51
|
Verma SS, Gudiseva HV, Chavali VRM, Salowe RJ, Bradford Y, Guare L, Lucas A, Collins DW, Vrathasha V, Nair RM, Rathi S, Zhao B, He J, Lee R, Zenebe-Gete S, Bowman AS, McHugh CP, Zody MC, Pistilli M, Khachatryan N, Daniel E, Murphy W, Henderer J, Kinzy TG, Iyengar SK, Peachey NS, Taylor KD, Guo X, Chen YDI, Zangwill L, Girkin C, Ayyagari R, Liebmann J, Chuka-Okosa CM, Williams SE, Akafo S, Budenz DL, Olawoye OO, Ramsay M, Ashaye A, Akpa OM, Aung T, Wiggs JL, Ross AG, Cui QN, Addis V, Lehman A, Miller-Ellis E, Sankar PS, Williams SM, Ying GS, Cooke Bailey J, Rotter JI, Weinreb R, Khor CC, Hauser MA, Ritchie MD, O'Brien JM. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell 2024; 187:464-480.e10. [PMID: 38242088 DOI: 10.1016/j.cell.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.
Collapse
Affiliation(s)
- Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harini V Gudiseva
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata R M Chavali
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca J Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Collins
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vrathasha Vrathasha
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonika Rathi
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Lee
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selam Zenebe-Gete
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita S Bowman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Maxwell Pistilli
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naira Khachatryan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebenezer Daniel
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jeffrey Henderer
- Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Linda Zangwill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radha Ayyagari
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey Liebmann
- Department of Ophthalmology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Donald L Budenz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Onoja M Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tin Aung
- Singapore Eye Research Institute, Singapore, Singapore
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahmara G Ross
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Lehman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eydie Miller-Ellis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S Sankar
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Pharmacology and Toxicology, Center for Health Disparities, Brody School of Medicine. East Carolina University, Greenville, NC, 27834, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robert Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. joan.o'
| |
Collapse
|
52
|
Mackey DA, Staffieri SE. Making glaucoma genetic studies more diverse. Cell 2024; 187:273-275. [PMID: 38242084 DOI: 10.1016/j.cell.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Although the blinding eye disease glaucoma is more common in people of African ancestry, previous genetic studies predominantly involved European subjects. In this issue of Cell, O'Brien et al. report a genome-wide association study for glaucoma in individuals of African ancestry, showing overlap with European studies and refining an African polygenic risk score.
Collapse
Affiliation(s)
- David A Mackey
- Lions Eye Institute, University of Western Australia, Perth, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
53
|
Yan X, Wu S, Liu Q, Cheng Y, Teng Y, Ren T, Zhang J, Wang N. Serine to proline mutation at position 341 of MYOC impairs trabecular meshwork function by causing autophagy deregulation. Cell Death Discov 2024; 10:21. [PMID: 38212635 PMCID: PMC10784477 DOI: 10.1038/s41420-024-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Glaucoma is a highly heritable disease, and myocilin was the first identified causal and most common pathogenic gene in glaucoma. Serine-to-proline mutation at position 341 of myocilin (MYOCS341P) is associated with severe glaucoma phenotypes in a five-generation primary open-angle glaucoma family. However, the underlying mechanisms are underexplored. Herein, we established the MYOCS341P transgenic mouse model and characterized the glaucoma phenotypes. Further, we systematically explored the functional differences between wild-type and MYOCS341P through immunoprecipitation, mass spectrometry, and RNA-seq analyses. We found that MYOCS341P transgenic mice exhibit glaucoma phenotypes, characterized by reduced aqueous humor outflow, elevated intraocular pressure, decreased trabecular meshwork (TM) cell number, narrowed Schlemm's canal, retinal ganglion cell loss, and visual impairment. Mechanistically, the secretion of dysfunctional MYOCS341P accumulated in the endoplasmic reticulum (ER), inducing ER stress and dysregulation of autophagy, thereby promoting TM cell death. We describe an effective transgenic model for mechanistic studies and the screening of therapeutic targets. Our data generated from high-throughput analyses help elucidate the mechanism underlying mutant MYOC-related glaucoma.
Collapse
Affiliation(s)
- Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yufei Teng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
54
|
Hamel AR, Yan W, Rouhana JM, Monovarfeshani A, Jiang X, Mehta PA, Advani J, Luo Y, Liang Q, Rajasundaram S, Shrivastava A, Duchinski K, Mantena S, Wang J, van Zyl T, Pasquale LR, Swaroop A, Gharahkhani P, Khawaja AP, MacGregor S, Chen R, Vitart V, Sanes JR, Wiggs JL, Segrè AV. Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma. Nat Commun 2024; 15:396. [PMID: 38195602 PMCID: PMC10776627 DOI: 10.1038/s41467-023-44380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of >240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis.
Collapse
Affiliation(s)
- Andrew R Hamel
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John M Rouhana
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aboozar Monovarfeshani
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Puja A Mehta
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MA, USA
| | - Yuyang Luo
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qingnan Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Skanda Rajasundaram
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Centre for Evidence-Based Medicine, University of Oxford, Oxford, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Arushi Shrivastava
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Katherine Duchinski
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Bioinformatics and Integrative Genomics (BIG) PhD Program, Harvard Medical School, Boston, MA, USA
| | - Sreekar Mantena
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Jiali Wang
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tavé van Zyl
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MA, USA
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Janey L Wiggs
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ayellet V Segrè
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
55
|
Lin S, Wu S, Zhao W, Fang Z, Kang H, Liu X, Pan S, Yu F, Bao Y, Jia P. TargetGene: a comprehensive database of cell-type-specific target genes for genetic variants. Nucleic Acids Res 2024; 52:D1072-D1081. [PMID: 37870478 PMCID: PMC10767789 DOI: 10.1093/nar/gkad901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Annotating genetic variants to their target genes is of great importance in unraveling the causal variants and genetic mechanisms that underlie complex diseases. However, disease-associated genetic variants are often located in non-coding regions and manifest context-specific effects, making it challenging to accurately identify the target genes and regulatory mechanisms. Here, we present TargetGene (https://ngdc.cncb.ac.cn/targetgene/), a comprehensive database reporting target genes for human genetic variants from various aspects. Specifically, we collected a comprehensive catalog of multi-omics data at the single-cell and bulk levels and from various human tissues, cell types and developmental stages. To facilitate the identification of Single Nucleotide Polymorphism (SNP)-to-gene connections, we have implemented multiple analytical tools based on chromatin co-accessibility, 3D interaction, enhancer activities and quantitative trait loci, among others. We applied the pipeline to evaluate variants from nearly 1300 Genome-wide association studies (GWAS) and assembled a comprehensive atlas of multiscale regulation of genetic variants. TargetGene is equipped with user-friendly web interfaces that enable intuitive searching, navigation and browsing through the results. Overall, TargetGene provides a unique resource to empower researchers to study the regulatory mechanisms of genetic variants in complex human traits.
Collapse
Affiliation(s)
- Shiqi Lin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fudong Yu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
56
|
Masson EAY, Serrano J, Leger-Charnay E, Acar N. Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1303649. [PMID: 38983043 PMCID: PMC11182186 DOI: 10.3389/fopht.2023.1303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 07/11/2024]
Abstract
Cholesterol is an essential component of cellular membranes, crucial for maintaining their structural and functional integrity. It is especially important for nervous tissues, including the retina, which rely on high amounts of plasma membranes for the transmission of the nervous signal. While cholesterol is by far the most abundant sterol, the retina also contains cholesterol precursors and metabolites, especially oxysterols, which are bioactive molecules. Cholesterol lack or excess is deleterious and some oxysterols are known for their effect on neuron survival. Cholesterol homeostasis must therefore be maintained. Retinal glial cells, especially Müller cells, the principal glial cells of the vertebrate retina, provide mechanical, nutritional, and metabolic support for the neighboring neurons. Several pieces of evidence indicate that Müller cells are major actors of cholesterol homeostasis in the retina, as it is known for other glial cells in the brain. This process is based on a close cooperation with neurons, and sterols can be signaling molecules participating in glia-neuron interactions. While some implication of cholesterol in age-related macular degeneration is now recognized, based on epidemiological and laboratory data, evidence for its role in glaucoma is still scarce. The association between cholesterolemia and glaucoma is controversial, but experimental data suggest that sterols could take part in the pathological processes. It has been demonstrated that Müller glial cells are implicated in the development of glaucoma through an ambivalent reactive retinal gliosis process. The early steps contribute to maintaining retinal homeostasis and favor the survival of ganglion cells, which are targeted during glaucoma. If gliosis persists, dysregulation of the neuroprotective functions, cytotoxic effects of gliotic Müller cells and disruption of glia-neuron interactions lead to an acceleration of ganglion cell death. Sterols could play a role in the glial cell response to glaucomatous injury. This represents an understudied but attractive topic to better understand glaucoma and conceive novel preventive or curative strategies. The present review describes the current knowledge on i) sterol metabolism in retinal glial cells, ii) the potential role of cholesterol in glaucoma, and iii) the possible relationships between cholesterol and oxysterols, glial cells and glaucoma. Focus is put on glia-neuron interactions.
Collapse
Affiliation(s)
- Elodie A Y Masson
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Jeanne Serrano
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
- Sensory Perception, Glia/Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Elise Leger-Charnay
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
57
|
Chacon-Camacho OF, Arce-Gonzalez R, Sanchez-de la Rosa F, Urióstegui-Rojas A, Hofmann-Blancas ME, Mata-Flores F, Zenteno JC. Genetic Aspects of Glaucoma: An Updated Review. Curr Mol Med 2024; 24:1231-1249. [PMID: 37272463 DOI: 10.2174/1566524023666230602143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023]
Abstract
Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Andrés Urióstegui-Rojas
- Department of Integral Ophthalmology, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Felipe Mata-Flores
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
58
|
Xiao X, Chen CB, Wu Z, Ye Y, Deng F, Cao Y, Liu P, Zhang M. Novel mutation in EFEMP1 identified from two Chinese POAG families differentially activated endoplasmic reticulum stress markers and induced glaucoma in mouse. J Cell Biochem 2024; 125:45-58. [PMID: 38083999 DOI: 10.1002/jcb.30466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 01/16/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common type of glaucoma. Using whole-exome sequencing, we identified two independent families diagnosed as POAG from the China with a novel EFEMP1 variant (Exon3, c.175A>C p.Met59Leu); Three previously reported variants c.1160G>A p.R387Q, c.1189T>C p.Y397H, and c.1429C>T p.R477C in EFEPM1 from 55 sporadic POAG individuals were also identified. The variant c.175A>C p.Met59Leu co-segregated with the disease phenotype within the families. Immunoprecipitation and western blot assays showed that all three EFEMP1 mutants (p.Met59Leu, pArg140Trp, pArg345Trp) increased intracellular protein aggregations, and pMet59Leu and pArg140Arg also enhanced their extracellular proteins secretion, compared to WT in HEK293T. The differential regulations to endoplasmic reticulum (ER) stress markers ATF4, GPR78/94, and CHOP, and differential phosphorylation activations to CREB at Ser133, AKT at Ser473, p44/42 at Thr202/Tyr204, and STAT3 at Tyr705, were also detected among the mutants and WT. Finally, we revealed a significant increment of intraocular pressure and obvious reduction of RGC cells at the sixth week following intravitreal injection of adenovirus 5 (Ad5) expressing in pMet59Leu compared to WT and GFP controls. Together, variant c.175A>C p.Met59Leu in EFEMP1 is pathogenic and different mutants in EFEMP1 triggered distinct signaling pathways, explaining the reason of mutation-dependent disease phenotypes of EFEMP1.
Collapse
Affiliation(s)
- Xiaoqiang Xiao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Chong-Bo Chen
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Zhenggen Wu
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yuhang Ye
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Fang Deng
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yingjie Cao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Pingting Liu
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
59
|
He W, Han X, Ong JS, Wu Y, Hewitt AW, Mackey DA, Gharahkhani P, MacGregor S. Genome-Wide Meta-analysis Identifies Risk Loci and Improves Disease Prediction of Age-Related Macular Degeneration. Ophthalmology 2024; 131:16-29. [PMID: 37634759 DOI: 10.1016/j.ophtha.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE To identify age-related macular degeneration (AMD) risk loci and to establish a polygenic prediction model. DESIGN Genome-wide association study (GWAS) and polygenic risk score (PRS) construction. PARTICIPANTS We included 64 885 European patients with AMD and 568 740 control participants (with overlapped samples) in the UK Biobank, Genetic Epidemiology Research on Aging (GERA), International AMD Consortium, FinnGen, and published early AMD GWASs in meta-analyses, as well as 733 European patients with AMD and 20 487 control participants from the Canadian Longitudinal Study on Aging (CLSA) and non-Europeans from the UK Biobank and GERA for polygenic risk score validation. METHODS A multitrait meta-analysis of GWASs comprised 64 885 patients with AMD and 568 740 control participants; the multitrait approach accounted for sample overlap. We constructed a PRS for AMD based on both previously reported as well as unreported AMD loci. We applied the PRS to nonoverlapping data from the CLSA. MAIN OUTCOME MEASURES We identified several single nucleotide polymorphisms associated with AMD and established a PRS for AMD risk prediction. RESULTS We identified 63 AMD risk loci alongside the well-established AMD loci CFH and ARMS2, including 9 loci that were not reported in previous GWASs, some of which previously were linked to other eye diseases such as glaucoma (e.g., HIC1). We applied our PRS to nonoverlapping data from the CLSA. A new PRS was constructed using the PRS method, PRS-CS, and significantly improved the prediction accuracy of AMD risk compared with PRSs from previously published datasets. We further showed that even people who carry all the well-known AMD risk alleles at CFH and ARMS2 vary considerably in their AMD risk (ranging from close to 0 in individuals with low PRS to > 50% in individuals with high PRS). Although our PRS was derived in individuals of European ancestry, the PRS shows potential for predicting risk in people of East Asian, South Asian, and Latino ancestry. CONCLUSIONS Our findings improve the knowledge of the genetic architecture of AMD and help achieve better accuracy in AMD prediction. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Weixiong He
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yeda Wu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victorian, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
60
|
Stuart KV, Khawaja AP. Genomics enabling personalised glaucoma care. Br J Ophthalmol 2023; 108:5-9. [PMID: 37989536 DOI: 10.1136/bjo-2023-324618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of visual impairment and a significant public health concern, but despite ongoing advances in our understanding of the disease, several important clinical challenges remain. With the number of affected people projected to increase substantially over coming decades, novel approaches to screening, risk stratification, therapy and glaucoma research are essential to deal with this expanding burden in an efficient and cost-effective manner. Genomics may hold the key to unlocking further biological insights and enabling precision medicine, in which glaucoma care is tailored to the individual patient, based on their unique profile for disease. Here, we provide an overview of how genomics may enable cost-effective targeted population screening and personalised predictions of risk, response to treatment and effective lifestyle advice. Given rapid advances in genetic testing technology and a move towards population-level genotyping, these early results have several important implications that promise to revolutionise the way in which glaucoma is detected and managed in years to come.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
61
|
Tirendi S, Domenicotti C, Bassi AM, Vernazza S. Genetics and Glaucoma: the state of the art. Front Med (Lausanne) 2023; 10:1289952. [PMID: 38152303 PMCID: PMC10751926 DOI: 10.3389/fmed.2023.1289952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Although genetic background contributes differently to rare early-onset glaucoma (before age 40) or common adult-onset glaucoma, it is now considered an important factor in all major forms of the disease. Genetic and genomic studies, including GWAS, are contributing to identifying novel loci associated with glaucoma or to endophenotypes across ancestries to enrich the knowledge about glaucoma genetic susceptibility. Moreover, new high-throughput functional genomics contributes to defining the relevance of genetic results in the biological pathways and processes involved in glaucoma pathogenesis. Such studies are expected to advance significantly our understanding of glaucoma's genetic basis and provide new druggable targets to treat glaucoma. This review gives an overview of the role of genetics in the pathogenesis or risk of glaucoma.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
62
|
Sharif NA. Gene therapies and gene product-based drug candidates for normalizing and preserving tissue functions in animal models of ocular hypertension and glaucoma. Mol Aspects Med 2023; 94:101218. [PMID: 37976898 DOI: 10.1016/j.mam.2023.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
More than 76 million people worldwide are afflicted with the neurodegenerative eye diseases described and grouped together as glaucoma. A common feature amongst the many forms of glaucoma is chronically elevated intraocular pressure (IOP) within the anterior chamber of the eye that physically damages the retina, optic nerve and parts of the brain connected with visual perception. The mediators of the contusing raised IOP responsible for such damage and loss of vision include locally released inflammatory agents, tissue remodeling enzymes and infiltrating immune cells which damage the retinal ganglion cell (RGC) axons and eventually kill a significant number of the RGCs. Additional culprits include genetic defects of the patient that involve aberrations in receptors, enzymes and/or endogenous ligands and possible over- or under-production of the latter. Other genetic abnormalities may include issues with signal transduction machinery within key cells of critical tissues in the front (e.g. trabecular meshwork [TM] and Schlemm's canal [SC]) and back of the eye (e.g. retinal ganglion cells and their axons). Genome-wide associated studies (GWAS) coupled with next generation sequencing have provided powerful linkage of certain gene defects and polymorphic variants to the onset and progression of diseases of the tissues involved in fluid dynamics in the TM and SC, and many retinal elements (lamina cribosa, optic nerve head) at the back of the eye which cause ocular hypertension (OHT) and glaucomatous optic neuropathy (GON), respectively. Despite the availability of some drugs, fluid drainage microshunts and full surgical techniques to lower and control intraocular pressure, the major modifiable biomarker of open-angle and other forms of glaucoma, their side-effect profiles, less than optimum effectiveness and short duration of action present opportunities to clinically manage the glaucomas with next generation of treatments with high therapeutic indices, including gene therapies. Thus, identification, characterization and deployment of genetic data coupled with traditional drug discovery and novel gene replacement, gene editing and genetic engineering technologies may provide some solutions to the aforementioned problems. These aspects will be discussed in this article.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore, 169856, Singapore; Institute of Ophthalmology, University College London, London, W2 1PG, UK; Imperial College of Science and Technology, St. Mary's Campus, London, WC1E 6BT, UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE, 68178, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA; Singapore Eye Research Institute, Singapore, 169856, Singapore; Global Research & Development, Nanoscope Therapeutics Inc., Dallas, TX 75207, USA.
| |
Collapse
|
63
|
Grassi L, Salazar Vega D, De Gainza A, Bouris E, Morales E, Caprioli J. Phenotypic expressions of the optic disc in primary open-angle glaucoma. Eye (Lond) 2023; 37:3839-3846. [PMID: 37355755 PMCID: PMC10698030 DOI: 10.1038/s41433-023-02627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Which phenotypes are we able to recognize in the optic nerve of patients with primary open angle glaucoma? METHODS Retrospective interventional case series. 885 eyes from 885 patients at an outpatient tertiary care centre who met specified criteria for POAG were included. Disc photographs were classified by three glaucoma specialists into the following phenotypes according to their predominant characteristics: (1) concentric rim thinning, (2) focal rim thinning, (3) acquired pit of the optic nerve (APON), (4) tilted, (5) extensive peripapillary atrophy (PPA), and (6) broad rim thinning. Demographic, medical, and ocular data were collected. Kruskal-Wallis was used as a non-parametric test and pairwise comparison was performed by using Wilcoxon rank sum test corrected. RESULTS Phenotypic distribution was as follows: 398(45%) focal thinning, 153(18%) concentric thinning, 153(17%) broad thinning, 109(12%) tilted, 47(5%) extensive PPA and 25(3%) APON. Phenotypic traits of interest included a higher proportion of female patients with the focal thinning phenotype (p = 0.015); myopia (p = 0.000), Asian race (OR: 8.8, p = 0.000), and younger age (p = 0.000) were associated with the tilted phenotype; the concentric thinning patients had thicker RNFL (p = 0.000), higher MD (p = 0.008) and lower PSD (p = 0.043) than broad thinning, despite no difference in disc sizes (p = 0.849). The focal thinning group had a localized VF pattern with high PSD compared to concentric thinning (p = 0.005). CONCLUSION We report six phenotypic classifications of POAG patients with demographic and ocular differences between phenotypes. Future refinement of phenotypes should allow enhanced identification of genetic associations and improved individualization of patient care.
Collapse
Affiliation(s)
- Lourdes Grassi
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Diana Salazar Vega
- Department of Ophthalmology, Vision Consultants and Surgeons, Falls Church, VA, USA
| | | | - Ella Bouris
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Esteban Morales
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Joseph Caprioli
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
64
|
Pandino I, Giammaria S, Zingale GA, Roberti G, Michelessi M, Coletta M, Manni G, Agnifili L, Vercellin AV, Harris A, Oddone F, Sbardella D. Ubiquitin proteasome system and glaucoma: A survey of genetics and molecular biology studies supporting a link with pathogenic and therapeutic relevance. Mol Aspects Med 2023; 94:101226. [PMID: 37950974 DOI: 10.1016/j.mam.2023.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Glaucoma represents a group of progressive neurodegenerative diseases characterized by the loss of retinal ganglion cells (RGCs) and their axons with subsequent visual field impairment. The disease develops through largely uncharacterized molecular mechanisms, that are likely to occur in different localized cell types, either in the anterior (e.g., trabecular meshwork cells) or posterior (e.g., Muller glia, retinal ganglion cells) segments of the eye. Genomic and preclinical studies suggest that glaucoma pathogenesis may develop through altered ubiquitin (Ub) signaling. Ubiquitin conjugation, referred to as ubiquitylation, is a major post-synthetic modification catalyzed by E1-E2-E3 enzymes, that profoundly regulates the turnover, trafficking and biological activity of the targeted protein. The development of new technologies, including proteomics workflows, allows the biology of ubiquitin signaling to be described in health and disease. This post-translational modification is emerging as a key role player in neurodegeneration, gaining relevance for novel therapeutic options, such as in the case of Proteolysis Targeting Chimeras technology. Although scientific evidence supports a link between Ub and glaucoma, their relationship is still not well-understood. Therefore, this review provides a detailed research-oriented discussion on current evidence of Ub signaling in glaucoma. A review of genomic and genetic data is provided followed by an in-depth discussion of experimental data on ASB10, parkin and optineurin, which are proteins that play a key role in Ub signaling and have been associated with glaucoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianluca Manni
- IRCCS Fondazione Bietti, Rome, Italy; DSCMT University of Tor Vergata, Rome, Italy
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University "G. D'Annunzio" of Chieti-Pescara, Italy
| | | | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
65
|
Gharahkhani P, He W, Han X, Ong JS, Rentería ME, Wiggs JL, Khawaja AP, Trzaskowski M, Mackey DA, Craig JE, Hewitt AW, MacGregor S, Wu Y. WITHDRAWN: Genome-wide risk prediction of primary open-angle glaucoma across multiple ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298255. [PMID: 37986775 PMCID: PMC10659472 DOI: 10.1101/2023.11.08.23298255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This manuscript has been withdrawn by medRxiv following a formal request by the QIMR Berghofer Medical Research Institute Research Integrity Office owing to lack of author consent.
Collapse
|
66
|
Wang J, Cheng X, Liang Q, Owen LA, Lu J, Zheng Y, Wang M, Chen S, DeAngelis MM, Li Y, Chen R. Single-cell multiomics of the human retina reveals hierarchical transcription factor collaboration in mediating cell type-specific effects of genetic variants on gene regulation. Genome Biol 2023; 24:269. [PMID: 38012720 PMCID: PMC10680294 DOI: 10.1186/s13059-023-03111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Systematic characterization of how genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing. RESULTS We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types. By integrating these results, we identify and characterize regulatory elements and genetic variants effective on gene regulation in individual cell types. The majority of identified sc-eQTLs and sc-caQTLs display cell type-specific effects, while the cis-elements containing genetic variants with cell type-specific effects are often accessible in multiple cell types. Furthermore, the transcription factors whose binding sites are perturbed by genetic variants tend to have higher expression levels in the cell types where the variants exert their effects, compared to the cell types where the variants have no impact. We further validate our findings with high-throughput reporter assays. Lastly, we identify the enriched cell types, candidate causal variants and genes, and cell type-specific regulatory mechanism underlying GWAS loci. CONCLUSIONS Overall, genetic effects on gene regulation are highly context dependent. Our results suggest that cell type-dependent genetic effect is driven by precise modulation of both trans-factor expression and chromatin accessibility of cis-elements. Our findings indicate hierarchical collaboration among transcription factors plays a crucial role in mediating cell type-specific effects of genetic variants on gene regulation.
Collapse
Affiliation(s)
- Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jiaxiong Lu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, MO, USA
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, MO, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
67
|
Rajasundaram S, Zebardast N, Mehta P, Khawaja AP, Warwick A, Duchinski K, Burgess S, Gill D, Segrè AV, Wiggs J. TIE1 and TEK signalling, intraocular pressure, and primary open-angle glaucoma: a Mendelian randomization study. J Transl Med 2023; 21:847. [PMID: 37996923 PMCID: PMC10668387 DOI: 10.1186/s12967-023-04737-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND In primary open-angle glaucoma (POAG), lowering intraocular pressure (IOP) is the only proven way of slowing vision loss. Schlemm's canal (SC) is a hybrid vascular and lymphatic vessel that mediates aqueous humour drainage from the anterior ocular chamber. Animal studies support the importance of SC endothelial angiopoietin-TEK signalling, and more recently TIE1 signalling, in maintaining normal IOP. However, human genetic support for a causal role of TIE1 and TEK signalling in lowering IOP is currently lacking. METHODS GWAS summary statistics were obtained for plasma soluble TIE1 (sTIE1) protein levels (N = 35,559), soluble TEK (sTEK) protein levels (N = 35,559), IOP (N = 139,555) and POAG (Ncases = 16,677, Ncontrols = 199,580). Mendelian randomization (MR) was performed to estimate the association of genetically proxied TIE1 and TEK protein levels with IOP and POAG liability. Where significant MR estimates were obtained, genetic colocalization was performed to assess the probability of a shared causal variant (PPshared) versus distinct (PPdistinct) causal variants underlying TIE1/TEK signalling and the outcome. Publicly available single-nucleus RNA-sequencing data were leveraged to investigate differential expression of TIE1 and TEK in the human ocular anterior segment. RESULTS Increased genetically proxied TIE1 signalling and TEK signalling associated with a reduction in IOP (- 0.21 mmHg per SD increase in sTIE1, 95% CI = - 0.09 to - 0.33 mmHg, P = 6.57 × 10-4, and - 0.14 mmHg per SD decrease in sTEK, 95% CI = - 0.03 to - 0.25 mmHg, P = 0.011), but not with POAG liability. Colocalization analysis found that the probability of a shared causal variant was greater for TIE1 and IOP than for TEK and IOP (PPshared/(PPdistinct + PPshared) = 0.98 for TIE1 and 0.30 for TEK). In the anterior segment, TIE1 and TEK were preferentially expressed in SC, lymphatic, and vascular endothelium. CONCLUSIONS This study provides novel human genetic support for a causal role of both TIE1 and TEK signalling in regulating IOP. Here, combined evidence from cis-MR and colocalization analyses provide stronger support for TIE1 than TEK as a potential IOP-lowering therapeutic target.
Collapse
Affiliation(s)
- Skanda Rajasundaram
- Faculty of Medicine, Imperial College London, London, UK.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Nazlee Zebardast
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Puja Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- UCL Institute of Cardiovascular Science, London, UK
| | | | - Alasdair Warwick
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Katherine Duchinski
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ayellet V Segrè
- Faculty of Medicine, Imperial College London, London, UK
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Janey Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
68
|
Sato K, Saigusa D, Kokubun T, Fujioka A, Feng Q, Saito R, Uruno A, Matsukawa N, Ohno-Oishi M, Kunikata H, Yokoyama Y, Yasuda M, Himori N, Omodaka K, Tsuda S, Maekawa S, Yamamoto M, Nakazawa T. Reduced glutathione level in the aqueous humor of patients with primary open-angle glaucoma and normal-tension glaucoma. NPJ AGING 2023; 9:28. [PMID: 37990002 PMCID: PMC10663551 DOI: 10.1038/s41514-023-00124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/22/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of blindness worldwide in older people. Profiling the aqueous humor, including the metabolites it contains, is useful to understand physiological and pathological conditions in the eye. In the current study, we used mass spectrometry (MS) to characterize the aqueous humor metabolomic profile and biological features of patients with glaucoma. Aqueous humor samples were collected during trabeculectomy surgery or cataract surgery and analyzed with global metabolomics. We included 40 patients with glaucoma (32 with POAG, 8 with NTG) and 37 control subjects in a discovery study. VIP analysis revealed five metabolites that were elevated and three metabolites that were reduced in the glaucoma patients. The identified metabolomic profile had an area under the receiver operating characteristic curve of 0.953. Among eight selected metabolites, the glutathione level was significantly decreased in association with visual field defects. Moreover, in a validation study to confirm the reproducibility of our findings, the glutathione level was reduced in NTG and POAG patients compared with a cataract control group. Our findings demonstrate that aqueous humor profiling can help to diagnose glaucoma and that various aqueous humor metabolites are correlated with clinical parameters in glaucoma patients. In addition, glutathione is clearly reduced in the aqueous humor of glaucoma patients with both IOP-dependent and IOP-independent disease subtypes. These findings indicate that antioxidant agents in the aqueous humor reflect glaucomatous optic nerve damage and that excessive oxidative stress may be involved in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Qiwei Feng
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
69
|
Li J, Wang J, Ibarra IL, Cheng X, Luecken MD, Lu J, Monavarfeshani A, Yan W, Zheng Y, Zuo Z, Colborn SLZ, Cortez BS, Owen LA, Tran NM, Shekhar K, Sanes JR, Stout JT, Chen S, Li Y, DeAngelis MM, Theis FJ, Chen R. Integrated multi-omics single cell atlas of the human retina. RESEARCH SQUARE 2023:rs.3.rs-3471275. [PMID: 38014002 PMCID: PMC10680922 DOI: 10.21203/rs.3.rs-3471275/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Ignacio L Ibarra
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Lung Health & Immunity, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Zhen Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | | | | | - Leah A Owen
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California, United States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Margaret M DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
70
|
Katsimpris A, Baumeister SE, Baurecht H, Tatham AJ, Nolde M. Cannabis use and the risk of primary open-angle glaucoma: a Mendelian randomization study. Sci Rep 2023; 13:19605. [PMID: 37949880 PMCID: PMC10638381 DOI: 10.1038/s41598-023-45872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Several observational studies have investigated the association between cannabis use and intraocular pressure, but its association with primary open-angle glaucoma (POAG) remains unclear. In this study, we leveraged human genetic data to assess through Mendelian randomization (MR) whether cannabis use affects POAG. We used five single-nucleotide polymorphisms (SNPs) associated with lifetime cannabis use (P-value < 5 × 10-8) from a genome-wide association study (GWAS) (N = 184,765) by the International Cannabis Consortium, 23andMe, and UK Biobank and eleven SNPs associated with cannabis use disorder (P-value < 5 × 10-7) from a GWAS meta-analysis of (17,068 cases and 357,219 controls of European descent) from Psychiatric Genomics Consortium Substance Use Disorders working group, Lundbeck Foundation Initiative for Integrative Psychiatric Research, and deCode. We associated the selected five SNPs from the GWAS of lifetime cannabis use and the eleven SNPs from the GWAS of cannabis use disorder, with the largest to date GWAS meta-analysis of POAG (16,677 cases and 199,580 controls). MR analysis suggested no evidence for a causal association of lifetime cannabis use and cannabis use disorder with POAG (odds ratio (OR) of outcome per doubling of the odds of exposure (95% confidence interval): 1.04 (0.88; 1.23) for lifetime cannabis use and 0.97 (0.92; 1.03) for cannabis use disorder). Sensitivity analyses to address pleiotropy and weak instrument bias yielded similar estimates to the primary analysis. In conclusion, our results do not support a causal association between cannabis use and POAG.
Collapse
Affiliation(s)
| | | | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Andrew J Tatham
- Princess Alexandra Eye Pavilion, Edinburgh, EH3 9HA, Scotland, UK
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany.
| |
Collapse
|
71
|
Passaro ML, Matarazzo F, Abbadessa G, Pezone A, Porcellini A, Tranfa F, Rinaldi M, Costagliola C. Glaucoma as a Tauopathy-Is It the Missing Piece in the Glaucoma Puzzle? J Clin Med 2023; 12:6900. [PMID: 37959365 PMCID: PMC10650423 DOI: 10.3390/jcm12216900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disorder affecting the visual system which can result in vision loss and blindness. The pathogenetic mechanisms underlying glaucomatous optic neuropathy are ultimately enigmatic, prompting ongoing investigations into its potential shared pathogenesis with other neurodegenerative neurological disorders. Tauopathies represent a subclass of neurodegenerative diseases characterized by the abnormal deposition of tau protein within the brain and consequent microtubule destabilization. The extended spectrum of tauopathies includes conditions such as frontotemporal dementias, progressive supranuclear palsy, chronic traumatic encephalopathy, and Alzheimer's disease. Notably, recent decades have witnessed emerging documentation of tau inclusion among glaucoma patients, providing substantiation that this ocular disease may similarly manifest features of tauopathies. These studies found that: (i) aggregated tau inclusions are present in the somatodendritic compartment of RGCs in glaucoma patients; (ii) the etiology of the disease may affect tau splicing, phosphorylation, oligomerization, and subcellular localization; and (iii) short interfering RNA against tau, administered intraocularly, significantly decreased retinal tau accumulation and enhanced RGC somas and axon survival, demonstrating a crucial role for tau modifications in ocular hypertension-induced neuronal injury. Here, we examine the most recent evidence surrounding the interplay between tau protein dysregulation and glaucomatous neurodegeneration. We explore the novel perspective of glaucoma as a tau-associated disorder and open avenues for cross-disciplinary collaboration and new treatment strategies.
Collapse
Affiliation(s)
- Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | | | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Antonio Pezone
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Antonio Porcellini
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| |
Collapse
|
72
|
Elenbaas JS, Jung IH, Coler-Reilly A, Lee PC, Alisio A, Stitziel NO. The emerging Janus face of SVEP1 in development and disease. Trends Mol Med 2023; 29:939-950. [PMID: 37673700 PMCID: PMC10592172 DOI: 10.1016/j.molmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Sushi, von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) is a large extracellular matrix protein that is also detected in circulation. Recent plasma proteomic and genomic studies have revealed a large number of associations between SVEP1 and human traits, particularly chronic disease. These include associations with cardiac death and disease, diabetes, platelet traits, glaucoma, dementia, and aging; many of these are causal. Animal models demonstrate that SVEP1 is critical in vascular development and disease, but its molecular and cellular mechanisms remain poorly defined. Future studies should aim to characterize these mechanisms and determine the diagnostic, prognostic, and therapeutic value of measuring or intervening on this enigmatic protein.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ariella Coler-Reilly
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paul C Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
73
|
Kuang G, Salowe R, O'Brien J. Paving the way while playing catch up: mitochondrial genetics in African ancestry primary open-angle glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1267119. [PMID: 38983031 PMCID: PMC11182247 DOI: 10.3389/fopht.2023.1267119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma, the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African descent. Specifically, previous research has indicated that primary open-angle glaucoma (POAG), the most common form of disease, is more prevalent, severe, early-onset, and rapidly-progressive in populations of African ancestry. Recent studies have identified genetic variations that may contribute to the greater burden of disease in this population. In particular, mitochondrial genetics has emerged as a profoundly influential factor in multiple neurodegenerative diseases, including POAG. Several hypotheses explaining the underlying mechanisms of mitochondrial genetic contribution to disease progression have been proposed, including nuclear-mitochondrial gene mismatch. Exploring the fundamentals of mitochondrial genetics and disease pathways within the understudied African ancestry population can lead to groundbreaking advancements in the research and clinical understanding of POAG. This article discusses the currently known involvements of mitochondrial genetic factors in POAG, recent directions of study, and potential future prospects in mitochondrial genetic studies in individuals of African descent.
Collapse
Affiliation(s)
- Grace Kuang
- Penn Medicine Center for Genetics in Complex Disease, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Rebecca Salowe
- Penn Medicine Center for Genetics in Complex Disease, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joan O'Brien
- Penn Medicine Center for Genetics in Complex Disease, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
74
|
Stuart KV, Pasquale LR, Kang JH, Foster PJ, Khawaja AP. Towards modifying the genetic predisposition for glaucoma: An overview of the contribution and interaction of genetic and environmental factors. Mol Aspects Med 2023; 93:101203. [PMID: 37423164 PMCID: PMC10885335 DOI: 10.1016/j.mam.2023.101203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Glaucoma, the leading cause of irreversible blindness worldwide, is a complex human disease, with both genetic and environmental determinants. The availability of large-scale, population-based cohorts and biobanks, combining genotyping and detailed phenotyping, has greatly accelerated research into the aetiology of glaucoma in recent years. Hypothesis-free genome-wide association studies have furthered our understanding of the complex genetic architecture underpinning the disease, while epidemiological studies have provided advances in the identification and characterisation of environmental risk factors. It is increasingly recognised that the combined effects of genetic and environmental factors may confer a disease risk that reflects a departure from the simple additive effect of the two. These gene-environment interactions have been implicated in a host of complex human diseases, including glaucoma, and have several important diagnostic and therapeutic implications for future clinical practice. Importantly, the ability to modify the risk associated with a particular genetic makeup promises to lead to personalised recommendations for glaucoma prevention, as well as novel treatment approaches in years to come. Here we provide an overview of genetic and environmental risk factors for glaucoma, as well as reviewing the evidence and discussing the implications of gene-environment interactions for the disease.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae H Kang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
75
|
Madjedi KM, Stuart KV, Chua SYL, Ramulu PY, Warwick A, Luben RN, Sun Z, Chia MA, Aschard H, Wiggs JL, Kang JH, Pasquale LR, Foster PJ, Khawaja AP. The Association of Physical Activity with Glaucoma and Related Traits in the UK Biobank. Ophthalmology 2023; 130:1024-1036. [PMID: 37331483 PMCID: PMC10913205 DOI: 10.1016/j.ophtha.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE To examine the association of physical activity (PA) with glaucoma and related traits, to assess whether genetic predisposition to glaucoma modified these associations, and to probe causal relationships using Mendelian randomization (MR). DESIGN Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS UK Biobank participants with data on self-reported or accelerometer-derived PA and intraocular pressure (IOP; n = 94 206 and n = 27 777, respectively), macular inner retinal OCT measurements (n = 36 274 and n = 9991, respectively), and glaucoma status (n = 86 803 and n = 23 556, respectively). METHODS We evaluated multivariable-adjusted associations of self-reported (International Physical Activity Questionnaire) and accelerometer-derived PA with IOP and macular inner retinal OCT parameters using linear regression and with glaucoma status using logistic regression. For all outcomes, we examined gene-PA interactions using a polygenic risk score (PRS) that combined the effects of 2673 genetic variants associated with glaucoma. MAIN OUTCOME MEASURES Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and glaucoma status. RESULTS In multivariable-adjusted regression models, we found no association of PA level or time spent in PA with glaucoma status. Higher overall levels and greater time spent in higher levels of both self-reported and accelerometer-derived PA were associated positively with thicker mGCIPL (P < 0.001 for trend for each). Compared with the lowest quartile of PA, participants in the highest quartiles of accelerometer-derived moderate- and vigorous-intensity PA showed a thicker mGCIPL by +0.57 μm (P < 0.001) and +0.42 μm (P = 0.005). No association was found with mRNFL thickness. High overall level of self-reported PA was associated with a modestly higher IOP of +0.08 mmHg (P = 0.01), but this was not replicated in the accelerometry data. No associations were modified by a glaucoma PRS, and MR analyses did not support a causal relationship between PA and any glaucoma-related outcome. CONCLUSIONS Higher overall PA level and greater time spent in moderate and vigorous PA were not associated with glaucoma status but were associated with thicker mGCIPL. Associations with IOP were modest and inconsistent. Despite the well-documented acute reduction in IOP after PA, we found no evidence that high levels of habitual PA are associated with glaucoma status or IOP in the general population. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of Calgary, Calgary, Alberta, Canada
| | - Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Sharon Y L Chua
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Pradeep Y Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Zihan Sun
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Mark A Chia
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Hugues Aschard
- Department of Computational Biology, Institute Pasteur, Paris, France
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jae H Kang
- Brigham and Women's Hospital / Harvard Medical School, Boston, Massachusetts
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Cardiovascular Science, London, United Kingdom.
| |
Collapse
|
76
|
Austin-Zimmerman I, Levey DF, Giannakopoulou O, Deak JD, Galimberti M, Adhikari K, Zhou H, Denaxas S, Irizar H, Kuchenbaecker K, McQuillin A, Concato J, Buysse DJ, Gaziano JM, Gottlieb DJ, Polimanti R, Stein MB, Bramon E, Gelernter J. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nat Commun 2023; 14:6059. [PMID: 37770476 PMCID: PMC10539313 DOI: 10.1038/s41467-023-41249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Sleep duration has been linked to a wide range of negative health outcomes and to reduced life expectancy. We present genome-wide association studies of short ( ≤ 5 h) and long ( ≥ 10 h) sleep duration in adults of European (N = 445,966), African (N = 27,785), East Asian (N = 3141), and admixed-American (N = 16,250) ancestry from UK Biobank and the Million Veteran Programme. In a cross-population meta-analysis, we identify 84 independent loci for short sleep and 1 for long sleep. We estimate SNP-based heritability for both sleep traits in each ancestry based on population derived linkage disequilibrium (LD) scores using cov-LDSC. We identify positive genetic correlation between short and long sleep traits (rg = 0.16 ± 0.04; p = 0.0002), as well as similar patterns of genetic correlation with other psychiatric and cardiometabolic phenotypes. Mendelian randomisation reveals a directional causal relationship between short sleep and depression, and a bidirectional causal relationship between long sleep and depression.
Collapse
Affiliation(s)
- Isabelle Austin-Zimmerman
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Olga Giannakopoulou
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- UCL Genetics Institute, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Joseph D Deak
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Marco Galimberti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Keyrun Adhikari
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Hang Zhou
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Spiros Denaxas
- Health Data Research UK, Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Haritz Irizar
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karoline Kuchenbaecker
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- UCL Genetics Institute, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Andrew McQuillin
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
| | - John Concato
- School of Medicine, Yale University, New Haven, CT, 06511, USA
- Office of Medical Policy, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel J Gottlieb
- VA Boston Healthcare System, 1400 VFW Parkway (111PI), West Roxbury, MA, 02132, USA
- Division of Sleep and Circadian Disorders, Brigham & Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Elvira Bramon
- Department of Mental Health Neuroscience, Division of Psychiatry, University College London, London, W1T 7BN, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
77
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556840. [PMID: 37781615 PMCID: PMC10541092 DOI: 10.1101/2023.09.08.556840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pathologic alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared to that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell YAP mechanosignaling in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP activity in primary human SC cells, and whether disruption of YAP mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Lastly, we found that perfusion of the clinically-used, small molecule YAP inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP mechanosignaling in SC cell dysfunction and suggest that YAP inhibition has therapeutic value for treating ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - Ruth A. Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
78
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
79
|
Saini C, Jiang S, Devlin J, Pan L, Tang Y, Tang J, Sun JA, Lorenzo MM, Wang Q, Pasquale LR, Cho KS, Chen DF, Shen LQ. Association between HSP-Specific T-Cell Counts and Retinal Nerve Fiber Layer Thickness in Patients with Primary Open-Angle Glaucoma. OPHTHALMOLOGY SCIENCE 2023; 3:100310. [PMID: 37197701 PMCID: PMC10183658 DOI: 10.1016/j.xops.2023.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Objective Previous laboratory reports implicate heat shock protein (HSP)-specific T-cell responses in glaucoma pathogenesis; here, we aimed to provide direct clinical evidence by correlating systemic HSP-specific T-cell levels with glaucoma severity in patients with primary open-angle glaucoma (POAG). Design Cross-sectional case-control study. Subjects Thirty-two adult patients with POAG and 38 controls underwent blood draw and optic nerve imaging. Methods Peripheral blood monocytes (PBMC) were stimulated in culture with HSP27, α-crystallin, a member of the small HSP family, or HSP60. Both interferon-γ (IFN-γ)+ CD4+ T helper type 1 cells (Th1) and transforming growth factor-β1 (TGF-β1)+ CD4+ regulatory T cells (Treg) were quantified by flow cytometry and presented as a percentage of total PBMC counts. Relevant cytokines were measured using enzyme-linked immunosorbent assays. Retinal nerve fiber layer thickness (RNFLT) was measured with OCT. Pearson's correlation (r) was used to assess correlations. Main Outcome Measures Correlations of HSP-specific T-cell counts, and serum levels of corresponding cytokine levels with RNFLT. Results Patients with POAG (visual field mean deviation, -4.7 ± 4.0 dB) and controls were similar in age, gender, and body mass index. Moreover, 46.9% of POAG and 60.0% of control subjects had prior cataract surgery (P = 0.48). Although no significant difference in total nonstimulated CD4+ Th1 or Treg cells was detected, patients with POAG exhibited significantly higher frequencies of Th1 cells specific for HSP27, α-crystallin, or HSP60 than controls (7.3 ± 7.9% vs. 2.6 ± 2.0%, P = 0.004; 5.8 ± 2.7% vs. 1.8 ± 1.3%, P < 0.001; 13.2 ± 13.3 vs. 4.3 ± 5.2, P = 0.01; respectively), but similar Treg specific for the same HSPs compared with controls (P ≥ 0.10 for all). Concordantly, the serum levels of IFN-γ were higher in POAG than in controls (36.2 ± 12.1 pg/ml vs. 10.0 ± 4.3 pg/ml; P < 0.001), but TGF-β1 levels did not differ. Average RNFLT of both eyes negatively correlated with HSP27- and α-crystallin-specific Th1 cell counts, and IFN-γ levels in all subjects after adjusting for age (partial correlation coefficient r = -0.31, P = 0.03; r = -0.52, p = 0.002; r = -0.72, P < 0.001, respectively). Conclusions Higher levels of HSP-specific Th1 cells are associated with thinner RNFLT in patients with POAG and control subjects. The significant inverse relationship between systemic HSP-specific Th1 cell count and RNFLT supports the role of these T cells in glaucomatous neurodegeneration. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Chhavi Saini
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Julia Devlin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yizhen Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
- Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China
| | - Jessica A. Sun
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | | - Qingyi Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Dong Feng Chen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Lucy Q. Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- Correspondence: Lucy Q. Shen, MD, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114.
| |
Collapse
|
80
|
Sekimitsu S, Xiang D, Smith SL, Curran K, Elze T, Friedman DS, Foster PJ, Luo Y, Pasquale LR, Peto T, Segrè AV, Shweikh Y, Warwick A, Zhao Y, Wiggs JL, Zebardast N. Deep Ocular Phenotyping Across Primary Open-Angle Glaucoma Genetic Burden. JAMA Ophthalmol 2023; 141:891-899. [PMID: 37589995 PMCID: PMC10436188 DOI: 10.1001/jamaophthalmol.2023.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/25/2023] [Indexed: 08/18/2023]
Abstract
Importance Better understanding of primary open-angle glaucoma (POAG) genetics could enable timely screening and promote individualized disease risk prognostication. Objective To evaluate phenotypic features across genetic burden for POAG. Design, Setting, and Participants This was a cross-sectional, population-based study conducted from 2006 to 2010. Included participants were individuals from the UK Biobank aged 40 to 69 years. Individuals with non-POAG forms of glaucoma were excluded from the analysis. Data were statistically analyzed from October 2022 to January 2023. Main Outcomes and Measures POAG prevalence based on structural coding, self-reports, and glaucoma-related traits. Results Among 407 667 participants (mean [SD] age, 56.3 [8.1] years; 219 183 majority sex [53.8%]) were 14 171 POAG cases. Area under receiver operating characteristic curve for POAG detection was 0.748 in a model including polygenic risk score (PRS), age, sex, and ancestry. POAG prevalence in the highest decile of PRS was 7.4% (3005 of 40 644) vs 1.3% (544 of 40 795) in lowest decile (P < .001). A 1-SD increase in PRS was associated with 1.74 times higher odds of POAG (95% CI, 1.71-1.77), a 0.61-mm Hg increase in corneal-compensated intraocular pressure (IOP; 95% CI, 0.59-0.64), a -0.09-mm Hg decrease in corneal hysteresis (95% CI, -0.10 to -0.08), a 0.08-mm Hg increase in corneal resistance factor (95% CI, 0.06-0.09), and a -0.08-diopter decrease in spherical equivalent (95% CI, -0.11 to -0.07; P < .001 for all). A 1-SD increase in PRS was associated with a thinning of the macula-region retinal nerve fiber layer (mRNFL) of 0.14 μm and macular ganglion cell complex (GCC) of 0.26 μm (P < .001 for both). In the subset of individuals with fundus photographs, a 1-SD increase in PRS was associated with 1.42 times higher odds of suspicious optic disc features (95% CI, 1.19-1.69) and a 0.013 increase in cup-disc ratio (CDR; 95% CI, 0.012-0.014; P < .001 for both). A total of 22 of 5193 fundus photographs (0.4%) in decile 10 had disc hemorrhages, and 27 of 5257 (0.5%) had suspicious optic disc features compared with 9 of 5158 (0.2%) and 10 of 5219 (0.2%), respectively, in decile 1 (P < .001 for both). CDR in decile 10 was 0.46 compared with 0.41 in decile 1 (P < .001). Conclusion and Relevance Results suggest that PRS identified a group of individuals at substantially higher risk for POAG. Higher genetic risk was associated with more advanced disease, namely higher CDR and corneal-compensated IOP, thinner mRNFL, and thinner GCC. Associations with POAG PRS and corneal hysteresis and greater prevalence of disc hemorrhages were identified. These results suggest that genetic risk is an increasingly important parameter for risk stratification to consider in clinical practice.
Collapse
Affiliation(s)
| | - David Xiang
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Harvard Medical School, Boston, Massachusetts
| | | | - Katie Curran
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - David S. Friedman
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital & UCL Institute of Ophthalmology, London, United Kingdom
| | - Yuyang Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Louis R. Pasquale
- Icahn School of Medicine at Mount Sinai, Department of Ophthalmology, New York, New York
| | - Tunde Peto
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Ayellet V. Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Yusrah Shweikh
- Sussex Eye Hospital, University Hospitals Sussex NHS Foundation Trust, Sussex, United Kingdom
| | - Alasdair Warwick
- University College London, Institute of Cardiovascular Science, London, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Yan Zhao
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Janey L. Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
81
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
82
|
Rosa JGS, Disner GR, Pinto FJ, Lima C, Lopes-Ferreira M. Revisiting Retinal Degeneration Hallmarks: Insights from Molecular Markers and Therapy Perspectives. Int J Mol Sci 2023; 24:13079. [PMID: 37685886 PMCID: PMC10488251 DOI: 10.3390/ijms241713079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil; (J.G.S.R.); (G.R.D.); (F.J.P.); (C.L.)
| |
Collapse
|
83
|
Monavarfeshani A, Yan W, Pappas C, Odenigbo KA, He Z, Segrè AV, van Zyl T, Hageman GS, Sanes JR. Transcriptomic analysis of the ocular posterior segment completes a cell atlas of the human eye. Proc Natl Acad Sci U S A 2023; 120:e2306153120. [PMID: 37566633 PMCID: PMC10450437 DOI: 10.1073/pnas.2306153120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
Although the visual system extends through the brain, most vision loss originates from defects in the eye. Its central element is the neural retina, which senses light, processes visual signals, and transmits them to the rest of the brain through the optic nerve (ON). Surrounding the retina are numerous other structures, conventionally divided into anterior and posterior segments. Here, we used high-throughput single-nucleus RNA sequencing (snRNA-seq) to classify and characterize cells in six extraretinal components of the posterior segment: ON, optic nerve head (ONH), peripheral sclera, peripapillary sclera (PPS), choroid, and retinal pigment epithelium (RPE). Defects in each of these tissues are associated with blinding diseases-for example, glaucoma (ONH and PPS), optic neuritis (ON), retinitis pigmentosa (RPE), and age-related macular degeneration (RPE and choroid). From ~151,000 single nuclei, we identified 37 transcriptomically distinct cell types, including multiple types of astrocytes, oligodendrocytes, fibroblasts, and vascular endothelial cells. Our analyses revealed a differential distribution of many cell types among distinct structures. Together with our previous analyses of the anterior segment and retina, the data presented here complete a "Version 1" cell atlas of the human eye. We used this atlas to map the expression of >180 genes associated with the risk of developing glaucoma, which is known to involve ocular tissues in both anterior and posterior segments as well as the neural retina. Similar methods can be used to investigate numerous additional ocular diseases, many of which are currently untreatable.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Center for Brain Science, Harvard University, Cambridge, MA02138
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA02115
| | - Wenjun Yan
- Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Christian Pappas
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT84132
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT84132
| | - Kenechukwu A. Odenigbo
- Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA02115
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA02114
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Tavé van Zyl
- Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA02114
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT065101
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT84132
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT84132
| | - Joshua R. Sanes
- Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
84
|
Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Hujoel MLA, McCarroll SA, Loh PR. Repeat polymorphisms underlie top genetic risk loci for glaucoma and colorectal cancer. Cell 2023; 186:3659-3673.e23. [PMID: 37527660 PMCID: PMC10528368 DOI: 10.1016/j.cell.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Many regions in the human genome vary in length among individuals due to variable numbers of tandem repeats (VNTRs). To assess the phenotypic impact of VNTRs genome-wide, we applied a statistical imputation approach to estimate the lengths of 9,561 autosomal VNTR loci in 418,136 unrelated UK Biobank participants and 838 GTEx participants. Association and statistical fine-mapping analyses identified 58 VNTRs that appeared to influence a complex trait in UK Biobank, 18 of which also appeared to modulate expression or splicing of a nearby gene. Non-coding VNTRs at TMCO1 and EIF3H appeared to generate the largest known contributions of common human genetic variation to risk of glaucoma and colorectal cancer, respectively. Each of these two VNTRs associated with a >2-fold range of risk across individuals. These results reveal a substantial and previously unappreciated role of non-coding VNTRs in human health and gene regulation.
Collapse
Affiliation(s)
- Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
85
|
Singh RK, Zhao Y, Elze T, Fingert J, Gordon M, Kass MA, Luo Y, Pasquale LR, Scheetz T, Segrè AV, Wiggs JL, Zebardast N. Polygenic Risk Score Improves Prediction of Primary Open Angle Glaucoma Onset in the Ocular Hypertension Treatment Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.15.23294141. [PMID: 37645858 PMCID: PMC10462203 DOI: 10.1101/2023.08.15.23294141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objective or Purpose Primary open-angle glaucoma (POAG) is a highly heritable disease with 127 identified risk loci. Polygenic risks score (PRS) offers a measure of aggregate genetic burden. In this study, we assess whether PRS improves risk stratification in patients with ocular hypertension. Design A post-hoc analysis of the Ocular Hypertension Treatment Study (OHTS) data. Setting Participants and/or Controls 1636 participants were followed from 1994 to 2020 across 22 sites. The PRS was computed for 1009 OHTS participants using summary statistics from largest cross-ancestry POAG metanalysis with weights trained using 8,813,496 variants from 488,395 participants in the UK Biobank. Methods Interventions or Testing Survival regression analysis, with endpoint as development of POAG, predicted disease onset from PRS incorporating baseline covariates. Main Outcomes and Measures Outcome measures were hazard ratios for POAG onset. Concordance index and time-dependent AUC were used to compare the predictive performance of multivariable Cox-Proportional Hazards models. Results Mean PRS was significantly higher for POAG-converters (0.24 ± 0.95) than for non-converters (-0.12 ± 1.00) (p < 0.01). POAG risk increased 1.36% with each higher PRS decile, with conversion ranging from 9.5% in the lowest PRS decile to 21.8% in the highest decile. Comparison of low- and high-risk PRS tertiles showed a 1.8-fold increase in 20-year POAG risk for participants of European and African ancestries (p<0.01). In the subgroup randomized to delayed treatment, each increase in PRS decile was associated with a 0.52-year decrease in age at diagnosis, (p=0.05). No significant linear relationship between PRS and age at POAG diagnosis was present in the early treatment group. Prediction models significantly improved with the addition of PRS as a covariate (C-index = 0.77) compared to OHTS baseline model (C-index=0.75) (p<0.01). One standard deviation higher PRS conferred a mean hazard ratio of 1.25 (CI=[1.13, 1.44]) for POAG onset. Conclusions Higher PRS is associated with increased risk for, and earlier development of POAG in patients with ocular hypertension. Early treatment may mitigate the risk from high genetic burden, delaying clinically detectable disease by up to 5.2 years. The inclusion of a PRS improves the prediction of POAG onset.
Collapse
Affiliation(s)
- Rishabh K. Singh
- Department of Ophthalmology, Columbia University Medical Center, New York, NY
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Yan Zhao
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - John Fingert
- Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Mae Gordon
- Washington University School of Medicine, St. Louis, MO
| | | | - Yuyang Luo
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | | | - Todd Scheetz
- Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ayellet V. Segrè
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA
| | - Janey L. Wiggs
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA
| | | |
Collapse
|
86
|
Gharahkhani P, He W, Diaz Torres S, Wu Y, Ingold N, Yu R, Seviiri M, Ong JS, Law MH, Craig JE, Mackey DA, Hewitt AW, MacGregor S. Study profile: the Genetics of Glaucoma Study. BMJ Open 2023; 13:e068811. [PMID: 37536973 PMCID: PMC10401214 DOI: 10.1136/bmjopen-2022-068811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Glaucoma, a major cause of irreversible blindness, is a highly heritable human disease. Currently, the majority of the risk genes for glaucoma are unknown. We established the Genetics of Glaucoma Study (GOGS) to identify disease genes and improve genetic prediction of glaucoma risk and response to treatment. PARTICIPANTS More than 5700 participants with glaucoma or a family history of glaucoma were recruited through a media campaign and the Australian Government healthcare service provider, Services Australia, making GOGS one of the largest genetic studies of glaucoma globally. The mean age of the participants was 65.30±9.36 years, and 62% were female. Participants completed a questionnaire obtaining information about their glaucoma-related medical history such as family history, glaucoma status and subtypes, surgical procedures, and prescriptions. The questionnaire also obtained information about other eye and systemic diseases. Approximately 80% of the participants provided a DNA sample and ~70% consented to data linkage to their Australian Government Medicare and Pharmaceutical Benefits Scheme schedules. FINDINGS TO DATE 4336 GOGS participants reported that an optometrist or ophthalmologist has diagnosed them with glaucoma and 3639 participants reported having a family history of glaucoma. The vast majority of the participants (N=4393) had used at least one glaucoma-related medication; latanoprost was the most commonly prescribed drug (54% of the participants who had a glaucoma prescription). A subset of the participants reported a surgical treatment for glaucoma including a laser surgery in 2008 participants and a non-laser operation in 803 participants. Several comorbid eye and systemic diseases were also observed; the most common reports were ocular hypertension (53% of the participants), cataract (48%), hypertension (40%), nearsightedness (31%), astigmatism (22%), farsightedness (16%), diabetes (12%), sleep apnoea (11%) and migraines (10%). FUTURE PLANS GOGS will contribute to the global gene-mapping efforts as one of the largest genetic studies for glaucoma. We will also use GOGS to develop or validate genetic risk prediction models to stratify glaucoma risk, particularly in individuals with a family history of glaucoma, and to predict clinical outcomes (eg, which medication works better for an individual and whether glaucoma surgery is required). GOGS will also help us answer various research questions about genetic overlap and causal relationships between glaucoma and its comorbidities.
Collapse
Affiliation(s)
- Puya Gharahkhani
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Weixiong He
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Santiago Diaz Torres
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yeda Wu
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan Ingold
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Regina Yu
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mathias Seviiri
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jue-Sheng Ong
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew H Law
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart MacGregor
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
87
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
88
|
Kolli A, Sekimitsu S, Wang J, Segre A, Friedman D, Elze T, Pasquale LR, Wiggs J, Zebardast N. Background polygenic risk modulates the association between glaucoma and cardiopulmonary diseases and measures: an analysis from the UK Biobank. Br J Ophthalmol 2023; 107:1112-1118. [PMID: 35361574 PMCID: PMC9522920 DOI: 10.1136/bjophthalmol-2021-320305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/13/2022] [Indexed: 12/27/2022]
Abstract
AIMS To assess whether associations of cardiopulmonary conditions and markers with glaucoma differ by background genetic risk for primary open angle glaucoma (POAG). METHODS We constructed a POAG polygenic risk score (PRS) using genome-wide association study summary statistics from a large cross-ancestry meta-analysis. History of glaucoma (including self-report and codes for POAG, 'other glaucoma' or unspecified glaucoma), history of common cardiopulmonary conditions and cardiopulmonary measures were assessed in the UK Biobank. Stratifying by PRS decile 1 (lowest risk) versus decile 10 (highest risk), separate multivariable models were estimated to assess the associations of cardiopulmonary diseases or factors with glaucoma, adjusting for age, sex, smoking and medication use. A Bonferroni correction was used to adjust p values for multiple comparisons. RESULTS Individuals in POAG PRS decile 1 (417 cases, 44 458 controls; mean age 56.8 years) and decile 10 (2135 cases, 42 413 controls; mean age 56.7 years) were included. Within decile 1, glaucoma cases had significantly higher glycated haemoglobin (38.5 vs 35.9 mmol/mol) and higher prevalence of diabetes (17.5% vs 6.5%), dyslipidaemia (31.2% vs 18.3%) and chronic kidney disease (CKD) (6.7% vs 2.0%) than controls (adjusted p<0.0013 for each). Within decile 10, glaucoma was associated with higher prevalence of dyslipidaemia (27.7% vs 17.3%, p=6.9E-05). The magnitude of association between glaucoma and diabetes, CKD and glycated haemoglobin differed between deciles 1 and 10 (contrast test p value for difference <0.05). CONCLUSION The relations between systemic conditions and glaucoma vary by underlying genetic predisposition to POAG, with larger associations among those who developed glaucoma despite low genetic risk.
Collapse
Affiliation(s)
- Ajay Kolli
- Ophthalmology and Visual Science, University of Michigan, Ann Arbor, Michigan, USA
- Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayellet Segre
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
- Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - David Friedman
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janey Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
89
|
Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature 2023; 620:737-745. [PMID: 37612393 DOI: 10.1038/s41586-023-06388-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/29/2023] [Indexed: 08/25/2023]
Abstract
The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.
Collapse
Affiliation(s)
- Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Claude Bhérer
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Taliun
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
90
|
Shiga Y, Nishida T, Jeoung JW, Di Polo A, Fortune B. Optical Coherence Tomography and Optical Coherence Tomography Angiography: Essential Tools for Detecting Glaucoma and Disease Progression. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217125. [PMID: 37982032 PMCID: PMC10655832 DOI: 10.3389/fopht.2023.1217125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/03/2023] [Indexed: 11/21/2023]
Abstract
Early diagnosis and detection of disease progression are critical to successful therapeutic intervention in glaucoma, the leading cause of irreversible blindness worldwide. Optical coherence tomography (OCT) is a non-invasive imaging technique that allows objective quantification in vivo of key glaucomatous structural changes in the retina and the optic nerve head (ONH). Advances in OCT technology have increased the scan speed and enhanced image quality, contributing to early glaucoma diagnosis and monitoring, as well as the visualization of critically important structures deep within the ONH, such as the lamina cribrosa. OCT angiography (OCTA) is a dye-free technique for noninvasively assessing ocular microvasculature, including capillaries within each plexus serving the macula, peripapillary retina and ONH regions, as well as the deeper vessels of the choroid. This layer-specific assessment of the microvasculature has provided evidence that retinal and choroidal vascular impairments can occur during early stages of glaucoma, suggesting that OCTA-derived measurements could be used as biomarkers for enhancing detection of glaucoma and its progression, as well as to reveal novel insights about pathophysiology. Moreover, these innovations have demonstrated that damage to the macula, a critical region for the vision-related quality of life, can be observed in the early stages of glaucomatous eyes, leading to a paradigm shift in glaucoma monitoring. Other advances in software and hardware, such as artificial intelligence-based algorithms, adaptive optics, and visible-light OCT, may further benefit clinical management of glaucoma in the future. This article reviews the utility of OCT and OCTA for glaucoma diagnosis and disease progression detection, emphasizes the importance of detecting macula damage in glaucoma, and highlights the future perspective of OCT and OCTA. We conclude that the OCT and OCTA are essential glaucoma detection and monitoring tools, leading to clinical and economic benefits for patients and society.
Collapse
Affiliation(s)
- Yukihiro Shiga
- Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Takashi Nishida
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093, USA
| | - Jin Wook Jeoung
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Adriana Di Polo
- Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, 1225 NE Second Avenue, Portland, Oregon 97232, USA
| |
Collapse
|
91
|
De Lillo A, Wendt FR, Pathak GA, Polimanti R. Characterizing the polygenic architecture of complex traits in populations of East Asian and European descent. Hum Genomics 2023; 17:67. [PMID: 37475089 PMCID: PMC10360343 DOI: 10.1186/s40246-023-00514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
To investigate the polygenicity of complex traits in populations of East Asian (EAS) and European (EUR) descents, we leveraged genome-wide data from Biobank Japan, UK Biobank, and FinnGen cohorts. Specifically, we analyzed up to 215 outcomes related to 18 health domains, assessing their polygenic architecture via descriptive statistics, such as the proportion of susceptibility SNPs per trait (πc). While we did not observe EAS-EUR differences in the overall distribution of polygenicity parameters across the phenotypes investigated, there were ancestry-specific patterns in the polygenicity differences between health domains. In EAS, pairwise comparisons across health domains showed enrichment for πc differences related to hematological and metabolic traits (hematological fold-enrichment = 4.45, p = 2.15 × 10-7; metabolic fold-enrichment = 4.05, p = 4.01 × 10-6). For both categories, the proportion of susceptibility SNPs was lower than that observed for several other health domains (EAS-hematological median πc = 0.15%, EAS-metabolic median πc = 0.18%) with the strongest πc difference with respect to respiratory traits (EAS-respiratory median πc = 0.50%; hematological-p = 2.26 × 10-3; metabolic-p = 3.48 × 10-3). In EUR, pairwise comparisons showed multiple πc differences related to the endocrine category (fold-enrichment = 5.83, p = 4.76 × 10-6), where these traits showed a low proportion of susceptibility SNPs (EUR-endocrine median πc = 0.01%) with the strongest difference with respect to psychiatric phenotypes (EUR-psychiatric median πc = 0.50%; p = 1.19 × 10-4). Simulating sample sizes of 1,000,000 and 5,000,000 individuals, we also showed that ancestry-specific polygenicity patterns translate into differences across health domains in the genetic variance explained by susceptibility SNPs projected to be genome-wide significant (e.g., EAS hematological-neoplasm p = 2.18 × 10-4; EUR endocrine-gastrointestinal p = 6.80 × 10-4). These findings highlight that traits related to the same health domains may present ancestry-specific variability in their polygenicity.
Collapse
Affiliation(s)
- Antonella De Lillo
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, 06510, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
92
|
Aboobakar IF, Collantes ERA, Hauser MA, Stamer WD, Wiggs JL. Rare protective variants and glaucoma-relevant cell stressors modulate Angiopoietin-like 7 expression. Hum Mol Genet 2023; 32:2523-2531. [PMID: 37220876 PMCID: PMC10360392 DOI: 10.1093/hmg/ddad083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Rare missense and nonsense variants in the Angiopoietin-like 7 (ANGPTL7) gene confer protection from primary open-angle glaucoma (POAG), though the functional mechanism remains uncharacterized. Interestingly, a larger variant effect size strongly correlates with in silico predictions of increased protein instability (r = -0.98), suggesting that protective variants lower ANGPTL7 protein levels. Here, we show that missense and nonsense variants cause aggregation of mutant ANGPTL7 protein in the endoplasmic reticulum (ER) and decreased levels of secreted protein in human trabecular meshwork (TM) cells; a lower secreted:intracellular protein ratio strongly correlates with variant effects on intraocular pressure (r = 0.81). Importantly, accumulation of mutant protein in the ER does not increase expression of ER stress proteins in TM cells (P > 0.05 for all variants tested). Cyclic mechanical stress, a glaucoma-relevant physiologic stressor, also significantly lowers ANGPTL7 expression in primary cultures of human Schlemm's canal (SC) cells (-2.4-fold-change, P = 0.01). Collectively, these data suggest that the protective effects of ANGPTL7 variants in POAG stem from lower levels of secreted protein, which may modulate responses to physiologic and pathologic ocular cell stressors. Downregulation of ANGPTL7 expression may therefore serve as a viable preventative and therapeutic strategy for this common, blinding disease.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Edward Ryan A Collantes
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University School of Medicine, Durham, NC 27710, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
93
|
Yuan K, Longchamps RJ, Pardiñas AF, Yu M, Chen TT, Lin SC, Chen Y, Lam M, Liu R, Xia Y, Guo Z, Shi W, Shen C, Daly MJ, Neale BM, Feng YCA, Lin YF, Chen CY, O'Donovan M, Ge T, Huang H. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.07.23284293. [PMID: 36711496 PMCID: PMC9882563 DOI: 10.1101/2023.01.07.23284293] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestries has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping, which builds on the single-population fine-mapping framework, Sum of Single Effects (SuSiE). SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and LD patterns, accounts for multiple causal variants in a genomic region, and can be applied to GWAS summary statistics. We comprehensively evaluated SuSiEx using simulations, a range of quantitative traits measured in both UK Biobank and Taiwan Biobank, and schizophrenia GWAS across East Asian and European ancestries. In all evaluations, SuSiEx fine-mapped more association signals, produced smaller credible sets and higher posterior inclusion probability (PIP) for putative causal variants, and captured population-specific causal variants.
Collapse
Affiliation(s)
- Kai Yuan
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan J Longchamps
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, UK
| | - Mingrui Yu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tzu-Ting Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Max Lam
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Division of Psychiatry Research, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Research Division Institute of Mental Health Singapore, Singapore, Singapore
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yan Xia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wenzhao Shi
- Digital Health China Technologies Corp. Ltd., Beijing, China
| | - Chengguo Shen
- Digital Health China Technologies Corp. Ltd., Beijing, China
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yen-Chen A Feng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health & Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University
| | | | - Michael O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, UK
| | - Tian Ge
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
94
|
Jiang C, Melles RB, Sangani P, Hoffmann TJ, Hysi PG, Glymour MM, Jorgenson E, Lachke SA, Choquet H. Association of Behavioral and Clinical Risk Factors With Cataract: A Two-Sample Mendelian Randomization Study. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37459064 PMCID: PMC10362921 DOI: 10.1167/iovs.64.10.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Purpose To investigate the association of genetically determined primary open-angle glaucoma (POAG), myopic refractive error (RE), type 2 diabetes (T2D), blood pressure (BP), body mass index (BMI), cigarette smoking, and alcohol consumption with the risk of age-related cataract. Methods To assess potential causal effects of clinical or behavioral factors on cataract risk, we conducted two-sample Mendelian randomization analyses. Genetic instruments, based on common genetic variants associated with risk factors at genome-wide significance (P < 5 × 10-8), were derived from published genome-wide association studies (GWAS). For age-related cataract, we used GWAS summary statistics from our previous GWAS conducted in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (28,092 cataract cases and 50,487 controls; all non-Hispanic whites) or in the UK Biobank (31,852 cataract cases and 428,084 controls; all European-descent individuals). We used the inverse-variance weighted (IVW) method as our primary source of Mendelian randomization estimates and conducted common sensitivity analyses. Results We found that genetically determined POAG and mean spherical equivalent RE were significantly associated with cataract risk (IVW model: odds ratio [OR] = 1.04; 95% confidence interval [CI], 1.01-1.08; P = 0.018; per diopter more hyperopic: OR = 0.92; 95% CI, 0.89-0.93; P = 6.51 × 10-13, respectively). In contrast, genetically determined T2D, BP, BMI, cigarette smoking, or alcohol consumption were not associated with cataract risk (P > 0.05). Conclusions Our results provide evidence that genetic risks for POAG and myopia may be causal risk factors for age-related cataract. These results are consistent with previous observational studies reporting associations of myopia with cataract risk. This information may support population cataract risk stratification and screening strategies.
Collapse
Affiliation(s)
- Chen Jiang
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, California, United States
| | - Ronald B. Melles
- KPNC, Department of Ophthalmology, Redwood City, California, United States
| | - Poorab Sangani
- KPNC, Department of Ophthalmology, South San Francisco, California, United States
| | - Thomas J. Hoffmann
- Institute for Human Genetics, UCSF, San Francisco, California, United States
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, United States
| | - Pirro G. Hysi
- King's College London, Section of Ophthalmology, School of Life Course Sciences, London, United Kingdom
- King's College London, Department of Twin Research and Genetic Epidemiology, London, United Kingdom
- University College London, Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, United States
| | - Eric Jorgenson
- Regeneron Genetics Center, Tarrytown, New York, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, California, United States
| |
Collapse
|
95
|
Grainger RM, Lauderdale JD, Collins JL, Trout KL, McCullen Krantz S, Wolfe SS, Netland PA. Report on the 2021 Aniridia North America symposium on PAX6, aniridia, and beyond. Ocul Surf 2023; 29:423-431. [PMID: 37247841 DOI: 10.1016/j.jtos.2023.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
The inaugural Aniridia North America (ANA) Symposium was held on the first weekend in November 2021 in Charlottesville, VA, at the University of Virginia. The purpose of this meeting was to bring together an international group of scientists, physicians, patient advocacy groups, and individuals with aniridia to discuss recent advances in knowledge about aniridia and other congenital eye diseases and the development of potential treatments for congenital eye disorders using personalized medicine. Leaders in several areas of eye research and clinical treatment provided a broad perspective on new research advances that impact an understanding of the causes of the damage to the eye associated with aniridia and the development of novel treatments for this and related disorders. Here we summarize the research discussed at the symposium.
Collapse
Affiliation(s)
- Robert M Grainger
- Aniridia North America, LaGrange, IL, 60525, USA; Department of Biology, 326 Gilmer Hall University of Virginia 485 McCormick Road P.O. Box 400328 Charlottesville, VA 22904, USA.
| | - James D Lauderdale
- Aniridia North America, LaGrange, IL, 60525, USA; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| | | | | | | | | | - Peter A Netland
- Aniridia North America, LaGrange, IL, 60525, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
96
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
97
|
Stuart KV, Luben RN, Warwick AN, Madjedi KM, Patel PJ, Biradar MI, Sun Z, Chia MA, Pasquale LR, Wiggs JL, Kang JH, Kim J, Aschard H, Tran JH, Lentjes MAH, Foster PJ, Khawaja AP. The Association of Alcohol Consumption with Glaucoma and Related Traits: Findings from the UK Biobank. Ophthalmol Glaucoma 2023; 6:366-379. [PMID: 36481453 PMCID: PMC10239785 DOI: 10.1016/j.ogla.2022.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/12/2023]
Abstract
PURPOSE To examine the associations of alcohol consumption with glaucoma and related traits, to assess whether a genetic predisposition to glaucoma modified these associations, and to perform Mendelian randomization (MR) experiments to probe causal effects. DESIGN Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS UK Biobank participants with data on intraocular pressure (IOP) (n = 109 097), OCT-derived macular inner retinal layer thickness measures (n = 46 236) and glaucoma status (n = 173 407). METHODS Participants were categorized according to self-reported drinking behaviors. Quantitative estimates of alcohol intake were derived from touchscreen questionnaires and food composition tables. We performed a 2-step analysis, first comparing categories of alcohol consumption (never, infrequent, regular, and former drinkers) before assessing for a dose-response effect in regular drinkers only. Multivariable linear, logistic, and restricted cubic spline regression, adjusted for key sociodemographic, medical, anthropometric, and lifestyle factors, were used to examine associations. We assessed whether any association was modified by a multitrait glaucoma polygenic risk score. The inverse-variance weighted method was used for the main MR analyses. MAIN OUTCOME MEASURES Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and prevalent glaucoma. RESULTS Compared with infrequent drinkers, regular drinkers had higher IOP (+0.17 mmHg; P < 0.001) and thinner mGCIPL (-0.17 μm; P = 0.049), whereas former drinkers had a higher prevalence of glaucoma (odds ratio, 1.53; P = 0.002). In regular drinkers, alcohol intake was adversely associated with all outcomes in a dose-dependent manner (all P < 0.001). Restricted cubic spline regression analyses suggested nonlinear associations, with apparent threshold effects at approximately 50 g (∼6 UK or 4 US alcoholic units)/week for mRNFL and mGCIPL thickness. Significantly stronger alcohol-IOP associations were observed in participants at higher genetic susceptibility to glaucoma (Pinteraction < 0.001). Mendelian randomization analyses provided evidence for a causal association with mGCIPL thickness. CONCLUSIONS Alcohol intake was consistently and adversely associated with glaucoma and related traits, and at levels below current United Kingdom (< 112 g/week) and United States (women, < 98 g/week; men, < 196 g/week) guidelines. Although we cannot infer causality definitively, these results will be of interest to people with or at risk of glaucoma and their advising physicians. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
| | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Alasdair N Warwick
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of Calgary, Calgary, Alberta, Canada
| | - Praveen J Patel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Mahantesh I Biradar
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Zihan Sun
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Mark A Chia
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jae H Kang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jihye Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Hugues Aschard
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Institut Pasteur, Université Paris Cité, Department of Computational Biology, Paris, France
| | - Jessica H Tran
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
98
|
Aboobakar IF, Kinzy TG, Zhao Y, Fan B, Pasquale LR, Qassim A, Kolovos A, Schmidt JM, Craig JE, Cooke Bailey JN, Wiggs JL. Mitochondrial TXNRD2 and ME3 Genetic Risk Scores Are Associated with Specific Primary Open-Angle Glaucoma Phenotypes. Ophthalmology 2023; 130:756-763. [PMID: 36813040 PMCID: PMC10330404 DOI: 10.1016/j.ophtha.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
PURPOSE Genetic variants in regions that include the mitochondrial genes thioredoxin reductase 2 (TXNRD2) and malic enzyme 3 (ME3) are associated with primary open-angle glaucoma (POAG) in genome-wide association studies (GWASs). To assess their clinical impact, we investigated whether TXNRD2 and ME3 genetic risk scores (GRSs) are associated with specific glaucoma phenotypes. DESIGN Cross-sectional study. PARTICIPANTS A total of 2617 patients with POAG and 2634 control participants from the National Eye Institute Glaucoma Human Genetics Collaboration Hereditable Overall Operational Database (NEIGHBORHOOD) consortium. METHODS All POAG-associated single nucleotide polymorphisms (SNPs) in the TXNRD2 and ME3 loci were identified using GWAS data (P < 0.05). Of these, 20 TXNRD2 and 24 ME3 SNPs were selected after adjusting for linkage disequilibrium. The correlation between SNP effect size and gene expression levels was investigated using the Gene-Tissue Expression database. Genetic risk scores were constructed for each individual using the unweighted sum of TXNRD2, ME3, and TXNRD2 + ME3 combined risk alleles. Age- and sex-adjusted odds ratios (ORs) for POAG diagnosis were calculated per decile for each GRS. Additionally, the clinical features of patients with POAG in the top 1%, 5%, and 10% of each GRS were compared with those in the bottom 1%, 5%, and 10%, respectively. MAIN OUTCOME MEASURES Primary open-angle glaucoma OR per GRS decile, maximum treated intraocular pressure (IOP), and prevalence of paracentral visual field loss among patients with POAG with high versus low GRSs. RESULTS A larger SNP effect size strongly correlated with higher TXNRD2 and lower ME3 expression levels (r = 0.95 and r = -0.97, respectively; P < 0.05 for both). Individuals in decile 10 of the TXNRD2 + ME3 GRS had the highest odds of POAG diagnosis (OR, 1.79 compared with decile 1; 95% confidence interval, 1.39-2.30; P < 0.001). Patients with POAG in the top 1% of the TXNRD2 GRS showed higher mean maximum treated IOP compared with the bottom 1% (19.9 mmHg vs. 15.6 mmHg; adjusted P = 0.03). Patients with POAG in the top 1% of the ME3 and TXNRD2 + ME3 GRS showed a higher prevalence of paracentral field loss than the bottom 1% (72.7% vs. 14.3% for ME3 GRS and 88.9% vs. 33.3% for TXNRD2+ME3 GRS; adjusted P = 0.03 for both). CONCLUSIONS Patients with POAG with higher TXNRD2 and ME3 GRSs showed higher treated IOP and a greater prevalence of paracentral field loss. Functional studies exploring how these variants impact mitochondrial function in patients with glaucoma are warranted. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Yan Zhao
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Baojian Fan
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ayub Qassim
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Antonia Kolovos
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Joshua M Schmidt
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
99
|
Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, Dong X, Pasutto F, Hammond C, Young TL, Hysi P, Lotery AJ, Jorgenson E, Choquet H, Hauser M, Cooke Bailey JN, Nakazawa T, Akiyama M, Shiga Y, Fuller ZL, Wang X, Hewitt AW, Craig JE, Pasquale LR, Mackey DA, Wiggs JL, Khawaja AP, Segrè AV, MacGregor S. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet 2023; 55:1116-1125. [PMID: 37386247 PMCID: PMC10335935 DOI: 10.1038/s41588-023-01428-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Xikun Han
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew R Hamel
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jue Sheng Ong
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Miguel E Rentería
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Puja Mehta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Pasutto
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | | | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Pirro Hysi
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Andrew J Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael Hauser
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University, Durham, NC, USA
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada
- Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | | | - Xin Wang
- 23andMe, Inc., Sunnyvale, CA, USA
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, South Australia, Australia
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Stuart MacGregor
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
100
|
Ng TK, Chu KO, Wang CC, Pang CP. Green Tea Catechins as Therapeutic Antioxidants for Glaucoma Treatment. Antioxidants (Basel) 2023; 12:1320. [PMID: 37507860 PMCID: PMC10376590 DOI: 10.3390/antiox12071320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and visual impairment, affecting more than 80 million individuals worldwide. Oxidative stress and inflammation-induced neurodegenerative insults to retinal ganglion cells are the main pathogenesis of glaucoma. Retinal ganglion cells, the retinal neurons transmitting the visual signals to the visual cortex in the brain, have very limited regeneration or recovery capacity after damages. Apart from intraocular pressure-lowering treatments, there is still no clinically effective treatment to rescue the degeneration of retinal ganglion cells in glaucoma. Dietary antioxidants are easily accessible and can be applied as supplements assisting in the clinical treatments. Catechins, a chemical family of flavonoids, are the phenolic compounds found in many plants, especially in green tea. The anti-oxidative and anti-inflammatory properties of green tea catechins in vitro and in vivo have been well proven. They could be a potential treatment ameliorating retinal ganglion cell degeneration in glaucoma. In this review, the chemistry, pharmacokinetics, and therapeutic properties of green tea catechins were summarized. Research updates on the biological effects of green tea catechins in cellular and animal experimental glaucoma models were reviewed. In addition, clinical potentials of green tea catechins for glaucoma treatment were also highlighted.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|