51
|
Hu J, Shuai W, Sumner JT, Moghadam AA, Hartmann EM. Clinically relevant pathogens on surfaces display differences in survival and transcriptomic response in relation to probiotic and traditional cleaning strategies. NPJ Biofilms Microbiomes 2022; 8:72. [PMID: 36123373 PMCID: PMC9485146 DOI: 10.1038/s41522-022-00335-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
Indoor surfaces are paradoxically presumed to be both colonized by pathogens, necessitating disinfection, and "microbial wastelands." In these resource-poor, dry environments, competition and decay are thought to be important drivers of microbial community composition. However, the relative contributions of these two processes have not been specifically evaluated. To bridge this knowledge gap, we used microcosms to evaluate whether interspecies interactions occur on surfaces. We combined transcriptomics and traditional microbiology techniques to investigate whether competition occurred between two clinically important pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, and a probiotic cleaner containing a consortium of Bacillus species. Probiotic cleaning seeks to take advantage of ecological principles such as competitive exclusion, thus using benign microorganisms to inhibit viable pathogens, but there is limited evidence that competitive exclusion in fact occurs in environments of interest (i.e., indoor surfaces). Our results indicate that competition in this setting has a negligible impact on community composition but may influence the functions expressed by active organisms. Although Bacillus spp. remained viable on surfaces for an extended period of time after application, viable colony forming units (CFUs) of A. baumannii recovered following exposure to a chemical-based detergent with and without Bacillus spp. showed no statistical difference. Similarly, for K. pneumoniae, there were small statistical differences in CFUs between cleaning scenarios with or without Bacillus spp. in the chemical-based detergent. The transcriptome of A. baumannii with and without Bacillus spp. exposure shared a high degree of similarity in overall gene expression, but the transcriptome of K. pneumoniae differed in overall gene expression, including reduced response in genes related to antimicrobial resistance. Together, these results highlight the need to fully understand the underlying biological and ecological mechanisms for community assembly and function on indoor surfaces, as well as having practical implications for cleaning and disinfection strategies for infection prevention.
Collapse
Affiliation(s)
- Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jack T Sumner
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anahid A Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
52
|
Finn DR, App M, Hertzog L, Tebbe CC. Reconciling concepts of black queen and tragedy of the commons in simulated bulk soil and rhizosphere prokaryote communities. Front Microbiol 2022; 13:969784. [PMID: 36187971 PMCID: PMC9520196 DOI: 10.3389/fmicb.2022.969784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Black Queen hypothesis describes the evolutionary strategy to lose costly functions in favour of improving growth efficiency. This results in mutants (cheaters) becoming obligately dependent upon a provider (black queen) to produce a necessary resource. Previous analyses demonstrate black queens and cheaters reach a state of equilibrium in pair-wise systems. However, in complex communities, accumulation of cheaters likely poses a serious burden on shared resources. This should result in a Tragedy of the Commons (ToC), whereby over-utilisation of public resources risks making them growth-limiting. With a collection of differential equations, microbial communities composed of twenty prokaryote ‘species’ either from rhizosphere, characterised by abundant carbon and energy sources, or bulk soil, with limited carbon and energy supply, were simulated. Functional trait groups differed based on combinations of cellulase and amino acid production, growth and resource uptake. Randomly generated communities were thus composed of species that acted as cellulolytic prototrophic black queens, groups that were either cellulolytic or prototrophic, or non-cellulolytic auxotrophic cheaters. Groups could evolve to lose functions over time. Biomass production and biodiversity were tracked in 8,000 Monte Carlo simulations over 500 generations. Bulk soil favoured oligotrophic co-operative communities where biodiversity was positively associated with growth. Rhizosphere favoured copiotrophic cheaters. The most successful functional group across both environments was neither black queens nor cheaters, but those that balanced providing an essential growth-limiting function at a relatively low maintenance cost. Accumulation of loss of function mutants in bulk soil risked resulting in loss of cumulative growth by ToC, while cumulative growth increased in the rhizosphere. In the bulk soil, oligotrophic adaptations assisted species in avoiding extinction. This demonstrated that loss of function by mutation is a successful evolutionary strategy in host-associated and/or resource-rich environments, but poses a risk to communities that must co-operate with each other for mutual co-existence. It was concluded that microbial communities must follow different evolutionary and community assembly strategies in bulk soil versus rhizosphere, with bulk soil communities more dependent on traits that promote co-operative interactions between microbial species.
Collapse
|
53
|
Abstract
All organisms rely on complex metabolites such as amino acids, nucleotides, and cofactors for essential metabolic processes. Some microbes synthesize these fundamental ingredients of life de novo, while others rely on uptake to fulfill their metabolic needs. Although certain metabolic processes are inherently "leaky," the mechanisms enabling stable metabolite provisioning among microbes in the absence of a host remain largely unclear. In particular, how can metabolite provisioning among free-living bacteria be maintained under the evolutionary pressure to economize resources? Salvaging, the process of "recycling and reusing," can be a metabolically efficient route to obtain access to required resources. Here, we show experimentally how precursor salvaging in engineered Escherichia coli populations can lead to stable, long-term metabolite provisioning. We find that salvaged cobamides (vitamin B12 and related enzyme cofactors) are readily made available to nonproducing population members, yet salvagers are strongly protected from overexploitation. We also describe a previously unnoted benefit of precursor salvaging, namely, the removal of the nonfunctional, proliferation-inhibiting precursor. As long as compatible precursors are present, any microbe possessing the terminal steps of a biosynthetic process can, in principle, forgo de novo biosynthesis in favor of salvaging. Consequently, precursor salvaging likely represents a potent, yet overlooked, alternative to de novo biosynthesis for the acquisition and provisioning of metabolites in free-living bacterial populations. IMPORTANCE Recycling gives new life to old things. Bacteria have the ability to recycle and reuse complex molecules they encounter in their environment to fulfill their basic metabolic needs in a resource-efficient way. By studying the salvaging (recycling and reusing) of vitamin B12 precursors, we found that metabolite salvaging can benefit others and provide stability to a bacterial community at the same time. Salvagers of vitamin B12 precursors freely share the result of their labor yet cannot be outcompeted by freeloaders, likely because salvagers retain preferential access to the salvaging products. Thus, salvaging may represent an effective, yet overlooked, mechanism of acquiring and provisioning nutrients in microbial populations.
Collapse
|
54
|
Brault A, Mbuya B, Labbé S. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between Schizosaccharomyces pombe and Saccharomyces cerevisiae. Front Microbiol 2022; 13:962853. [PMID: 35928155 PMCID: PMC9344042 DOI: 10.3389/fmicb.2022.962853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Although Saccharomyces cerevisiae is unable to produce siderophores, this fungal organism can assimilate iron bound to the hydroxamate-type siderophore ferrichrome (Fc) produced and secreted by other microbes. Fc can enter S. cerevisiae cells via Arn1. Unlike S. cerevisiae, Schizosaccharomyces pombe synthesizes and secretes Fc. The sib1+ and sib2+ genes encode, respectively, a Fc synthetase and an ornithine-N5-oxygenase, which are required for Fc production. When both genes were expressed in S. pombe, cross-feeding experiments revealed that S. cerevisiae fet3Δ arn1-4Δ cells expressing Arn1 could grow in the vicinity of S. pombe under low-iron conditions. In contrast, deletion of sib1+ and sib2+ produced a defect in the ability of S. pombe to keep S. cerevisiae cells alive when Fc is used as the sole source of iron. Further analysis identified a gene designated sib3+ that encodes an N5-transacetylase required for Fc production in S. pombe. The sib3Δ mutant strain exhibited a severe growth defect in iron-poor media, and it was unable to promote Fc-dependent growth of S. cerevisiae cells. Microscopic analyses of S. pombe cells expressing a functional Sib3-GFP protein revealed that Sib3 was localized throughout the cells, with a proportion of Sib3 being colocalized with Sib1 and Sib2 within the cytosol. Collectively, these results describe the first example of a one-way cross-feeding interaction, with S. pombe providing Fc that enables S. cerevisiae to grow when Fc is used as the sole source of iron.
Collapse
|
55
|
Pita-Grisanti V, Chasser K, Sobol T, Cruz-Monserrate Z. Understanding the Potential and Risk of Bacterial Siderophores in Cancer. Front Oncol 2022; 12:867271. [PMID: 35785195 PMCID: PMC9248441 DOI: 10.3389/fonc.2022.867271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Siderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system. Siderophores are a vast area of untapped potential in the field of cancer research because cancer cells demand increased iron concentrations to sustain rapid proliferation. Studies investigating siderophores as therapeutics in cancer generally focused on the role of a few siderophores as iron chelators; however, these studies are limited and some show conflicting results. Moreover, siderophores are biologically conserved, structurally diverse molecules that perform additional functions related to iron chelation. Siderophores also have a role in inflammation due to their iron acquisition and chelation properties. These diverse functions may contribute to both risks and benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron and bacterial modulation to be used in the treatment of cancer warrants further investigation. This review discusses the wide range of bacterial siderophore functions and their utilization in cancer treatment to further expand their functional relevance in cancer detection and treatment.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Trevor Sobol
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Zobeida Cruz-Monserrate,
| |
Collapse
|
56
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
57
|
Zhang Q, Lin Y, Shen G, Zhang H, Lyu S. Siderophores of
Bacillus pumilus
promote 2‐keto‐L‐gulonic acid production in a vitamin C microbial fermentation system. J Basic Microbiol 2022; 62:833-842. [DOI: 10.1002/jobm.202200237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Zhang
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Ying Lin
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Guozheng Shen
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Haihong Zhang
- Northeast Pharmaceutical Group Company limited Shenyang Liaoning China
| | - Shuxia Lyu
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| |
Collapse
|
58
|
Kin selection for cooperation in natural bacterial populations. Proc Natl Acad Sci U S A 2022; 119:2119070119. [PMID: 35193981 PMCID: PMC8892524 DOI: 10.1073/pnas.2119070119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria secrete many molecules outside the cell, where they provide benefits to other cells. One potential reason for producing these “public goods” is that they benefit closely related cells that share the gene for cooperation (kin selection). While many laboratory studies have supported this hypothesis, there is a lack of evidence that kin selection favors cooperation in natural populations. We examined bacterial genomes from the environment and used population genetics theory to analyze the DNA sequences. Our analyses suggest that public goods cooperation has indeed been favored by kin selection in natural populations. Bacteria produce a range of molecules that are secreted from the cell and can provide a benefit to the local population of cells. Laboratory experiments have suggested that these “public goods” molecules represent a form of cooperation, favored because they benefit closely related cells (kin selection). However, there is a relative lack of data demonstrating kin selection for cooperation in natural populations of bacteria. We used molecular population genetics to test for signatures of kin selection at the genomic level in natural populations of the opportunistic pathogen Pseudomonas aeruginosa. We found consistent evidence from multiple traits that genes controlling putatively cooperative traits have higher polymorphism and greater divergence and are more likely to harbor deleterious mutations relative to genes controlling putatively private traits, which are expressed at similar rates. These patterns suggest that cooperative traits are controlled by kin selection, and we estimate that the relatedness for social interactions in P. aeruginosa is r = 0.84. More generally, our results demonstrate how molecular population genetics can be used to study the evolution of cooperation in natural populations.
Collapse
|
59
|
Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms. Microbiol Res 2022; 259:127016. [DOI: 10.1016/j.micres.2022.127016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
|
60
|
Pierce EC, Dutton RJ. Putting microbial interactions back into community contexts. Curr Opin Microbiol 2022; 65:56-63. [PMID: 34739927 DOI: 10.1016/j.mib.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Microbial interactions are key aspects of the biology of microbiomes. Recently, there has been a shift in the field towards studying interactions in more representative contexts, whether using multispecies model microbial communities or by looking at interactions in situ. Across diverse microbial systems, these studies have begun to identify common interaction mechanisms. These mechanisms include interactions related to toxic molecules, nutrient competition and cross-feeding, access to metals, signaling pathways, pH changes, and interactions within biofilms. Leveraging technological innovations, many of these studies have used an interdisciplinary approach combining genetic, metabolomic, imaging, and/or microfluidic techniques to gain insight into mechanisms of microbial interactions and into the impact of these interactions on microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
61
|
Rehm K, Vollenweider V, Kümmerli R, Bigler L. A comprehensive method to elucidate pyoverdines produced by fluorescent Pseudomonas spp. by UHPLC-HR-MS/MS. Anal Bioanal Chem 2022; 414:2671-2685. [PMID: 35084507 PMCID: PMC8888394 DOI: 10.1007/s00216-022-03907-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 12/01/2022]
Abstract
Microbial secondary metabolites represent a rich source for drug discovery, plant protective agents, and biotechnologically relevant compounds. Among them are siderophores, iron-chelating molecules, that show a great influence on bacterial community assembly and the potential to control pathogen invasions. One of such a siderophore is pyoverdine that is produced by fluorescent Pseudomonas members and consists of different peptide chains specific to each bacterial species. The identification and structural elucidation of such suites of siderophores remain widely underexplored as general high-throughput analytical protocols are missing. Therefore, a dedicated method was established allowing a rapid localization and structural elucidation of pyoverdines. Liquid bacterial culture samples were purified by an easy small-scale solid-phase extraction (SPE). Ultra-high-performance liquid chromatography high-resolution tandem mass spectrometry (UHPLC-HR-MS/MS) separated highly polar pyoverdines and their derivatives. All ion fragmentation (AIF) generated mass spectra containing the characteristic fragments of the biological precursor of pyoverdine, ferribactin. This led to the revelation of the mass of secreted pyoverdines. Targeted MS/MS experiments at multiple collision energies accomplished the full structure elucidation of the pyoverdine peptide chain. A mass calculator and a fragmentation predictor facilitated greatly the interpretation of MS/MS spectra by providing accurate masses for a straightforward comparison of measured and theoretical values. The method was successfully validated using four well-known pyoverdines with various peptide chains. Finally, the applicability was proven by the analysis of 13 unknown pyoverdines secreted by sampled bacterial cultures. Among these, 4 novel pyoverdine peptide chains were discovered and are herein reported for the first time.
Collapse
Affiliation(s)
- Karoline Rehm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
62
|
Evidence for methanobactin "Theft" and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. THE ISME JOURNAL 2022; 16:211-220. [PMID: 34290379 PMCID: PMC8692452 DOI: 10.1038/s41396-021-01062-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known to use different mechanisms for copper uptake. Some methanotrophs secrete a modified polypeptide-methanobactin-while others utilize a surface-bound protein (MopE) and a secreted form of it (MopE*) for copper collection. As different methanotrophs have different means of sequestering copper, competition for copper significantly impacts methanotrophic activity. Herein, we show that Methylomicrobium album BG8, Methylocystis sp. strain Rockwell, and Methylococcus capsulatus Bath, all lacking genes for methanobactin biosynthesis, are not limited for copper by multiple forms of methanobactin. Interestingly, Mm. album BG8 and Methylocystis sp. strain Rockwell were found to have genes similar to mbnT that encodes for a TonB-dependent transporter required for methanobactin uptake. Data indicate that these methanotrophs "steal" methanobactin and such "theft" enhances the ability of these strains to degrade methylmercury, a potent neurotoxin. Further, when mbnT was deleted in Mm. album BG8, methylmercury degradation in the presence of methanobactin was indistinguishable from when MB was not added. Mc. capsulatus Bath lacks anything similar to mbnT and was unable to degrade methylmercury either in the presence or absence of methanobactin. Rather, Mc. capsulatus Bath appears to rely on MopE/MopE* for copper collection. Finally, not only does Mm. album BG8 steal methanobactin, it synthesizes a novel chalkophore, suggesting that some methanotrophs utilize both competition and cheating strategies for copper collection. Through a better understanding of these strategies, methanotrophic communities may be more effectively manipulated to reduce methane emissions and also enhance mercury detoxification in situ.
Collapse
|
63
|
Zhang K, Tappero R, Ruytinx J, Branco S, Liao HL. Disentangling the role of ectomycorrhizal fungi in plant nutrient acquisition along a Zn gradient using X-ray imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149481. [PMID: 34467922 DOI: 10.1016/j.scitotenv.2021.149481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) is a plant essential micronutrient involved in a wide range of cellular processes. Ectomycorrhizal fungi (EMF) are known to play a critical role in regulating plant Zn status. However, how EMF control uptake and translocation of Zn and other nutrients in plant roots under different Zn conditions is not well known. Using X-ray fluorescence imaging, we found the EMF species Suillus luteus increased pine root Zn acquisition under low Zn concentrations and reduced its accumulation under higher Zn levels. By contrast, non-mycorrhizal pine roots exposed to high Zn indiscriminately take up and translocate Zn to root tissues, leading to Zn stress. Regardless of S. luteus inoculation, the absorption pattern of Ca and Cu was similar to Zn. Compared to Ca and Cu, effects of S. luteus on Fe acquisition were more marked, leading to a negative association between Zn addition and Fe concentration within EMF roots. Besides, higher nutrient accumulation in the fungal sheath, compared to hyphae inhabiting between intercellular space of cortex cells, implies the fungal sheath serves as a barrier to regulate nutrient transportation into fungal Hartig net. Our results demonstrate the crucial roles EMF play in plant nutrient uptake and how fungal partners ameliorate soil chemical conditions either by increasing or decreasing element uptake.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Ryan Tappero
- Brookhaven National Laboratory, NSLS-II, Upton, NY 11973, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
64
|
Gurney J, Simonet C, Wollein Waldetoft K, Brown SP. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat Prod Rep 2021; 39:325-334. [PMID: 34913456 DOI: 10.1039/d1np00053e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1999 to 2021Bacterial pathogens can be highly social, communicating and cooperating within multi-cellular groups to make us sick. The requirement for collective action in pathogens presents novel therapeutic avenues that seek to undermine cooperative behavior, what we call here 'cheat therapies'. We review two broad avenues of cheat therapy: first, the introduction of genetically engineered 'cheat' strains (bio-control cheats), and second the chemical induction of 'cheat' behavior in the infecting pathogens (chemical-control cheats). Both genetically engineered and chemically induced cheats can socially exploit the cooperative wildtype infection, reducing pathogen burden and the severity of disease. We review the costs and benefits of cheat therapies, highlighting advantages of evolutionary robustness and also the challenges of low to moderate efficacy, compared to conventional antibiotic treatments. We end with a summary of what we see as the most valuable next steps, focusing on adjuvant treatments and use as alternate therapies for mild, self-resolving infections - allowing the reservation of current and highly effective antibiotics for more critical patient needs.
Collapse
Affiliation(s)
- James Gurney
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristofer Wollein Waldetoft
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.,Torsby Hospital, Torsby, Sweden
| | - Sam P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| |
Collapse
|
65
|
Abstract
The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
66
|
Genomic Analysis Reveals Potential Mechanisms Underlying Promotion of Tomato Plant Growth and Antagonism of Soilborne Pathogens by Bacillus amyloliquefaciens Ba13. Microbiol Spectr 2021; 9:e0161521. [PMID: 34756081 PMCID: PMC8579842 DOI: 10.1128/spectrum.01615-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus amyloliquefaciens Ba13 is a plant beneficial bacterium isolated from loessial soil with notable biological activity. This study clarified potential mechanisms underlying the plant growth-promoting and antipathogenic effects of strain Ba13. A pot experiment was used to verify the plant growth-promoting effects of strain Ba13 on tomato, and the antipathogenic activity was tested in petri dishes. The underlying mechanisms were explored based on whole-genome sequencing of strain Ba13 and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection of plant hormones and biosynthetic intermediates. The results showed that exposure to strain Ba13 promoted tomato plant growth significantly. Compared with control treatment, bacterial treatment increased plant height and fresh weight by 10.98% and 20.15%, respectively, at 28 days after inoculation. Strain Ba13 exhibited antagonistic activity against all eight plant pathogens tested. The 3,861,210-bp genome of strain Ba13 was predicted to encode antibiotics (e.g., surfactin, bacillaene, bacillomycin D, bacilysin, and bacillibactin) and volatile gaseous compounds (e.g., 2,3-butanediol and acetoin). Genes were also predicted to encode extracellular phytase and β-glucanase that are secreted through the secretory (Sec) system. Strain Ba13 could synthesize indole-3-acetic acid through the indole-3-pyruvic acid pathway. The results of this study indicate that B. amyloliquefaciens Ba13 has multiple effects on tomato plants and associated microorganisms, directly or indirectly promoting plant growth and controlling plant diseases. IMPORTANCE Microbial agents are considered the optimal alternative for chemical agents. Exploring the mechanisms underlying the beneficial effects of microbial agents is essential for rational applications in the field. In this study, we report a functional bacterial strain, Bacillus amyloliquefaciens Ba13, which exhibited plant growth-promoting and antipathogenic effects. The whole genome of strain Ba13 was sequenced, and functional genes of interest were predicted. Strain Ba13 could synthesize indole-3-acetic acid through the indole-3-pyruvic acid pathway.
Collapse
|
67
|
Figueiredo ART, Özkaya Ö, Kümmerli R, Kramer J. Siderophores drive invasion dynamics in bacterial communities through their dual role as public good versus public bad. Ecol Lett 2021; 25:138-150. [PMID: 34753204 PMCID: PMC9299690 DOI: 10.1111/ele.13912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron‐scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores can be ‘public goods’ by delivering iron to individuals possessing matching receptors; but they can also be ‘public bads’ by withholding iron from competitors lacking these receptors. Accordingly, siderophores should either promote or impede invasion, depending on their effects on invader and resident growth. Using supernatant feeding and invasion assays, we show that invasion success indeed increased when the invader could use its siderophores to inhibit (public bad) rather than stimulate (public good) resident growth. Conversely, invasion success decreased the more the invader was inhibited by the residents’ siderophores. Our findings identify siderophores as a major driver of invasion dynamics in bacterial communities under iron‐limited conditions.
Collapse
Affiliation(s)
- Alexandre R T Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Özhan Özkaya
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
68
|
Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat Ecol Evol 2021; 5:1624-1636. [PMID: 34750532 PMCID: PMC7612097 DOI: 10.1038/s41559-021-01573-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
Horizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received support from theoretical, genomic and experimental analyses. In contrast, we show here, with a comparative analysis across 51 diverse species, that genes for extracellular proteins, which are likely to act as cooperative ‘public goods’, were not more likely to be carried on either: (i) plasmids compared to chromosomes; or (ii) plasmids that transfer at higher rates. Our results were supported by theoretical modelling which showed that while horizontal gene transfer can help cooperative genes initially invade a population, it has less influence on the longer-term maintenance of cooperation. Instead, we found that genes for extracellular proteins were more likely to be on plasmids when they coded for pathogenic virulence traits, in pathogenic bacteria with a broad host-range.
Collapse
|
69
|
Liu M, West SA, Cooper GA. Relatedness and the evolution of mechanisms to divide labor in microorganisms. Ecol Evol 2021; 11:14475-14489. [PMID: 34765120 PMCID: PMC8571581 DOI: 10.1002/ece3.8067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
Division of labor occurs when cooperating individuals specialize to perform different tasks. In bacteria and other microorganisms, some species divide labor by random specialization, where an individual's role is determined by random fluctuations in biochemical reactions within the cell. Other species divide labor by coordinating across individuals to determine which cells will perform which task, using mechanisms such as between-cell signaling. However, previous theory, examining the evolution of mechanisms to divide labor between reproductives and sterile helpers, has only considered clonal populations, where there is no potential for conflict between individuals. We used a mixture of analytical and simulation models to examine nonclonal populations and found that: (a) intermediate levels of coordination can be favored, between the extreme of no coordination (random) and full coordination; (b) as relatedness decreases, coordinated division of labor is less likely to be favored. Our results can help explain why coordinated division of labor is relatively rare in bacteria, where groups may frequently be nonclonal.
Collapse
Affiliation(s)
- Ming Liu
- Department of ZoologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
70
|
Van Den Berghe M, Merino N, Nealson KH, West AJ. Silicate minerals as a direct source of limiting nutrients: Siderophore synthesis and uptake promote ferric iron bioavailability from olivine and microbial growth. GEOBIOLOGY 2021; 19:618-630. [PMID: 34105248 DOI: 10.1111/gbi.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Iron is a micronutrient critical to fundamental biological processes including respiration and photosynthesis, and it can therefore impact primary and heterotrophic productivity. Yet in oxic environments, iron is highly insoluble, rendering it, in principle, unavailable as a nutrient for biological growth. Life has "solved" this problem via the invention of iron chelates, known as siderophores, that keep iron available for microbial productivity. In this work, we examined the impact of siderophore synthesis on the speciation, mobility, and bioavailability of iron from rock-forming silicate minerals-shedding new light on the mechanisms by which microbes use mineral substrates to support primary productivity, as well as the consequent effects on silicate dissolution. Growth experiments were performed with Shewanella oneidensis MR-1 in an oxic, iron-depleted minimal medium, amended with olivine minerals as the sole source of iron. Experiments included the wild-type strain MR-1, and a siderophore synthesis gene deletion mutant strain (ΔMR-1). Relative to MR-1, ΔMR-1 exhibited a very pronounced growth penalty and an extended lag phase. However, substantial growth of ΔMR-1, comparable to MR-1 growth, was observed when the mutant strain was provided with siderophores in the form of either filtrate from a well-grown MR-1 culture, or commercially available deferoxamine. These observations suggest that siderophores are critical for S. oneidensis to acquire iron from olivine. Growth-limiting concentrations of deferoxamine amendments were observed to be ≤5-10 µM, concentrations significantly lower than previously recorded as necessary to impact mineral dissolution rates. X-ray photoelectric spectroscopy analyses of the incubated olivine surfaces suggest that siderophores deplete mineral surface layers of ferric iron. Combined, these results demonstrate that low micromolar concentrations of siderophores can effectively mobilize iron bound within silicate minerals, supporting very significant biological growth in limiting environments. The specific mechanism would involve siderophores removing a protective layer of nanometer-thick iron oxides, enhancing silicate dissolution and nutrient bioavailability.
Collapse
Affiliation(s)
- Martin Van Den Berghe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - A Joshua West
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
71
|
Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, Kost C. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biol 2021; 31:5547-5557.e6. [PMID: 34731676 DOI: 10.1016/j.cub.2021.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The exchange of metabolites among different bacterial genotypes profoundly impacts the structure and function of microbial communities. However, the factors governing the establishment of these cross-feeding interactions remain poorly understood. While shared physiological features may facilitate interactions among more closely related individuals, a lower relatedness should reduce competition and thus increase the potential for synergistic interactions. Here, we investigate how the relationship between a metabolite donor and recipient affects the propensity of strains to engage in unidirectional cross-feeding interactions. For this, we performed pairwise cocultivation experiments between four auxotrophic recipients and 25 species of potential amino acid donors. Auxotrophic recipients grew in the vast majority of pairs tested (63%), suggesting metabolic cross-feeding interactions are readily established. Strikingly, both the phylogenetic distance between donor and recipient and the dissimilarity of their metabolic networks were positively associated with the growth of auxotrophic recipients. Analyzing the co-growth of species from a gut microbial community in silico also revealed that recipient genotypes benefitted more from interacting with metabolically dissimilar partners, thus corroborating the empirical results. Together, our work identifies the metabolic dissimilarity between bacterial genotypes as a key factor determining the establishment of metabolic cross-feeding interactions in microbial communities.
Collapse
Affiliation(s)
- Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Nutriinformatics, Christian-Albrechts-University Kiel, 24105 Kiel, Germany; Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Shraddha Shitut
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Ghada Yousif
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
72
|
Garber AI, Cohen AB, Nealson KH, Ramírez GA, Barco RA, Enzingmüller-Bleyl TC, Gehringer MM, Merino N. Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats. Front Microbiol 2021; 12:667944. [PMID: 34539592 PMCID: PMC8446621 DOI: 10.3389/fmicb.2021.667944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.
Collapse
Affiliation(s)
- Arkadiy I Garber
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ashley B Cohen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Gustavo A Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Michelle M Gehringer
- Department of Microbiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Nancy Merino
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
73
|
Easy detection of siderophore production in diluted growth media using an improved CAS reagent. J Microbiol Methods 2021; 189:106310. [PMID: 34428498 DOI: 10.1016/j.mimet.2021.106310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Siderophores are low molecular weight organic compounds produced by various microorganisms, especially pathogenic bacteria including rhizobacteria, and have a high affinity for iron. Although most microorganisms are thought to secrete siderophores under iron-depleted conditions, it is unclear how many microorganisms produce siderophores in the natural environment. Also, the chrome azurol sulfonate (CAS) assay, which is widely used for the detection of siderophores, needs to be improved for wider applicability. We developed a simple, high-throughput CAS assay in a 96-well microplate with a concentrated CAS reagent and commonly used diluted growth media in the absence of artificial iron depletion. The improved microplate CAS shuttle assay revealed that it could easily detect siderophores released from Pseudomonas (P.) fluorescence, P. putida, Burlkholderia stabilis, and Ottowia oryzae, as models of siderophore-producing bacteria. This CAS shuttle assay employed along with diluted growth media is a promising tool to screen new siderophore-producing bacteria.
Collapse
|
74
|
Figueiredo ART, Wagner A, Kümmerli R. Ecology drives the evolution of diverse social strategies in Pseudomonas aeruginosa. Mol Ecol 2021; 30:5214-5228. [PMID: 34390514 PMCID: PMC9291133 DOI: 10.1111/mec.16119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
Bacteria often cooperate by secreting molecules that can be shared as public goods between cells. Because the production of public goods is subject to cheating by mutants that exploit the good without contributing to it, there has been great interest in elucidating the evolutionary forces that maintain cooperation. However, little is known about how bacterial cooperation evolves under conditions where cheating is unlikely to be of importance. Here we use experimental evolution to follow changes in the production of a model public good, the iron‐scavenging siderophore pyoverdine, of the bacterium Pseudomonas aeruginosa. After 1200 generations of evolution in nine different environments, we observed that cheaters only reached high frequency in liquid medium with low iron availability. Conversely, when adding iron to reduce the cost of producing pyoverdine, we observed selection for pyoverdine hyperproducers. Similarly, hyperproducers also spread in populations evolved in highly viscous media, where relatedness between interacting individuals is increased. Whole‐genome sequencing of evolved clones revealed that hyperproduction is associated with mutations involving genes encoding quorum‐sensing communication systems, while cheater clones had mutations in the iron‐starvation sigma factor or in pyoverdine biosynthesis genes. Our findings demonstrate that bacterial social traits can evolve rapidly in divergent directions, with particularly strong selection for increased levels of cooperation occurring in environments where individual dispersal is reduced, as predicted by social evolution theory. Moreover, we establish a regulatory link between pyoverdine production and quorum‐sensing, showing that increased cooperation with respect to one trait (pyoverdine) can be associated with the loss (quorum‐sensing) of another social trait.
Collapse
Affiliation(s)
- Alexandre R T Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, 8057, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| |
Collapse
|
75
|
Butaitė E, Kramer J, Kümmerli R. Local adaptation, geographical distance and phylogenetic relatedness: Assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J Evol Biol 2021; 34:1266-1278. [PMID: 34101930 PMCID: PMC8453950 DOI: 10.1111/jeb.13883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Garrido-Sanz D, Redondo-Nieto M, Martin M, Rivilla R. Comparative genomics of the Pseudomonas corrugata subgroup reveals high species diversity and allows the description of Pseudomonas ogarae sp. nov. Microb Genom 2021; 7:000593. [PMID: 34184980 PMCID: PMC8461476 DOI: 10.1099/mgen.0.000593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas corrugata constitute one of the phylogenomic subgroups within the Pseudomonas fluorescens species complex and include both plant growth-promoting rhizobacteria (PGPR) and plant pathogenic bacteria. Previous studies suggest that the species diversity of this group remains largely unexplored together with frequent misclassification of strains. Using more than 1800 sequenced Pseudomonas genomes we identified 121 genomes belonging to the P. corrugata subgroup. Intergenomic distances obtained using the genome-to-genome blast distance (GBDP) algorithm and the determination of digital DNA-DNA hybridization values were further used for phylogenomic and clustering analyses, which revealed 29 putative species clusters, of which only five correspond to currently named species within the subgroup. Comparative and functional genome-scale analyses also support the species status of these clusters. The search for PGPR and plant pathogenic determinants showed that approximately half of the genomes analysed could have a pathogenic behaviour based on the presence of a pathogenicity genetic island, while all analysed genomes possess PGPR traits. Finally, this information together with the characterization of phenotypic traits, allows the reclassification proposal of Pseudomonas fluorescens F113 as Pseudomonas ogarae sp. nov., nom rev., type strain F113T (=DSM 112162T=CECT 30235T), which is substantiated by genomic, functional genomics and phenotypic differences with their closest type strains.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
77
|
Xu L, Dong Z, Chiniquy D, Pierroz G, Deng S, Gao C, Diamond S, Simmons T, Wipf HML, Caddell D, Varoquaux N, Madera MA, Hutmacher R, Deutschbauer A, Dahlberg JA, Guerinot ML, Purdom E, Banfield JF, Taylor JW, Lemaux PG, Coleman-Derr D. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat Commun 2021; 12:3209. [PMID: 34050180 PMCID: PMC8163885 DOI: 10.1038/s41467-021-23553-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.
Collapse
Affiliation(s)
- Ling Xu
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA ,grid.22935.3f0000 0004 0530 8290State Key Laboratory of Plant Physiology and Biochemistry, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaobin Dong
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Dawn Chiniquy
- grid.184769.50000 0001 2231 4551Department of Energy, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Grady Pierroz
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Siwen Deng
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Cheng Gao
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Spencer Diamond
- grid.47840.3f0000 0001 2181 7878Department of Earth and Planetary Science, University of California, Berkeley, CA USA
| | - Tuesday Simmons
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Heidi M.-L. Wipf
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Daniel Caddell
- grid.507310.0Plant Gene Expression Center, USDA-ARS, Albany, CA USA
| | - Nelle Varoquaux
- grid.463716.10000 0004 4687 1979CNRS, University Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | - Mary A. Madera
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Robert Hutmacher
- grid.27860.3b0000 0004 1936 9684Westside Research & Extension Center, UC Department of Plant Sciences, University of California, Davis, CA USA
| | - Adam Deutschbauer
- grid.184769.50000 0001 2231 4551Department of Energy, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Mary Lou Guerinot
- grid.254880.30000 0001 2179 2404Department of Biological Scienes, Dartmouth College, Hanover, NH USA
| | - Elizabeth Purdom
- grid.47840.3f0000 0001 2181 7878Department of Statistics, University of California, Berkeley, CA USA
| | - Jillian F. Banfield
- grid.47840.3f0000 0001 2181 7878Department of Earth and Planetary Science, University of California, Berkeley, CA USA
| | - John W. Taylor
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Peggy G. Lemaux
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Devin Coleman-Derr
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA ,grid.507310.0Plant Gene Expression Center, USDA-ARS, Albany, CA USA
| |
Collapse
|
78
|
Picard L, Paris C, Dhalleine T, Morin E, Oger P, Turpault MP, Uroz S. The mineral weathering ability of Collimonas pratensis PMB3(1) involves a Malleobactin-mediated iron acquisition system. Environ Microbiol 2021; 24:784-802. [PMID: 33817942 DOI: 10.1111/1462-2920.15508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 11/27/2022]
Abstract
Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.
Collapse
Affiliation(s)
- Laura Picard
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Cédric Paris
- Université de Lorraine, EA 4367 « Laboratoire d'Ingénierie des Biomolécules », Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires (ENSAIA), Vandœuvre-lès-Nancy, F-54505, France.,Plateau d'Analyse Structurale et Métabolomique (PASM) - SF4242 EFABA, Vandœuvre-lès-Nancy, F-54505, France
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR 5240 « Microbiologie, Adaptation et Pathogénie », Villeurbanne, F-69621, France
| | - Marie-Pierre Turpault
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| |
Collapse
|
79
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
80
|
Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa. ISME JOURNAL 2021; 15:2379-2389. [PMID: 33654265 DOI: 10.1038/s41396-021-00938-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13-33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.
Collapse
|
81
|
Rhizobiales-Specific RirA Represses a Naturally "Synthetic" Foreign Siderophore Gene Cluster To Maintain Sinorhizobium-Legume Mutualism. mBio 2021; 13:e0290021. [PMID: 35130720 PMCID: PMC8822346 DOI: 10.1128/mbio.02900-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron homeostasis is strictly regulated in cellular organisms. The Rhizobiales order enriched with symbiotic and pathogenic bacteria has evolved a lineage-specific regulator, RirA, responding to iron fluctuations. However, the regulatory role of RirA in bacterium-host interactions remains largely unknown. Here, we report that RirA is essential for mutualistic interactions of Sinorhizobium fredii with its legume hosts by repressing a gene cluster directing biosynthesis and transport of petrobactin siderophore. Genes encoding an inner membrane ABC transporter (fat) and the biosynthetic machinery (asb) of petrobactin siderophore are sporadically distributed in Gram-positive and Gram-negative bacteria. An outer membrane siderophore receptor gene (fprA) was naturally assembled with asb and fat, forming a long polycistron in S. fredii. An indigenous regulation cascade harboring an inner membrane protease (RseP), a sigma factor (FecI), and its anti-sigma protein (FecR) were involved in direct activation of the fprA-asb-fat polycistron. Operons harboring fecI and fprA-asb-fat, and those encoding the indigenous TonB-ExbB-ExbD complex delivering energy to the outer membrane transport activity, were directly repressed by RirA under iron-replete conditions. The rirA deletion led to upregulation of these operons and iron overload in nodules, impaired intracellular persistence, and symbiotic nitrogen fixation of rhizobia. Mutualistic defects of the rirA mutant can be rescued by blocking activities of this naturally "synthetic" circuit for siderophore biosynthesis and transport. These findings not only are significant for understanding iron homeostasis of mutualistic interactions but also provide insights into assembly and integration of foreign machineries for biosynthesis and transport of siderophores, horizontal transfer of which is selected in microbiota. IMPORTANCE Iron is a public good explored by both eukaryotes and prokaryotes. The abundant ferric form is insoluble under neutral and basic pH conditions, and many bacteria secrete siderophores forming soluble ferric siderophore complexes, which can be then taken up by specific receptors and transporters. Siderophore biosynthesis and uptake machineries can be horizontally transferred among bacteria in nature. Despite increasing attention on the importance of siderophores in host-microbiota interactions, the regulatory integration process of transferred siderophore biosynthesis and transport genes is poorly understood in an evolutionary context. By focusing on the mutualistic rhizobium-legume symbiosis, here, we report how a naturally synthetic foreign siderophore gene cluster was integrated with the rhizobial indigenous regulation cascade, which is essential for maintaining mutualistic interactions.
Collapse
|
82
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
83
|
Wang M, Nie Y, Wu XL. Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a Gram-positive bacterium. THE ISME JOURNAL 2021; 15:605-617. [PMID: 33037324 PMCID: PMC8027190 DOI: 10.1038/s41396-020-00800-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Microbes spontaneously release membrane vesicles (MVs), which play roles in nutrient acquisition and microbial interactions. Iron is indispensable for microbes, but is a difficult nutrient to acquire. However, whether MVs are also responsible for efficient iron uptake and therefore involved in microbial interaction remains to be elucidated. Here, we used a Gram-positive strain, Dietzia sp. DQ12-45-1b, to analyze the function of its MVs in heme-iron recycling and sharing between species. We determined the structure and constituent of MVs and showed that DQ12-45-1b releases MVs originating from the mycomembrane. When comparing proteomes of MVs between iron-limiting and iron-rich conditions, we found that under iron-limiting conditions, heme-binding proteins are enriched. Next, we proved that MVs participate in extracellular heme capture and transport, especially in heme recycling from environmental hemoproteins. Finally, we found that the heme carried in MVs is utilized by multiple species, and we further verified that membrane fusion efficiency and species evolutionary distance determine heme delivery. Together, our findings strongly suggest that MVs act as a newly identified pathway for heme recycling, and represent a public good shared between phylogenetically closely related species.
Collapse
Affiliation(s)
- Meng Wang
- College of Engineering, Peking University, 100871, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, 100871, Beijing, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, 100871, Beijing, China.
- Institute of Ocean Research, Peking University, 100871, Beijing, China.
- Institute of Ecology, Peking University, 100871, Beijing, China.
| |
Collapse
|
84
|
Pessione E. The Less Expensive Choice: Bacterial Strategies to Achieve Successful and Sustainable Reciprocal Interactions. Front Microbiol 2021; 11:571417. [PMID: 33584557 PMCID: PMC7873842 DOI: 10.3389/fmicb.2020.571417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria, the first organisms that appeared on Earth, continue to play a central role in ensuring life on the planet, both as biogeochemical agents and as higher organisms' symbionts. In the last decades, they have been employed both as bioremediation agents for cleaning polluted sites and as bioconversion effectors for obtaining a variety of products from wastes (including eco-friendly plastics and green energies). However, some recent reports suggest that bacterial biodiversity can be negatively affected by the present environmental crisis (global warming, soil desertification, and ocean acidification). This review analyzes the behaviors positively selected by evolution that render bacteria good models of sustainable practices (urgent in these times of climate change and scarcity of resources). Actually, bacteria display a tendency to optimize rather than maximize, to economize energy and building blocks (by using the same molecule for performing multiple functions), and to recycle and share metabolites, and these are winning strategies when dealing with sustainability. Furthermore, their ability to establish successful reciprocal relationships by means of anticipation, collective actions, and cooperation can also constitute an example highlighting how evolutionary selection favors behaviors that can be strategic to contain the present environmental crisis.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
85
|
García-Contreras R, Loarca D. The bright side of social cheaters: potential beneficial roles of "social cheaters" in microbial communities. FEMS Microbiol Ecol 2020; 97:6006265. [PMID: 33238304 DOI: 10.1093/femsec/fiaa239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cooperation in microbial communities via production of public goods is susceptible to social cheating, since selfish individuals that do not contribute to their synthesis but benefit from their production thrive in the presence of cooperators. This behavior has been observed in the laboratory using bacterial and yeast models. Moreover, growing evidence indicates that cheating is frequent in natural microbial communities. In the laboratory, social cheating can promote population collapse or "tragedy of the commons" when excessive. Nevertheless, there are diverse mechanisms that counteract cheating in microbes, as well as theoretical and experimental evidence that suggests possible beneficial roles of social cheaters for the microbial populations. In this mini review manuscript we compile and discuss such possible roles.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Daniel Loarca
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| |
Collapse
|
86
|
González J, Salvador M, Özkaya Ö, Spick M, Reid K, Costa C, Bailey MJ, Avignone Rossa C, Kümmerli R, Jiménez JI. Loss of a pyoverdine secondary receptor in Pseudomonas aeruginosa results in a fitter strain suitable for population invasion. ISME JOURNAL 2020; 15:1330-1343. [PMID: 33323977 DOI: 10.1038/s41396-020-00853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023]
Abstract
The rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited by cheaters that do not produce these goods. Cheater invasion has been proposed as a 'Trojan horse' approach to infiltrate pathogen populations with strains deploying built-in weaknesses (e.g., sensitiveness to antibiotics). However, previous attempts have been often unsuccessful because population invasion by cheaters was prevented by various mechanisms including the presence of spatial structure (e.g., growth in biofilms), which limits the diffusion and exploitation of public goods. Here we followed an alternative approach and examined whether the manipulation of public good uptake and not its production could result in potential 'Trojan horses' suitable for population invasion. We focused on the siderophore pyoverdine produced by the human pathogen Pseudomonas aeruginosa MPAO1 and manipulated its uptake by deleting and/or overexpressing the pyoverdine primary (FpvA) and secondary (FpvB) receptors. We found that receptor synthesis feeds back on pyoverdine production and uptake rates, which led to strains with altered pyoverdine-associated costs and benefits. Moreover, we found that the receptor FpvB was advantageous under iron-limited conditions but revealed hidden costs in the presence of an antibiotic stressor (gentamicin). As a consequence, FpvB mutants became the fittest strain under gentamicin exposure, displacing the wildtype in liquid cultures, and in biofilms and during infections of the wax moth larvae Galleria mellonella, which both represent structured environments. Our findings reveal that an evolutionary trade-off associated with the costs and benefits of a versatile pyoverdine uptake strategy can be harnessed for devising a Trojan-horse candidate for medical interventions.
Collapse
Affiliation(s)
- Jaime González
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Özhan Özkaya
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matt Spick
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kate Reid
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Catia Costa
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Melanie J Bailey
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Rolf Kümmerli
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - José I Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK. .,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
87
|
Hao X, Zhu J, Rensing C, Liu Y, Gao S, Chen W, Huang Q, Liu YR. Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 2020; 19:94-109. [PMID: 33425244 PMCID: PMC7771044 DOI: 10.1016/j.csbj.2020.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
88
|
Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc Natl Acad Sci U S A 2020; 117:32358-32369. [PMID: 33273114 PMCID: PMC7768705 DOI: 10.1073/pnas.2016380117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Siderophore secretion confers competitive advantage to pathogenic and beneficial bacteria in various nutritional environments, including human infections and rhizosphere microbiome. The siderophore biosynthesis must be sustained during a compromised carbon metabolism in Fe-deficient cells. Here we demonstrate that Fe-deficient Pseudomonas species overcome this paradox by coupling selectivity in carbon utilization with a hierarchy in metabolic pathways to favor carbon and energy fluxes for siderophore biosynthesis. A reprogrammed metabolism is predicted from genomics-based data obtained with several marine and soil bacterial systems in response to Fe deficiency, but metabolomics evidence is lacking. The present study offers an important roadmap for investigating the underlying metabolic connections between Fe or other metal nutrient availability and carbon utilization. High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated (Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.
Collapse
|
89
|
Galvis F, Ageitos L, Martínez-Matamoros D, Barja JL, Rodríguez J, Lemos ML, Jiménez C, Balado M. The marine bivalve molluscs pathogen Vibrio neptunius produces the siderophore amphibactin, which is widespread in molluscs microbiota. Environ Microbiol 2020; 22:5467-5482. [PMID: 33169914 DOI: 10.1111/1462-2920.15312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Amphiphilic siderophores, including amphibactins, are the most abundant siderophores in oceans. Genes putatively encoding the amphibactin system were proposed in some bacteria and homologues of these genes are particularly abundant in multiple bacterial lineages inhabitant of low-iron seawater. However, since no defective mutant strains in any of these genes were studied to date, their role in amphibactin synthesis or uptake was not demonstrated. In this work, an in silico analysis of the genome of the mollusc pathogen Vibrio neptunius leads us to identify a gene cluster (denoted absABDEF) that is predicted to encode an amphibactin-like siderophore and several mutant strains unable to synthesize or use siderophores were constructed. The results showed that genes absABDEF are required for amphibactin synthesis. A comparative chemical analysis of V. neptunius wild type and biosynthesis mutants allowed us to identify a mixture of nine amphibactin forms produced by this bacterium. In addition, the gene abtA is predicted to encode the ferri-amphibactin outer membrane transporter. The prevalence of the amphibactin system in bivalve hemolymph microbiota was also studied. We found that the amphibactin system is widespread in hemolymph microbiota including both commensal and pathogenic bacterial species. Thus, its contribution to bacterial fitness must be more related to environmental persistence than to pathogenicity.
Collapse
Affiliation(s)
- Fabián Galvis
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain
| | - Lucía Ageitos
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultad de Ciencias, AE CICA-INIBIC, Universidade da Coruña, A Coruña, Spain
| | - Diana Martínez-Matamoros
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultad de Ciencias, AE CICA-INIBIC, Universidade da Coruña, A Coruña, Spain
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain
| | - Jaime Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultad de Ciencias, AE CICA-INIBIC, Universidade da Coruña, A Coruña, Spain
| | - Manuel L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain
| | - Carlos Jiménez
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultad de Ciencias, AE CICA-INIBIC, Universidade da Coruña, A Coruña, Spain
| | - Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain
| |
Collapse
|
90
|
Kügler S, Cooper RE, Boessneck J, Küsel K, Wichard T. Rhizobactin B is the preferred siderophore by a novel Pseudomonas isolate to obtain iron from dissolved organic matter in peatlands. Biometals 2020; 33:415-433. [PMID: 33026607 PMCID: PMC7676072 DOI: 10.1007/s10534-020-00258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023]
Abstract
Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.
Collapse
Affiliation(s)
- Stefan Kügler
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Rebecca E Cooper
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Johanna Boessneck
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- The German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
91
|
Singh P, Khan A, Kumar R, Kumar R, Singh VK, Srivastava A. Recent developments in siderotyping: procedure and application. World J Microbiol Biotechnol 2020; 36:178. [PMID: 33128090 DOI: 10.1007/s11274-020-02955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Siderophores are metal chelating secondary metabolites secreted by almost all organisms. Beside iron starvation, the ability to produce siderophores depends upon several other factors. Chemical structure of siderophore is very complex with vast structural diversity, thus the principle challenge involves its detection, quantification, purification and characterisation. Metal chelation is its most fascinating attribute. This metal chelation property is now forming the basis of its application as molecular markers, siderotyping tool for taxonomic clarification, biosensors and bioremediation agents. This has led researchers to develop and continuously modify previous techniques in order to provide accurate and reproducible methods of studying siderophores. Knowledge obtained via computational approaches provides a new horizon in the field of siderophore biosynthetic gene clusters and their interaction with various proteins/peptides. This review illustrates various techniques, bioinformatics tools and databases employed in siderophores' studies, the principle of analytical methods and their recent applications.
Collapse
Affiliation(s)
- Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Rakesh Kumar
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India.
| |
Collapse
|
92
|
Gene Loss and Acquisition in Lineages of Pseudomonas aeruginosa Evolving in Cystic Fibrosis Patient Airways. mBio 2020; 11:mBio.02359-20. [PMID: 33109761 PMCID: PMC7593970 DOI: 10.1128/mbio.02359-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial airway infections, predominantly caused by P. aeruginosa, are a major cause of mortality and morbidity of CF patients. While short insertions and deletions as well as point mutations occurring during infection are well studied, there is a lack of understanding of how gene loss and acquisition play roles in bacterial adaptation to the human airways. Here, we investigated P. aeruginosa within-host evolution with regard to gene loss and acquisition. We show that during long-term infection P. aeruginosa genomes tend to lose genes, in particular, genes related to virulence. This adaptive strategy allows reduction of the genome size and evasion of the host’s immune response. This knowledge is crucial to understand the basic mutational steps that, on the timescale of years, diversify lineages and adds to the identification of bacterial genetic determinants that have implications for CF disease. Genome analyses have documented that there are differences in gene repertoire between evolutionary distant lineages of the same bacterial species; however, less is known about microevolutionary dynamics of gene loss and acquisition within bacterial lineages as they evolve over years. Here, we analyzed the genomes of 45 Pseudomonas aeruginosa lineages evolving in the lungs of cystic fibrosis (CF) patients to identify genes that are lost or acquired during the first years of infection. On average, lineage genome content changed by 88 genes (range, 0 to 473). Genes were more often lost than acquired, and prophage genes were more variable than bacterial genes. We identified convergent loss or acquisition of the same genes across lineages, suggesting selection for loss and acquisition of certain genes in the host environment. We found that a notable proportion of such genes are associated with virulence; a trait previously shown to be important for adaptation. Furthermore, we also compared the genomes across lineages to show that the within-lineage variable genes (i.e., genes that had been lost or acquired during the infection) often belonged to genomic content not shared across all lineages. In sum, our analysis adds to the knowledge on the pace and drivers of gene loss and acquisition in bacteria evolving over years in a human host environment and provides a basis to further understand how gene loss and acquisition play roles in lineage differentiation and host adaptation.
Collapse
|
93
|
Wang M, Nie Y, Wu XL. Membrane vesicles from a Dietzia bacterium containing multiple cargoes and their roles in iron delivery. Environ Microbiol 2020; 23:1009-1019. [PMID: 33048442 DOI: 10.1111/1462-2920.15278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
Membrane vesicles (MVs) released from bacteria act as extracellular vehicles carrying various functional cargoes between cells. MVs with different cargoes play multiple roles in stress adaptation, nutrient acquisition and microbial interactions. However, previous studies have primarily focused on MVs from Gram-negative bacteria, while the characteristics of cargoes in MVs from Gram-positive bacteria and their involvement in microbial interactions remain to be elucidated. Here, we used a Gram-positive strain, Dietzia sp. DQ12-45-1b from Corynebacteriales, to analyse the characteristics and functions of MVs. We identified the 'antioxidant' canthaxanthin is stored within MVs by LC-MS/MS. In addition, nearly the entire genomic content of strain DQ12-45-1b are evenly distributed in MVs, suggesting that MVs from DQ12-45-1b might involve in horizontal gene transfer. Finally, the mycobactin-type siderophores were detected in MVs. The iron-loaded MVs effectively mediate iron binding and delivery to homologous bacteria from the order Corynebacteriales, but not to more distantly related species from the orders Pseudomonadales, Bacillales and Enterobacterales. These results revealed that the iron-loaded MVs are shared between homologous species. Together, we report the Gram-positive bacterium Dietzia sp. DQ12-45-1b released MVs that contain canthaxanthin, DNA and siderophores and prove that MVs act as public goods between closely related species.
Collapse
Affiliation(s)
- Meng Wang
- College of Engineering, Peking University, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China.,Institute of Ocean Research, Peking University, Beijing, China.,Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
94
|
Pande S, Pérez Escriva P, Yu YTN, Sauer U, Velicer GJ. Cooperation and Cheating among Germinating Spores. Curr Biol 2020; 30:4745-4752.e4. [PMID: 32976811 DOI: 10.1016/j.cub.2020.08.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 08/26/2020] [Indexed: 11/27/2022]
Abstract
Many microbes produce stress-resistant spores to survive unfavorable conditions [1-4] and enhance dispersal [1, 5]. Cooperative behavior is integral to the process of spore formation in some species [3, 6], but the degree to which germination of spore populations involves social interactions remains little explored. Myxococcus xanthus is a predatory soil bacterium that upon starvation forms spore-filled multicellular fruiting bodies that often harbor substantial diversity of endemic origin [7, 8]. Here we demonstrate that germination of M. xanthus spores formed during fruiting-body development is a social process involving at least two functionally distinct social molecules. Using pairs of natural isolates each derived from a single fruiting body that emerged on soil, we first show that spore germination exhibits positive density dependence due to a secreted "public-good" germination factor. Further, we find that a germination defect of one strain under saline stress in pure culture is complemented by addition of another strain that germinates well in saline environments and mediates cheating by the defective strain. Glycine betaine, an osmo-protectant utilized in all domains of life, is found to mediate saline-specific density dependence and cheating. Density dependence in non-saline conditions is mediated by a distinct factor, revealing socially complex spore germination involving multiple social molecules.
Collapse
Affiliation(s)
- Samay Pande
- Institute for Integrative Biology, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland; Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, 560012 Bangalore, India.
| | - Pau Pérez Escriva
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 2, 8093 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Institute for Integrative Biology, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 2, 8093 Zurich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
95
|
Rai V, Fisher N, Duckworth OW, Baars O. Extraction and Detection of Structurally Diverse Siderophores in Soil. Front Microbiol 2020; 11:581508. [PMID: 33042099 PMCID: PMC7527475 DOI: 10.3389/fmicb.2020.581508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Although the biochemistry of bacterial and fungal siderophores has been intensively studied in laboratory cultures, their distribution and impacts on nutrient cycling and microbial communities in soils remain poorly understood. The detection of siderophores in soil is an analytical challenge because of the complexity of the soil matrix and their structural diversity. Liquid chromatography-mass spectrometry (LC-MS) is a suitable method for the sensitive analysis of siderophores in complex samples; however, siderophore extraction into liquid phases for analysis by LC-MS is problematic because of their adsorption to soil particles and organic matter. To determine extraction efficiencies of structurally diverse siderophores, spike-recovery experiments were set up with standards representing the three main siderophore classes: the hydroxamate desferrioxamine B (DFOB), the α-hydroxycarboxylate rhizoferrin, and the catecholate protochelin. Previously used solvent extractions with water or methanol recovered only a small fraction (< 35%) of siderophores, including < 5% for rhizoferrin and protochelin. We designed combinatorial chemical extractions (22 total solutions) to target siderophores associated with different soil components. A combination of calcium chloride and ascorbate achieved high and, for some soils, quantitative extraction of DFOB and rhizoferrin. Protochelin analysis was complicated by potential fast oxidation and interactions with colloidal soil components. Using the optimized extraction method, we detected α-hydroxycarboxylate type siderophores (viz. rhizoferrin, vibrioferrin, and aerobactin) in soil for the first time. Concentrations reached 461 pmol g-1, exceeding previously reported concentrations of siderophores in soil and suggesting a yet unrecognized importance of α-hydroxycarboxylate siderophores for biological interactions and biogeochemical processes in soil.
Collapse
Affiliation(s)
- Vineeta Rai
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Nathaniel Fisher
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Owen W. Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
96
|
Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett 2020; 367:5804726. [PMID: 32166327 DOI: 10.1093/femsle/fnaa045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic methane-oxidizing bacteria of the Alphaproteobacteria have been found to express a novel ribosomally synthesized post-translationally modified polypeptide (RiPP) termed methanobactin (MB). The primary function of MB in these microbes appears to be for copper uptake, but MB has been shown to have multiple capabilities, including oxidase, superoxide dismutase and hydrogen peroxide reductase activities, the ability to detoxify mercury species, as well as acting as an antimicrobial agent. Herein, we describe the diversity of known MBs as well as the genetics underlying MB biosynthesis. We further propose based on bioinformatics analyses that some methanotrophs may produce novel forms of MB that have yet to be characterized. We also discuss recent findings documenting that MBs play an important role in controlling copper availability to the broader microbial community, and as a result can strongly affect the activity of microbes that require copper for important enzymatic transformations, e.g. conversion of nitrous oxide to dinitrogen. Finally, we describe procedures for the detection/purification of MB, as well as potential medical and industrial applications of this intriguing RiPP.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | | | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| |
Collapse
|
97
|
Gu Y, Ma Y, Wang J, Xia Z, Wei H. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity. Microbiologyopen 2020; 9:e1092. [PMID: 32537904 PMCID: PMC7520995 DOI: 10.1002/mbo3.1092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Strain S150 was isolated from the tobacco rhizosphere as a plant growth-promoting rhizobacterium. It increased plant fresh weight significantly and lateral root development, and it antagonized plant pathogenic fungi but not phytobacteria. Further tests showed that strain S150 solubilized organic phosphate and produced ammonia, siderophore, protease, amylase, and cellulase, but it did not produce indole-3-acetic acid. Using morphology, physiological characteristics, and multi-locus sequence analysis, strain S150 was identified as Pseudomonas koreensis. The complete genome of strain S150 was sequenced, and it showed a single circular chromosome of 6,304,843 bp with a 61.09% G + C content. The bacterial genome contained 5,454 predicted genes that occupied 87.7% of the genome. Venn diagrams of the identified orthologous clusters of P. koreensis S150 with the other three sequenced P. koreensis strains revealed up to 4,167 homologous gene clusters that were shared among them, and 21 orthologous clusters were only present in the genome of strain S150. Genome mining of the bacterium P. koreensis S150 showed that the strain possessed 10 biosynthetic gene clusters for secondary metabolites, which included four clusters of non-ribosomal peptide synthetases (NRPSs) involved in the biosynthesis of cyclic lipopeptides (CLPs). One of the NRPSs possibly encoded lokisin, a cyclic lipopeptide produced by fluorescent Pseudomonas. Genomic mutation of the lokA gene, which is one of the three structural NRPS genes for lokisin in strain S150, led to a deficiency in fungal antagonism that could be restored fully by gene complementation. The results suggested that P. koreensis S150 is a novel plant growth-promoting agent with specific cyclic lipopeptides and contains a lokisin-encoding gene cluster that is dominant against plant fungal pathogens.
Collapse
Affiliation(s)
- Yilin Gu
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yi‐Nan Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jing Wang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural ScienceKunmingChina
| | - Hai‐Lei Wei
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
98
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
99
|
Kramer J, López Carrasco MÁ, Kümmerli R. Positive linkage between bacterial social traits reveals that homogeneous rather than specialised behavioral repertoires prevail in natural Pseudomonas communities. FEMS Microbiol Ecol 2020; 96:5643885. [PMID: 31769782 DOI: 10.1093/femsec/fiz185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria frequently cooperate by sharing secreted metabolites such as enzymes and siderophores. The expression of such 'public good' traits can be interdependent, and studies on laboratory systems have shown that trait linkage affects eco-evolutionary dynamics within bacterial communities. Here, we examine whether linkage among social traits occurs in natural habitats by examining investment levels and correlations between five public goods (biosurfactants, biofilm components, proteases, pyoverdines and toxic compounds) in 315 Pseudomonas isolates from soil and freshwater communities. Our phenotypic assays revealed that (i) social trait expression profiles varied dramatically; (ii) correlations between traits were frequent, exclusively positive and sometimes habitat-specific; and (iii) heterogeneous (specialised) trait repertoires were rarer than homogeneous (unspecialised) repertoires. Our results show that most isolates lie on a continuum between a 'social' type producing multiple public goods, and an 'asocial' type showing low investment into social traits. This segregation could reflect local adaptation to different microhabitats, or emerge from interactions between different social strategies. In the latter case, our findings suggest that the scope for competition among unspecialised isolates exceeds the scope for mutualistic exchange of different public goods between specialised isolates. Overall, our results indicate that complex interdependencies among social traits shape microbial lifestyles in nature.
Collapse
Affiliation(s)
- Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Miguel Ángel López Carrasco
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Departamento de Biología Celular, Genética y Fisiología, University of Málaga, Bulevar Louis Pasteur 31, 29010 Málaga, Spain
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
100
|
Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, Xu Y, Shen Q, Kümmerli R, Jousset A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol 2020; 5:1002-1010. [PMID: 32393858 PMCID: PMC7116525 DOI: 10.1038/s41564-020-0719-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/03/2020] [Indexed: 01/26/2023]
Abstract
Plant pathogenic bacteria cause high crop and economic losses to human societies1-3. Infections by such pathogens are challenging to control as they often arise through complex interactions between plants, pathogens and the plant microbiome4,5. Experimental studies of this natural ecosystem at the microbiome-wide scale are rare, and consequently we have a poor understanding of how the taxonomic and functional microbiome composition and the resulting ecological interactions affect pathogen growth and disease outbreak. Here, we combine DNA-based soil microbiome analysis with in vitro and in planta bioassays to show that competition for iron via secreted siderophore molecules is a good predictor of microbe-pathogen interactions and plant protection. We examined the ability of 2,150 individual bacterial members of 80 rhizosphere microbiomes, covering all major phylogenetic lineages, to suppress the bacterium Ralstonia solanacearum, a global phytopathogen capable of infecting various crops6,7. We found that secreted siderophores altered microbiome-pathogen interactions from complete pathogen suppression to strong facilitation. Rhizosphere microbiome members with growth-inhibitory siderophores could often suppress the pathogen in vitro as well as in natural and greenhouse soils, and protect tomato plants from infection. Conversely, rhizosphere microbiome members with growth-promotive siderophores were often inferior in competition and facilitated plant infection by the pathogen. Because siderophores are a chemically diverse group of molecules, with each siderophore type relying on a compatible receptor for iron uptake8-12, our results suggest that pathogen-suppressive microbiome members produce siderophores that the pathogen cannot use. Our study establishes a causal mechanistic link between microbiome-level competition for iron and plant protection and opens promising avenues to use siderophore-mediated interactions as a tool for microbiome engineering and pathogen control.
Collapse
Affiliation(s)
- Shaohua Gu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China.
| | - Zhengying Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
- Department of Biology, University of York, York, UK
| | - Kehao Cao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Jos Kramer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Xiaofang Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Mei Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Xinlan Mei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|