55902, USA
| | - Ahmed T Makhlouf
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55902, USA
| | - Matthew L Senjem
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Melissa E Murray
- Department of Molecular Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Rodolfo Savica
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - Bradley F Boeve
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | - Keith A Josephs
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - David S Knopman
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - Val J Lowe
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Clifford R Jack
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | | | - David T Jones
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
52
|
Requena-Komuro MC, Marshall CR, Bond RL, Russell LL, Greaves C, Moore KM, Agustus JL, Benhamou E, Sivasathiaseelan H, Hardy CJD, Rohrer JD, Warren JD. Altered Time Awareness in Dementia. Front Neurol 2020; 11:291. [PMID: 32373055 PMCID: PMC7186333 DOI: 10.3389/fneur.2020.00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 01/28/2023] Open
Abstract
Our awareness of time, specifically of longer intervals spanning hours, days, months, and years, is critical for ensuring our sense of self-continuity. Disrupted time awareness over such intervals is a clinical feature in a number of frontotemporal dementia syndromes and Alzheimer's disease, but has not been studied and compared systematically in these diseases. We used a semi-structured caregiver survey to capture time-related behavioral alterations in 71 patients representing all major sporadic and genetic syndromes of frontotemporal dementia, in comparison to 28 patients with typical Alzheimer's disease and nine with logopenic aphasia, and 32 healthy older individuals. Survey items pertained to apparent difficulties ordering past personal events or estimating time intervals between events, temporal rigidity and clockwatching, and propensity to relive past events. We used a logistic regression model including diagnosis, age, gender, and disease severity as regressors to compare the proportions of individuals exhibiting each temporal awareness symptom between diagnostic groups. Gray matter associations of altered time awareness were assessed using voxel-based morphometry. All patient groups were significantly more prone to exhibit temporal awareness symptoms than healthy older individuals. Clinical syndromic signatures were identified. While patients with typical and logopenic Alzheimer's disease most frequently exhibited disturbed event ordering or interval estimation, patients with semantic dementia were most prone to temporal rigidity and clockwatching and those with behavioral variant frontotemporal dementia commonly exhibited all these temporal symptoms as well as a propensity to relive past events. On voxel-based morphometry, the tendency to relive past events was associated with relative preservation of a distributed left-sided temporo-parietal gray matter network including hippocampus. These findings reveal a rich and complex picture of disturbed temporal awareness in major dementia syndromes, with stratification of frontotemporal dementia syndromes from Alzheimer's disease. This is the first study to assess symptoms of altered temporal awareness across frontotemporal dementia syndromes and provides a motivation for future work directed to the development of validated clinical questionnaires, analysis of underlying neurobiological mechanisms and design of interventions.
Collapse
Affiliation(s)
- Maï-Carmen Requena-Komuro
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer L Agustus
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
53
|
Phillips JS, Da Re F, Irwin DJ, McMillan CT, Vaishnavi SN, Xie SX, Lee EB, Cook PA, Gee JC, Shaw LM, Trojanowski JQ, Wolk DA, Grossman M. Longitudinal progression of grey matter atrophy in non-amnestic Alzheimer's disease. Brain 2020; 142:1701-1722. [PMID: 31135048 PMCID: PMC6585881 DOI: 10.1093/brain/awz091] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Recent models of Alzheimer's disease progression propose that disease may be transmitted between brain areas either via local diffusion or long-distance transport via white matter fibre pathways. However, it is unclear whether such models are applicable in non-amnestic Alzheimer's disease, which is associated with domain-specific cognitive deficits and relatively spared episodic memory. To date, the anatomical progression of disease in non-amnestic patients remains understudied. We used longitudinal imaging to differentiate earlier atrophy and later disease spread in three non-amnestic variants, including logopenic-variant primary progressive aphasia (n = 25), posterior cortical atrophy (n = 20), and frontal-variant Alzheimer's disease (n = 12), as well as 17 amnestic Alzheimer's disease patients. Patients were compared to 37 matched controls. All patients had autopsy (n = 7) or CSF (n = 67) evidence of Alzheimer's disease pathology. We first assessed atrophy in suspected sites of disease origin, adjusting for age, sex, and severity of cognitive impairment; we then performed exploratory whole-brain analysis to investigate longitudinal disease spread both within and outside these regions. Additionally, we asked whether each phenotype exhibited more rapid change in its associated disease foci than other phenotypes. Finally, we investigated whether atrophy was related to structural brain connectivity. Each non-amnestic phenotype displayed unique patterns of initial atrophy and subsequent neocortical change that correlated with cognitive decline. Longitudinal atrophy included areas both proximal to and distant from sites of initial atrophy, suggesting heterogeneous mechanisms of disease spread. Moreover, regional rates of neocortical change differed by phenotype. Logopenic-variant patients exhibited greater initial atrophy and more rapid longitudinal change in left lateral temporal areas than other groups. Frontal-variant patients had pronounced atrophy in left insula and middle frontal gyrus, combined with more rapid atrophy of left insula than other non-amnestic patients. In the medial temporal lobes, non-amnestic patients had less atrophy at their initial scan than amnestic patients, but longitudinal rate of change did not differ between patient groups. Medial temporal sparing in non-amnestic Alzheimer's disease may thus be due in part to later onset of medial temporal degeneration than in amnestic patients rather than different rates of atrophy over time. Finally, the magnitude of longitudinal atrophy was predicted by structural connectivity, measured in terms of node degree; this result provides indirect support for the role of long-distance fibre pathways in the spread of neurodegenerative disease. 10.1093/brain/awz091_video1 awz091media1 6041544065001.
Collapse
Affiliation(s)
- Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fulvio Da Re
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA.,PhD Program in Neuroscience, University of Milano-Bicocca, Milan, Italy.,School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev N Vaishnavi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip A Cook
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James C Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
54
|
Word retrieval across the biomarker-confirmed Alzheimer's disease syndromic spectrum. Neuropsychologia 2020; 140:107391. [PMID: 32057937 DOI: 10.1016/j.neuropsychologia.2020.107391] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is now conceptualized as a biological entity defined by amyloid and tau deposition and neurodegeneration, with heterogeneous clinical presentations. With the aid of in vivo biomarkers, clinicians are better poised to examine clinical syndromic variability arising from a common pathology. Word retrieval deficits, measured using verbal fluency and confrontation naming tests, are hallmark features of the early clinical stages of the amnestic presentations of AD, specifically in category fluency and naming with relatively spared letter fluency. As yet, there is no consensus regarding performance on these tests in atypical clinical phenotypes of AD, including posterior cortical atrophy (PCA) and logopenic primary progressive aphasia (lvPPA), in individuals who are amyloid-positive (Aβ+) but present with different clinical profiles and patterns of neurodegeneration compared to amnestic AD. The goal of the current study is to determine how Aβ+ individuals across the syndromic spectrum of AD perform on three different word retrieval tasks. A secondary goal is to determine the neuroanatomical substrates underlying word retrieval performance in these Aβ+ individuals. Thirty-two Aβ+ participants with the amnestic presentation, 16 with Aβ+ PCA, 22 with Aβ+ lvPPA, and 99 amyloid-negative (Aβ-) control participants were evaluated with verbal fluency and visual confrontation naming tests as well as high-resolution MRI. The Aβ+ patient groups were rated at very mild or mild levels of severity (CDR 0.5 or 1) and had comparable levels of global cognitive impairment (average MMSE = 23.7 ± 3.9). Behaviorally, we found that the word retrieval profile of PCA patients is comparable to that of amnestic patients, characterized by intact letter fluency but impaired category fluency and visual confrontation naming, while lvPPA patients demonstrated impairment across all tests of word retrieval. Across all AD variants, we observed that letter fluency was associated with cortical thickness in prefrontal, central precuneus, lateral parietal and temporal cortex, while category fluency and naming were associated with cortical thickness in left middle frontal gyrus, posterior middle temporal gyrus, and lateral parietal cortex. Visual confrontation naming was uniquely associated with atrophy in inferior temporal and visual association cortex. We conclude that a better understanding of the word retrieval profiles and underlying neurodegeneration across the AD syndromic spectrum will help improve interpretation of neuropsychological profiles with regard to the localization of neurodegeneration, particularly in the atypical AD variants.
Collapse
|
55
|
Phillips ML, Stage EC, Lane KA, Gao S, Risacher SL, Goukasian N, Saykin AJ, Carrillo MC, Dickerson BC, Rabinovici GD, Apostolova LG. Neurodegenerative Patterns of Cognitive Clusters of Early-Onset Alzheimer's Disease Subjects: Evidence for Disease Heterogeneity. Dement Geriatr Cogn Disord 2020; 48:131-142. [PMID: 31901905 PMCID: PMC7031037 DOI: 10.1159/000504341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Alzheimer's disease (AD) with onset before 65 (early-onset AD [EOAD]) occurs in approximately 6% of cases and can affect nonmemory domains. Here, we analyze patterns of impairment in amnestic EOAD individuals using data-driven statistical analyses. METHODS Cognitive data of 146 EOAD subjects were Z-normalized to 395 cognitively normal (CN) individuals. Domain-averaged Z-scores were adjusted for age, sex, and education followed by Wald cluster analysis of residuals. Magnetic resonance imaging and positron emission tomography comparisons of EOAD clusters to age-matched CN were done using Statistic Parametric Mapping 8. Cluster-level-family-wise error (p < 0.05) correction was applied. Mixed-effect models were used to compute longitudinal change across clusters. RESULTS Scree plot using the pseudo-T-squared suggested a 4-cluster solution. Cluster 1 (memory-predominant impairment) showed atrophy/hypometabolism in medial/lateral temporal, lateral parietal, and posterior cingulate regions. Cluster 2 (memory/visuospatial-predominant) showed atrophy/hypometabolism of medial temporal, temporoparietal, and frontal cortices. Cluster 3 (memory, language, and executive function) and Cluster 4 (globally impaired) manifested atrophy and hypometabolism throughout the brain. Longitudinally between-cluster differences in the visuospatial and language/executive domains were significant, suggesting phenotypic variation. CONCLUSION We observed significant heterogeneity in cognitive presentation among amnestic EOAD subjects and patterns of atrophy/hypometabolism in each cluster in agreement with the observed cognitive phenotype.
Collapse
Affiliation(s)
- Meredith L Phillips
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, USA,
| | - Eddie C Stage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kathleen A Lane
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Andrew J Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Network Science Institute, Indianapolis, Indiana, USA
| | | | | | - Gil D Rabinovici
- University of California San Francisco, San Francisco, California, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Network Science Institute, Indianapolis, Indiana, USA
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW This article presents an overview of the clinical syndrome of posterior cortical atrophy (PCA), including its pathologic underpinnings, clinical presentation, investigation findings, diagnostic criteria, and management. RECENT FINDINGS PCA is usually an atypical form of Alzheimer disease with relatively young age at onset. New diagnostic criteria allow patients to be diagnosed on a syndromic basis as having a primary visual (pure) form or more complex (plus) form of PCA and, when possible, on a disease-specific basis using biomarkers or underlying pathology. Imaging techniques have demonstrated that some pathologic processes are concordant (atrophy, hypometabolism, tau deposition) with clinical symptoms and some are discordant (widespread amyloid deposition). International efforts are under way to establish the genetic underpinnings of this typically sporadic form of Alzheimer disease. In the absence of specific disease-modifying therapies, a number of practical suggestions can be offered to patients and their families to facilitate reading and activities of daily living, promote independence, and improve quality of life SUMMARY: While rare, PCA is an important diagnostic entity for neurologists, ophthalmologists, and optometrists to recognize to allow for early accurate diagnosis and appropriate patient management. PCA provides an important opportunity to investigate the causes of selective vulnerability in Alzheimer disease.
Collapse
|
57
|
Zhang S, Li X, Zhang L, Meng X, Ma L, Zhang G, Wu H, Liang L, Cao M, Mei F. Identification of a Rare PSEN1 Mutation (Thr119Ile) in Late-Onset Alzheimer's Disease With Early Presentation of Behavioral Disturbance. Front Psychiatry 2020; 11:347. [PMID: 32477171 PMCID: PMC7240292 DOI: 10.3389/fpsyt.2020.00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia. In this study, whole genome sequencing identifies one rare and likely pathogenic mutation in the presenilin 1 (PSEN1) gene (c.356C > T, p.T119I) associated with a frontal variant of AD. Affected individuals in the kindred developed late-onset cognitive decline accompanied with early presentation of psychiatric symptoms. Positive amyloid PiB PET tracing suggested presence of pathophysiological biomarker for AD. Whole genome sequencing analysis evaluated rare coding mutations in susceptible genes for various types of dementia and supported the role of PSEN1 as a causal gene. Identification of this T119I variant in PSEN1 might broaden the spectrum of genetic basis and clinical diversity of familial AD.
Collapse
Affiliation(s)
- Shouzi Zhang
- Psychiatry Department, Beijing Geriatric Hospital, Beijing, China
| | - Xiang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li Zhang
- Psychiatry Department, Beijing Geriatric Hospital, Beijing, China
| | - Xiangyan Meng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li Ma
- Psychiatry Department, Beijing Geriatric Hospital, Beijing, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haiyan Wu
- Psychiatry Department, Beijing Geriatric Hospital, Beijing, China
| | - Ling Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Meng Cao
- Psychiatry Department, Beijing Geriatric Hospital, Beijing, China
| | - Fan Mei
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
58
|
Brain metabolic signatures across the Alzheimer's disease spectrum. Eur J Nucl Med Mol Imaging 2019; 47:256-269. [PMID: 31811345 DOI: 10.1007/s00259-019-04559-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Given the challenges posed by the clinical diagnosis of atypical Alzheimer's disease (AD) variants and the limited imaging evidence available in the prodromal phases of atypical AD, we assessed brain hypometabolism patterns at the single-subject level in the AD variants spectrum. Specifically, we tested the accuracy of [18F]FDG-PET brain hypometabolism, as a biomarker of neurodegeneration, in supporting the differential diagnosis of atypical AD variants in individuals with dementia and mild cognitive impairment (MCI). METHODS We retrospectively collected N = 67 patients with a diagnosis of typical AD and AD variants according to the IWG-2 criteria (22 typical-AD, 15 frontal variant-AD, 14 logopenic variant-AD and 16 posterior variant-AD). Further, we included N = 11 MCI subjects, who subsequently received a clinical diagnosis of atypical AD dementia at follow-up (21 ± 11 months). We assessed brain hypometabolism patterns at group- and single-subject level, using W-score maps, measuring their accuracy in supporting differential diagnosis. In addition, the regional prevalence of cerebral hypometabolism was computed to identify the most vulnerable core regions. RESULTS W-score maps pointed at distinct, specific patterns of hypometabolism in typical and atypical AD variants, confirmed by the assessment of core hypometabolism regions, showing that each variant was characterized by specific regional vulnerabilities, namely in occipital, left-sided, or frontal brain regions. ROC curves allowed discrimination among AD variants and also non-AD dementia (i.e., dementia with Lewy bodies and behavioral variant of frontotemporal dementia), with high sensitivity and specificity. Notably, we provide preliminary evidence that, even in AD prodromal phases, these specific [18F]FDG-PET patterns are already detectable and predictive of clinical progression to atypical AD variants at follow-up. CONCLUSIONS The AD variant-specific patterns of brain hypometabolism, highly consistent at single-subject level and already evident in the prodromal stages, represent relevant markers of disease neurodegeneration, with highly supportive diagnostic and prognostic role.
Collapse
|
59
|
Perani D, Iaccarino L, Jacobs AH. Application of advanced brain positron emission tomography-based molecular imaging for a biological framework in neurodegenerative proteinopathies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:327-332. [PMID: 31080871 PMCID: PMC6505113 DOI: 10.1016/j.dadm.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION A rapid transition from a clinical-based classification to a pathology-based classification of neurodegenerative conditions, largely promoted by the increasing availability of imaging biomarkers, is emerging. The Framework for Innovative Multi-tracer molecular Brain Imaging, funded by the EU Joint Program - Neurodegenerative Disease Research 2016 "Working Groups for Harmonisation and Alignment in Brain Imaging Methods for Neurodegeneration," aimed at providing a roadmap for the applications of established and new molecular imaging techniques in dementia. METHODS We consider current and future implications of adopting a pathology-based framework for the use and development of positron emission tomography techniques. RESULTS This approach will enhance efforts to understand the multifactorial etiology of Alzheimer's disease and other dementias. DISCUSSION The availability of pathology biomarkers will soon transform clinical and research practice. Crucially, a comprehensive understanding of strengths and caveats of these techniques will promote an informed use to take full advantage of these tools.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| |
Collapse
|
60
|
Owens TE, Machulda MM, Duffy JR, Strand EA, Clark HM, Boland S, Martin PR, Lowe VJ, Jack CR, Whitwell JL, Josephs KA. Patterns of Neuropsychological Dysfunction and Cortical Volume Changes in Logopenic Aphasia. J Alzheimers Dis 2019; 66:1015-1025. [PMID: 30372673 DOI: 10.3233/jad-171175] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuropsychological assessment can add essential information to the characterization of individuals presenting with the logopenic variant of primary progressive aphasia (lvPPA). OBJECTIVE This study examined the neuropsychological characteristics of lvPPA patients. We also examined differences in regional and whole brain atrophy based on neuropsychological profiles. METHODS We conducted a hierarchical cluster analysis on memory, executive functioning, and visuospatial neuropsychological test data for 56 individuals with lvPPA. We then compared resultant clusters to left middle temporal, inferior parietal, and superior parietal regions-of-interest using multivariate analysis of covariance. We also performed voxel-level analyses. RESULTS We identified three clusters characterized as lvPPA with no neurocognitive impairment (n = 5), lvPPA with mild neurocognitive deficits (n = 23), and lvPPA with marked cognitive deficits (n = 28). WAB-AQ was associated with left middle temporal volume. Superior parietal volumes were smaller for the lvPPA group with marked cognitive symptoms compared to the less severe groups. Voxel-level analyses showed greater atrophy in temporal, parietal, lateral occipital, and frontal regions, left worse than right. Age, disease duration, gender, WAB-AQ, and PiB-PET did not account for differences between groups. CONCLUSIONS LvPPA patients without cognitive deficits in other domains were relatively uncommon while 50% of our sample exhibited pronounced neurocognitive deficits outside the language domain. Pronounced cognitive deficits in lvPPA are associated with widespread atrophy, left worse than right. Our study underscores the importance of examining neuropsychological function in addition to language in patients with lvPPA.
Collapse
|
61
|
Sani TP, Bond RL, Marshall CR, Hardy CJ, Russell LL, Moore KM, Slattery CF, Paterson RW, Woollacott IO, Wendi IP, Crutch SJ, Schott JM, Rohrer JD, Eriksson SH, Dijk DJ, Warren JD. Sleep symptoms in syndromes of frontotemporal dementia and Alzheimer's disease: A proof-of-principle behavioural study. eNeurologicalSci 2019; 17:100212. [PMID: 31828228 PMCID: PMC6889070 DOI: 10.1016/j.ensci.2019.100212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022] Open
Abstract
Sleep is a key concern in dementias but their sleep phenotypes are not well defined. We addressed this issue in major FTD and AD syndromes versus healthy older controls. We surveyed sleep duration, quality and disruptive events, and daytime somnolence. Sleep symptoms were frequent in FTD and AD and distinguished these diseases. Sleep disturbance is an important clinical issue across major FTD and AD syndromes.
Sleep disruption is a key clinical issue in the dementias but the sleep phenotypes of these diseases remain poorly characterised. Here we addressed this issue in a proof-of-principle study of 67 patients representing major syndromes of frontotemporal dementia (FTD) and Alzheimer’s disease (AD), in relation to 25 healthy older individuals. We collected reports on clinically-relevant sleep characteristics - time spent overnight in bed, sleep quality, excessive daytime somnolence and disruptive sleep events. Difficulty falling or staying asleep at night and excessive daytime somnolence were significantly more frequently reported for patients with both FTD and AD than healthy controls. On average, patients with FTD and AD retired earlier and patients with AD spent significantly longer in bed overnight than did healthy controls. Excessive daytime somnolence was significantly more frequent in the FTD group than the AD group; AD syndromic subgroups showed similar sleep symptom profiles while FTD subgroups showed more variable profiles. Sleep disturbance is a significant clinical issue in major FTD and AD variant syndromes and may be even more salient in FTD than AD. These preliminary findings warrant further systematic investigation with electrophysiological and neuroanatomical correlation in major proteinopathies.
Collapse
Affiliation(s)
- Tara P. Sani
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Neurology Department, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Rebecca L. Bond
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Charles R. Marshall
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Chris J.D. Hardy
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Lucy L. Russell
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Katrina M. Moore
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine F. Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ross W. Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ione O.C. Woollacott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Indra Putra Wendi
- Department of Chemistry and Biochemistry, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sofia H. Eriksson
- Department of Clinical and Experiential Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, UK
- Dementia Research Institute, UK
| | - Jason D. Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Corresponding author at: Dementia Research Centre, UCL Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
62
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
63
|
Alzheimer's disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol 2019; 138:597-612. [PMID: 31250152 DOI: 10.1007/s00401-019-02036-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
The clinical spectrum of Alzheimer's disease (AD) extends well beyond the classic amnestic-predominant syndrome. The previous studies have suggested differential neurofibrillary tangle (NFT) burden between amnestic and logopenic primary progressive aphasia presentations of AD. In this study, we explored the regional distribution of NFT pathology and its relationship to AD presentation across five different clinical syndromes. We assessed NFT density throughout six selected neocortical and hippocampal regions using thioflavin-S fluorescent microscopy in a well-characterized clinicopathological cohort of pure AD cases enriched for atypical clinical presentations. Subjects underwent apolipoprotein E genotyping and neuropsychological testing. Main cognitive domains (executive, visuospatial, language, and memory function) were assessed using an established composite z score. Our results showed that NFT regional burden aligns with the clinical presentation and region-specific cognitive scores. Cortical, but not hippocampal, NFT burden was higher among atypical clinical variants relative to the amnestic syndrome. In analyses of specific clinical variants, logopenic primary progressive aphasia showed higher NFT density in the superior temporal gyrus (p = 0.0091), and corticobasal syndrome showed higher NFT density in the primary motor cortex (p = 0.0205) relative to the amnestic syndrome. Higher NFT burden in the angular gyrus and CA1 sector of the hippocampus were independently associated with worsening visuospatial dysfunction. In addition, unbiased hierarchical clustering based on regional NFT densities identified three groups characterized by a low overall NFT burden, high overall burden, and cortical-predominant burden, respectively, which were found to differ in sex ratio, age, disease duration, and clinical presentation. In comparison, the typical, hippocampal sparing, and limbic-predominant subtypes derived from a previously proposed algorithm did not reproduce the same degree of clinical relevance in this sample. Overall, our results suggest domain-specific functional consequences of regional NFT accumulation. Mapping these consequences presents an opportunity to increase understanding of the neuropathological framework underlying atypical clinical manifestations.
Collapse
|
64
|
Ohm DT, Fought AJ, Rademaker A, Kim G, Sridhar J, Coventry C, Gefen T, Weintraub S, Bigio E, Mesulam MM, Rogalski E, Geula C. Neuropathologic basis of in vivo cortical atrophy in the aphasic variant of Alzheimer's disease. Brain Pathol 2019; 30:332-344. [PMID: 31446630 DOI: 10.1111/bpa.12783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
Abstract
The neuropathologic basis of in vivo cortical atrophy in clinical dementia syndromes remains poorly understood. This includes primary progressive aphasia (PPA), a language-based dementia syndrome characterized by asymmetric cortical atrophy. The neurofibrillary tangles (NFTs) and amyloid-ß plaques (APs) of Alzheimer's disease (AD) can cause PPA, but a quantitative investigation of the relationships between NFTs, APs and in vivo cortical atrophy in PPA-AD is lacking. The present study measured cortical atrophy from corresponding bilateral regions in five PPA-AD participants with in vivo magnetic resonance imaging scans 7-30 months before death and acquired stereologic estimates of NFTs and dense-core APs visualized with the Thioflavin-S stain. Linear mixed models accounting for repeated measures and stratified by hemisphere and region (language vs. non-language) were used to determine the relationships between cortical atrophy and AD neuropathology and their regional selectivity. Consistent with the aphasic profile of PPA, left language regions displayed more cortical atrophy (P = 0.01) and NFT densities (P = 0.02) compared to right language homologues. Left language regions also showed more cortical atrophy (P < 0.01) and NFT densities (P = 0.02) than left non-language regions. A subset of data was analyzed to determine the predilection of AD neuropathology for neocortical regions compared to entorhinal cortex in the left hemisphere, which showed that the three most atrophied language regions had greater NFT (P = 0.04) and AP densities (P < 0.01) than the entorhinal cortex. These results provide quantitative evidence that NFT accumulation in PPA selectively targets the language network and may not follow the Braak staging of neurofibrillary degeneration characteristic of amnestic AD. Only NFT densities, not AP densities, were positively associated with cortical atrophy within left language regions (P < 0.01) and right language homologues (P < 0.01). Given previous findings from amnestic AD, the current study of PPA-AD provides converging evidence that NFTs are the principal determinants of atrophy and clinical phenotypes associated with AD.
Collapse
Affiliation(s)
- Daniel T Ohm
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Angela J Fought
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Alfred Rademaker
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Garam Kim
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Eileen Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Marek Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| |
Collapse
|
65
|
Lacour M, Quenez O, Rovelet-Lecrux A, Salomon B, Rousseau S, Richard AC, Quillard-Muraine M, Pasquier F, Rollin-Sillaire A, Martinaud O, Zarea A, de la Sayette V, Boutoleau-Bretonniere C, Etcharry-Bouyx F, Chauviré V, Sarazin M, le Ber I, Epelbaum S, Jonveaux T, Rouaud O, Ceccaldi M, Godefroy O, Formaglio M, Croisile B, Auriacombe S, Magnin E, Sauvée M, Marelli C, Gabelle A, Pariente J, Paquet C, Boland A, Deleuze JF, Campion D, Hannequin D, Nicolas G, Wallon D. Causative Mutations and Genetic Risk Factors in Sporadic Early Onset Alzheimer’s Disease Before 51 Years. J Alzheimers Dis 2019; 71:227-243. [DOI: 10.3233/jad-190193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Morgane Lacour
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne Rovelet-Lecrux
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Bruno Salomon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stephane Rousseau
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne-Claire Richard
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | - Florence Pasquier
- Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France
- Univ Lille, Inserm UMR-S 1171, Distalz, Lille, France
| | - Adeline Rollin-Sillaire
- Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France
- Univ Lille, Inserm UMR-S 1171, Distalz, Lille, France
| | | | - Aline Zarea
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | - Valérie Chauviré
- Department of Neurology, Angers University Hospital, Angers, France
| | - Marie Sarazin
- Department of Neurology, Saint Anne University Hospital, Paris, France
| | - Isabelle le Ber
- National Reference Center for Rare or Early Dementias and Center of Excellence of Neurodegenerative Disease (CoEN), Institute of Memory and Alzheimer’s Disease (IM2A), APHP, Hôpital Pitié-Salpêtrière, Paris, and Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Brain and Spine Institute (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- National Reference Center for Rare or Early Dementias and Center of Excellence of Neurodegenerative Disease (CoEN), Institute of Memory and Alzheimer’s Disease (IM2A), APHP, Hôpital Pitié-Salpêtrière, Paris, and Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Brain and Spine Institute (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Thérèse Jonveaux
- Department of Geriatrics and CMRR, Nancy University Hospital, Nancy, France
| | - Olivier Rouaud
- Department of Neurology, Dijon University Hospital, Dijon, France
| | - Mathieu Ceccaldi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Service de Neurologie et de Neuropsychologie, CHU de la Timone, APHM, Marseille, France
| | - Olivier Godefroy
- Departments of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences1, 6 (EA 4559), Jules Verne University of Picardie, Amiens, France
| | - Maite Formaglio
- Service de Neuropsychologie and CMRR, Lyon University Hospital, Lyon, France
| | - Bernard Croisile
- Service de Neuropsychologie and CMRR, Lyon University Hospital, Lyon, France
| | - Sophie Auriacombe
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Eloi Magnin
- Department of Neurology, Besançon University Hospital, Besançon, France
| | - Mathilde Sauvée
- Department of Neurology, Grenoble University Hospital, Grenoble, France
| | - Cecilia Marelli
- Department of Neurology, Montpellier, University Hospital, Montpellier, France
| | - Audrey Gabelle
- Department of Neurology, Montpellier, University Hospital, Montpellier, France
| | - Jeremie Pariente
- CMRR Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Claire Paquet
- Cognitive Neurology Center/CMRR Paris Nord Ile de France, Lariboisière Fernand-Widal Hospital Université de Paris, INSERMU1144, Paris
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Dominique Campion
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
- Department of Research, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Didier Hannequin
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Gael Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | |
Collapse
|
66
|
Galbiati A, Carli G, Hensley M, Ferini-Strambi L. REM Sleep Behavior Disorder and Alzheimer's Disease: Definitely No Relationship? J Alzheimers Dis 2019; 63:1-11. [PMID: 29578489 DOI: 10.3233/jad-171164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a REM sleep parasomnia characterized by the loss of the typical muscular atonia present during healthy REM sleep. RBD can occur in the absence of other neurological conditions or in association with a neurodegenerative disorder. It is now well established that RBD is a strong predictor of neurodegeneration, in particular synucleinopathies, such as Parkinson's disease, Lewy body dementia (LBD), or multiple system atrophy. However, some longitudinal studies report that a minority of patients develop either overlapping form of dementia or Alzheimer disease's (AD). Although AD is reported as a possible development in patients with RBD, it is in a limited number of cases and there are concerns about the accuracy of the diagnostic criteria. Neuropsychological impairments identified in cross-sectional studies of RBD patients describe a profile similar to that observed in dementia related to synucleinopathies. However, only deficits in executive function predict the development of neurodegeneration. Longitudinal studies reported the development of AD in RBD patients in about 7% of cases with variability ranging from 3% and 11%. Since the majority of longitudinal investigations do not report AD as a possible development for RBD patients the proportion may be overestimated. The study of the relationship between RBD and AD may be confounded by two factors that lead to misdiagnosis: the use of clinical criteria alone and the overlap between the clinical features and neuropathology of AD and LBD. Future studies to investigate this association must use updated diagnostic criteria incorporating ancillary investigations.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Neurology - Sleep Disorders Center, Milan, Italy.,"Vita-Salute" San Raffaele University, Faculty of Psychology, Milan, Italy
| | - Giulia Carli
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Neurology - Sleep Disorders Center, Milan, Italy
| | - Michael Hensley
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, NSW, Australia
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Neurology - Sleep Disorders Center, Milan, Italy.,"Vita-Salute" San Raffaele University, Faculty of Psychology, Milan, Italy
| |
Collapse
|
67
|
Carmona-Iragui M, Videla L, Lleó A, Fortea J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev Neurobiol 2019; 79:716-737. [PMID: 31278851 DOI: 10.1002/dneu.22709] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/04/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
68
|
den Haan J, Csinscik L, Parker T, Paterson RW, Slattery CF, Foulkes A, Bouwman FH, Verbraak FD, Scheltens P, Peto T, Lengyel I, Schott JM, Crutch SJ, Shakespeare TJ, Yong KXX. Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. Alzheimers Res Ther 2019; 11:62. [PMID: 31319885 PMCID: PMC6639972 DOI: 10.1186/s13195-019-0516-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may offer compelling potential as a biomarker for Alzheimer's disease (AD). Retinal thinning is hypothesized to be a result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in the visual pathway are of particular interest in posterior cortical atrophy (PCA), the most common atypical AD phenotype predominantly affecting the parietal-occipital cortices. We therefore evaluated retinal thickness as non-invasive biomarker of neurodegeneration in well-characterized participants with posterior cortical atrophy (PCA) and typical Alzheimer's disease (tAD). METHODS Retinal thickness measures were acquired from 48 patient participants (N = 25 PCA; N = 23 tAD) fulfilling consensus diagnostic criteria and 70 age-matched controls. Participants were recruited between 2014 and 2016. All participants underwent optical coherence tomography (OCT) imaging, including measurement of peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular thickness (mRT). Participants did not show evidence of any significant ophthalmological conditions. Subgroup analyses were performed in participants with available MRI and CSF measures, providing evidence of neurodegeneration and underlying AD pathology respectively. RESULTS There was no evidence of overall between-group differences in pRNFL thickness (mean PCA 98.7 ± 12.2; tAD 99.9 ± 8.7; controls 99.6 ± 10.0 μm, one-way analysis of variance (ANOVA) p = 0.92) or total mRT (mean PCA 266.9 ± 16.3; tAD 267.8 ± 13.6; controls 269.3 ± 13.6 μm, one-way ANOVA p = 0.75). Similarly, subgroup analysis with MRI biomarkers (PCA = 18, tAD = 17, controls = 31) showing neurodegeneration, and CSF biomarkers (PCA = 18, tAD = 14, controls = 13) supporting underlying AD pathology did not provide evidence of overall between-group differences in pRNFL or mRT measures (all p > 0.3). CONCLUSIONS Retinal thickness did not discriminate tAD and PCA from controls or from one another despite unequivocal differences on standard clinical, neuro-imaging and CSF measures. Findings from this well-characterized sample, including cases with PCA, do not support the hypothesis that retinal neurodegeneration, measured using conventional OCT, is a useful biomarker for AD or PCA.
Collapse
Affiliation(s)
- Jurre den Haan
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Mailbox 7057, 1007 MB Amsterdam, The Netherlands
| | - Lajos Csinscik
- Centre for Experimental Medicine, Queen’s University, Belfast, UK
- Institute of Ophthalmology UCL, London, UK
| | - Tom Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ross W. Paterson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Alexander Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Femke H. Bouwman
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Mailbox 7057, 1007 MB Amsterdam, The Netherlands
| | - Frank D. Verbraak
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Mailbox 7057, 1007 MB Amsterdam, The Netherlands
| | - Tunde Peto
- Centre for Experimental Medicine, Queen’s University, Belfast, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL, London, UK
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen’s University, Belfast, UK
- Institute of Ophthalmology UCL, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Keir X. X. Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
69
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
70
|
Putcha D, Brickhouse M, Touroutoglou A, Collins JA, Quimby M, Wong B, Eldaief M, Schultz A, El Fakhri G, Johnson K, Dickerson BC, McGinnis SM. Visual cognition in non-amnestic Alzheimer's disease: Relations to tau, amyloid, and cortical atrophy. Neuroimage Clin 2019; 23:101889. [PMID: 31200149 PMCID: PMC6562373 DOI: 10.1016/j.nicl.2019.101889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
Abstract
Heterogeneity within the Alzheimer's disease (AD) syndromic spectrum is typically classified in a domain-specific manner (e.g., language vs. visual cognitive function). The central aim of this study was to investigate whether impairment in visual cognitive tasks thought to be subserved by posterior cortical dysfunction in non-amnestic AD presentations is associated with tau, amyloid, or neurodegeneration in those regions using 18F-AV-1451 and 11C-PiB positron emission tomography (PET) and magnetic resonance imaging (MRI). Sixteen amyloid-positive patients who met criteria for either Posterior Cortical Atrophy (PCA; n = 10) or logopenic variant Primary Progressive Aphasia (lvPPA; n = 6) were studied. All participants underwent a structured clinical assessment, neuropsychological battery, structural MRI, amyloid PET, and tau PET. The neuropsychological battery included two visual cognitive tests: VOSP Number Location and Benton Facial Recognition. Surface-based whole-cortical general linear models were used to first explore the similarities and differences between these biomarkers in the two patient groups, and then to assess their regional associations with visual cognitive test performance. The results show that these two variants of AD have both dissociable and overlapping areas of tau and atrophy, but amyloid is distributed with a stereotyped localization in both variants. Performance on both visual cognitive tests were associated with tau and atrophy in the right lateral and medial occipital association cortex, superior parietal cortex, and posterior ventral occipitotemporal cortex. No cortical associations were observed with amyloid PET. We further demonstrate that cortical atrophy has a partially mediating effect on the association between tau pathology and visual cognitive task performance. Our findings show that non-amnestic variants of AD have partially dissociable spatial patterns of tau and atrophy that localize as expected based on symptoms, but similar patterns of amyloid. Further, we demonstrate that impairments of visual cognitive dysfunction are strongly associated with tau in visual cortical regions and mediated in part by atrophy.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron Schultz
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
71
|
Hirano S, Shinotoh H, Shimada H, Ota T, Sato K, Tanaka N, Zhang MR, Higuchi M, Fukushi K, Irie T, Kuwabara S, Suhara T. Voxel-Based Acetylcholinesterase PET Study in Early and Late Onset Alzheimer's Disease. J Alzheimers Dis 2019; 62:1539-1548. [PMID: 29562505 DOI: 10.3233/jad-170749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic progressive cognitive decline and displays underlying brain cholinergic dysfunction, providing a rationale for treatment with cholinomimetic medication. The clinical presentations and courses of AD patients may differ by age of onset. OBJECTIVE The objective of the present study was to illustrate the regional differences of brain acetylcholinesterase (AChE) activity as quantified by N-[11C]methylpiperidinyl-4-acetate ([11C]MP4A) and PET using parametric whole brain analysis and clarify those differences as a function of age. METHODS 22 early onset AD (EOAD) with age at onset under 65, the remaining 26 as late onset AD (LOAD), and 16 healthy controls (HC) were enrolled. Voxel-based AChE activity estimation of [11C]MP4A PET images was conducted by arterial input and unconstrained nonlinear least-squares method with subsequent parametrical analyses. Statistical threshold was set as Family Wise Error corrected, p-value <0.05 on cluster-level and cluster extent over 30 voxels. RESULTS Voxel-based group comparison showed that, compared to HC, both EOAD and LOAD showed cortical AChE decrement in parietal, temporal, and occipital cortices, with wider and stringent cortical involvement in the EOAD group, most prominently demonstrated in the temporal region. There was no significant correlation between age and regional cerebral AChE activity except for a small left superior temporal region in the AD group (Brodmann's area 22, Zmax = 5.13, 396 voxels), whereas no significant cluster was found in the HC counterpart. CONCLUSION Difference in cortical cholinergic dysfunction between EOAD and LOAD may shed some light on the cholinomimetic drug efficacy in AD.
Collapse
Affiliation(s)
- Shigeki Hirano
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Neurology Clinic Chiba, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tsuneyoshi Ota
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Sato
- Department of Psychiatry, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Noriko Tanaka
- Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kiyoshi Fukushi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiaki Irie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
72
|
Silva MVF, Loures CDMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer's disease: risk factors and potentially protective measures. J Biomed Sci 2019; 26:33. [PMID: 31072403 PMCID: PMC6507104 DOI: 10.1186/s12929-019-0524-y] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and typically manifests through a progressive loss of episodic memory and cognitive function, subsequently causing language and visuospatial skills deficiencies, which are often accompanied by behavioral disorders such as apathy, aggressiveness and depression. The presence of extracellular plaques of insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFT) containing hyperphosphorylated tau protein (P-tau) in the neuronal cytoplasm is a remarkable pathophysiological cause in patients' brains. Approximately 70% of the risk of developing AD can be attributed to genetics. However, acquired factors such as cerebrovascular diseases, diabetes, hypertension, obesity and dyslipidemia increase the risk of AD development. The aim of the present minireview was to summarize the pathophysiological mechanism and the main risk factors for AD. As a complement, some protective factors associated with a lower risk of disease incidence, such as cognitive reserve, physical activity and diet will also be addressed.
Collapse
Affiliation(s)
- Marcos Vinícius Ferreira Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Cristina de Mello Gomide Loures
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luan Carlos Vieira Alves
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Leonardo Cruz de Souza
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Karina Braga Gomes Borges
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria das Graças Carvalho
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
73
|
Pawlowski M, Joksch V, Wiendl H, Meuth SG, Duning T, Johnen A. Apraxia screening predicts Alzheimer pathology in frontotemporal dementia. J Neurol Neurosurg Psychiatry 2019; 90:562-569. [PMID: 30305323 DOI: 10.1136/jnnp-2018-318470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Frontotemporal dementia (FTD) is a heterogeneous clinical syndrome linked to diverse types of underlying neuropathology. Diagnosis is mainly based on clinical presentation and accurate prediction of underlying neuropathology remains difficult. METHODS We present a large cohort of patients with FTD spectrum diseases (n=84). All patients were thoroughly characterised by cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, neuroimaging, neuropsychological testing and standardised apraxia screening. RESULTS A potential AD pathology was found in 43% of patients with FTD. CSF AD biomarker levels positively correlated with AD-typical apraxia scores in patients with FTD. The discriminative power of apraxia test results indicative of AD pathology was high (sensitivity: 90%, specificity: 66%). CONCLUSIONS Apraxia is common in neurodegenerative dementias but under-represented in clinical workup and diagnostic criteria. Standardised apraxia screening may serve as bedside test to objectify an AD-typical apraxia profile as an early and robust sign of AD pathology in patients with FTD.
Collapse
Affiliation(s)
| | - Viktoria Joksch
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Thomas Duning
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
74
|
Staff NP, Jones DT, Singer W. Mesenchymal Stromal Cell Therapies for Neurodegenerative Diseases. Mayo Clin Proc 2019; 94:892-905. [PMID: 31054608 PMCID: PMC6643282 DOI: 10.1016/j.mayocp.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells are multipotent cells that are being used to treat a variety of medical conditions. Over the past decade, there has been considerable excitement about using MSCs to treat neurodegenerative diseases, which are diseases that are typically fatal and without other robust therapies. In this review, we discuss the proposed MSC mechanisms of action in neurodegenerative diseases, which include growth factor secretion, exosome secretion, and attenuation of neuroinflammation. We then provide a summary of preclinical and early clinical work on MSC therapies in amyotrophic lateral sclerosis, multiple system atrophy, Parkinson disease, and Alzheimer disease. Continued rigorous and controlled studies of MSC therapies will be critical in order to establish efficacy and protect patients from possible untoward effects.
Collapse
|
75
|
Forouzannezhad P, Abbaspour A, Fang C, Cabrerizo M, Loewenstein D, Duara R, Adjouadi M. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer’s disease. J Neurosci Methods 2019; 317:121-140. [DOI: 10.1016/j.jneumeth.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
|
76
|
Slattery CF, Agustus JL, Paterson RW, McCallion O, Foulkes AJM, Macpherson K, Carton AM, Harding E, Golden HL, Jaisin K, Mummery CJ, Schott JM, Warren JD. The functional neuroanatomy of musical memory in Alzheimer's disease. Cortex 2019; 115:357-370. [PMID: 30846199 PMCID: PMC6525150 DOI: 10.1016/j.cortex.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Background Memory for music has attracted much recent interest in Alzheimer's disease but the underlying brain mechanisms have not been defined in patients directly. Here we addressed this issue in an Alzheimer's disease cohort using activation fMRI of two core musical memory systems. Methods We studied 34 patients with younger onset Alzheimer's disease led either by episodic memory decline (typical Alzheimer's disease) or by visuospatial impairment (posterior cortical atrophy) in relation to 19 age-matched healthy individuals. We designed a novel fMRI paradigm based on passive listening to melodies that were either previously familiar or unfamiliar (musical semantic memory) and either presented singly or repeated (incidental musical episodic memory). Results Both syndromic groups showed significant functional neuroanatomical alterations relative to the healthy control group. For musical semantic memory, disease-associated activation group differences were localised to right inferior frontal cortex (reduced activation in the group with memory-led Alzheimer's disease); while for incidental musical episodic memory, disease-associated activation group differences were localised to precuneus and posterior cingulate cortex (abnormally enhanced activation in the syndromic groups). In post-scan behavioural testing, both patient groups had a deficit of musical episodic memory relative to healthy controls whereas musical semantic memory was unimpaired. Conclusions Our findings define functional neuroanatomical substrates for the differential involvement of musical semantic and incidental episodic memory in major phenotypes of Alzheimer's disease. The complex dynamic profile of brain activation group differences observed suggests that musical memory may be an informative probe of neural network function in Alzheimer's disease. These findings may guide the development of future musical interventions in dementia.
Collapse
Affiliation(s)
- Catherine F Slattery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Jennifer L Agustus
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Ross W Paterson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Oliver McCallion
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Alexander J M Foulkes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Kirsty Macpherson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Amelia M Carton
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Emma Harding
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Hannah L Golden
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Kankamol Jaisin
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Catherine J Mummery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
77
|
Babulal GM, Quiroz YT, Albensi BC, Arenaza-Urquijo E, Astell AJ, Babiloni C, Bahar-Fuchs A, Bell J, Bowman GL, Brickman AM, Chételat G, Ciro C, Cohen AD, Dilworth-Anderson P, Dodge HH, Dreux S, Edland S, Esbensen A, Evered L, Ewers M, Fargo KN, Fortea J, Gonzalez H, Gustafson DR, Head E, Hendrix JA, Hofer SM, Johnson LA, Jutten R, Kilborn K, Lanctôt KL, Manly JJ, Martins RN, Mielke MM, Morris MC, Murray ME, Oh ES, Parra MA, Rissman RA, Roe CM, Santos OA, Scarmeas N, Schneider LS, Schupf N, Sikkes S, Snyder HM, Sohrabi HR, Stern Y, Strydom A, Tang Y, Terrera GM, Teunissen C, Melo van Lent D, Weinborn M, Wesselman L, Wilcock DM, Zetterberg H, O'Bryant SE. Perspectives on ethnic and racial disparities in Alzheimer's disease and related dementias: Update and areas of immediate need. Alzheimers Dement 2019; 15:292-312. [PMID: 30555031 PMCID: PMC6368893 DOI: 10.1016/j.jalz.2018.09.009] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise "state-of-the-science" report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations.
Collapse
Affiliation(s)
- Ganesh M Babulal
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Arlene J Astell
- Department of Occupational Sciences & Occupational Therapy, University of Toronto, CA; School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Neuroscience, IRCCS-Hospital San Raffaele Pisana of Rome and Cassino, Rome and Cassino, Italy
| | - Alex Bahar-Fuchs
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, the University of Melbourne, Australia
| | | | - Gene L Bowman
- Nutrition and Brain Health Laboratory, Nestlé Institute of Health Sciences, Lausanne, Switzerland; Department of Neurology, Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Adam M Brickman
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Carrie Ciro
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Hiroko H Dodge
- Department of Neurology, Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Simone Dreux
- Undergraduate Program of History and Science, Harvard College, Cambridge, MA, USA
| | - Steven Edland
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisbeth Evered
- Melbourne Medical School, University of Melbourne, Australia
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Keith N Fargo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Hector Gonzalez
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, University of San Diego, CA, USA
| | - Deborah R Gustafson
- Department of Neurology, Section for NeuroEpidemiology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - James A Hendrix
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Scott M Hofer
- Adult Development and Aging, University of Victoria, British Columbia, CA, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Roos Jutten
- VU University Medical Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Kerry Kilborn
- Department of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Krista L Lanctôt
- Sunnybrook Research Institute of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jennifer J Manly
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Michelle M Mielke
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Esther S Oh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario A Parra
- School of Social Sciences, Department of Psychology, Heriot-Watt University, UK; Universidad Autónoma del Caribe, Barranquilla, Colombia; Neuroprogressive and Dementia Network, UK
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, CA, USA
| | - Catherine M Roe
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Octavio A Santos
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA; Aiginition Hospital, 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lon S Schneider
- Department of Psychiatry and The Behavioral Sciences, University of Southern California, CA, USA
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Sietske Sikkes
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Hamid R Sohrabi
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Yaakov Stern
- Department of Neurology, Columbia University, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Yi Tang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Graciela Muniz Terrera
- Centers for Clinical Brain Sciences and Dementia Prevention, University in Edinburgh, Scotland, UK
| | - Charlotte Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Debora Melo van Lent
- Department of Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Weinborn
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | | | - Donna M Wilcock
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sid E O'Bryant
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
78
|
Agustus JL, Golden HL, Callaghan MF, Bond RL, Benhamou E, Hailstone JC, Weiskopf N, Warren JD. Melody Processing Characterizes Functional Neuroanatomy in the Aging Brain. Front Neurosci 2018; 12:815. [PMID: 30524219 PMCID: PMC6262413 DOI: 10.3389/fnins.2018.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/19/2018] [Indexed: 11/13/2022] Open
Abstract
The functional neuroanatomical mechanisms underpinning cognition in the normal older brain remain poorly defined, but have important implications for understanding the neurobiology of aging and the impact of neurodegenerative diseases. Auditory processing is an attractive model system for addressing these issues. Here, we used fMRI of melody processing to investigate auditory pattern processing in normal older individuals. We manipulated the temporal (rhythmic) structure and familiarity of melodies in a passive listening, 'sparse' fMRI protocol. A distributed cortico-subcortical network was activated by auditory stimulation compared with silence; and within this network, we identified separable signatures of anisochrony processing in bilateral posterior superior temporal lobes; melodic familiarity in bilateral anterior temporal and inferior frontal cortices; and melodic novelty in bilateral temporal and left parietal cortices. Left planum temporale emerged as a 'hub' region functionally partitioned for processing different melody dimensions. Activation of Heschl's gyrus by auditory stimulation correlated with the integrity of underlying cortical tissue architecture, measured using multi-parameter mapping. Our findings delineate neural substrates for analyzing perceptual and semantic properties of melodies in normal aging. Melody (auditory pattern) processing may be a useful candidate paradigm for assessing cerebral networks in the older brain and potentially, in neurodegenerative diseases of later life.
Collapse
Affiliation(s)
- Jennifer L. Agustus
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hannah L. Golden
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Martina F. Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca L. Bond
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Julia C. Hailstone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jason D. Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
79
|
Abbate C. Topographic Markers Drive Proteinopathies to Selection of Target Brain Areas at Onset in Neurodegenerative Dementias. Front Aging Neurosci 2018; 10:308. [PMID: 30344489 PMCID: PMC6182099 DOI: 10.3389/fnagi.2018.00308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/14/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Carlo Abbate
- Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
80
|
Putcha D, McGinnis SM, Brickhouse M, Wong B, Sherman JC, Dickerson BC. Executive dysfunction contributes to verbal encoding and retrieval deficits in posterior cortical atrophy. Cortex 2018; 106:36-46. [PMID: 29864594 PMCID: PMC6120771 DOI: 10.1016/j.cortex.2018.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Posterior Cortical Atrophy (PCA) is a neurodegenerative syndrome that typically presents with predominant visual and spatial impairments. The early diagnostic criteria specify a relative sparing of functioning in other cognitive domains, including executive functions, language, and episodic memory, yet little is known of the cognitive profile of PCA as the disease progresses. Studies of healthy adults and other posterior cortical lesion patients implicate posterior parietal and temporal regions in executive functions of working memory and verbal fluency, both of which may impact episodic memory. Relatively little has been reported about these cognitive functions in PCA, and to our knowledge there has not yet been a study of the impact of such deficits on memory function in PCA. We sought to examine PCA patients' performance on tests of executive function and the associations to verbal episodic memory encoding, storage, and delayed recall. Nineteen individuals with PCA underwent neuropsychological and neuroimaging evaluations as part of a comprehensive clinical assessment. We developed a novel consensus rating method-the Neuropsychological Assessment Rating (NAR) scale-to grade the severity of test performance impairments in selected cognitive domains and subdomains. Hypothesis-driven analyses demonstrated relative deficits in working memory and lexical-semantic retrieval. Preliminary analyses suggested associations between both deficits and atrophy in the left-hemisphere inferior parietal lobule. These executive deficits were also associated with impairments in verbal encoding and delayed recall, but not with recognition discriminability. We conclude that deficits in verbal executive functions impact verbal episodic memory in PCA. Our findings also support theories emphasizing the role of the posterior parietal cortex in supporting executive and lexical-semantic contributions to verbal episodic memory.
Collapse
Affiliation(s)
- Deepti Putcha
- Psychology Assessment Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet C Sherman
- Psychology Assessment Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
81
|
Behavioural and Cognitive Changes in Neurodegenerative Diseases and Brain Injury. Behav Neurol 2018; 2018:4935915. [PMID: 30147810 PMCID: PMC6083604 DOI: 10.1155/2018/4935915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
|
82
|
Spatial Patterns of Hypometabolism and Amyloid Deposition in Variants of Alzheimer’s Disease Corresponding to Brain Networks: a Prospective Cohort Study. Mol Imaging Biol 2018; 21:140-148. [DOI: 10.1007/s11307-018-1219-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
83
|
Operto G, Cacciaglia R, Grau-Rivera O, Falcon C, Brugulat-Serrat A, Ródenas P, Ramos R, Morán S, Esteller M, Bargalló N, Molinuevo JL, Gispert JD. White matter microstructure is altered in cognitively normal middle-aged APOE-ε4 homozygotes. ALZHEIMERS RESEARCH & THERAPY 2018; 10:48. [PMID: 29793545 PMCID: PMC5968505 DOI: 10.1186/s13195-018-0375-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND The ε4 allele of the apolipoprotein E gene (APOE-ε4) is the strongest genetic factor for late-onset Alzheimer's disease. During middle age, cognitively healthy APOE-ε4 carriers already show several brain alterations that resemble those of Alzheimer's disease (AD), but to a subtler degree. These include microstructural white matter (WM) changes that have been proposed as one of the earliest structural events in the AD cascade. However, previous studies have focused mainly on comparison of APOE-ε4 carriers vs noncarriers. Therefore, the extent and magnitude of the brain alterations in healthy ε4 homozygotes, who are the individuals at highest risk, remain to be characterized in detail. METHODS We examined mean, axial, and radial water diffusivity (MD, AxD, and RD, respectively) and fractional anisotropy in the WM as measured by diffusion-weighted imaging in 532 cognitively healthy middle-aged participants from the ALFA study (ALzheimer and FAmilies) cohort, a single-site population-based study enriched for AD risk (68 APOE-ε4 homozygotes, 207 heterozygotes, and 257 noncarriers). We examined the impact of age and APOE genotype on these parameters using tract-based spatial statistics. RESULTS Healthy APOE-ε4 homozygotes display increased WM diffusivity in regions known to be affected by AD. The effects in AxD were much smaller than in RD, suggesting a disruption of the myelin sheath rather than pure axonal damage. CONCLUSIONS These findings could be interpreted as the result of the reduced capacity of the ε4 isoform of the APOE protein to keep cholesterol homeostasis in the brain. Because cerebral lipid metabolism is strongly related to the pathogenesis of AD, our results shed light on the possible mechanisms through which the APOE-ε4 genotype is associated with an increased risk of AD.
Collapse
Affiliation(s)
- Grégory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain
| | - Pablo Ródenas
- Barcelona Supercomputing Center, Barcelona, Catalonia, Spain
| | - Rubén Ramos
- Barcelona Supercomputing Center, Barcelona, Catalonia, Spain
| | - Sebastián Morán
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain.,Departament de Ciències Fisiològiques II, Escola de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Nuria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centre Mèdic Diagnòstic Alomar, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | | |
Collapse
|
84
|
Humphreys GF, Lambon Ralph MA. Mapping Domain-Selective and Counterpointed Domain-General Higher Cognitive Functions in the Lateral Parietal Cortex: Evidence from fMRI Comparisons of Difficulty-Varying Semantic Versus Visuo-Spatial Tasks, and Functional Connectivity Analyses. Cereb Cortex 2018; 27:4199-4212. [PMID: 28472382 DOI: 10.1093/cercor/bhx107] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
Numerous cognitive domains have been associated with the lateral parietal cortex, yet how these disparate functions are packed into this region remains unclear. Whilst areas within the dorsal and the ventral parietal cortex (DPC and VPC) show differential function, there is considerable disagreement as to what these functions might be. Studies focussed on individual domains have plotted out variations of function across the region. Direct cross-domain comparisons are rare yet, when they have been undertaken, at least some regions (particularly the intraparietal sulcus [IPS] and core angular gyrus [AG]) appear to have contrastive domain-general qualities. In order to pursue this parietal puzzle, this study utilized both functional and resting-state magnetic resonance imaging to investigate a potential unifying neurocomputational framework-in which both domain general as well as domain-selective regions arise from differential patterns of connectivity into subregions of the lateral parietal cortex. Specifically we found that, consistent with their contrastive patterns of functional connectivity, subregions of DPC (anterior IPS) and VPC (AG) exhibit counterpointed functions sensitive to task/item-difficulty irrespective of cognitive domain. We propose that these regions serve as top-down executively penetrated and automatic bottom-up domain-general buffers of active information, respectively. In contrast, other parietal and nonparietal regions are tuned toward specific domains.
Collapse
Affiliation(s)
- Gina F Humphreys
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
85
|
Yong KXX, McCarthy ID, Poole T, Suzuki T, Yang B, Carton AM, Holloway C, Papadosifos N, Boampong D, Langham J, Slattery CF, Paterson RW, Foulkes AJM, Schott JM, Frost C, Tyler N, Crutch SJ. Navigational cue effects in Alzheimer's disease and posterior cortical atrophy. Ann Clin Transl Neurol 2018; 5:697-709. [PMID: 29928653 PMCID: PMC5989777 DOI: 10.1002/acn3.566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
Objective Deficits in spatial navigation are characteristic and disabling features of typical Alzheimer's disease (tAD) and posterior cortical atrophy (PCA). Visual cues have been proposed to mitigate such deficits; however, there is currently little empirical evidence for their use. Methods The effect of visual cues on visually guided navigation was assessed within a simplified real-world setting in individuals with tAD (n = 10), PCA (n = 8), and healthy controls (n = 12). In a repeated-measures design comprising 36 trials, participants walked to a visible target destination (an open door within a built environment), with or without the presence of an obstacle. Contrast and motion-based cues were evaluated; both aimed to facilitate performance by applying perceptual changes to target destinations without carrying explicit information. The primary outcome was completion time; secondary outcomes were measures of fixation position and walking path directness during consecutive task phases, determined using mobile eyetracking and motion capture methods. Results Results illustrate marked deficits in patients' navigational ability, with patient groups taking an estimated two to three times longer to reach target destinations than controls and exhibiting tortuous walking paths. There were no significant differences between tAD and PCA task performance. Overall, patients took less time to reach target destinations under cue conditions (contrast-cue: 11.8%; 95% CI: [2.5, 20.3]) and were more likely initially to fixate on targets. Interpretation The study evaluated navigation to destinations within a real-world environment. There is evidence that introducing perceptual changes to the environment may improve patients' navigational ability.
Collapse
Affiliation(s)
- Keir X X Yong
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom
| | - Ian D McCarthy
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom
| | - Teresa Poole
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom.,Department of Medical Statistics Faculty of Epidemiology and Population Health London School of Hygiene and Tropical Medicine London United Kingdom
| | - Tatsuto Suzuki
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom
| | - Biao Yang
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom.,School of Architecture and Urban Planning Harbin Institute of Technology Shenzhen Graduate School Shenzhen China
| | - Amelia M Carton
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom.,Oxford Health NHS Foundation Trust Oxford United Kingdom
| | - Catherine Holloway
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom.,Department of Computer Science Faculty of Engineering Science University College London London United Kingdom
| | - Nikolaos Papadosifos
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom
| | - Derrick Boampong
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom
| | - Julia Langham
- Department of Medical Statistics Faculty of Epidemiology and Population Health London School of Hygiene and Tropical Medicine London United Kingdom
| | - Catherine F Slattery
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom
| | - Ross W Paterson
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom
| | - Alexander J M Foulkes
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom
| | - Chris Frost
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom.,Department of Medical Statistics Faculty of Epidemiology and Population Health London School of Hygiene and Tropical Medicine London United Kingdom
| | - Nick Tyler
- Pedestrian Accessibility and Movement Environment Laboratory Department of Civil, Environmental and Geomatic Engineering Faculty of Engineering Science University College London London United Kingdom
| | - Sebastian J Crutch
- Dementia Research Centre Department of Neurodegeneration UCL Institute of Neurology University College London London United Kingdom
| |
Collapse
|
86
|
Iaccarino L, Chiotis K, Alongi P, Almkvist O, Wall A, Cerami C, Bettinardi V, Gianolli L, Nordberg A, Perani D. A Cross-Validation of FDG- and Amyloid-PET Biomarkers in Mild Cognitive Impairment for the Risk Prediction to Dementia due to Alzheimer's Disease in a Clinical Setting. J Alzheimers Dis 2018; 59:603-614. [PMID: 28671117 DOI: 10.3233/jad-170158] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessments of brain glucose metabolism (18F-FDG-PET) and cerebral amyloid burden (11C-PiB-PET) in mild cognitive impairment (MCI) have shown highly variable performances when adopted to predict progression to dementia due to Alzheimer's disease (ADD). This study investigates, in a clinical setting, the separate and combined values of 18F-FDG-PET and 11C-PiB-PET in ADD conversion prediction with optimized data analysis procedures. Respectively, we investigate the accuracy of an optimized SPM analysis for 18F-FDG-PET and of standardized uptake value ratio semiquantification for 11C-PiB-PET in predicting ADD conversion in 30 MCI subjects (age 63.57±7.78 years). Fourteen subjects converted to ADD during the follow-up (median 26.5 months, inter-quartile range 30 months). Receiver operating characteristic analyses showed an area under the curve (AUC) of 0.89 and of 0.81 for, respectively, 18F-FDG-PET and 11C-PiB-PET. 18F-FDG-PET, compared to 11C-PiB-PET, showed higher specificity (1.00 versus 0.62, respectively), but lower sensitivity (0.79 versus 1.00). Combining the biomarkers improved classification accuracy (AUC = 0.96). During the follow-up time, all the MCI subjects positive for both PET biomarkers converted to ADD, whereas all the subjects negative for both remained stable. The difference in survival distributions was confirmed by a log-rank test (p = 0.002). These results indicate a very high accuracy in predicting MCI to ADD conversion of both 18F-FDG-PET and 11C-PiB-PET imaging, the former showing optimal performance based on the SPM optimized parametric assessment. Measures of brain glucose metabolism and amyloid load represent extremely powerful diagnostic and prognostic biomarkers with complementary roles in prodromal dementia phase, particularly when tailored to individual cases in clinical settings.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Konstantinos Chiotis
- Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Department of Radiological Sciences, Nuclear Medicine Unit, San Raffaele G.Giglio Institute, Cefalù, Italy
| | - Ove Almkvist
- Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology, Stockholm University, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anders Wall
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Chiara Cerami
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Clinical Neurosciences, Neurological Rehabilitation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Luigi Gianolli
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Agneta Nordberg
- Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
87
|
Di Fede G, Catania M, Maderna E, Ghidoni R, Benussi L, Tonoli E, Giaccone G, Moda F, Paterlini A, Campagnani I, Sorrentino S, Colombo L, Kubis A, Bistaffa E, Ghetti B, Tagliavini F. Molecular subtypes of Alzheimer's disease. Sci Rep 2018; 8:3269. [PMID: 29459625 PMCID: PMC5818536 DOI: 10.1038/s41598-018-21641-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Protein misfolding and aggregation is a central feature of several neurodegenerative disorders including Alzheimer's disease (AD), in which assemblies of amyloid β (Aβ) peptides accumulate in the brain in the form of parenchymal and/or vascular amyloid. A widely accepted concept is that AD is characterized by distinct clinical and neuropathological phenotypes. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases and seeding ability. Aβ-amyloidosis can be induced and propagated in animal models by inoculation of brain extracts containing aggregated Aβ. We found that brain homogenates from AD patients with different molecular profiles of Aβ are able to induce distinct patterns of Aβ-amyloidosis when injected into mice. Overall these data suggest that the assembly of mixtures of Aβ peptides into different Aβ seeds leads to the formation of distinct subtypes of amyloid having distinctive physicochemical and biological properties which result in the generation of distinct AD molecular subgroups.
Collapse
Affiliation(s)
- Giuseppe Di Fede
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Marcella Catania
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Emanuela Maderna
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Elisa Tonoli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Fabio Moda
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Anna Paterlini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | | | | | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Adriana Kubis
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
- Department of Toxicology, Wroclaw Medical University, Wrocław, Poland
| | - Edoardo Bistaffa
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | | |
Collapse
|
88
|
Caminiti SP, Ballarini T, Sala A, Cerami C, Presotto L, Santangelo R, Fallanca F, Vanoli EG, Gianolli L, Iannaccone S, Magnani G, Perani D. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin 2018; 18:167-177. [PMID: 29387532 PMCID: PMC5790816 DOI: 10.1016/j.nicl.2018.01.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 01/18/2018] [Indexed: 01/29/2023]
Abstract
Background/aims In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. Methods We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. Results The multivariate logistic model identified FDG-PET "AD" SPM classification (Expβ = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4.55-70.46, p < 0.001). Conclusions Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers.
Collapse
Key Words
- AD, Alzheimer's disease
- AUC, area under curve
- Alzheimer's disease dementia
- CBD, corticobasal degeneration
- CDR, Clinical Dementia Rating
- CSF, cerebrospinal fluid
- Clinical setting
- DLB, dementia with Lewy bodies
- EANM, European Association of Nuclear Medicine
- Erlangen Score
- FDG, fluorodeoxyglucose
- FTD, frontotemporal dementia
- Frontotemporal dementia
- LR+, positive likelihood ratio
- LR-, negative likelihood ratio
- MCI, mild cognitive impairment
- PET, positron emission tomography
- PSP, progressive supranuclear palsy
- Prognosis
- aMCI, single-domain amnestic mild cognitive impairment
- bvFTD, behavioral variant of frontotemporal dementia
- md aMCI, multi-domain amnestic mild cognitive impairment
- md naMCI, multi-domain non-amnestic mild cognitive impairment
- naMCI, single-domain non-amnestic mild cognitive impairment
- p-tau, phosphorylated tau
- t-tau, total tau
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Ballarini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Cerami
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Luca Presotto
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Santangelo
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Luigi Gianolli
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sandro Iannaccone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
89
|
Dickerson B, McGinnis SM, Xia C, Price BH, Atri A, Murray ME, Mendez MF, Wolk DA. Approach to atypical Alzheimer's disease and case studies of the major subtypes. CNS Spectr 2017; 22:439-449. [PMID: 28196556 PMCID: PMC5557706 DOI: 10.1017/s109285291600047x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has long been recognized as a heterogeneous illness, with a common clinical presentation of progressive amnesia and less common "atypical" clinical presentations, including syndromes dominated by visual, aphasic, "frontal," or apraxic symptoms. Our knowledge of atypical clinical phenotypes of AD comes from clinicopathologic studies, but with the growing use of in vivo molecular biomarkers of amyloid and tau pathology, we are beginning to recognize that these syndromes may not be as rare as once thought. When a clinician is evaluating a patient whose clinical phenotype is dominated by progressive aphasia, complex visual impairment, or other neuropsychiatric symptoms with relative sparing of memory, the differential diagnosis may be broader and a confident diagnosis of an atypical form of AD may require the use of molecular biomarkers. Despite the evolving sophistication in our diagnostic tools, and the acknowledgment of atypical AD syndromes in the 2011 revised diagnostic criteria for AD, the assessment of such patients still poses substantial challenges. We use a case-based approach to review the clinical and imaging phenotypes of a series of patients with typical and atypical AD, and discuss our current approach to their evaluation. One day, we hope that regardless of whether a patient exhibits typical or atypical symptoms of AD pathology, we will be able to identify the condition at a prodromal phase and institute a combination of symptomatic and disease-modifying therapies to support cognitive processes, function, and behavior, and slow or halt progression to dementia.
Collapse
Affiliation(s)
- Brad Dickerson
- Frontotemporal Disorders Unit & Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott M. McGinnis
- Frontotemporal Disorders Unit & Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chenjie Xia
- Frontotemporal Disorders Unit & Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce H. Price
- Frontotemporal Disorders Unit & Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alireza Atri
- California Pacific Medical Center, Ray Dolby Brain Health Center, San Francisco, California, USA
| | | | | | - David A. Wolk
- University of Pennsylvania, Department of Neurology, Philadelphia, Pennsylvania, USA
| |
Collapse
|
90
|
Jones DT, Graff-Radford J, Lowe VJ, Wiste HJ, Gunter JL, Senjem ML, Botha H, Kantarci K, Boeve BF, Knopman DS, Petersen RC, Jack CR. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum. Cortex 2017; 97:143-159. [PMID: 29102243 PMCID: PMC5773067 DOI: 10.1016/j.cortex.2017.09.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023]
Abstract
Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease.
Collapse
Affiliation(s)
- David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey L Gunter
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
91
|
Abstract
A compelling need in the field of neurodegenerative diseases is the development and validation of biomarkers for early identification and differential diagnosis. The availability of positron emission tomography (PET) neuroimaging tools for the assessment of molecular biology and neuropathology has opened new venues in the diagnostic design and the conduction of new clinical trials. PET techniques, allowing the in vivo assessment of brain function and pathology changes, are increasingly showing great potential in supporting clinical diagnosis also in the early and even preclinical phases of dementia. This review will summarize the most recent evidence on fluorine-18 fluorodeoxyglucose-, amyloid -, tau -, and neuroinflammation - PET tools, highlighting strengths and limitations and possible new perspectives in research and clinical applications. Appropriate use of PET tools is crucial for a prompt diagnosis and target evaluation of new developed drugs aimed at slowing or preventing dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
92
|
Iaccarino L, Tammewar G, Ayakta N, Baker SL, Bejanin A, Boxer AL, Gorno-Tempini ML, Janabi M, Kramer JH, Lazaris A, Lockhart SN, Miller BL, Miller ZA, O'Neil JP, Ossenkoppele R, Rosen HJ, Schonhaut DR, Jagust WJ, Rabinovici GD. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer's Disease. NEUROIMAGE-CLINICAL 2017; 17:452-464. [PMID: 29159058 PMCID: PMC5684433 DOI: 10.1016/j.nicl.2017.09.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
The relationships between β-amyloid (Aβ), tau and neurodegeneration within Alzheimer's Disease pathogenesis are not fully understood. To explore these associations in vivo, we evaluated 30 Aβ PET-positive patients (mean ± sd age 62.4 ± 8.3) with mild probable AD and 12 Aβ PET-negative healthy controls (HC) (mean ± sd age 77.3 ± 6.9) as comparison. All participants underwent 3 T MRI, 11C-PiB (Aβ) PET and 18F-AV1451 (tau) PET. Multimodal correlation analyses were run at both voxel- and region-of-interest levels. 11C-PiB retention in AD showed the most diffuse uptake pattern throughout association neocortex, whereas 18F-AV1451 and gray matter volume reduction (GMR) showed a progressive predilection for posterior cortices (p<0.05 Family-Wise Error-[FWE]-corrected). Voxel-level analysis identified negative correlations between 18F-AV1451 and gray matter peaking in medial and infero-occipital regions (p<0.01 False Discovery Rate-[FDR]-corrected). 18F-AV1451 and 11C-PiB were positively correlated in right parietal and medial/inferior occipital regions (p<0.001 uncorrected). 11C-PiB did not correlate with GMR at the voxel-level. Regionally, 18F-AV1451 was largely associated with local/adjacent GMR whereas frontal 11C-PiB correlated with GMR in posterior regions. These findings suggest that, in mild AD, tau aggregation drives local neurodegeneration, whereas the relationships between Aβ and neurodegeneration are not region specific and may be mediated by the interaction between Aβ and tau. Tau tangles show tight and local associations with gray matter volume. Amyloid plaques show long-distance and indirect effects on gray matter volume. Local relationships between tau and amyloid may evolve and vary by disease stage. Amyloid accumulates homogeneously and uniformly across association cortices. Tau accumulation begins locally and spreads to functionally connected regions.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States; Vita-Salute San Raffaele University, Milan 20132, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
| | - Gautam Tammewar
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Nagehan Ayakta
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Suzanne L Baker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Alexandre Bejanin
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Adam L Boxer
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Mustafa Janabi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Joel H Kramer
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Andreas Lazaris
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Bruce L Miller
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Zachary A Miller
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - James P O'Neil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Rik Ossenkoppele
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Howard J Rosen
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States
| | - Daniel R Schonhaut
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Gil D Rabinovici
- Memory and Aging Center, Sandler Neurosciences Center, University of California, San Francisco, CA 94158, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
93
|
Maia da Silva MN, Millington RS, Bridge H, James-Galton M, Plant GT. Visual Dysfunction in Posterior Cortical Atrophy. Front Neurol 2017; 8:389. [PMID: 28861031 PMCID: PMC5561011 DOI: 10.3389/fneur.2017.00389] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions.
Collapse
Affiliation(s)
- Mari N Maia da Silva
- The National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Cognitive and Behavioural Neurology Unit, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Rebecca S Millington
- Oxford Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Oxford Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Merle James-Galton
- The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Gordon T Plant
- The National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom.,St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
94
|
Xia C, Dickerson BC. Multimodal PET Imaging of Amyloid and Tau Pathology in Alzheimer Disease and Non-Alzheimer Disease Dementias. PET Clin 2017; 12:351-359. [PMID: 28576172 PMCID: PMC5690983 DOI: 10.1016/j.cpet.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biomarkers of the molecular pathology underpinning dementia syndromes are increasingly recognized as crucial for diagnosis and development of disease-modifying treatments. Amyloid PET imaging is an integral part of the diagnostic assessment of Alzheimer disease. Its use has also deepened understanding of the role of amyloid pathology in Lewy body disorders and aging. Tau PET imaging is an imaging biomarker that will likely play an important role in the diagnosis, monitoring, and treatment in dementias. Using tau PET imaging to examine how tau pathology relates to amyloid and other markers of neurodegeneration will serve to better understand the pathophysiologic cascade that leads to dementia.
Collapse
Affiliation(s)
- Chenjie Xia
- Department of Neurology, Jewish General Hospital, McGill University, 3755 Chemin de la Côte-Sainte-Catherine Road, Suite E-005, Montreal, QC H3T 1E2, Canada
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard University, 149 13th Street, Suite 2691, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
95
|
Carmona-Iragui M, Balasa M, Benejam B, Alcolea D, Fernández S, Videla L, Sala I, Sánchez-Saudinós MB, Morenas-Rodriguez E, Ribosa-Nogué R, Illán-Gala I, Gonzalez-Ortiz S, Clarimón J, Schmitt F, Powell DK, Bosch B, Lladó A, Rafii MS, Head E, Molinuevo JL, Blesa R, Videla S, Lleó A, Sánchez-Valle R, Fortea J. Cerebral amyloid angiopathy in Down syndrome and sporadic and autosomal-dominant Alzheimer's disease. Alzheimers Dement 2017; 13:1251-1260. [PMID: 28463681 DOI: 10.1016/j.jalz.2017.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We aimed to investigate if cerebral amyloid angiopathy (CAA) is more frequent in genetically determined than in sporadic early-onset forms of Alzheimer's disease (AD) (early-onset AD [EOAD]). METHODS Neuroimaging features of CAA, apolipoprotein (APOE), and cerebrospinal fluid amyloid β (Aβ) 40 levels were studied in subjects with Down syndrome (DS, n = 117), autosomal-dominant AD (ADAD, n = 29), sporadic EOAD (n = 42), and healthy controls (n = 68). RESULTS CAA was present in 31%, 38%, and 12% of cognitively impaired DS, symptomatic ADAD, and sporadic EOAD subjects and in 13% and 4% of cognitively unimpaired DS individuals and healthy controls, respectively. APOE ε4 genotype was borderline significantly associated with CAA in sporadic EOAD (P = .06) but not with DS or ADAD. There were no differences in Aβ040 levels between groups or between subjects with and without CAA. DISCUSSION CAA is more frequently found in genetically determined AD than in sporadic EOAD. Cerebrospinal fluid Aβ40 levels are not a useful biomarker for CAA in AD.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain; Global Brain Health Institute, Trinity College Dublin, College Green, Dublin, Ireland
| | - Mircea Balasa
- Global Brain Health Institute, Trinity College Dublin, College Green, Dublin, Ireland; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bessy Benejam
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Isabel Sala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - María Belén Sánchez-Saudinós
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Estrella Morenas-Rodriguez
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Roser Ribosa-Nogué
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sofía Gonzalez-Ortiz
- Department of Radiology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Frederick Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - David K Powell
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael S Rafii
- Adult Down Syndrome Clinic, Department of Neuroscience, University of California, San Diego, CA, USA; Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sebastián Videla
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Faculty of Health and Life Sciences, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain.
| |
Collapse
|
96
|
Whittaker HT, Warren JD. A Neurochemical Basis for Phenotypic Differentiation in Alzheimer's Disease? Turing's Morphogens Revisited. Front Aging Neurosci 2017; 9:76. [PMID: 28424609 PMCID: PMC5372783 DOI: 10.3389/fnagi.2017.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Affiliation(s)
- Heather T. Whittaker
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College LondonLondon, UK
| | - Jason D. Warren
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College LondonLondon, UK
- Dementia Research Centre, UCL Institute of Neurology, University College LondonLondon, UK
| |
Collapse
|
97
|
Suhonen NM, Hallikainen I, Hänninen T, Jokelainen J, Krüger J, Hall A, Pikkarainen M, Soininen H, Remes AM. The Modified Frontal Behavioral Inventory (FBI-mod) for Patients with Frontotemporal Lobar Degeneration, Alzheimer’s Disease, and Mild Cognitive Impairment. J Alzheimers Dis 2017; 56:1241-1251. [DOI: 10.3233/jad-160983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Noora-Maria Suhonen
- Medical Research Center, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Ilona Hallikainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Hänninen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Jari Jokelainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
| | - Johanna Krüger
- Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Anette Hall
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Maria Pikkarainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M. Remes
- Medical Research Center, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
98
|
Kumfor F, Halliday GM, Piguet O. Clinical Aspects of Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2017; 15:31-53. [PMID: 28674977 DOI: 10.1007/978-3-319-57193-5_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common form of dementia accounting for 50-60% of all dementia cases. This chapter briefly reviews the history of Alzheimer's disease and provides an overview of the clinical syndromes associated with Alzheimer pathology and their associated neuroimaging findings. This chapter also reviews the neuropathology and genetics of Alzheimer's disease and concludes by discussing current work undertaken to identify suitable in vivo biomarkers for the disease.
Collapse
Affiliation(s)
- Fiona Kumfor
- School of Psychology, Central Medical School and Brain & Mind Centre, University of Sydney, Mallett St, Sydney, 2006, NSW, Australia.
| | - Glenda M Halliday
- School of Psychology, Central Medical School and Brain & Mind Centre, University of Sydney, Mallett St, Sydney, 2006, NSW, Australia
| | - Olivier Piguet
- School of Psychology, Central Medical School and Brain & Mind Centre, University of Sydney, Mallett St, Sydney, 2006, NSW, Australia
| |
Collapse
|
99
|
Golden HL, Clark CN, Nicholas JM, Cohen MH, Slattery CF, Paterson RW, Foulkes AJM, Schott JM, Mummery CJ, Crutch SJ, Warren JD. Music Perception in Dementia. J Alzheimers Dis 2017; 55:933-949. [PMID: 27802226 PMCID: PMC5260961 DOI: 10.3233/jad-160359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite much recent interest in music and dementia, music perception has not been widely studied across dementia syndromes using an information processing approach. Here we addressed this issue in a cohort of 30 patients representing major dementia syndromes of typical Alzheimer's disease (AD, n = 16), logopenic aphasia (LPA, an Alzheimer variant syndrome; n = 5), and progressive nonfluent aphasia (PNFA; n = 9) in relation to 19 healthy age-matched individuals. We designed a novel neuropsychological battery to assess perception of musical patterns in the dimensions of pitch and temporal information (requiring detection of notes that deviated from the established pattern based on local or global sequence features) and musical scene analysis (requiring detection of a familiar tune within polyphonic harmony). Performance on these tests was referenced to generic auditory (timbral) deviance detection and recognition of familiar tunes and adjusted for general auditory working memory performance. Relative to healthy controls, patients with AD and LPA had group-level deficits of global pitch (melody contour) processing while patients with PNFA as a group had deficits of local (interval) as well as global pitch processing. There was substantial individual variation within syndromic groups. Taking working memory performance into account, no specific deficits of musical temporal processing, timbre processing, musical scene analysis, or tune recognition were identified. The findings suggest that particular aspects of music perception such as pitch pattern analysis may open a window on the processing of information streams in major dementia syndromes. The potential selectivity of musical deficits for particular dementia syndromes and particular dimensions of processing warrants further systematic investigation.
Collapse
Affiliation(s)
- Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Miriam H Cohen
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Alexander J M Foulkes
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
100
|
Dickerson BC, Brickhouse M, McGinnis S, Wolk DA. Alzheimer's disease: The influence of age on clinical heterogeneity through the human brain connectome. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 6:122-135. [PMID: 28239637 PMCID: PMC5318292 DOI: 10.1016/j.dadm.2016.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION One major factor that influences the heterogeneity of Alzheimer's disease (AD) is age: younger AD patients more frequently exhibit atypical forms of AD. We propose that this age-related heterogeneity can be understood better by considering age-related differences in atrophy in the context of large-scale brain networks subserving cognitive functions that contribute to memory. METHODS We examined data from 75 patients with mild AD dementia from Alzheimer's Disease Neuroimaging Initiative. These individuals were chosen because they have cerebrospinal fluid amyloid and p-tau levels in the range suggesting the presence of AD neuropathology, and because they were either younger than age 65 years early-onset AD (EOAD) or age 80 years or older late-onset AD (LOAD). RESULTS In the EOAD group, the most prominent atrophy was present in the posterior cingulate cortex, whereas in the LOAD group, atrophy was most prominent in the medial temporal lobe. Structural covariance analysis showed that the magnitude of atrophy in these epicenters is strongly correlated with a distributed atrophy pattern similar to distinct intrinsic connectivity networks in the healthy brain. An examination of memory performance in EOAD dementia versus LOAD dementia demonstrated relatively more prominent impairment in encoding in the EOAD group than in the LOAD group, with similar performance in memory storage in LOAD and EOAD but greater impairment in semantic memory in LOAD than in EOAD. DISCUSSION The observations provide novel insights about age as a major factor contributing to the heterogeneity in the topography of AD-related cortical atrophy.
Collapse
Affiliation(s)
- Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Michael Brickhouse
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Scott McGinnis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|