51
|
Kolovos A, Hassall MM, Siggs OM, Souzeau E, Craig JE. Polygenic Risk Scores Driving Clinical Change in Glaucoma. Annu Rev Genomics Hum Genet 2024; 25:287-308. [PMID: 38599222 DOI: 10.1146/annurev-genom-121222-105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Glaucoma is a clinically heterogeneous disease and the world's leading cause of irreversible blindness. Therapeutic intervention can prevent blindness but relies on early diagnosis, and current clinical risk factors are limited in their ability to predict who will develop sight-threatening glaucoma. The high heritability of glaucoma makes it an ideal substrate for genetic risk prediction, with the bulk of risk being polygenic in nature. Here, we summarize the foundations of glaucoma genetic risk, the development of polygenic risk prediction instruments, and emerging opportunities for genetic risk stratification. Although challenges remain, genetic risk stratification will significantly improve glaucoma screening and management.
Collapse
Affiliation(s)
- Antonia Kolovos
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Mark M Hassall
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Owen M Siggs
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia;
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| |
Collapse
|
52
|
Founti P, Stuart K, Nolan WP, Khawaja AP, Foster PJ. Screening Strategies and Methodologies. J Glaucoma 2024; 33:S15-S20. [PMID: 39149948 DOI: 10.1097/ijg.0000000000002426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/02/2024] [Indexed: 08/17/2024]
Abstract
PRCIS While glaucoma is a leading cause of irreversible vision loss, it presents technical challenges in the design and implementation of screening. New technologies such as PRS and AI offer potential improvements in our ability to identify people at high risk of sight loss from glaucoma and may improve the viability of screening for this important disease. PURPOSE To review the current evidence and concepts around screening for glaucoma. METHODS/RESULTS A group of glaucoma-focused clinician scientists drew on knowledge and experience around glaucoma, its etiology, and the options for screening. Glaucoma is a chronic progressive optic neuropathy affecting around 76 million individuals worldwide and is the leading cause of irreversible blindness globally. Early stages of the disease are asymptomatic meaning a substantial proportion of cases remain undiagnosed. Early detection and timely intervention reduce the risk of glaucoma-related visual morbidity. However, imperfect tests and a relatively low prevalence currently limit the viability of population-based screening approaches. The diagnostic yield of opportunistic screening strategies, relying on the identification of disease during unrelated health care encounters, such as cataract clinics and diabetic retinopathy screening programs, focusing on older people and/or those with a family history, are hindered by a large number of false-positive and false-negative results. Polygenic risk scores (PRS) offer personalized risk assessment for adult-onset glaucoma. In addition, artificial intelligence (AI) algorithms have shown impressive performance, comparable to expert humans, in discriminating between potentially glaucomatous and non-glaucomatous eyes. These emerging technologies may offer a meaningful improvement in diagnostic yield in glaucoma screening. CONCLUSIONS While glaucoma is a leading cause of irreversible vision loss, it presents technical challenges in the design and implementation of screening. New technologies such as PRS and AI offer potential improvements in our ability to identify people at high risk of sight loss from glaucoma and may improve the viability of screening for this important disease.
Collapse
Affiliation(s)
| | - Kelsey Stuart
- Ocular Informatics Group, Population and Data Sciences Research Theme, University College London Institute of Ophthalmology
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology
| | - Winifred P Nolan
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Anthony P Khawaja
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust
- Ocular Informatics Group, Population and Data Sciences Research Theme, University College London Institute of Ophthalmology
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology
| | - Paul J Foster
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust
- Ocular Informatics Group, Population and Data Sciences Research Theme, University College London Institute of Ophthalmology
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology
| |
Collapse
|
53
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
54
|
Zhao B, Li Y, Fan Z, Wu Z, Shu J, Yang X, Yang Y, Wang X, Li B, Wang X, Copana C, Yang Y, Lin J, Li Y, Stein JL, O'Brien JM, Li T, Zhu H. Eye-brain connections revealed by multimodal retinal and brain imaging genetics. Nat Commun 2024; 15:6064. [PMID: 39025851 PMCID: PMC11258354 DOI: 10.1038/s41467-024-50309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
The retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes. We identified novel phenotypic and genetic links between retinal imaging biomarkers and brain structure and function measures from multimodal magnetic resonance imaging (MRI), with many associations involving the primary visual cortex and visual pathways. Retinal imaging biomarkers shared genetic influences with brain diseases and complex traits in 65 genomic regions, with 18 showing genetic overlap with brain MRI traits. Mendelian randomization suggests bidirectional genetic causal links between retinal structures and neurological and neuropsychiatric disorders, such as Alzheimer's disease. Overall, our findings reveal the genetic basis for eye-brain connections, suggesting that retinal images can help uncover genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA.
- Applied Mathematics and Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhenyi Wu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Shu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Yilin Yang
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bingxuan Li
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Copana
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jinjie Lin
- Yale School of Management, Yale University, New Haven, CT, 06511, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan M O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA, 19104, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
55
|
Ohno-Oishi M, Meiai Z, Sato K, Kanno S, Kawano C, Ishikawa M, Nakazawa T. SH-SY5Y human neuronal cells with mutations of the CDKN2B-AS1 gene are vulnerable under cultured conditions. Biochem Biophys Rep 2024; 38:101723. [PMID: 38737728 PMCID: PMC11088231 DOI: 10.1016/j.bbrep.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Glaucoma is a common cause of blindness worldwide. Genetic effects are believed to contribute to the onset and progress of glaucoma, but the underlying pathological mechanisms are not fully understood. Here, we set out to introduce mutations into the CDKN2B-AS1 gene, which is known as being the closely associated with glaucoma, in a human neuronal cell line in vitro. We introduced gene mutations with CRISPR/Cas9 into exons and introns into the CDKN2B-AS1 gene. Both mutations strongly promoted neuronal cell death in normal culture conditions. RNA sequencing and pathway analysis revealed that the transcriptional factor Fos is a target molecule regulating CDKN2B-AS1 overexpression. We demonstrated that gene mutation of CDKN2B-AS1 is directly associated with neuronal cell vulnerability in vitro. Additionally, Fos, which is a downstream signaling molecule of CDKN2B-AS1, may be a potential source of new therapeutic targets for neuronal degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zou Meiai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiya Kanno
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
56
|
Rajasundaram S, Segrè AV, Gill D, Woolf B, Zekavat SM, Burgess S, Khawaja AP, Zebardast N, Wiggs JL. Independent Effects of Blood Pressure on Intraocular Pressure and Retinal Ganglion Cell Degeneration: A Mendelian Randomization Study. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 39028976 PMCID: PMC11262474 DOI: 10.1167/iovs.65.8.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/21/2024] Open
Abstract
Purpose To investigate the causal effect of elevated blood pressure on primary open-angle glaucoma (POAG) and POAG endophenotypes. Methods Two-sample Mendelian randomization (MR) was performed to investigate the causal effect of elevated systolic blood pressure (SBP) (N = 757,601) and diastolic blood pressure (DBP) (N = 757,601) on intraocular pressure (IOP) (N = 139,555), macular retinal nerve fiber layer (mRNFL) thickness (N = 33,129), ganglion cell complex (GCC) thickness (N = 33,129), vertical cup-to-disc ratio (VCDR) (N = 111,724), and POAG liability (Ncases = 16,677, Ncontrols = 199,580). The primary analysis was conducted using the inverse-variance weighted approach. Sensitivity analyses were performed to investigate robustness to horizontal pleiotropy, winner's curse, and collider bias. Multivariable MR was performed to investigate whether any effect of blood pressure on retinal ganglion cell degeneration was mediated through increased IOP. Results Increased genetically predicted SBP and DBP associated with an increase in IOP (0.17 mm Hg [95% CI = 0.11 to 0.24] per 10 mm Hg higher SBP, P = 5.18 × 10-7, and 0.17 mm Hg [95% CI = 0.05 to 0.28 mm Hg] per 10 mm Hg higher DBP, P = 0.004). Increased genetically predicted SBP associated with a thinner GCC (0.04 µm [95% CI = -0.07 to -0.01 µm], P = 0.018) and a thinner mRNFL (0.04 µm [95% CI = -0.07 to -0.01 µm], P = 0.004), an effect that arises independently of IOP according to our mediation analysis. Neither SBP nor DBP associated with VCDR or POAG liability. Conclusions These findings support a causal effect of elevated blood pressure on retinal ganglion cell degeneration that does not require intermediary changes in IOP. Targeted blood pressure control may help preserve vision by lowering IOP and, independently, by preventing retinal ganglion cell degeneration, including in individuals with a normal IOP.
Collapse
Affiliation(s)
- Skanda Rajasundaram
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Ayellet V. Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Benjamin Woolf
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Seyedeh M. Zekavat
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Yale University School of Medicine, New Haven, Connecticut, United States
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Janey L. Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
57
|
Moix S, Sadler MC, Kutalik Z, Auwerx C. Breaking down causes, consequences, and mediating effects of telomere length variation on human health. Genome Biol 2024; 25:125. [PMID: 38760657 PMCID: PMC11101352 DOI: 10.1186/s13059-024-03269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.
Collapse
Affiliation(s)
- Samuel Moix
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| | - Marie C Sadler
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland.
| | - Chiara Auwerx
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland.
- Center for Integrative Genetics, UNIL, Lausanne, 1015, Switzerland.
| |
Collapse
|
58
|
Lin F, Li Y, Wang J, Jardines S, King R, Chrenek MA, Wiggs JL, Boatright JH, Geisert EE. POU6F2, a risk factor for glaucoma, myopia and dyslexia, labels specific populations of retinal ganglion cells. Sci Rep 2024; 14:10096. [PMID: 38698014 PMCID: PMC11066091 DOI: 10.1038/s41598-024-60444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.
Collapse
Affiliation(s)
- Fangyu Lin
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Ying Li
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Sandra Jardines
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Rebecca King
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Micah A Chrenek
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Janey L Wiggs
- Massachusetts Eye and Ear, Harvard Medical School Boston, Boston, MA, USA
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
59
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
60
|
Pan Y, Iwata T. Molecular genetics of inherited normal tension glaucoma. Indian J Ophthalmol 2024; 72:S335-S344. [PMID: 38389252 PMCID: PMC467016 DOI: 10.4103/ijo.ijo_3204_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Normal tension glaucoma (NTG) is a complex optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, despite normal intraocular pressure (IOP). This condition poses a unique clinical challenge due to the absence of elevated IOP, a major risk factor in typical glaucoma. Recent research indicates that up to 21% of NTG patients have a family history of glaucoma, suggesting a genetic predisposition. In this comprehensive review using PubMed studies from January 1990 to December 2023, our focus delves into the genetic basis of autosomal dominant NTG, the only known form of inheritance for glaucoma. Specifically exploring optineurin ( OPTN ), TANK binding kinase 1 ( TBK1 ), methyltransferase-like 23 ( METTL23 ), and myocilin ( MYOC ) mutations, we summarize their clinical manifestations, mutant protein behaviors, relevant animal models, and potential therapeutic pathways. This exploration aims to illuminate the intricate pathogenesis of NTG, unraveling the contribution of these genetic components to its complex development.
Collapse
Affiliation(s)
- Yang Pan
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| |
Collapse
|
61
|
Marola OJ, MacLean M, Cossette TL, Diemler CA, Hewes AA, Reagan AM, Skelly DA, Howell GR. Genetic context modulates aging and degeneration in the murine retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589625. [PMID: 38659747 PMCID: PMC11042269 DOI: 10.1101/2024.04.16.589625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease. However, studies investigating retinal aging have not sufficiently accounted for genetic diversity. Therefore, examining molecular aging in the retina across different genetic backgrounds will enhance our understanding of human-relevant aging and degeneration in both the retina and brain-potentially improving therapeutic approaches to these debilitating conditions. Methods Transcriptomics and proteomics were employed to elucidate retinal aging signatures in nine genetically diverse mouse strains (C57BL/6J, 129S1/SvlmJ, NZO/HlLtJ, WSB/EiJ, CAST/EiJ, PWK/PhK, NOD/ShiLtJ, A/J, and BALB/cJ) across lifespan. These data predicted human disease-relevant changes in WSB and NZO strains. Accordingly, B6, WSB and NZO mice were subjected to human-relevant in vivo examinations at 4, 8, 12, and/or 18M, including: slit lamp, fundus imaging, optical coherence tomography, fluorescein angiography, and pattern/full-field electroretinography. Retinal morphology, vascular structure, and cell counts were assessed ex vivo. Results We identified common molecular aging signatures across the nine mouse strains, which included genes associated with photoreceptor function and immune activation. Genetic background strongly modulated these aging signatures. Analysis of cell type-specific marker genes predicted age-related loss of photoreceptors and retinal ganglion cells (RGCs) in WSB and NZO, respectively. Fundus exams revealed retinitis pigmentosa-relevant pigmentary abnormalities in WSB retinas and diabetic retinopathy (DR)-relevant cotton wool spots and exudates in NZO retinas. Profound photoreceptor dysfunction and loss were confirmed in WSB. Molecular analyses indicated changes in photoreceptor-specific proteins prior to loss, suggesting photoreceptor-intrinsic dysfunction in WSB. In addition, age-associated RGC dysfunction, loss, and concomitant microvascular dysfunction was observed in NZO mice. Proteomic analyses revealed an early reduction in protective antioxidant processes, which may underlie increased susceptibility to DR-relevant pathology in NZO. Conclusions Genetic context is a strong determinant of retinal aging, and our multi-omics resource can aid in understanding age-related diseases of the eye and brain. Our investigations identified and validated WSB and NZO mice as improved preclinical models relevant to common retinal neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | | | | | | | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
62
|
Troubat L, Fettahoglu D, Henches L, Aschard H, Julienne H. Multi-trait GWAS for diverse ancestries: mapping the knowledge gap. BMC Genomics 2024; 25:375. [PMID: 38627641 PMCID: PMC11022331 DOI: 10.1186/s12864-024-10293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Approximately 95% of samples analyzed in univariate genome-wide association studies (GWAS) are of European ancestry. This bias toward European ancestry populations in association screening also exists for other analyses and methods that are often developed and tested on European ancestry only. However, existing data in non-European populations, which are often of modest sample size, could benefit from innovative approaches as recently illustrated in the context of polygenic risk scores. METHODS Here, we extend and assess the potential limitations and gains of our multi-trait GWAS pipeline, JASS (Joint Analysis of Summary Statistics), for the analysis of non-European ancestries. To this end, we conducted the joint GWAS of 19 hematological traits and glycemic traits across five ancestries (European (EUR), admixed American (AMR), African (AFR), East Asian (EAS), and South-East Asian (SAS)). RESULTS We detected 367 new genome-wide significant associations in non-European populations (15 in Admixed American (AMR), 72 in African (AFR) and 280 in East Asian (EAS)). New associations detected represent 5%, 17% and 13% of associations in the AFR, AMR and EAS populations, respectively. Overall, multi-trait testing increases the replication of European associated loci in non-European ancestry by 15%. Pleiotropic effects were highly similar at significant loci across ancestries (e.g. the mean correlation between multi-trait genetic effects of EUR and EAS ancestries was 0.88). For hematological traits, strong discrepancies in multi-trait genetic effects are tied to known evolutionary divergences: the ARKC1 loci, which is adaptive to overcome p.vivax induced malaria. CONCLUSIONS Multi-trait GWAS can be a valuable tool to narrow the genetic knowledge gap between European and non-European populations.
Collapse
Affiliation(s)
- Lucie Troubat
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, F-75015, France
| | - Deniz Fettahoglu
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, F-75015, France
| | - Léo Henches
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, F-75015, France
| | - Hugues Aschard
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, F-75015, France
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Hanna Julienne
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, F-75015, France.
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, F-75015, France.
| |
Collapse
|
63
|
Yun JS, Jung SH, Lee SN, Jung SM, Won HH, Kim D, Choi JA. Polygenic risk score-based phenome-wide association for glaucoma and its impact on disease susceptibility in two large biobanks. J Transl Med 2024; 22:355. [PMID: 38622600 PMCID: PMC11020996 DOI: 10.1186/s12967-024-05152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Glaucoma is a leading cause of worldwide irreversible blindness. Considerable uncertainty remains regarding the association between a variety of phenotypes and the genetic risk of glaucoma, as well as the impact they exert on the glaucoma development. METHODS We investigated the associations of genetic liability for primary open angle glaucoma (POAG) with a wide range of potential risk factors and to assess its impact on the risk of incident glaucoma. The phenome-wide association study (PheWAS) approach was applied to determine the association of POAG polygenic risk score (PRS) with a wide range of phenotypes in 377, 852 participants from the UK Biobank study and 43,623 participants from the Penn Medicine Biobank study, all of European ancestry. Participants were stratified into four risk tiers: low, intermediate, high, and very high-risk. Cox proportional hazard models assessed the relationship of POAG PRS and ocular factors with new glaucoma events. RESULTS In both discovery and replication set in the PheWAS, a higher genetic predisposition to POAG was specifically correlated with ocular disease phenotypes. The POAG PRS exhibited correlations with low corneal hysteresis, refractive error, and ocular hypertension, demonstrating a strong association with the onset of glaucoma. Individuals carrying a high genetic burden exhibited a 9.20-fold, 11.88-fold, and 28.85-fold increase in glaucoma incidence when associated with low corneal hysteresis, high myopia, and elevated intraocular pressure, respectively. CONCLUSION Genetic susceptibility to POAG primarily influences ocular conditions, with limited systemic associations. Notably, the baseline polygenic risk for POAG robustly associates with new glaucoma events, revealing a large combined effect of genetic and ocular risk factors on glaucoma incidents.
Collapse
Affiliation(s)
- Jae-Seung Yun
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su-Nam Lee
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jin A Choi
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
64
|
Singh RK, Zhao Y, Elze T, Fingert J, Gordon M, Kass MA, Luo Y, Pasquale LR, Scheetz T, Segrè AV, Wiggs JL, Zebardast N. Polygenic Risk Scores for Glaucoma Onset in the Ocular Hypertension Treatment Study. JAMA Ophthalmol 2024; 142:356-363. [PMID: 38483402 PMCID: PMC10941023 DOI: 10.1001/jamaophthalmol.2024.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024]
Abstract
Importance Primary open-angle glaucoma (POAG) is a highly heritable disease, with 127 identified risk loci to date. Polygenic risk score (PRS) may provide a clinically useful measure of aggregate genetic burden and improve patient risk stratification. Objective To assess whether a PRS improves prediction of POAG onset in patients with ocular hypertension. Design, Setting, and Participants This was a post hoc analysis of the Ocular Hypertension Treatment Study. Data were collected from 22 US sites with a mean (SD) follow-up of 14.0 (6.9) years. A total of 1636 participants were followed up from February 1994 to December 2008; 1077 participants were enrolled in an ancillary genetics study, of which 1009 met criteria for this analysis. PRS was calculated using summary statistics from the largest cross-ancestry POAG meta-analysis, with weights trained using 8 813 496 variants from 449 186 cross-ancestry participants in the UK Biobank. Data were analyzed from July 2022 to December 2023. Exposures From February 1994 to June 2002, participants were randomized to either topical intraocular pressure-lowering medication or close observation. After June 2002, both groups received medication. Main Outcomes and Measures Outcome measures were hazard ratios for POAG onset. Concordance index and time-dependent areas under the receiver operating characteristic curve were used to compare the predictive performance of multivariable Cox proportional hazards models. Results Of 1009 included participants, 562 (55.7%) were female, and the mean (SD) age was 55.9 (9.3) years. The mean (SD) PRS was significantly higher for 350 POAG converters (0.24 [0.95]) compared with 659 nonconverters (-0.12 [1.00]) (P < .001). POAG risk increased 1.36% (95% CI, 1.08-1.64) with each higher PRS decile, with conversion ranging from 9.52% (95% CI, 7.09-11.95) in the lowest PRS decile to 21.81% (95% CI, 19.37-24.25) in the highest decile. Comparison of low-risk and high-risk PRS tertiles showed a 2.0-fold increase in 20-year POAG risk for participants of European and African ancestries. In the subgroup randomized to delayed treatment, each increase in PRS decile was associated with a 0.52-year (95% CI, 0.01-1.03) decrease in age at diagnosis (P = .047). No significant linear association between PRS and age at POAG diagnosis was present in the early treatment group. Prediction models significantly improved with the addition of PRS as a covariate (C index = 0.77) compared with the Ocular Hypertension Treatment Study baseline model (C index = 0.75) (P < .001). Each 1-SD higher PRS conferred a mean hazard ratio of 1.25 (95% CI, 1.13-1.44) for POAG onset. Conclusions and Relevance Higher PRS was associated with increased risk for POAG in patients with ocular hypertension. The inclusion of a PRS improved the prediction of POAG onset. Trial Registration ClinicalTrials.gov Identifier: NCT00000125.
Collapse
Affiliation(s)
- Rishabh K. Singh
- Department of Ophthalmology, Columbia University Medical Center, New York, New York
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Yan Zhao
- Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - John Fingert
- Carver College of Medicine, University of Iowa, Iowa City
| | - Mae Gordon
- Washington University School of Medicine, St Louis, Missouri
| | - Michael A. Kass
- Washington University School of Medicine, St Louis, Missouri
| | - Yuyang Luo
- Massachusetts Eye and Ear, Harvard Medical School, Boston
| | | | - Todd Scheetz
- Carver College of Medicine, University of Iowa, Iowa City
| | - Ayellet V. Segrè
- Massachusetts Eye and Ear, Harvard Medical School, Boston
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston
| | - Janey L. Wiggs
- Massachusetts Eye and Ear, Harvard Medical School, Boston
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston
| | | |
Collapse
|
65
|
Bu Q, Zhu H, Cao G, Gong G, Su Y, Ge Q, Zhu W, Li Z, Pan X. Targeting mechanics-induced trabecular meshwork dysfunction through YAP-TGFβ Ameliorates high myopia-induced ocular hypertension. Exp Eye Res 2024; 241:109853. [PMID: 38453038 DOI: 10.1016/j.exer.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
High myopia is a risk factor for primary open angle glaucoma (POAG). The pathological mechanism of high myopia induced POAG occurrence is not fully understood. In this study, we successfully established the guinea pig model of ocular hypertension with high myopia, and demonstrated the susceptibility of high myopia for the occurrence of microbead-induced glaucoma compared with non-myopia group and the effect of YAP/TGF-β signaling pathway in TM pathogenesis induced by high myopia. Moreover, we performed stretching treatment on primary trabecular meshwork (TM) cells to simulate the mechanical environment of high myopia. It was found that stretching treatment disrupted the cytoskeleton, decreased phagocytic function, enhanced ECM remodeling, and promoted cell apoptosis. The experiments of mechanics-induced human TM cell lines appeared the similar trend. Mechanically, the differential expressed genes of TM cells caused by stretch treatment enriched YAP/TGF-β signaling pathway. To inhibit YAP/TGF-β signaling pathway effectively reversed mechanics-induced TM damage. Together, this study enriches mechanistic insights of high myopia induced POAG susceptibility and provides a potential target for the prevention of POAG with high myopia.
Collapse
Affiliation(s)
- Qianwen Bu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 271016, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong, 266071, China
| | - Guangliang Cao
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 271016, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Ganyu Gong
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 271016, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Ying Su
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Qingshu Ge
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China.
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
66
|
Seo JH, Lee Y. Causal Associations of Glaucoma and Age-Related Macular Degeneration with Cataract: A Bidirectional Two-Sample Mendelian Randomisation Study. Genes (Basel) 2024; 15:413. [PMID: 38674349 PMCID: PMC11049509 DOI: 10.3390/genes15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Common age-related eye disorders include glaucoma, cataract, and age-related macular degeneration (AMD); however, little is known about their relationship with age. This study investigated the potential causal relationship between glaucoma and AMD with cataract using genetic data from multi-ethnic populations. Single-nucleotide polymorphisms (SNPs) associated with exposure to cataract were selected as instrumental variables (IVs) from genome-wide association studies using meta-analysis data from BioBank Japan and UK Biobank. A bidirectional two-sample Mendelian randomisation (MR) study was conducted to assess the causal estimates using inverse variance weighted, MR-Egger, and MR pleiotropy residual sum and outlier tests. SNPs with (p < 5.0 × 10-8) were selected as IVs for cataract, primary open-angle glaucoma, and AMD. We found no causal effects of cataract on glaucoma or AMD (all p > 0.05). Furthermore, there were no causal effects of AMD on cataract (odds ratio [OR] = 1.02, p = 0.400). However, glaucoma had a substantial causal effect on cataract (OR = 1.14, p = 0.020). Our study found no evidence for a causal relationship of cataract on glaucoma or AMD and a casual effect of AMD on cataract. Nonetheless, glaucoma demonstrates a causal link with cataract formation, indicating the need for future investigations of age-related eye diseases.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
67
|
Zhang X, Liang Y, Huang Y, Liu S, Li Q, Wang S, Wu G, Du Z, Wang Y, Wang J, Hu Y, Zang S, Hu Y, Shang X, Zhang X, Zhang L, Brown A, Zhu Z, He M, Yu H. Evaluation of the Observational Associations and Shared Genetics Between Glaucoma With Depression and Anxiety. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38466289 PMCID: PMC10929750 DOI: 10.1167/iovs.65.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose Glaucoma, a leading cause of blindness worldwide, is suspected to exhibit a notable association with psychological disturbances. This study aimed to investigate epidemiological associations and explore shared genetic architecture between glaucoma and mental traits, including depression and anxiety. Methods Multivariable logistic regression and Cox proportional hazards regression models were employed to investigate longitudinal associations based on UK Biobank. A stepwise approach was used to explore the shared genetic architecture. First, linkage disequilibrium score regression inferred global genetic correlations. Second, MiXeR analysis quantified the number of shared causal variants. Third, specific shared loci were detected through conditional/conjunctional false discovery rate (condFDR/conjFDR) analysis and characterized for biological insights. Finally, two-sample Mendelian randomization (MR) was conducted to investigate bidirectional causal associations. Results Glaucoma was significantly associated with elevated risks of hospitalized depression (hazard ratio [HR] = 1.54; 95% confidence interval [CI], 1.01-2.34) and anxiety (HR = 2.61; 95% CI, 1.70-4.01) compared to healthy controls. Despite the absence of global genetic correlations, MiXeR analysis revealed 300 variants shared between glaucoma and depression, and 500 variants shared between glaucoma and anxiety. Subsequent condFDR/conjFDR analysis discovered 906 single-nucleotide polymorphisms (SNPs) jointly associated with glaucoma and depression and two associated with glaucoma and anxiety. The MR analysis did not support robust causal associations but indicated the existence of pleiotropic genetic variants influencing both glaucoma and depression. Conclusions Our study enhances the existing epidemiological evidence and underscores the polygenic overlap between glaucoma and mental traits. This observation suggests a correlation shaped by pleiotropic genetic variants rather than being indicative of direct causal relationships.
Collapse
Affiliation(s)
- Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingying Liang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Shunming Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qinyi Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shan Wang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanrong Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Du
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaxin Wang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghui Wang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, China
| | - Yunyan Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siwen Zang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Andrew Brown
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| |
Collapse
|
68
|
Harris A, Verticchio Vercellin A, Weinreb RN, Khawaja A, MacGregor S, Pasquale LR. Lessons From The Glaucoma Foundation Think Tank 2023: A Patient-Centric Approach to Glaucoma. J Glaucoma 2024; 33:e1-e14. [PMID: 38129952 DOI: 10.1097/ijg.0000000000002353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
PRCIS The main takeaways also included that BIG DATA repositories and AI are important combinatory tools to foster novel strategies to prevent and stabilize glaucoma and, in the future, recover vision loss from the disease. PURPOSE To summarize the main topics discussed during the 28th Annual Glaucoma Foundation Think Tank Meeting "A Patient-Centric Approach to Glaucoma" held in New York on June 9 and 10, 2023. METHODS The highlights of the sessions on BIG DATA, genetics, modifiable lifestyle risk factors, female sex hormones, and neuroprotection in the field of primary open angle glaucoma (POAG) were summarized. RESULTS The researchers discussed the importance of BIG DATA repositories available at national and international levels for POAG research, including the United Kingdom Biobank. Combining genotyped large cohorts worldwide, facilitated by artificial intelligence (AI) and machine-learning approaches, led to the milestone discovery of 312 genome-wide significant disease loci for POAG. While these loci could be combined into a polygenic risk score with clinical utility, Think Tank meeting participants also provided analytical epidemiological evidence that behavioral risk factors modify POAG polygenetic risk, citing specific examples related to caffeine and alcohol use. The impact of female sex hormones on POAG pathophysiology was discussed, as was neuroprotection and the potential use of AI to help mitigate specific challenges faced in clinical trials and speed approval of neuroprotective agents. CONCLUSIONS The experts agreed on the importance of genetics in defining individual POAG risk and highlighted the additional crucial role of lifestyle, gender, blood pressure, and vascular risk factors. The main takeaways also included that BIG DATA repositories and AI are important combinatory tools to foster novel strategies to prevent and stabilize glaucoma and, in the future, recover vision loss from the disease.
Collapse
Affiliation(s)
- Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | | | - Robert N Weinreb
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, UC San Diego, La Jolla, CA
| | - Anthony Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Stuart MacGregor
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| |
Collapse
|
69
|
Lo Faro V, Bhattacharya A, Zhou W, Zhou D, Wang Y, Läll K, Kanai M, Lopera-Maya E, Straub P, Pawar P, Tao R, Zhong X, Namba S, Sanna S, Nolte IM, Okada Y, Ingold N, MacGregor S, Snieder H, Surakka I, Shortt J, Gignoux C, Rafaels N, Crooks K, Verma A, Verma SS, Guare L, Rader DJ, Willer C, Martin AR, Brantley MA, Gamazon ER, Jansonius NM, Joos K, Cox NJ, Hirbo J. Novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation. Cell Rep Med 2024; 5:101430. [PMID: 38382466 PMCID: PMC10897632 DOI: 10.1016/j.xcrm.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Esteban Lopera-Maya
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands
| | - Peter Straub
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Serena Sanna
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands; Institute for Genetics and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Nathan Ingold
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anurag Verma
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shefali S Verma
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristen Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nomdo M Jansonius
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands
| | - Karen Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jibril Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
70
|
Zhang J, Chen X, Zhu Y, Wan S, Hu S, Yang Y. Investigating the Causal Relationship Between Sleep Behaviors and Primary Open-Angle Glaucoma: A Bidirectional Two-Sample Mendelian Randomization Study. Nat Sci Sleep 2024; 16:143-153. [PMID: 38374869 PMCID: PMC10876006 DOI: 10.2147/nss.s439274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Background Although previous studies of sleep-related behaviors in relation to primary open-angle glaucoma (POAG) have been noted, the causal relationship remains unclear. The purpose of our present study was to investigate the relationships of genetically predicted sleep traits with POAG using a two-sample bidirectional Mendelian randomization (MR) method. Methods Summary-level data collected from publicly available genome-wide association studies (GWAS) of European decent were applied for the bidirectional MR analysis. After quality control steps, independent single-nucleotide polymorphisms for eight sleep behaviors and POAG were selected as the genetic instruments. The inverse-variance weighted (IVW) approach was adopted as the primary method, which was complemented by a series of sensitivity analyses to assess the robustness of the results by estimating heterogeneity and pleiotropy. Multivariable MR (MVMR) was used to assess the direct effect of sleep traits on POAG, after adjusting for several confounding factors. Results Our investigation revealed a positive correlation between genetically predicted ease of getting up in the morning and sleep duration and POAG using the IVW method (odds ratio (OR)=1.78, 95% confidence interval (CI):1.29-2.46, P = 4.33× 10-4; OR = 1.66, 95% CI:1.18-2.34, P = 3.38×10-3, respectively). Other supplementary MR methods also confirmed similar results. Moreover, the MVMR results also revealed that the adverse effects of these two sleep traits on POAG persisted after adjusting for body mass index, smoking, drinking, and education (all P < 0.05). Conversely, the relationships between genetic liability of POAG and different sleep behaviors were not statistically significant in the reverse-direction MR estimate (all P > 0.05). Conclusion Our study demonstrated that genetic prediction of getting up easily in the morning or sleep duration were associated with a higher risk of POAG, but not vice versa, in a European population. Further validation and clinical interventions are required to offer potential strategies to prevent and manage POAG.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, People’s Republic of China
| | - Yan Zhu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shuqiong Hu
- Aier Eye Hospital of Wuhan University (Wuhan Aier Eye Hospital), Wuhan, Hubei, People’s Republic of China
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
71
|
Akinyemi RO, Tiwari HK, Srinivasasainagendra V, Akpa O, Sarfo FS, Akpalu A, Wahab K, Obiako R, Komolafe M, Owolabi L, Osaigbovo GO, Mamaeva OA, Halloran BA, Akinyemi J, Lackland D, Obiabo OY, Sunmonu T, Chukwuonye II, Arulogun O, Jenkins C, Adeoye A, Agunloye A, Ogah OS, Ogbole G, Fakunle A, Uvere E, Coker MM, Okekunle A, Asowata O, Diala S, Ogunronbi M, Adeleye O, Laryea R, Tagge R, Adeniyi S, Adusei N, Oguike W, Olowoyo P, Adebajo O, Olalere A, Oladele O, Yaria J, Fawale B, Ibinaye P, Oyinloye O, Mensah Y, Oladimeji O, Akpalu J, Calys-Tagoe B, Dambatta HA, Ogunniyi A, Kalaria R, Arnett D, Rotimi C, Ovbiagele B, Owolabi MO. Novel functional insights into ischemic stroke biology provided by the first genome-wide association study of stroke in indigenous Africans. Genome Med 2024; 16:25. [PMID: 38317187 PMCID: PMC10840175 DOI: 10.1186/s13073-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a multicenter study involving 16 sites in West Africa. We conducted the first-ever genome-wide association study (GWAS) of stroke in indigenous Africans. METHODS Cases were consecutively recruited consenting adults (aged > 18 years) with neuroimaging-confirmed ischemic stroke. Stroke-free controls were ascertained using a locally validated Questionnaire for Verifying Stroke-Free Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets were imputed into the NIH Trans-Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, we performed fine-mapping, trans-ethnic meta-analysis, and in silico functional characterization to identify likely causal variants with a functional interpretation. RESULTS We observed genome-wide significant (P-value < 5.0E-8) SNPs associations near AADACL2 and miRNA (MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated with stroke (P-value < 1.0E-6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P-value < 1.0E-6). In addition, we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), and DLGAP1 (chromosome 18) (P-value < 1.0E-6). Both genomic regions near genes AADACL2 and MIR4458 remained significant following fine mapping. CONCLUSIONS Our findings identify potential roles of regulatory miRNA, intergenic non-coding DNA, and intronic non-coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help close the current gaps in accurate African ancestry-based genetic stroke's risk prediction and development of new targeted interventions to prevent or treat stroke.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Onoja Akpa
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fred S Sarfo
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Akpalu
- Department of Medicine, University of Ghana Medical School, Accra, Ghana
| | - Kolawole Wahab
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Reginald Obiako
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Morenikeji Komolafe
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Lukman Owolabi
- Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | | | - Olga A Mamaeva
- Department of Epidemiology, School of Public Health University of Alabama at Birmingham, Birmingham, USA
| | - Brian A Halloran
- Department of Pediatrics, Volker Hall University of Alabama at Birmingham, Birmingham, USA
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olugbo Y Obiabo
- Delta State University/Delta State University Teaching Hospital, Oghara, Nigeria
| | - Taofik Sunmonu
- Department of Medicine, Federal Medical Centre, Ondo State, Owo, Nigeria
| | - Innocent I Chukwuonye
- Department of Medicine, Federal Medical Centre Umuahia, Abia State, Umuahia, Nigeria
| | - Oyedunni Arulogun
- Department of Health Education, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | | | - Abiodun Adeoye
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Atinuke Agunloye
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Okechukwu S Ogah
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Godwin Ogbole
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adekunle Fakunle
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Ezinne Uvere
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Motunrayo M Coker
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Genetics and Cell Biology Unit, Department of Zoology, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | - Akinkunmi Okekunle
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Osahon Asowata
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Samuel Diala
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ogunronbi
- Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria
| | - Osi Adeleye
- Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria
| | - Ruth Laryea
- Department of Medicine, University of Ghana Medical School, Accra, Ghana
| | - Raelle Tagge
- Weill Institute for Neurosciences, School of Medicine, University of California San-Francisco, San Francisco, USA
| | - Sunday Adeniyi
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Nathaniel Adusei
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Wisdom Oguike
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Paul Olowoyo
- Federal Teaching Hospital, Ido-Ekiti, Ekiti State, Nigeria
| | - Olayinka Adebajo
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Olalere
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Oladele
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joseph Yaria
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bimbo Fawale
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Philip Ibinaye
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Olalekan Oyinloye
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Yaw Mensah
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Omotola Oladimeji
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Josephine Akpalu
- Department of Medicine, University of Ghana Medical School, Accra, Ghana
| | - Benedict Calys-Tagoe
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Rajesh Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Donna Arnett
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Charles Rotimi
- Center for Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Bruce Ovbiagele
- Genetics and Cell Biology Unit, Department of Zoology, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | - Mayowa O Owolabi
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- University College Hospital, Ibadan, Nigeria.
- Lebanese American University of Beirut, Beirut, Lebanon.
- Blossom Specialist Medical Center, Ibadan, Nigeria.
| |
Collapse
|
72
|
Sazhnyev Y, Venkat A, Zheng JJ. Somatic Mutations within Myocilin due to Aging May Be a Potential Risk Factor for Glaucoma. Genes (Basel) 2024; 15:203. [PMID: 38397193 PMCID: PMC10887703 DOI: 10.3390/genes15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a chronic optic neuropathy that leads to irreversible vision loss. Aging and family history are the two most important risk factors of glaucoma. One of the most studied genes involved in the onset of open-angle glaucoma is myocilin (MYOC). About 105 germline mutations within MYOC are known to be associated with glaucoma and result in endoplasmic reticulum (ER) stress, which leads to trabecular meshwork (TM) cell death and subsequent intraocular pressure (IOP) elevation. However, only about 4% of the population carry these mutations. An analysis of MYOC somatic cancer-associated mutations revealed a notable overlap with pathogenic glaucoma variants. Because TM cells have the potential to accumulate somatic mutations at a rapid rate due to ultraviolet (UV) light exposure, we propose that an accumulation of somatic mutations within MYOC is an important contributor to the onset of glaucoma.
Collapse
Affiliation(s)
- Yevgeniy Sazhnyev
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Ophthalmology, California Northstate University College of Medicine, 9700 West Taron Dr., Elk Grove, CA 95757, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Akaash Venkat
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Computer Science, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
73
|
Xiong K, Zhang Q, Mao H, Congdon N, Liang Y. Assessment of Causality Between Diet-Derived Antioxidants and Primary Open-Angle Glaucoma: A Mendelian Randomization Study. Transl Vis Sci Technol 2024; 13:20. [PMID: 38411971 PMCID: PMC10910435 DOI: 10.1167/tvst.13.2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose This study aimed to investigate the genetic causal relationships among diet-derived circulating antioxidants, primary open-angle glaucoma (POAG), and glaucoma-related traits using two-sample Mendelian randomization (MR). Methods Genetic variants associated with diet-derived circulating antioxidants (retinol, ascorbate, β-carotene, lycopene, α-tocopherol, and γ-tocopherol) were assessed as absolute and metabolic instrumental variables. POAG and glaucoma-related traits data were derived from a large, recently published genome-wide association study database; these traits included intraocular pressure (IOP), macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and vertical cup-to-disc ratio (vCDR). MR analyses were performed per outcome for each exposure. Results We found no causal association between six diet-derived antioxidants and POAG using the International Glaucoma Genetics Consortium data. For absolute antioxidants, the odds ratios (ORs) ranged from 1.011 (95% confidence interval [CI], 0.854-1.199; P = 0.895) per natural log-transformed β-carotene to 1.052 (95% CI, 0.911-1.215; P = 0.490) for 1 µmol/L of ascorbate. For antioxidant metabolites, the OR ranged from 0.998 (95% CI, 0.801-1.244; P = 0.989) for ascorbate to 1.210 (95% CI, 0.870-1.682; P = 0.257) for γ-tocopherol, using log-transformed levels. A similar result was obtained with the FinnGen Biobank. Furthermore, our results showed no significant genetic association between six diet-derived antioxidants and glaucoma-related traits. Conclusions Our study did not support a causal association among six diet-derived circulating antioxidants, POAG, and glaucoma-related traits. This suggests that the intake of antioxidants may not have a preventive effect on POAG and offers no protection to retinal nerve cells. Translational Relevance This study provides valid evidence regarding the use of diet-derived antioxidants for glaucoma patients.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Glaucoma, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi'ao Zhang
- Department of Glaucoma, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiyan Mao
- Department of Glaucoma, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nathan Congdon
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Orbis International, New York, NY, USA
| | - Yuanbo Liang
- Department of Glaucoma, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
74
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP/TAZ mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. Am J Physiol Cell Physiol 2024; 326:C513-C528. [PMID: 38105758 PMCID: PMC11192480 DOI: 10.1152/ajpcell.00438.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Pathological alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared with that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell mechanosignaling via YAP and transcriptional coactivator with PDZ-binding motif (TAZ) in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP/TAZ activity in primary human SC cells, and whether disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP/TAZ activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP/TAZ mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Finally, we found that perfusion of the clinically used, small molecule YAP/TAZ inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP/TAZ mechanosignaling in SC cell dysfunction and suggest that YAP/TAZ inhibition has therapeutic value for treating ocular hypertension in glaucoma.NEW & NOTEWORTHY Pathologically altered biomechanical properties of the Schlemm's canal (SC) inner wall microenvironment were recently validated as the cause for increased outflow resistance in ocular hypertensive glaucoma. However, the involvement of specific mechanotransduction pathways in these disease processes is largely unclear. Here, we demonstrate that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are central regulators of glaucoma-like SC cell dysfunction in response to extracellular matrix stiffening and that targeted disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and enhances outflow function.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ruth A Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
75
|
Samoylov AN, Tumanova P, Pankratova SA, Ashryatova LS, Plotnikov D. Association of GNB3, ACE polymorphisms with POAG and NTG. Ophthalmic Genet 2024; 45:23-27. [PMID: 37997634 DOI: 10.1080/13816810.2023.2283415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) represents the most prevalent form of glaucoma and stands as a foremost contributor to irreversible vision impairment on a global scale. Despite notable strides made in comprehending the genetic underpinnings of POAG, investigations within the context of Russia remain constrained. METHODS The study cohort comprised a total of 235 individuals, with 135 of them exhibiting various forms of glaucoma encompassing both POAG and (NTG, while the remaining 100 individuals served as control subjects. Each participant underwent a comprehensive ocular examination to ascertain their ocular health status. Genotyping of the relevant single nucleotide polymorphisms (SNPs) was carried out using the Taq Man genotyping assay. Specifically, the two SNPs under scrutiny were GNB3 rs5443 gene and ACE rs4646994. Statistical analysis was performed to evaluate the association of these SNPs with glaucoma risk. RESULTS The presence of the T allele of rs5443 was found to be associated with NTG (p = .004). However, no statistically significant correlation was identified between this SNP and POAG (p = .88). CONCLUSION This study provides evidence of an association between the T allele of rs5443 and a reduced susceptibility NTG within the Russian population. These observations augment the comprehension of the genetic underpinnings of glaucoma and hold potential implications for the prospective development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Alexander N Samoylov
- Kazan State Medical University, Kazan, Russian Federation
- Republican Clinical Ophthalmologic Hospital, Kazan, Russian Federation
| | - Polina Tumanova
- Republican Clinical Ophthalmologic Hospital, Kazan, Russian Federation
| | | | | | | |
Collapse
|
76
|
Bitard J, Grellier EK, Lourdel S, Filipe HP, Hamon A, Fenaille F, Castelli FA, Chu-Van E, Roger JE, Locker M, Perron M. Uveitic glaucoma-like features in Yap conditional knockout mice. Cell Death Discov 2024; 10:48. [PMID: 38272861 PMCID: PMC10811226 DOI: 10.1038/s41420-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease characterized by the progressive and irreversible degeneration of the optic nerve and retinal ganglion cells. Despite medical advances aiming at slowing degeneration, around 40% of treated glaucomatous patients will undergo vision loss. It is thus of utmost importance to have a better understanding of the disease and to investigate more deeply its early causes. The transcriptional coactivator YAP, an important regulator of eye homeostasis, has recently drawn attention in the glaucoma research field. Here we show that Yap conditional knockout mice (Yap cKO), in which the deletion of Yap is induced in both Müller glia (i.e. the only retinal YAP-expressing cells) and the non-pigmented epithelial cells of the ciliary body, exhibit a breakdown of the aqueous-blood barrier, accompanied by a progressive collapse of the ciliary body. A similar phenotype is observed in human samples that we obtained from patients presenting with uveitis. In addition, aged Yap cKO mice harbor glaucoma-like features, including deregulation of key homeostatic Müller-derived proteins, retinal vascular defects, optic nerve degeneration and retinal ganglion cell death. Finally, transcriptomic analysis of Yap cKO retinas pointed to early-deregulated genes involved in extracellular matrix organization potentially underlying the onset and/or progression of the observed phenotype. Together, our findings reveal the essential role of YAP in preserving the integrity of the ciliary body and retinal ganglion cells, thereby preventing the onset of uveitic glaucoma-like features.
Collapse
Affiliation(s)
- Juliette Bitard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France.
| | - Elodie-Kim Grellier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Sophie Lourdel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Helena Prior Filipe
- West Lisbon Hospitals Center, Hospital de Egas Moniz, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Lisbon, Portugal
| | - Annaïg Hamon
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Florence Anne Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Emeline Chu-Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Jérôme E Roger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France.
| |
Collapse
|
77
|
Kondkar AA, Sultan T, Azad TA, Khatlani T, Alshehri AA, Osman EA, Lobo GP, Almobarak FA, Al-Obeidan SA. Common Variants rs429358 and rs7412 in APOE Gene Are Not Associated with POAG in a Saudi Cohort. BIOLOGY 2024; 13:62. [PMID: 38275738 PMCID: PMC10813158 DOI: 10.3390/biology13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Adult-onset glaucoma, an age-related neurodegenerative disease, is very prevalent among the elderly Arabs of Saudi origin. This study investigated the association between apolipoprotein E (APOE) gene variants (rs429358 and rs7412) and primary open-angle glaucoma (POAG) in Arabs of Saudi origin. A case-control genetic association study involving 179 POAG patients and 251 controls utilized Sanger sequencing to genotype APOE gene variants. The allele frequencies and genotype distributions for rs429358 and rs7412 did not show significant associations with POAG. The haplotype analysis revealed apoε3 (87.6% and 87.4%) as the most prevalent, followed by ε4 (2.8% and 3.6%) and ε2 (9.6% and 8.9%) in the controls and POAG patients, respectively. Although the ε2/ε3 genotype and ε2-carriers displayed a more than two-fold increased risk, statistical significance was not reached. Notably, these polymorphisms did not affect clinical markers, such as intraocular pressure and cup/disc ratio. The logistic regression analysis demonstrated no significant influence of age, sex, rs429358, or rs7412 polymorphisms on POAG. In conclusion, within the Saudi cohort, APOE variants (rs429358 and rs7412) do not appear to be associated with POAG and are not substantial risk factors for its development. However, additional population-based studies are required to validate these findings.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.S.); (T.A.A.); (E.A.O.); (F.A.A.); (S.A.A.-O.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.S.); (T.A.A.); (E.A.O.); (F.A.A.); (S.A.A.-O.)
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.S.); (T.A.A.); (E.A.O.); (F.A.A.); (S.A.A.-O.)
| | - Tanvir Khatlani
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Abdulaziz A. Alshehri
- Department of Ophthalmology, Imam Abdulrahman Alfaisal Hospital, Riyadh 14723, Saudi Arabia;
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.S.); (T.A.A.); (E.A.O.); (F.A.A.); (S.A.A.-O.)
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA;
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.S.); (T.A.A.); (E.A.O.); (F.A.A.); (S.A.A.-O.)
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.S.); (T.A.A.); (E.A.O.); (F.A.A.); (S.A.A.-O.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
78
|
Verma SS, Gudiseva HV, Chavali VRM, Salowe RJ, Bradford Y, Guare L, Lucas A, Collins DW, Vrathasha V, Nair RM, Rathi S, Zhao B, He J, Lee R, Zenebe-Gete S, Bowman AS, McHugh CP, Zody MC, Pistilli M, Khachatryan N, Daniel E, Murphy W, Henderer J, Kinzy TG, Iyengar SK, Peachey NS, Taylor KD, Guo X, Chen YDI, Zangwill L, Girkin C, Ayyagari R, Liebmann J, Chuka-Okosa CM, Williams SE, Akafo S, Budenz DL, Olawoye OO, Ramsay M, Ashaye A, Akpa OM, Aung T, Wiggs JL, Ross AG, Cui QN, Addis V, Lehman A, Miller-Ellis E, Sankar PS, Williams SM, Ying GS, Cooke Bailey J, Rotter JI, Weinreb R, Khor CC, Hauser MA, Ritchie MD, O'Brien JM. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell 2024; 187:464-480.e10. [PMID: 38242088 PMCID: PMC11844349 DOI: 10.1016/j.cell.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.
Collapse
Affiliation(s)
- Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harini V Gudiseva
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata R M Chavali
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca J Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Collins
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vrathasha Vrathasha
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonika Rathi
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Lee
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selam Zenebe-Gete
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita S Bowman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Maxwell Pistilli
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naira Khachatryan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebenezer Daniel
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jeffrey Henderer
- Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Linda Zangwill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radha Ayyagari
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey Liebmann
- Department of Ophthalmology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Donald L Budenz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Onoja M Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tin Aung
- Singapore Eye Research Institute, Singapore, Singapore
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahmara G Ross
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Lehman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eydie Miller-Ellis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S Sankar
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Pharmacology and Toxicology, Center for Health Disparities, Brody School of Medicine. East Carolina University, Greenville, NC, 27834, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robert Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. joan.o'
| |
Collapse
|
79
|
Mackey DA, Staffieri SE. Making glaucoma genetic studies more diverse. Cell 2024; 187:273-275. [PMID: 38242084 DOI: 10.1016/j.cell.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Although the blinding eye disease glaucoma is more common in people of African ancestry, previous genetic studies predominantly involved European subjects. In this issue of Cell, O'Brien et al. report a genome-wide association study for glaucoma in individuals of African ancestry, showing overlap with European studies and refining an African polygenic risk score.
Collapse
Affiliation(s)
- David A Mackey
- Lions Eye Institute, University of Western Australia, Perth, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
80
|
Yan X, Wu S, Liu Q, Cheng Y, Teng Y, Ren T, Zhang J, Wang N. Serine to proline mutation at position 341 of MYOC impairs trabecular meshwork function by causing autophagy deregulation. Cell Death Discov 2024; 10:21. [PMID: 38212635 PMCID: PMC10784477 DOI: 10.1038/s41420-024-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Glaucoma is a highly heritable disease, and myocilin was the first identified causal and most common pathogenic gene in glaucoma. Serine-to-proline mutation at position 341 of myocilin (MYOCS341P) is associated with severe glaucoma phenotypes in a five-generation primary open-angle glaucoma family. However, the underlying mechanisms are underexplored. Herein, we established the MYOCS341P transgenic mouse model and characterized the glaucoma phenotypes. Further, we systematically explored the functional differences between wild-type and MYOCS341P through immunoprecipitation, mass spectrometry, and RNA-seq analyses. We found that MYOCS341P transgenic mice exhibit glaucoma phenotypes, characterized by reduced aqueous humor outflow, elevated intraocular pressure, decreased trabecular meshwork (TM) cell number, narrowed Schlemm's canal, retinal ganglion cell loss, and visual impairment. Mechanistically, the secretion of dysfunctional MYOCS341P accumulated in the endoplasmic reticulum (ER), inducing ER stress and dysregulation of autophagy, thereby promoting TM cell death. We describe an effective transgenic model for mechanistic studies and the screening of therapeutic targets. Our data generated from high-throughput analyses help elucidate the mechanism underlying mutant MYOC-related glaucoma.
Collapse
Affiliation(s)
- Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yufei Teng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
81
|
Hamel AR, Yan W, Rouhana JM, Monovarfeshani A, Jiang X, Mehta PA, Advani J, Luo Y, Liang Q, Rajasundaram S, Shrivastava A, Duchinski K, Mantena S, Wang J, van Zyl T, Pasquale LR, Swaroop A, Gharahkhani P, Khawaja AP, MacGregor S, Chen R, Vitart V, Sanes JR, Wiggs JL, Segrè AV. Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma. Nat Commun 2024; 15:396. [PMID: 38195602 PMCID: PMC10776627 DOI: 10.1038/s41467-023-44380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of >240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis.
Collapse
Affiliation(s)
- Andrew R Hamel
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John M Rouhana
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aboozar Monovarfeshani
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Puja A Mehta
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MA, USA
| | - Yuyang Luo
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qingnan Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Skanda Rajasundaram
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Centre for Evidence-Based Medicine, University of Oxford, Oxford, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Arushi Shrivastava
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Katherine Duchinski
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Bioinformatics and Integrative Genomics (BIG) PhD Program, Harvard Medical School, Boston, MA, USA
| | - Sreekar Mantena
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Jiali Wang
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tavé van Zyl
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MA, USA
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Janey L Wiggs
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ayellet V Segrè
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
82
|
Lin S, Wu S, Zhao W, Fang Z, Kang H, Liu X, Pan S, Yu F, Bao Y, Jia P. TargetGene: a comprehensive database of cell-type-specific target genes for genetic variants. Nucleic Acids Res 2024; 52:D1072-D1081. [PMID: 37870478 PMCID: PMC10767789 DOI: 10.1093/nar/gkad901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Annotating genetic variants to their target genes is of great importance in unraveling the causal variants and genetic mechanisms that underlie complex diseases. However, disease-associated genetic variants are often located in non-coding regions and manifest context-specific effects, making it challenging to accurately identify the target genes and regulatory mechanisms. Here, we present TargetGene (https://ngdc.cncb.ac.cn/targetgene/), a comprehensive database reporting target genes for human genetic variants from various aspects. Specifically, we collected a comprehensive catalog of multi-omics data at the single-cell and bulk levels and from various human tissues, cell types and developmental stages. To facilitate the identification of Single Nucleotide Polymorphism (SNP)-to-gene connections, we have implemented multiple analytical tools based on chromatin co-accessibility, 3D interaction, enhancer activities and quantitative trait loci, among others. We applied the pipeline to evaluate variants from nearly 1300 Genome-wide association studies (GWAS) and assembled a comprehensive atlas of multiscale regulation of genetic variants. TargetGene is equipped with user-friendly web interfaces that enable intuitive searching, navigation and browsing through the results. Overall, TargetGene provides a unique resource to empower researchers to study the regulatory mechanisms of genetic variants in complex human traits.
Collapse
Affiliation(s)
- Shiqi Lin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fudong Yu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
83
|
Masson EAY, Serrano J, Leger-Charnay E, Acar N. Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1303649. [PMID: 38983043 PMCID: PMC11182186 DOI: 10.3389/fopht.2023.1303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 07/11/2024]
Abstract
Cholesterol is an essential component of cellular membranes, crucial for maintaining their structural and functional integrity. It is especially important for nervous tissues, including the retina, which rely on high amounts of plasma membranes for the transmission of the nervous signal. While cholesterol is by far the most abundant sterol, the retina also contains cholesterol precursors and metabolites, especially oxysterols, which are bioactive molecules. Cholesterol lack or excess is deleterious and some oxysterols are known for their effect on neuron survival. Cholesterol homeostasis must therefore be maintained. Retinal glial cells, especially Müller cells, the principal glial cells of the vertebrate retina, provide mechanical, nutritional, and metabolic support for the neighboring neurons. Several pieces of evidence indicate that Müller cells are major actors of cholesterol homeostasis in the retina, as it is known for other glial cells in the brain. This process is based on a close cooperation with neurons, and sterols can be signaling molecules participating in glia-neuron interactions. While some implication of cholesterol in age-related macular degeneration is now recognized, based on epidemiological and laboratory data, evidence for its role in glaucoma is still scarce. The association between cholesterolemia and glaucoma is controversial, but experimental data suggest that sterols could take part in the pathological processes. It has been demonstrated that Müller glial cells are implicated in the development of glaucoma through an ambivalent reactive retinal gliosis process. The early steps contribute to maintaining retinal homeostasis and favor the survival of ganglion cells, which are targeted during glaucoma. If gliosis persists, dysregulation of the neuroprotective functions, cytotoxic effects of gliotic Müller cells and disruption of glia-neuron interactions lead to an acceleration of ganglion cell death. Sterols could play a role in the glial cell response to glaucomatous injury. This represents an understudied but attractive topic to better understand glaucoma and conceive novel preventive or curative strategies. The present review describes the current knowledge on i) sterol metabolism in retinal glial cells, ii) the potential role of cholesterol in glaucoma, and iii) the possible relationships between cholesterol and oxysterols, glial cells and glaucoma. Focus is put on glia-neuron interactions.
Collapse
Affiliation(s)
- Elodie A Y Masson
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Jeanne Serrano
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
- Sensory Perception, Glia/Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Elise Leger-Charnay
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
84
|
Chacon-Camacho OF, Arce-Gonzalez R, Sanchez-de la Rosa F, Urióstegui-Rojas A, Hofmann-Blancas ME, Mata-Flores F, Zenteno JC. Genetic Aspects of Glaucoma: An Updated Review. Curr Mol Med 2024; 24:1231-1249. [PMID: 37272463 DOI: 10.2174/1566524023666230602143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023]
Abstract
Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Andrés Urióstegui-Rojas
- Department of Integral Ophthalmology, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Felipe Mata-Flores
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
85
|
Xiao X, Chen CB, Wu Z, Ye Y, Deng F, Cao Y, Liu P, Zhang M. Novel mutation in EFEMP1 identified from two Chinese POAG families differentially activated endoplasmic reticulum stress markers and induced glaucoma in mouse. J Cell Biochem 2024; 125:45-58. [PMID: 38083999 DOI: 10.1002/jcb.30466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 01/16/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common type of glaucoma. Using whole-exome sequencing, we identified two independent families diagnosed as POAG from the China with a novel EFEMP1 variant (Exon3, c.175A>C p.Met59Leu); Three previously reported variants c.1160G>A p.R387Q, c.1189T>C p.Y397H, and c.1429C>T p.R477C in EFEPM1 from 55 sporadic POAG individuals were also identified. The variant c.175A>C p.Met59Leu co-segregated with the disease phenotype within the families. Immunoprecipitation and western blot assays showed that all three EFEMP1 mutants (p.Met59Leu, pArg140Trp, pArg345Trp) increased intracellular protein aggregations, and pMet59Leu and pArg140Arg also enhanced their extracellular proteins secretion, compared to WT in HEK293T. The differential regulations to endoplasmic reticulum (ER) stress markers ATF4, GPR78/94, and CHOP, and differential phosphorylation activations to CREB at Ser133, AKT at Ser473, p44/42 at Thr202/Tyr204, and STAT3 at Tyr705, were also detected among the mutants and WT. Finally, we revealed a significant increment of intraocular pressure and obvious reduction of RGC cells at the sixth week following intravitreal injection of adenovirus 5 (Ad5) expressing in pMet59Leu compared to WT and GFP controls. Together, variant c.175A>C p.Met59Leu in EFEMP1 is pathogenic and different mutants in EFEMP1 triggered distinct signaling pathways, explaining the reason of mutation-dependent disease phenotypes of EFEMP1.
Collapse
Affiliation(s)
- Xiaoqiang Xiao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Chong-Bo Chen
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Zhenggen Wu
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yuhang Ye
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Fang Deng
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yingjie Cao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Pingting Liu
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
86
|
He W, Han X, Ong JS, Wu Y, Hewitt AW, Mackey DA, Gharahkhani P, MacGregor S. Genome-Wide Meta-analysis Identifies Risk Loci and Improves Disease Prediction of Age-Related Macular Degeneration. Ophthalmology 2024; 131:16-29. [PMID: 37634759 DOI: 10.1016/j.ophtha.2023.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE To identify age-related macular degeneration (AMD) risk loci and to establish a polygenic prediction model. DESIGN Genome-wide association study (GWAS) and polygenic risk score (PRS) construction. PARTICIPANTS We included 64 885 European patients with AMD and 568 740 control participants (with overlapped samples) in the UK Biobank, Genetic Epidemiology Research on Aging (GERA), International AMD Consortium, FinnGen, and published early AMD GWASs in meta-analyses, as well as 733 European patients with AMD and 20 487 control participants from the Canadian Longitudinal Study on Aging (CLSA) and non-Europeans from the UK Biobank and GERA for polygenic risk score validation. METHODS A multitrait meta-analysis of GWASs comprised 64 885 patients with AMD and 568 740 control participants; the multitrait approach accounted for sample overlap. We constructed a PRS for AMD based on both previously reported as well as unreported AMD loci. We applied the PRS to nonoverlapping data from the CLSA. MAIN OUTCOME MEASURES We identified several single nucleotide polymorphisms associated with AMD and established a PRS for AMD risk prediction. RESULTS We identified 63 AMD risk loci alongside the well-established AMD loci CFH and ARMS2, including 9 loci that were not reported in previous GWASs, some of which previously were linked to other eye diseases such as glaucoma (e.g., HIC1). We applied our PRS to nonoverlapping data from the CLSA. A new PRS was constructed using the PRS method, PRS-CS, and significantly improved the prediction accuracy of AMD risk compared with PRSs from previously published datasets. We further showed that even people who carry all the well-known AMD risk alleles at CFH and ARMS2 vary considerably in their AMD risk (ranging from close to 0 in individuals with low PRS to > 50% in individuals with high PRS). Although our PRS was derived in individuals of European ancestry, the PRS shows potential for predicting risk in people of East Asian, South Asian, and Latino ancestry. CONCLUSIONS Our findings improve the knowledge of the genetic architecture of AMD and help achieve better accuracy in AMD prediction. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Weixiong He
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yeda Wu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victorian, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
87
|
Stuart KV, Khawaja AP. Genomics enabling personalised glaucoma care. Br J Ophthalmol 2023; 108:5-9. [PMID: 37989536 DOI: 10.1136/bjo-2023-324618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of visual impairment and a significant public health concern, but despite ongoing advances in our understanding of the disease, several important clinical challenges remain. With the number of affected people projected to increase substantially over coming decades, novel approaches to screening, risk stratification, therapy and glaucoma research are essential to deal with this expanding burden in an efficient and cost-effective manner. Genomics may hold the key to unlocking further biological insights and enabling precision medicine, in which glaucoma care is tailored to the individual patient, based on their unique profile for disease. Here, we provide an overview of how genomics may enable cost-effective targeted population screening and personalised predictions of risk, response to treatment and effective lifestyle advice. Given rapid advances in genetic testing technology and a move towards population-level genotyping, these early results have several important implications that promise to revolutionise the way in which glaucoma is detected and managed in years to come.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
88
|
Tirendi S, Domenicotti C, Bassi AM, Vernazza S. Genetics and Glaucoma: the state of the art. Front Med (Lausanne) 2023; 10:1289952. [PMID: 38152303 PMCID: PMC10751926 DOI: 10.3389/fmed.2023.1289952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Although genetic background contributes differently to rare early-onset glaucoma (before age 40) or common adult-onset glaucoma, it is now considered an important factor in all major forms of the disease. Genetic and genomic studies, including GWAS, are contributing to identifying novel loci associated with glaucoma or to endophenotypes across ancestries to enrich the knowledge about glaucoma genetic susceptibility. Moreover, new high-throughput functional genomics contributes to defining the relevance of genetic results in the biological pathways and processes involved in glaucoma pathogenesis. Such studies are expected to advance significantly our understanding of glaucoma's genetic basis and provide new druggable targets to treat glaucoma. This review gives an overview of the role of genetics in the pathogenesis or risk of glaucoma.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
89
|
Sharif NA. Gene therapies and gene product-based drug candidates for normalizing and preserving tissue functions in animal models of ocular hypertension and glaucoma. Mol Aspects Med 2023; 94:101218. [PMID: 37976898 DOI: 10.1016/j.mam.2023.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
More than 76 million people worldwide are afflicted with the neurodegenerative eye diseases described and grouped together as glaucoma. A common feature amongst the many forms of glaucoma is chronically elevated intraocular pressure (IOP) within the anterior chamber of the eye that physically damages the retina, optic nerve and parts of the brain connected with visual perception. The mediators of the contusing raised IOP responsible for such damage and loss of vision include locally released inflammatory agents, tissue remodeling enzymes and infiltrating immune cells which damage the retinal ganglion cell (RGC) axons and eventually kill a significant number of the RGCs. Additional culprits include genetic defects of the patient that involve aberrations in receptors, enzymes and/or endogenous ligands and possible over- or under-production of the latter. Other genetic abnormalities may include issues with signal transduction machinery within key cells of critical tissues in the front (e.g. trabecular meshwork [TM] and Schlemm's canal [SC]) and back of the eye (e.g. retinal ganglion cells and their axons). Genome-wide associated studies (GWAS) coupled with next generation sequencing have provided powerful linkage of certain gene defects and polymorphic variants to the onset and progression of diseases of the tissues involved in fluid dynamics in the TM and SC, and many retinal elements (lamina cribosa, optic nerve head) at the back of the eye which cause ocular hypertension (OHT) and glaucomatous optic neuropathy (GON), respectively. Despite the availability of some drugs, fluid drainage microshunts and full surgical techniques to lower and control intraocular pressure, the major modifiable biomarker of open-angle and other forms of glaucoma, their side-effect profiles, less than optimum effectiveness and short duration of action present opportunities to clinically manage the glaucomas with next generation of treatments with high therapeutic indices, including gene therapies. Thus, identification, characterization and deployment of genetic data coupled with traditional drug discovery and novel gene replacement, gene editing and genetic engineering technologies may provide some solutions to the aforementioned problems. These aspects will be discussed in this article.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore, 169856, Singapore; Institute of Ophthalmology, University College London, London, W2 1PG, UK; Imperial College of Science and Technology, St. Mary's Campus, London, WC1E 6BT, UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE, 68178, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA; Singapore Eye Research Institute, Singapore, 169856, Singapore; Global Research & Development, Nanoscope Therapeutics Inc., Dallas, TX 75207, USA.
| |
Collapse
|
90
|
Grassi L, Salazar Vega D, De Gainza A, Bouris E, Morales E, Caprioli J. Phenotypic expressions of the optic disc in primary open-angle glaucoma. Eye (Lond) 2023; 37:3839-3846. [PMID: 37355755 PMCID: PMC10698030 DOI: 10.1038/s41433-023-02627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Which phenotypes are we able to recognize in the optic nerve of patients with primary open angle glaucoma? METHODS Retrospective interventional case series. 885 eyes from 885 patients at an outpatient tertiary care centre who met specified criteria for POAG were included. Disc photographs were classified by three glaucoma specialists into the following phenotypes according to their predominant characteristics: (1) concentric rim thinning, (2) focal rim thinning, (3) acquired pit of the optic nerve (APON), (4) tilted, (5) extensive peripapillary atrophy (PPA), and (6) broad rim thinning. Demographic, medical, and ocular data were collected. Kruskal-Wallis was used as a non-parametric test and pairwise comparison was performed by using Wilcoxon rank sum test corrected. RESULTS Phenotypic distribution was as follows: 398(45%) focal thinning, 153(18%) concentric thinning, 153(17%) broad thinning, 109(12%) tilted, 47(5%) extensive PPA and 25(3%) APON. Phenotypic traits of interest included a higher proportion of female patients with the focal thinning phenotype (p = 0.015); myopia (p = 0.000), Asian race (OR: 8.8, p = 0.000), and younger age (p = 0.000) were associated with the tilted phenotype; the concentric thinning patients had thicker RNFL (p = 0.000), higher MD (p = 0.008) and lower PSD (p = 0.043) than broad thinning, despite no difference in disc sizes (p = 0.849). The focal thinning group had a localized VF pattern with high PSD compared to concentric thinning (p = 0.005). CONCLUSION We report six phenotypic classifications of POAG patients with demographic and ocular differences between phenotypes. Future refinement of phenotypes should allow enhanced identification of genetic associations and improved individualization of patient care.
Collapse
Affiliation(s)
- Lourdes Grassi
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Diana Salazar Vega
- Department of Ophthalmology, Vision Consultants and Surgeons, Falls Church, VA, USA
| | | | - Ella Bouris
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Esteban Morales
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Joseph Caprioli
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
91
|
Pandino I, Giammaria S, Zingale GA, Roberti G, Michelessi M, Coletta M, Manni G, Agnifili L, Vercellin AV, Harris A, Oddone F, Sbardella D. Ubiquitin proteasome system and glaucoma: A survey of genetics and molecular biology studies supporting a link with pathogenic and therapeutic relevance. Mol Aspects Med 2023; 94:101226. [PMID: 37950974 DOI: 10.1016/j.mam.2023.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Glaucoma represents a group of progressive neurodegenerative diseases characterized by the loss of retinal ganglion cells (RGCs) and their axons with subsequent visual field impairment. The disease develops through largely uncharacterized molecular mechanisms, that are likely to occur in different localized cell types, either in the anterior (e.g., trabecular meshwork cells) or posterior (e.g., Muller glia, retinal ganglion cells) segments of the eye. Genomic and preclinical studies suggest that glaucoma pathogenesis may develop through altered ubiquitin (Ub) signaling. Ubiquitin conjugation, referred to as ubiquitylation, is a major post-synthetic modification catalyzed by E1-E2-E3 enzymes, that profoundly regulates the turnover, trafficking and biological activity of the targeted protein. The development of new technologies, including proteomics workflows, allows the biology of ubiquitin signaling to be described in health and disease. This post-translational modification is emerging as a key role player in neurodegeneration, gaining relevance for novel therapeutic options, such as in the case of Proteolysis Targeting Chimeras technology. Although scientific evidence supports a link between Ub and glaucoma, their relationship is still not well-understood. Therefore, this review provides a detailed research-oriented discussion on current evidence of Ub signaling in glaucoma. A review of genomic and genetic data is provided followed by an in-depth discussion of experimental data on ASB10, parkin and optineurin, which are proteins that play a key role in Ub signaling and have been associated with glaucoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianluca Manni
- IRCCS Fondazione Bietti, Rome, Italy; DSCMT University of Tor Vergata, Rome, Italy
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University "G. D'Annunzio" of Chieti-Pescara, Italy
| | | | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
92
|
Gharahkhani P, He W, Han X, Ong JS, Rentería ME, Wiggs JL, Khawaja AP, Trzaskowski M, Mackey DA, Craig JE, Hewitt AW, MacGregor S, Wu Y. WITHDRAWN: Genome-wide risk prediction of primary open-angle glaucoma across multiple ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298255. [PMID: 37986775 PMCID: PMC10659472 DOI: 10.1101/2023.11.08.23298255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This manuscript has been withdrawn by medRxiv following a formal request by the QIMR Berghofer Medical Research Institute Research Integrity Office owing to lack of author consent.
Collapse
|
93
|
Wang J, Cheng X, Liang Q, Owen LA, Lu J, Zheng Y, Wang M, Chen S, DeAngelis MM, Li Y, Chen R. Single-cell multiomics of the human retina reveals hierarchical transcription factor collaboration in mediating cell type-specific effects of genetic variants on gene regulation. Genome Biol 2023; 24:269. [PMID: 38012720 PMCID: PMC10680294 DOI: 10.1186/s13059-023-03111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Systematic characterization of how genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing. RESULTS We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types. By integrating these results, we identify and characterize regulatory elements and genetic variants effective on gene regulation in individual cell types. The majority of identified sc-eQTLs and sc-caQTLs display cell type-specific effects, while the cis-elements containing genetic variants with cell type-specific effects are often accessible in multiple cell types. Furthermore, the transcription factors whose binding sites are perturbed by genetic variants tend to have higher expression levels in the cell types where the variants exert their effects, compared to the cell types where the variants have no impact. We further validate our findings with high-throughput reporter assays. Lastly, we identify the enriched cell types, candidate causal variants and genes, and cell type-specific regulatory mechanism underlying GWAS loci. CONCLUSIONS Overall, genetic effects on gene regulation are highly context dependent. Our results suggest that cell type-dependent genetic effect is driven by precise modulation of both trans-factor expression and chromatin accessibility of cis-elements. Our findings indicate hierarchical collaboration among transcription factors plays a crucial role in mediating cell type-specific effects of genetic variants on gene regulation.
Collapse
Affiliation(s)
- Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jiaxiong Lu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, MO, USA
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, MO, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
94
|
Rajasundaram S, Zebardast N, Mehta P, Khawaja AP, Warwick A, Duchinski K, Burgess S, Gill D, Segrè AV, Wiggs J. TIE1 and TEK signalling, intraocular pressure, and primary open-angle glaucoma: a Mendelian randomization study. J Transl Med 2023; 21:847. [PMID: 37996923 PMCID: PMC10668387 DOI: 10.1186/s12967-023-04737-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND In primary open-angle glaucoma (POAG), lowering intraocular pressure (IOP) is the only proven way of slowing vision loss. Schlemm's canal (SC) is a hybrid vascular and lymphatic vessel that mediates aqueous humour drainage from the anterior ocular chamber. Animal studies support the importance of SC endothelial angiopoietin-TEK signalling, and more recently TIE1 signalling, in maintaining normal IOP. However, human genetic support for a causal role of TIE1 and TEK signalling in lowering IOP is currently lacking. METHODS GWAS summary statistics were obtained for plasma soluble TIE1 (sTIE1) protein levels (N = 35,559), soluble TEK (sTEK) protein levels (N = 35,559), IOP (N = 139,555) and POAG (Ncases = 16,677, Ncontrols = 199,580). Mendelian randomization (MR) was performed to estimate the association of genetically proxied TIE1 and TEK protein levels with IOP and POAG liability. Where significant MR estimates were obtained, genetic colocalization was performed to assess the probability of a shared causal variant (PPshared) versus distinct (PPdistinct) causal variants underlying TIE1/TEK signalling and the outcome. Publicly available single-nucleus RNA-sequencing data were leveraged to investigate differential expression of TIE1 and TEK in the human ocular anterior segment. RESULTS Increased genetically proxied TIE1 signalling and TEK signalling associated with a reduction in IOP (- 0.21 mmHg per SD increase in sTIE1, 95% CI = - 0.09 to - 0.33 mmHg, P = 6.57 × 10-4, and - 0.14 mmHg per SD decrease in sTEK, 95% CI = - 0.03 to - 0.25 mmHg, P = 0.011), but not with POAG liability. Colocalization analysis found that the probability of a shared causal variant was greater for TIE1 and IOP than for TEK and IOP (PPshared/(PPdistinct + PPshared) = 0.98 for TIE1 and 0.30 for TEK). In the anterior segment, TIE1 and TEK were preferentially expressed in SC, lymphatic, and vascular endothelium. CONCLUSIONS This study provides novel human genetic support for a causal role of both TIE1 and TEK signalling in regulating IOP. Here, combined evidence from cis-MR and colocalization analyses provide stronger support for TIE1 than TEK as a potential IOP-lowering therapeutic target.
Collapse
Affiliation(s)
- Skanda Rajasundaram
- Faculty of Medicine, Imperial College London, London, UK.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Nazlee Zebardast
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Puja Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- UCL Institute of Cardiovascular Science, London, UK
| | | | - Alasdair Warwick
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Katherine Duchinski
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ayellet V Segrè
- Faculty of Medicine, Imperial College London, London, UK
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Janey Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
95
|
Sato K, Saigusa D, Kokubun T, Fujioka A, Feng Q, Saito R, Uruno A, Matsukawa N, Ohno-Oishi M, Kunikata H, Yokoyama Y, Yasuda M, Himori N, Omodaka K, Tsuda S, Maekawa S, Yamamoto M, Nakazawa T. Reduced glutathione level in the aqueous humor of patients with primary open-angle glaucoma and normal-tension glaucoma. NPJ AGING 2023; 9:28. [PMID: 37990002 PMCID: PMC10663551 DOI: 10.1038/s41514-023-00124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/22/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of blindness worldwide in older people. Profiling the aqueous humor, including the metabolites it contains, is useful to understand physiological and pathological conditions in the eye. In the current study, we used mass spectrometry (MS) to characterize the aqueous humor metabolomic profile and biological features of patients with glaucoma. Aqueous humor samples were collected during trabeculectomy surgery or cataract surgery and analyzed with global metabolomics. We included 40 patients with glaucoma (32 with POAG, 8 with NTG) and 37 control subjects in a discovery study. VIP analysis revealed five metabolites that were elevated and three metabolites that were reduced in the glaucoma patients. The identified metabolomic profile had an area under the receiver operating characteristic curve of 0.953. Among eight selected metabolites, the glutathione level was significantly decreased in association with visual field defects. Moreover, in a validation study to confirm the reproducibility of our findings, the glutathione level was reduced in NTG and POAG patients compared with a cataract control group. Our findings demonstrate that aqueous humor profiling can help to diagnose glaucoma and that various aqueous humor metabolites are correlated with clinical parameters in glaucoma patients. In addition, glutathione is clearly reduced in the aqueous humor of glaucoma patients with both IOP-dependent and IOP-independent disease subtypes. These findings indicate that antioxidant agents in the aqueous humor reflect glaucomatous optic nerve damage and that excessive oxidative stress may be involved in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Qiwei Feng
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
96
|
Li J, Wang J, Ibarra IL, Cheng X, Luecken MD, Lu J, Monavarfeshani A, Yan W, Zheng Y, Zuo Z, Colborn SLZ, Cortez BS, Owen LA, Tran NM, Shekhar K, Sanes JR, Stout JT, Chen S, Li Y, DeAngelis MM, Theis FJ, Chen R. Integrated multi-omics single cell atlas of the human retina. RESEARCH SQUARE 2023:rs.3.rs-3471275. [PMID: 38014002 PMCID: PMC10680922 DOI: 10.21203/rs.3.rs-3471275/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Ignacio L Ibarra
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Lung Health & Immunity, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Zhen Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | | | | | - Leah A Owen
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California, United States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Margaret M DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
97
|
Katsimpris A, Baumeister SE, Baurecht H, Tatham AJ, Nolde M. Cannabis use and the risk of primary open-angle glaucoma: a Mendelian randomization study. Sci Rep 2023; 13:19605. [PMID: 37949880 PMCID: PMC10638381 DOI: 10.1038/s41598-023-45872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Several observational studies have investigated the association between cannabis use and intraocular pressure, but its association with primary open-angle glaucoma (POAG) remains unclear. In this study, we leveraged human genetic data to assess through Mendelian randomization (MR) whether cannabis use affects POAG. We used five single-nucleotide polymorphisms (SNPs) associated with lifetime cannabis use (P-value < 5 × 10-8) from a genome-wide association study (GWAS) (N = 184,765) by the International Cannabis Consortium, 23andMe, and UK Biobank and eleven SNPs associated with cannabis use disorder (P-value < 5 × 10-7) from a GWAS meta-analysis of (17,068 cases and 357,219 controls of European descent) from Psychiatric Genomics Consortium Substance Use Disorders working group, Lundbeck Foundation Initiative for Integrative Psychiatric Research, and deCode. We associated the selected five SNPs from the GWAS of lifetime cannabis use and the eleven SNPs from the GWAS of cannabis use disorder, with the largest to date GWAS meta-analysis of POAG (16,677 cases and 199,580 controls). MR analysis suggested no evidence for a causal association of lifetime cannabis use and cannabis use disorder with POAG (odds ratio (OR) of outcome per doubling of the odds of exposure (95% confidence interval): 1.04 (0.88; 1.23) for lifetime cannabis use and 0.97 (0.92; 1.03) for cannabis use disorder). Sensitivity analyses to address pleiotropy and weak instrument bias yielded similar estimates to the primary analysis. In conclusion, our results do not support a causal association between cannabis use and POAG.
Collapse
Affiliation(s)
| | | | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Andrew J Tatham
- Princess Alexandra Eye Pavilion, Edinburgh, EH3 9HA, Scotland, UK
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany.
| |
Collapse
|
98
|
Passaro ML, Matarazzo F, Abbadessa G, Pezone A, Porcellini A, Tranfa F, Rinaldi M, Costagliola C. Glaucoma as a Tauopathy-Is It the Missing Piece in the Glaucoma Puzzle? J Clin Med 2023; 12:6900. [PMID: 37959365 PMCID: PMC10650423 DOI: 10.3390/jcm12216900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disorder affecting the visual system which can result in vision loss and blindness. The pathogenetic mechanisms underlying glaucomatous optic neuropathy are ultimately enigmatic, prompting ongoing investigations into its potential shared pathogenesis with other neurodegenerative neurological disorders. Tauopathies represent a subclass of neurodegenerative diseases characterized by the abnormal deposition of tau protein within the brain and consequent microtubule destabilization. The extended spectrum of tauopathies includes conditions such as frontotemporal dementias, progressive supranuclear palsy, chronic traumatic encephalopathy, and Alzheimer's disease. Notably, recent decades have witnessed emerging documentation of tau inclusion among glaucoma patients, providing substantiation that this ocular disease may similarly manifest features of tauopathies. These studies found that: (i) aggregated tau inclusions are present in the somatodendritic compartment of RGCs in glaucoma patients; (ii) the etiology of the disease may affect tau splicing, phosphorylation, oligomerization, and subcellular localization; and (iii) short interfering RNA against tau, administered intraocularly, significantly decreased retinal tau accumulation and enhanced RGC somas and axon survival, demonstrating a crucial role for tau modifications in ocular hypertension-induced neuronal injury. Here, we examine the most recent evidence surrounding the interplay between tau protein dysregulation and glaucomatous neurodegeneration. We explore the novel perspective of glaucoma as a tau-associated disorder and open avenues for cross-disciplinary collaboration and new treatment strategies.
Collapse
Affiliation(s)
- Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | | | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Antonio Pezone
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Antonio Porcellini
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| |
Collapse
|
99
|
Elenbaas JS, Jung IH, Coler-Reilly A, Lee PC, Alisio A, Stitziel NO. The emerging Janus face of SVEP1 in development and disease. Trends Mol Med 2023; 29:939-950. [PMID: 37673700 PMCID: PMC10592172 DOI: 10.1016/j.molmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Sushi, von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) is a large extracellular matrix protein that is also detected in circulation. Recent plasma proteomic and genomic studies have revealed a large number of associations between SVEP1 and human traits, particularly chronic disease. These include associations with cardiac death and disease, diabetes, platelet traits, glaucoma, dementia, and aging; many of these are causal. Animal models demonstrate that SVEP1 is critical in vascular development and disease, but its molecular and cellular mechanisms remain poorly defined. Future studies should aim to characterize these mechanisms and determine the diagnostic, prognostic, and therapeutic value of measuring or intervening on this enigmatic protein.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ariella Coler-Reilly
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paul C Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
100
|
Shiga Y, Hashimoto K, Fujita K, Maekawa S, Sato K, Kubo S, Kawase K, Tokumo K, Kiuchi Y, Mori S, Nakamura M, Iwata T, Nishiguchi KM, Nakazawa T. Identification of OPTN p.(Asn51Thr): A novel pathogenic variant in primary open-angle glaucoma. GENETICS IN MEDICINE OPEN 2023; 2:100839. [PMID: 39669598 PMCID: PMC11613796 DOI: 10.1016/j.gimo.2023.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2024]
Abstract
Purpose Pathogenic variants in TBK1, MYOC, and OPTN are associated with primary open-angle glaucoma (POAG) with severe visual field defects. This study aims to understand further POAG-related pathogenic variant(s) based on a cohort of East Asian populations that have not been well-characterized. Methods We conducted a comprehensive screening of TBK1, MYOC, and OPTN variants in 174 POAG Japanese patients, followed by 8380 population-specific genome sequencing data references, segregation analysis, and functional protein assays to determine pathogenic variants. Results Despite the small sample size, 4 variants were novel, 2 of which p.(Cys5Trp) and p.(Thr293Met) were in the MYOC gene, and 2 p.(Asn51Thr), and p.(Gln142His) were in the OPTN. Notably, the OPTN p.(Asn51Thr) missense variant adjacent to the p.(Glu50Lys) variant, a well-known POAG pathogenic variant, was segregated from all proband's family members with POAG. Moreover, in silico and in vitro analyses revealed that the OPTN p.(Asn51Thr) protein increased binding instability, interactions of the OPTN-TBK1 complex, and enhanced protein insolubility, likewise the p.(Glu50Lys) protein. Conclusion Our findings may provide further genetic insights into rare variants of POAG and support the clear conclusion that OPTN p.(Asn51Thr) is a novel likely pathogenic variant.
Collapse
Affiliation(s)
- Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kosuke Fujita
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shintaroh Kubo
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
- Department of Biological Science, Grad. Sch. of Sci, The University of Tokyo, Tokyo, Japan
| | - Kazuhide Kawase
- Yasuma Eye Clinic, Nagoya, Aichi, Japan
- Department of Ophthalmology Protective Care for Sensory Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kana Tokumo
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Koji M. Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|