51
|
Veldhuizen GP, Röcken C, Behrens HM, Cifci D, Muti HS, Yoshikawa T, Arai T, Oshima T, Tan P, Ebert MP, Pearson AT, Calderaro J, Grabsch HI, Kather JN. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study. Gastric Cancer 2023; 26:708-720. [PMID: 37269416 PMCID: PMC10361890 DOI: 10.1007/s10120-023-01398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. OBJECTIVE We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. METHODS We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. RESULTS Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). CONCLUSION Our study shows that gastric adenocarcinoma subtyping using pathologist's Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts University, Kiel, Germany
| | | | - Didem Cifci
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Hannah Sophie Muti
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Technical University Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Singapore
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
52
|
Huynh BN, Groendahl AR, Tomic O, Liland KH, Knudtsen IS, Hoebers F, van Elmpt W, Malinen E, Dale E, Futsaether CM. Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics. Front Med (Lausanne) 2023; 10:1217037. [PMID: 37711738 PMCID: PMC10498924 DOI: 10.3389/fmed.2023.1217037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023] Open
Abstract
Background Radiomics can provide in-depth characterization of cancers for treatment outcome prediction. Conventional radiomics rely on extraction of image features within a pre-defined image region of interest (ROI) which are typically fed to a classification algorithm for prediction of a clinical endpoint. Deep learning radiomics allows for a simpler workflow where images can be used directly as input to a convolutional neural network (CNN) with or without a pre-defined ROI. Purpose The purpose of this study was to evaluate (i) conventional radiomics and (ii) deep learning radiomics for predicting overall survival (OS) and disease-free survival (DFS) for patients with head and neck squamous cell carcinoma (HNSCC) using pre-treatment 18F-fluorodeoxuglucose positron emission tomography (FDG PET) and computed tomography (CT) images. Materials and methods FDG PET/CT images and clinical data of patients with HNSCC treated with radio(chemo)therapy at Oslo University Hospital (OUS; n = 139) and Maastricht University Medical Center (MAASTRO; n = 99) were collected retrospectively. OUS data was used for model training and initial evaluation. MAASTRO data was used for external testing to assess cross-institutional generalizability. Models trained on clinical and/or conventional radiomics features, with or without feature selection, were compared to CNNs trained on PET/CT images without or with the gross tumor volume (GTV) included. Model performance was measured using accuracy, area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), and the F1 score calculated for both classes separately. Results CNNs trained directly on images achieved the highest performance on external data for both endpoints. Adding both clinical and radiomics features to these image-based models increased performance further. Conventional radiomics including clinical data could achieve competitive performance. However, feature selection on clinical and radiomics data lead to overfitting and poor cross-institutional generalizability. CNNs without tumor and node contours achieved close to on-par performance with CNNs including contours. Conclusion High performance and cross-institutional generalizability can be achieved by combining clinical data, radiomics features and medical images together with deep learning models. However, deep learning models trained on images without contours can achieve competitive performance and could see potential use as an initial screening tool for high-risk patients.
Collapse
Affiliation(s)
- Bao Ngoc Huynh
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Oliver Tomic
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ingerid Skjei Knudtsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
53
|
Escudero Sanchez L, Buddenkotte T, Al Sa’d M, McCague C, Darcy J, Rundo L, Samoshkin A, Graves MJ, Hollamby V, Browne P, Crispin-Ortuzar M, Woitek R, Sala E, Schönlieb CB, Doran SJ, Öktem O. Integrating Artificial Intelligence Tools in the Clinical Research Setting: The Ovarian Cancer Use Case. Diagnostics (Basel) 2023; 13:2813. [PMID: 37685352 PMCID: PMC10486639 DOI: 10.3390/diagnostics13172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Artificial intelligence (AI) methods applied to healthcare problems have shown enormous potential to alleviate the burden of health services worldwide and to improve the accuracy and reproducibility of predictions. In particular, developments in computer vision are creating a paradigm shift in the analysis of radiological images, where AI tools are already capable of automatically detecting and precisely delineating tumours. However, such tools are generally developed in technical departments that continue to be siloed from where the real benefit would be achieved with their usage. Significant effort still needs to be made to make these advancements available, first in academic clinical research and ultimately in the clinical setting. In this paper, we demonstrate a prototype pipeline based entirely on open-source software and free of cost to bridge this gap, simplifying the integration of tools and models developed within the AI community into the clinical research setting, ensuring an accessible platform with visualisation applications that allow end-users such as radiologists to view and interact with the outcome of these AI tools.
Collapse
Affiliation(s)
- Lorena Escudero Sanchez
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- National Cancer Imaging Translational Accelerator (NCITA) Consortium, UK
| | - Thomas Buddenkotte
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Jung Diagnostics GmbH, 22335 Hamburg, Germany
| | - Mohammad Al Sa’d
- National Cancer Imaging Translational Accelerator (NCITA) Consortium, UK
- Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College, London SW7 2AZ, UK
| | - Cathal McCague
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - James Darcy
- National Cancer Imaging Translational Accelerator (NCITA) Consortium, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW7 3RP, UK
| | - Leonardo Rundo
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy
| | - Alex Samoshkin
- Office for Translational Research, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Martin J. Graves
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Victoria Hollamby
- Research and Information Governance, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Paul Browne
- High Performance Computing Department, University of Cambridge, Cambridge CB3 0RB, UK
| | - Mireia Crispin-Ortuzar
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Research Centre for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- National Cancer Imaging Translational Accelerator (NCITA) Consortium, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Dipartimento di Scienze Radiologiche ed Ematologiche, Universita Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Simon J. Doran
- National Cancer Imaging Translational Accelerator (NCITA) Consortium, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW7 3RP, UK
| | - Ozan Öktem
- Department of Mathematics, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
54
|
Verghese G, Li M, Liu F, Lohan A, Kurian NC, Meena S, Gazinska P, Shah A, Oozeer A, Chan T, Opdam M, Linn S, Gillett C, Alberts E, Hardiman T, Jones S, Thavaraj S, Jones JL, Salgado R, Pinder SE, Rane S, Sethi A, Grigoriadis A. Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large-scale studies. J Pathol 2023; 260:376-389. [PMID: 37230111 PMCID: PMC10720675 DOI: 10.1002/path.6088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning (DL) framework to quantify morphological features in haematoxylin and eosin-stained LNs on digitised whole slide images. From 345 breast cancer patients, 5,228 axillary LNs, cancer-free and involved, were assessed. Generalisable multiscale DL frameworks were developed to capture and quantify germinal centres (GCs) and sinuses. Cox regression proportional hazard models tested the association between smuLymphNet-captured GC and sinus quantifications and distant metastasis-free survival (DMFS). smuLymphNet achieved a Dice coefficient of 0.86 and 0.74 for capturing GCs and sinuses, respectively, and was comparable to an interpathologist Dice coefficient of 0.66 (GC) and 0.60 (sinus). smuLymphNet-captured sinuses were increased in LNs harbouring GCs (p < 0.001). smuLymphNet-captured GCs retained clinical relevance in LN-positive TNBC patients whose cancer-free LNs had on average ≥2 GCs, had longer DMFS (hazard ratio [HR] = 0.28, p = 0.02) and extended GCs' prognostic value to LN-negative TNBC patients (HR = 0.14, p = 0.002). Enlarged smuLymphNet-captured sinuses in involved LNs were associated with superior DMFS in LN-positive TNBC patients in a cohort from Guy's Hospital (multivariate HR = 0.39, p = 0.039) and with distant recurrence-free survival in 95 LN-positive TNBC patients of the Dutch-N4plus trial (HR = 0.44, p = 0.024). Heuristic scoring of subcapsular sinuses in LNs of LN-positive Tianjin TNBC patients (n = 85) cross-validated the association of enlarged sinuses with shorter DMFS (involved LNs: HR = 0.33, p = 0.029 and cancer-free LNs: HR = 0.21 p = 0.01). Morphological LN features reflective of cancer-associated responses are robustly quantifiable by smuLymphNet. Our findings further strengthen the value of assessment of LN properties beyond the detection of metastatic deposits for prognostication of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gregory Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Mengyuan Li
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Fangfang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of EducationKey Laboratory of Cancer Prevention and TherapyTianjinPR China
| | - Amit Lohan
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Nikhil Cherian Kurian
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Swati Meena
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Patrycja Gazinska
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Biobank Research GroupLukasiewicz Research Network, PORT Polish Center for Technology DevelopmentWroclawPoland
| | - Aekta Shah
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of PathologyTata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National InstituteMumbaiIndia
| | - Aasiyah Oozeer
- King's Health Partners Cancer Biobank, King's College LondonLondonUK
| | - Terry Chan
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Opdam
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sabine Linn
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Medical OncologyThe Netherlands Cancer Institute, Antoni van LeeuwenhoekAmsterdamThe Netherlands
- Department of PathologyUniversity Medical CentreUtrechtThe Netherlands
| | - Cheryl Gillett
- King's Health Partners Cancer Biobank, King's College LondonLondonUK
| | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Thomas Hardiman
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Samantha Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Selvam Thavaraj
- Faculty of Dentistry, Oral & Craniofacial ScienceKing's College LondonLondonUK
- Head and Neck PathologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Roberto Salgado
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Division of ResearchPeter Mac Callum Cancer CentreMelbourneAustralia
| | - Sarah E Pinder
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Swapnil Rane
- Department of PathologyTata Memorial Centre‐ACTREC, HBNIMumbaiIndia
| | - Amit Sethi
- Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
55
|
Thagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, Ribeiro JM, Rimm D, Roslind A, Vincent‐Salomon A, Salto‐Tellez M, Saltz J, Sayed S, Scott E, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Fineberg S, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Zin RM, Adams S, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:498-513. [PMID: 37608772 PMCID: PMC10518802 DOI: 10.1002/path.6155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jeppe Thagaard
- Technical University of DenmarkKongens LyngbyDenmark
- Visiopharm A/SHørsholmDenmark
| | - Glenn Broeckx
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of MedicineAntwerp UniversityAntwerpBelgium
| | - David B Page
- Earle A Chiles Research InstituteProvidence Cancer InstitutePortlandORUSA
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | - Sara Verbandt
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Zuzana Kos
- Department of Pathology and Laboratory MedicineBC Cancer Vancouver Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rajarsi Gupta
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Reena Khiroya
- Department of Cellular PathologyUniversity College Hospital LondonLondonUK
| | | | | | - Balazs Acs
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co IncRahwayNJUSA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG)National Cancer Institute (NCI)Rockville, MDUSA
| | | | - Mohamed Amgad
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineEmory University Winship Cancer InstituteAtlantaGAUSA
| | | | - Eva Balslev
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de MedicinaUniversidad de La FronteraTemucoChile
| | | | - Kim RM Blenman
- Department of Internal Medicine Section of Medical Oncology and Yale Cancer CenterYale School of MedicineNew HavenCTUSA
- Department of Computer ScienceYale School of Engineering and Applied ScienceNew HavenCTUSA
| | | | - Najat Bouchmaa
- Institute of Biological Sciences, Faculty of Medical SciencesMohammed VI Polytechnic University (UM6P)Ben‐GuerirMorocco
| | - Octavio Burgues
- Pathology DepartmentHospital Cliníco Universitario de Valencia/InclivaValenciaSpain
| | - Alexandros Chardas
- Department of Pathobiology & Population SciencesThe Royal Veterinary CollegeLondonUK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR‐CTSU, Division of Clinical StudiesThe Institute of Cancer ResearchLondonUK
| | - Francesco Ciompi
- Radboud University Medical CenterDepartment of PathologyNijmegenThe Netherlands
| | - Lee AD Cooper
- Department of PathologyNorthwestern Feinberg School of MedicineChicagoILUSA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and ImmunotherapyKU LeuvenLeuvenBelgium
| | - Germán Corredor
- Biomedical Engineering DepartmentEmory UniversityAtlantaGAUSA
| | - Anders B Dahl
- Technical University of DenmarkKongens LyngbyDenmark
| | | | | | - Sandra Demaria
- Department of Radiation OncologyWeill Cornell MedicineNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Sarah N Dudgeon
- Conputational Biology and BioinformaticsYale UniversityNew HavenCTUSA
| | | | | | - Claudio Fernandez‐Martín
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN‐techUniversitat Politècnica de ValènciaValenciaSpain
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/Onc, and Pathology, Tisch Cancer Institute – Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Niels Halama
- Department of Translational ImmunotherapyGerman Cancer Research CenterHeidelbergGermany
| | - Matthew G Hanna
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | | | - Steven N Hart
- Department of Laboratory Medicine and PathologyMayo ClinicRochester, MNUSA
| | - Johan Hartman
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Søren Hauberg
- Technical University of DenmarkKongens LyngbyDenmark
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Akira I Hida
- Department of PathologyMatsuyama Shimin HospitalMatsuyamaJapan
| | - Hugo M Horlings
- Division of PathologyNetherlands Cancer Institute (NKI)AmsterdamThe Netherlands
| | | | | | - Sheeba Irshad
- King's College London & Guy's & St Thomas’ NHS TrustLondonUK
| | - Emiel AM Janssen
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | | | | | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | | | - Andrey I Khramtsov
- Department of Pathology and Laboratory MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Umay Kiraz
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | - Pawan Kirtani
- Department of HistopathologyAakash Healthcare Super Speciality HospitalNew DelhiIndia
| | - Liudmila L Kodach
- Department of PathologyNetherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product DevelopmentF. Hoffmann‐La Roche AGBaselSwitzerland
| | - Anikó Kovács
- Department of Clinical PathologySahlgrenska University HospitalGothenburgSweden
- Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anne‐Vibeke Laenkholm
- Department of Surgical PathologyZealand University HospitalRoskildeDenmark
- Department of Surgical PathologyUniversity of CopenhagenCopenhagenDenmark
| | - Corinna Lang‐Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Denis Larsimont
- Institut Jules BordetUniversité Libre de BruxellesBrusselsBelgium
| | - Jochen K Lennerz
- Center for Integrated DiagnosticsMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | - Xiaoxian Li
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, PathologyGeorgia Institute of Technology and Emory UniversityAtlantaGAUSA
| | - Sai K Maley
- NRG Oncology/NSABP FoundationPittsburghPAUSA
| | | | | | - Elizabeth S McDonald
- Breast Cancer Translational Research GroupUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ravi Mehrotra
- Indian Cancer Genomic AtlasPuneIndia
- Centre for Health, Innovation and Policy FoundationNoidaIndia
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, InsermUniversity Paris‐Saclay, Ligue Contre le Cancer labeled TeamVillejuifFrance
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattle, WAUSA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology DepartmentUCLHLondonUK
| | - Shamim Mushtaq
- Department of BiochemistryZiauddin UniversityKarachiPakistan
| | - Hussain Nighat
- Pathology and Laboratory MedicineAll India Institute of Medical sciencesRaipurIndia
| | - Thomas Papathomas
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Department of Clinical PathologyDrammen Sykehus, Vestre Viken HFDrammenNorway
| | - Frederique Penault‐Llorca
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies ThéranostiquesClermont FerrandFrance
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Christopher J Pinard
- Radiogenomics LaboratorySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Department of OncologyLakeshore Animal Health PartnersMississaugaOntarioCanada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE‐AI)University of GuelphGuelphOntarioCanada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Faculty of Medicine and SurgeryUniversity of MilanMilanItaly
| | - Lajos Pusztai
- Yale Cancer CenterYale UniversityNew HavenCTUSA
- Department of Medical Oncology, Yale School of MedicineYale UniversityNew HavenCTUSA
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of RosebankJohannesburgSouth Africa
- Department of Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Tilman T Rau
- Institute of PathologyUniversity Hospital Düsseldorf and Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Jorge S Reis‐Filho
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Joana M Ribeiro
- Département de Médecine OncologiqueGustave RoussyVillejuifFrance
| | - David Rimm
- Department of PathologyYale University School of MedicineNew HavenCTUSA
- Department of MedicineYale University School of MedicineNew HavenCTUSA
| | - Anne Roslind
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Anne Vincent‐Salomon
- Department of Diagnostic and Theranostic Medicine, Institut CurieUniversity Paris‐Sciences et LettresParisFrance
| | - Manuel Salto‐Tellez
- Integrated Pathology UnitThe Institute of Cancer ResearchLondonUK
- Precision Medicine CentreQueen's University BelfastBelfastUK
| | - Joel Saltz
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Shahin Sayed
- Department of PathologyAga Khan UniversityNairobiKenya
| | - Ely Scott
- Translational PathologyTranslational Sciences and Diagnostics/Translational Medicine/R&D, Bristol Myers SquibbPrincetonNJUSA
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.‐C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
- Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Albrecht Stenzinger
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
- Centers for Personalized Medicine (ZPM)HeidelbergGermany
| | | | - Daniel Sur
- Department of Medical OncologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj‐NapocaRomania
| | - Susan Fineberg
- Montefiore Medical CenterBronxNYUSA
- Albert Einstein College of MedicineBronxNYUSA
| | - Fraser Symmans
- University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Jonas Teuwen
- AI for Oncology Lab, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Trine Tramm
- Department of PathologyAarhus University HospitalAarhusDenmark
- Institute of Clinical MedicineAarhus UniversityAarhusDenmark
| | - William T Tran
- Department of Radiation OncologyUniversity of Toronto and Sunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Jeroen van der Laak
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
- Johns Hopkins Oncology CenterBaltimoreMDUSA
| | - Gregory E Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Giuseppe Viale
- Department of PathologyEuropean Institute of OncologyMilanItaly
- Department of PathologyUniversity of MilanMilanItaly
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Thomas Walter
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | | | - Hannah Y Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer CenterShanghaiPR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Reena Md Zin
- Department of Pathology, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Sylvia Adams
- Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
- Department of MedicineNYU Grossman School of MedicineManhattanNYUSA
| | | | - Sibylle Loibl
- Department of Medicine and ResearchGerman Breast GroupNeu‐IsenburgGermany
| | - Carsten Denkert
- Institut für PathologiePhilipps‐Universität Marburg und Universitätsklinikum MarburgMarburgGermany
| | - Peter Savas
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Sherene Loi
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Roberto Salgado
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Elisabeth Specht Stovgaard
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
56
|
Martos O, Hoque MZ, Keskinarkaus A, Kemi N, Näpänkangas J, Eskuri M, Pohjanen VM, Kauppila JH, Seppänen T. Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal. Pathol Res Pract 2023; 248:154694. [PMID: 37494804 DOI: 10.1016/j.prp.2023.154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Histological analysis with microscopy is the gold standard to diagnose and stage cancer, where slides or whole slide images are analyzed for cell morphological and spatial features by pathologists. The nuclei of cancerous cells are characterized by nonuniform chromatin distribution, irregular shapes, and varying size. As nucleus area and shape alone carry prognostic value, detection and segmentation of nuclei are among the most important steps in disease grading. However, evaluation of nuclei is a laborious, time-consuming, and subjective process with large variation among pathologists. Recent advances in digital pathology have allowed significant applications in nuclei detection, segmentation, and classification, but automated image analysis is greatly affected by staining factors, scanner variability, and imaging artifacts, requiring robust image preprocessing, normalization, and segmentation methods for clinically satisfactory results. In this paper, we aimed to evaluate and compare the digital image analysis techniques used in clinical pathology and research in the setting of gastric cancer. A literature review was conducted to evaluate potential methods of improving nuclei detection. Digitized images of 35 patients from a retrospective cohort of gastric adenocarcinoma at Oulu University Hospital in 1987-2016 were annotated for nuclei (n = 9085) by expert pathologists and 14 images of different cancer types from public TCGA dataset with annotated nuclei (n = 7000) were used as a comparison to evaluate applicability in other cancer types. The detection and segmentation accuracy with the selected color normalization and stain separation techniques were compared between the methods. The extracted information can be supplemented by patient's medical data and fed to the existing statistical clinical tools or subjected to subsequent AI-assisted classification and prediction models. The performance of each method is evaluated by several metrics against the annotations done by expert pathologists. The F1-measure of 0.854 ± 0.068 is achieved with color normalization for the gastric cancer dataset, and 0.907 ± 0.044 with color deconvolution for the public dataset, showing comparable results to the earlier state-of-the-art works. The developed techniques serve as a basis for further research on application and interpretability of AI-assisted tools for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Oleg Martos
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Md Ziaul Hoque
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland.
| | - Anja Keskinarkaus
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| | - Niko Kemi
- Department of Pathology, Oulu University Hospital, Finland, and University of Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Oulu University Hospital, Finland, and University of Oulu, Finland
| | - Maarit Eskuri
- Department of Pathology, Oulu University Hospital, Finland, and University of Oulu, Finland
| | - Vesa-Matti Pohjanen
- Department of Pathology, Oulu University Hospital, Finland, and University of Oulu, Finland
| | - Joonas H Kauppila
- Department of Surgery, Oulu University Hospital, Finland, and University of Oulu, Finland
| | - Tapio Seppänen
- Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland
| |
Collapse
|
57
|
Rösler W, Altenbuchinger M, Baeßler B, Beissbarth T, Beutel G, Bock R, von Bubnoff N, Eckardt JN, Foersch S, Loeffler CML, Middeke JM, Mueller ML, Oellerich T, Risse B, Scherag A, Schliemann C, Scholz M, Spang R, Thielscher C, Tsoukakis I, Kather JN. An overview and a roadmap for artificial intelligence in hematology and oncology. J Cancer Res Clin Oncol 2023; 149:7997-8006. [PMID: 36920563 PMCID: PMC10374829 DOI: 10.1007/s00432-023-04667-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS In this article, we provide an expert-based consensus statement by the joint Working Group on "Artificial Intelligence in Hematology and Oncology" by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future.
Collapse
Affiliation(s)
- Wiebke Rösler
- Department for Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Altenbuchinger
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Tim Beissbarth
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Gernot Beutel
- Department for Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Robert Bock
- IMMS Institute for Microelectronics and Mechatronics Systems GmbH (NPO), Ilmenau, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Jan-Niklas Eckardt
- Department of Medicine 1, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Chiara M L Loeffler
- Department of Medicine 1, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Jan Moritz Middeke
- Department of Medicine 1, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | | | - Thomas Oellerich
- Medizinische Klinik 2-Haematology/Oncology, University Hospital, Frankfurt am Main, Germany
| | - Benjamin Risse
- Computer Vision and Machine Learning Systems Group, Institute for Geoinformatics, University of Münster, Münster, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | | | - Ioannis Tsoukakis
- Department of Hematology and Oncology, Sana Klinikum Offenbach, Offenbach, Germany
| | - Jakob Nikolas Kather
- Department of Medicine 1, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
58
|
Verghese G, Lennerz JK, Ruta D, Ng W, Thavaraj S, Siziopikou KP, Naidoo T, Rane S, Salgado R, Pinder SE, Grigoriadis A. Computational pathology in cancer diagnosis, prognosis, and prediction - present day and prospects. J Pathol 2023; 260:551-563. [PMID: 37580849 PMCID: PMC10785705 DOI: 10.1002/path.6163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 08/16/2023]
Abstract
Computational pathology refers to applying deep learning techniques and algorithms to analyse and interpret histopathology images. Advances in artificial intelligence (AI) have led to an explosion in innovation in computational pathology, ranging from the prospect of automation of routine diagnostic tasks to the discovery of new prognostic and predictive biomarkers from tissue morphology. Despite the promising potential of computational pathology, its integration in clinical settings has been limited by a range of obstacles including operational, technical, regulatory, ethical, financial, and cultural challenges. Here, we focus on the pathologists' perspective of computational pathology: we map its current translational research landscape, evaluate its clinical utility, and address the more common challenges slowing clinical adoption and implementation. We conclude by describing contemporary approaches to drive forward these techniques. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gregory Verghese
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Department of PathologyMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Danny Ruta
- Guy's CancerGuy's and St Thomas’ NHS Foundation TrustLondonUK
| | - Wen Ng
- Department of Cellular PathologyGuy's and St Thomas NHS Foundation TrustLondonUK
| | - Selvam Thavaraj
- Head & Neck PathologyGuy's and St Thomas NHS Foundation TrustLondonUK
- Centre for Clinical, Oral & Translational Science, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Threnesan Naidoo
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Mthatha, Eastern CapeSouth Africa and Africa Health Research InstituteDurbanSouth Africa
| | - Swapnil Rane
- Department of PathologyTata Memorial Centre – ACTRECHBNINavi MumbaiIndia
- Computational Pathology, AI & Imaging LaboratoryTata Memorial Centre – ACTREC, HBNINavi MumbaiIndia
| | - Roberto Salgado
- Department of PathologyGZA–ZNA ZiekenhuizenAntwerpBelgium
- Division of ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Sarah E Pinder
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of Cellular PathologyGuy's and St Thomas NHS Foundation TrustLondonUK
| | - Anita Grigoriadis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
59
|
Kuang S, Woodruff HC, Granzier R, van Nijnatten TJA, Lobbes MBI, Smidt ML, Lambin P, Mehrkanoon S. MSCDA: Multi-level semantic-guided contrast improves unsupervised domain adaptation for breast MRI segmentation in small datasets. Neural Netw 2023; 165:119-134. [PMID: 37285729 DOI: 10.1016/j.neunet.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Deep learning (DL) applied to breast tissue segmentation in magnetic resonance imaging (MRI) has received increased attention in the last decade, however, the domain shift which arises from different vendors, acquisition protocols, and biological heterogeneity, remains an important but challenging obstacle on the path towards clinical implementation. In this paper, we propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation (MSCDA) framework to address this issue in an unsupervised manner. Our approach incorporates self-training with contrastive learning to align feature representations between domains. In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts to better exploit the underlying semantic information of the image at different levels. To resolve the data imbalance problem, we utilize a category-wise cross-domain sampling strategy to sample anchors from target images and build a hybrid memory bank to store samples from source images. We have validated MSCDA with a challenging task of cross-domain breast MRI segmentation between datasets of healthy volunteers and invasive breast cancer patients. Extensive experiments show that MSCDA effectively improves the model's feature alignment capabilities between domains, outperforming state-of-the-art methods. Furthermore, the framework is shown to be label-efficient, achieving good performance with a smaller source dataset. The code is publicly available at https://github.com/ShengKuangCN/MSCDA.
Collapse
Affiliation(s)
- Sheng Kuang
- The D-Lab, Department of Precision Medicine, GROW - School or Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW - School or Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Renee Granzier
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Thiemo J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Marc B I Lobbes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Marjolein L Smidt
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW - School or Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Siamak Mehrkanoon
- Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
60
|
Asif A, Rajpoot K, Graham S, Snead D, Minhas F, Rajpoot N. Unleashing the potential of AI for pathology: challenges and recommendations. J Pathol 2023; 260:564-577. [PMID: 37550878 PMCID: PMC10952719 DOI: 10.1002/path.6168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Computational pathology is currently witnessing a surge in the development of AI techniques, offering promise for achieving breakthroughs and significantly impacting the practices of pathology and oncology. These AI methods bring with them the potential to revolutionize diagnostic pipelines as well as treatment planning and overall patient care. Numerous peer-reviewed studies reporting remarkable performance across diverse tasks serve as a testimony to the potential of AI in the field. However, widespread adoption of these methods in clinical and pre-clinical settings still remains a challenge. In this review article, we present a detailed analysis of the major obstacles encountered during the development of effective models and their deployment in practice. We aim to provide readers with an overview of the latest developments, assist them with insights into identifying some specific challenges that may require resolution, and suggest recommendations and potential future research directions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amina Asif
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Kashif Rajpoot
- School of Computer ScienceUniversity of BirminghamBirminghamUK
| | - Simon Graham
- Histofy Ltd, Birmingham Business ParkBirminghamUK
| | - David Snead
- Histofy Ltd, Birmingham Business ParkBirminghamUK
- Department of PathologyUniversity Hospitals Coventry & Warwickshire NHS TrustCoventryUK
| | - Fayyaz Minhas
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
- Cancer Research CentreUniversity of WarwickCoventryUK
| | - Nasir Rajpoot
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
- Histofy Ltd, Birmingham Business ParkBirminghamUK
- Cancer Research CentreUniversity of WarwickCoventryUK
- The Alan Turing InstituteLondonUK
| |
Collapse
|
61
|
Gasmi I, Calinghen A, Parienti JJ, Belloy F, Fohlen A, Pelage JP. Comparison of diagnostic performance of a deep learning algorithm, emergency physicians, junior radiologists and senior radiologists in the detection of appendicular fractures in children. Pediatr Radiol 2023; 53:1675-1684. [PMID: 36877239 DOI: 10.1007/s00247-023-05621-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Advances have been made in the use of artificial intelligence (AI) in the field of diagnostic imaging, particularly in the detection of fractures on conventional radiographs. Studies looking at the detection of fractures in the pediatric population are few. The anatomical variations and evolution according to the child's age require specific studies of this population. Failure to diagnose fractures early in children may lead to serious consequences for growth. OBJECTIVE To evaluate the performance of an AI algorithm based on deep neural networks toward detecting traumatic appendicular fractures in a pediatric population. To compare sensitivity, specificity, positive predictive value and negative predictive value of different readers and the AI algorithm. MATERIALS AND METHODS This retrospective study conducted on 878 patients younger than 18 years of age evaluated conventional radiographs obtained after recent non-life-threatening trauma. All radiographs of the shoulder, arm, elbow, forearm, wrist, hand, leg, knee, ankle and foot were evaluated. The diagnostic performance of a consensus of radiology experts in pediatric imaging (reference standard) was compared with those of pediatric radiologists, emergency physicians, senior residents and junior residents. The predictions made by the AI algorithm and the annotations made by the different physicians were compared. RESULTS The algorithm predicted 174 fractures out of 182, corresponding to a sensitivity of 95.6%, a specificity of 91.64% and a negative predictive value of 98.76%. The AI predictions were close to that of pediatric radiologists (sensitivity 98.35%) and that of senior residents (95.05%) and were above those of emergency physicians (81.87%) and junior residents (90.1%). The algorithm identified 3 (1.6%) fractures not initially seen by pediatric radiologists. CONCLUSION This study suggests that deep learning algorithms can be useful in improving the detection of fractures in children.
Collapse
Affiliation(s)
- Idriss Gasmi
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
| | - Arvin Calinghen
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
| | - Jean-Jacques Parienti
- GRAM 2.0 EA2656 UNICAEN Normandie, University Hospital, Caen, France
- Department of Clinical Research, Caen University Hospital, Caen, France
| | - Frederique Belloy
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
| | - Audrey Fohlen
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
- UNICAEN CEA CNRS ISTCT- CERVOxy, Normandie University, 14000, Caen, France
| | - Jean-Pierre Pelage
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France.
- UNICAEN CEA CNRS ISTCT- CERVOxy, Normandie University, 14000, Caen, France.
| |
Collapse
|
62
|
Sun W, Song C, Tang C, Pan C, Xue P, Fan J, Qiao Y. Performance of deep learning algorithms to distinguish high-grade glioma from low-grade glioma: A systematic review and meta-analysis. iScience 2023; 26:106815. [PMID: 37250800 PMCID: PMC10209541 DOI: 10.1016/j.isci.2023.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
This study aims to evaluate deep learning (DL) performance in differentiating low- and high-grade glioma. Search online database for studies continuously published from 1st January 2015 until 16th August 2022. The random-effects model was used for synthesis, based on pooled sensitivity (SE), specificity (SP), and area under the curve (AUC). Heterogeneity was estimated using the Higgins inconsistency index (I2). 33 were ultimately included in the meta-analysis. The overall pooled SE and SP were 94% and 93%, with an AUC of 0.98. There was great heterogeneity in this field. Our evidence-based study shows DL achieves high accuracy in glioma grading. Subgroup analysis reveals several limitations in this field: 1) Diagnostic trials require standard method for data merging for AI; 2) small sample size; 3) poor-quality image preprocessing; 4) not standard algorithm development; 5) not standard data report; 6) different definition of HGG and LGG; and 7) poor extrapolation.
Collapse
Affiliation(s)
- Wanyi Sun
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Song
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Tang
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Chenghao Pan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
63
|
Saillard C, Delecourt F, Schmauch B, Moindrot O, Svrcek M, Bardier-Dupas A, Emile JF, Ayadi M, Rebours V, de Mestier L, Hammel P, Neuzillet C, Bachet JB, Iovanna J, Dusetti N, Blum Y, Richard M, Kermezli Y, Paradis V, Zaslavskiy M, Courtiol P, Kamoun A, Nicolle R, Cros J. Pacpaint: a histology-based deep learning model uncovers the extensive intratumor molecular heterogeneity of pancreatic adenocarcinoma. Nat Commun 2023; 14:3459. [PMID: 37311751 PMCID: PMC10264377 DOI: 10.1038/s41467-023-39026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Two tumor (Classical/Basal) and stroma (Inactive/active) subtypes of Pancreatic adenocarcinoma (PDAC) with prognostic and theragnostic implications have been described. These molecular subtypes were defined by RNAseq, a costly technique sensitive to sample quality and cellularity, not used in routine practice. To allow rapid PDAC molecular subtyping and study PDAC heterogeneity, we develop PACpAInt, a multi-step deep learning model. PACpAInt is trained on a multicentric cohort (n = 202) and validated on 4 independent cohorts including biopsies (surgical cohorts n = 148; 97; 126 / biopsy cohort n = 25), all with transcriptomic data (n = 598) to predict tumor tissue, tumor cells from stroma, and their transcriptomic molecular subtypes, either at the whole slide or tile level (112 µm squares). PACpAInt correctly predicts tumor subtypes at the whole slide level on surgical and biopsies specimens and independently predicts survival. PACpAInt highlights the presence of a minor aggressive Basal contingent that negatively impacts survival in 39% of RNA-defined classical cases. Tile-level analysis ( > 6 millions) redefines PDAC microheterogeneity showing codependencies in the distribution of tumor and stroma subtypes, and demonstrates that, in addition to the Classical and Basal tumors, there are Hybrid tumors that combine the latter subtypes, and Intermediate tumors that may represent a transition state during PDAC evolution.
Collapse
Affiliation(s)
| | - Flore Delecourt
- Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | | | | | - Magali Svrcek
- Dpt of Pathology, Saint-Antoine Hospital - Sorbonne Universités, Paris, France
| | | | - Jean Francois Emile
- Dpt of Pathology, Ambroise Paré Hospital - Université Saint Quentin en Yvelines, Paris, France
| | - Mira Ayadi
- Integragen, Genomic Services & Precision Medicine, Paris, France
| | - Vinciane Rebours
- Université Paris Cité, Dpt of Pancreatology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | - Louis de Mestier
- Université Paris Cité, Dpt of Pancreatology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | - Pascal Hammel
- Dpt of Medical oncology, Paul Brousse Hospital, Villejuif, France
| | | | - Jean Baptiste Bachet
- Dpt of Gastroenterology, Pitié-Salpêtrière Hospital - Sorbonne Universités, Paris, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Institut Paoli-Calmettes, Aix Marseille Université, CNRS UMR 7258, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Institut Paoli-Calmettes, Aix Marseille Université, CNRS UMR 7258, Marseille, France
| | - Yuna Blum
- Institut Génétique et Développement de Rennes (IGDR), CNRS, Université de Rennes 1, UMR 6290, Rennes, France
| | - Magali Richard
- Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications Grenoble (TIMC-IMAG), CNRS, Université Grenoble-Alpes, UMR5525, Grenoble, France
| | - Yasmina Kermezli
- Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications Grenoble (TIMC-IMAG), CNRS, Université Grenoble-Alpes, UMR5525, Grenoble, France
| | - Valerie Paradis
- Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | | | | | | | - Remy Nicolle
- Université Paris Cité, FHU MOSAIC, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
| | - Jerome Cros
- Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France.
| |
Collapse
|
64
|
Reis-Filho JS, Kather JN. Overcoming the challenges to implementation of artificial intelligence in pathology. J Natl Cancer Inst 2023; 115:608-612. [PMID: 36929936 PMCID: PMC10248832 DOI: 10.1093/jnci/djad048] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Pathologists worldwide are facing remarkable challenges with increasing workloads and lack of time to provide consistently high-quality patient care. The application of artificial intelligence (AI) to digital whole-slide images has the potential of democratizing the access to expert pathology and affordable biomarkers by supporting pathologists in the provision of timely and accurate diagnosis as well as supporting oncologists by directly extracting prognostic and predictive biomarkers from tissue slides. The long-awaited adoption of AI in pathology, however, has not materialized, and the transformation of pathology is happening at a much slower pace than that observed in other fields (eg, radiology). Here, we provide a critical summary of the developments in digital and computational pathology in the last 10 years, outline key hurdles and ways to overcome them, and provide a perspective for AI-supported precision oncology in the future.
Collapse
Affiliation(s)
- Jorge S Reis-Filho
- Experimental Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jakob Nikolas Kather
- Department of Medicine I, University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| |
Collapse
|
65
|
Zhang G, Bao C, Liu Y, Wang Z, Du L, Zhang Y, Wang F, Xu B, Zhou SK, Liu R. 18F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery. EJNMMI Res 2023; 13:49. [PMID: 37231321 DOI: 10.1186/s13550-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The determination of pathological grading has a guiding significance for the treatment of pancreatic ductal adenocarcinoma (PDAC) patients. However, there is a lack of an accurate and safe method to obtain pathological grading before surgery. The aim of this study is to develop a deep learning (DL) model based on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) for a fully automatic prediction of preoperative pathological grading of pancreatic cancer. METHODS A total of 370 PDAC patients from January 2016 to September 2021 were collected retrospectively. All patients underwent 18F-FDG-PET/CT examination before surgery and obtained pathological results after surgery. A DL model for pancreatic cancer lesion segmentation was first developed using 100 of these cases and applied to the remaining cases to obtain lesion regions. After that, all patients were divided into training set, validation set, and test set according to the ratio of 5:1:1. A predictive model of pancreatic cancer pathological grade was developed using the features computed from the lesion regions obtained by the lesion segmentation model and key clinical characteristics of the patients. Finally, the stability of the model was verified by sevenfold cross-validation. RESULTS The Dice score of the developed PET/CT-based tumor segmentation model for PDAC was 0.89. The area under curve (AUC) of the PET/CT-based DL model developed on the basis of the segmentation model was 0.74, with an accuracy, sensitivity, and specificity of 0.72, 0.73, and 0.72, respectively. After integrating key clinical data, the AUC of the model improved to 0.77, with its accuracy, sensitivity, and specificity boosted to 0.75, 0.77, and 0.73, respectively. CONCLUSION To the best of our knowledge, this is the first deep learning model to end-to-end predict the pathological grading of PDAC in a fully automatic manner, which is expected to improve clinical decision-making.
Collapse
Affiliation(s)
- Gong Zhang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chengkai Bao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yanzhe Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zizheng Wang
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Du
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yue Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Fei Wang
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - S Kevin Zhou
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| | - Rong Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
66
|
Niehues JM, Quirke P, West NP, Grabsch HI, van Treeck M, Schirris Y, Veldhuizen GP, Hutchins GGA, Richman SD, Foersch S, Brinker TJ, Fukuoka J, Bychkov A, Uegami W, Truhn D, Brenner H, Brobeil A, Hoffmeister M, Kather JN. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study. Cell Rep Med 2023; 4:100980. [PMID: 36958327 PMCID: PMC10140458 DOI: 10.1016/j.xcrm.2023.100980] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.
Collapse
Affiliation(s)
- Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, the Netherlands
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Yoni Schirris
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; University of Amsterdam, 1012 WP Amsterdam, the Netherlands
| | - Gregory P Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gordon G A Hutchins
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Susan D Richman
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Wataru Uegami
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Bank, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Medicine I, University Hospital Dresden, 01307 Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
67
|
Tayebi Arasteh S, Isfort P, Saehn M, Mueller-Franzes G, Khader F, Kather JN, Kuhl C, Nebelung S, Truhn D. Collaborative training of medical artificial intelligence models with non-uniform labels. Sci Rep 2023; 13:6046. [PMID: 37055456 PMCID: PMC10102221 DOI: 10.1038/s41598-023-33303-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL). However, building powerful and robust DL models requires training with large multi-party datasets. While multiple stakeholders have provided publicly available datasets, the ways in which these data are labeled vary widely. For Instance, an institution might provide a dataset of chest radiographs containing labels denoting the presence of pneumonia, while another institution might have a focus on determining the presence of metastases in the lung. Training a single AI model utilizing all these data is not feasible with conventional federated learning (FL). This prompts us to propose an extension to the widespread FL process, namely flexible federated learning (FFL) for collaborative training on such data. Using 695,000 chest radiographs from five institutions from across the globe-each with differing labels-we demonstrate that having heterogeneously labeled datasets, FFL-based training leads to significant performance increase compared to conventional FL training, where only the uniformly annotated images are utilized. We believe that our proposed algorithm could accelerate the process of bringing collaborative training methods from research and simulation phase to the real-world applications in healthcare.
Collapse
Affiliation(s)
- Soroosh Tayebi Arasteh
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Peter Isfort
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Marwin Saehn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Gustav Mueller-Franzes
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Firas Khader
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Medical Faculty Carl Gustav Carus, Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
68
|
Mandair D, Reis-Filho JS, Ashworth A. Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology. NPJ Breast Cancer 2023; 9:21. [PMID: 37024522 PMCID: PMC10079681 DOI: 10.1038/s41523-023-00518-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer remains a highly prevalent disease with considerable inter- and intra-tumoral heterogeneity complicating prognostication and treatment decisions. The utilization and depth of genomic, transcriptomic and proteomic data for cancer has exploded over recent times and the addition of spatial context to this information, by understanding the correlating morphologic and spatial patterns of cells in tissue samples, has created an exciting frontier of research, histo-genomics. At the same time, deep learning (DL), a class of machine learning algorithms employing artificial neural networks, has rapidly progressed in the last decade with a confluence of technical developments - including the advent of modern graphic processing units (GPU), allowing efficient implementation of increasingly complex architectures at scale; advances in the theoretical and practical design of network architectures; and access to larger datasets for training - all leading to sweeping advances in image classification and object detection. In this review, we examine recent developments in the application of DL in breast cancer histology with particular emphasis of those producing biologic insights or novel biomarkers, spanning the extraction of genomic information to the use of stroma to predict cancer recurrence, with the aim of suggesting avenues for further advancing this exciting field.
Collapse
Affiliation(s)
- Divneet Mandair
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | | | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA.
| |
Collapse
|
69
|
Dixit S, Kumar A, Srinivasan K. A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions. Diagnostics (Basel) 2023; 13:1353. [PMID: 37046571 PMCID: PMC10093759 DOI: 10.3390/diagnostics13071353] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer is a problematic global health issue with an extremely high fatality rate throughout the world. The application of various machine learning techniques that have appeared in the field of cancer diagnosis in recent years has provided meaningful insights into efficient and precise treatment decision-making. Due to rapid advancements in sequencing technologies, the detection of cancer based on gene expression data has improved over the years. Different types of cancer affect different parts of the body in different ways. Cancer that affects the mouth, lip, and upper throat is known as oral cancer, which is the sixth most prevalent form of cancer worldwide. India, Bangladesh, China, the United States, and Pakistan are the top five countries with the highest rates of oral cavity disease and lip cancer. The major causes of oral cancer are excessive use of tobacco and cigarette smoking. Many people's lives can be saved if oral cancer (OC) can be detected early. Early identification and diagnosis could assist doctors in providing better patient care and effective treatment. OC screening may advance with the implementation of artificial intelligence (AI) techniques. AI can provide assistance to the oncology sector by accurately analyzing a large dataset from several imaging modalities. This review deals with the implementation of AI during the early stages of cancer for the proper detection and treatment of OC. Furthermore, performance evaluations of several DL and ML models have been carried out to show that the DL model can overcome the difficult challenges associated with early cancerous lesions in the mouth. For this review, we have followed the rules recommended for the extension of scoping reviews and meta-analyses (PRISMA-ScR). Examining the reference lists for the chosen articles helped us gather more details on the subject. Additionally, we discussed AI's drawbacks and its potential use in research on oral cancer. There are methods for reducing risk factors, such as reducing the use of tobacco and alcohol, as well as immunization against HPV infection to avoid oral cancer, or to lessen the burden of the disease. Additionally, officious methods for preventing oral diseases include training programs for doctors and patients as well as facilitating early diagnosis via screening high-risk populations for the disease.
Collapse
Affiliation(s)
- Shriniket Dixit
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Anant Kumar
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
70
|
Liang J, Zhang W, Yang J, Wu M, Dai Q, Yin H, Xiao Y, Kong L. Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
71
|
Steyaert S, Qiu YL, Zheng Y, Mukherjee P, Vogel H, Gevaert O. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors. COMMUNICATIONS MEDICINE 2023; 3:44. [PMID: 36991216 PMCID: PMC10060397 DOI: 10.1038/s43856-023-00276-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The introduction of deep learning in both imaging and genomics has significantly advanced the analysis of biomedical data. For complex diseases such as cancer, different data modalities may reveal different disease characteristics, and the integration of imaging with genomic data has the potential to unravel additional information than when using these data sources in isolation. Here, we propose a DL framework that combines these two modalities with the aim to predict brain tumor prognosis. METHODS Using two separate glioma cohorts of 783 adults and 305 pediatric patients we developed a DL framework that can fuse histopathology images with gene expression profiles. Three strategies for data fusion were implemented and compared: early, late, and joint fusion. Additional validation of the adult glioma models was done on an independent cohort of 97 adult patients. RESULTS Here we show that the developed multimodal data models achieve better prediction results compared to the single data models, but also lead to the identification of more relevant biological pathways. When testing our adult models on a third brain tumor dataset, we show our multimodal framework is able to generalize and performs better on new data from different cohorts. Leveraging the concept of transfer learning, we demonstrate how our pediatric multimodal models can be used to predict prognosis for two more rare (less available samples) pediatric brain tumors. CONCLUSIONS Our study illustrates that a multimodal data fusion approach can be successfully implemented and customized to model clinical outcome of adult and pediatric brain tumors.
Collapse
Affiliation(s)
- Sandra Steyaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Yeping Lina Qiu
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanning Zheng
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Pritam Mukherjee
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
72
|
Saldanha OL, Loeffler CML, Niehues JM, van Treeck M, Seraphin TP, Hewitt KJ, Cifci D, Veldhuizen GP, Ramesh S, Pearson AT, Kather JN. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ Precis Oncol 2023; 7:35. [PMID: 36977919 PMCID: PMC10050159 DOI: 10.1038/s41698-023-00365-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.
Collapse
Affiliation(s)
- Oliver Lester Saldanha
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias P Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Düsseldorf, Germany
| | - Katherine Jane Hewitt
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Didem Cifci
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gregory Patrick Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Siddhi Ramesh
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
73
|
Kresoja KP, Unterhuber M, Wachter R, Thiele H, Lurz P. A cardiologist's guide to machine learning in cardiovascular disease prognosis prediction. Basic Res Cardiol 2023; 118:10. [PMID: 36939941 PMCID: PMC10027799 DOI: 10.1007/s00395-023-00982-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
A modern-day physician is faced with a vast abundance of clinical and scientific data, by far surpassing the capabilities of the human mind. Until the last decade, advances in data availability have not been accompanied by analytical approaches. The advent of machine learning (ML) algorithms might improve the interpretation of complex data and should help to translate the near endless amount of data into clinical decision-making. ML has become part of our everyday practice and might even further change modern-day medicine. It is important to acknowledge the role of ML in prognosis prediction of cardiovascular disease. The present review aims on preparing the modern physician and researcher for the challenges that ML might bring, explaining basic concepts but also caveats that might arise when using these methods. Further, a brief overview of current established classical and emerging concepts of ML disease prediction in the fields of omics, imaging and basic science is presented.
Collapse
Affiliation(s)
- Karl-Patrik Kresoja
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
- Leipzig Heart Institute, Leipzig Heart Science at Heart Center Leipzig, Leipzig, Germany
| | - Matthias Unterhuber
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
- Leipzig Heart Institute, Leipzig Heart Science at Heart Center Leipzig, Leipzig, Germany
| | - Rolf Wachter
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
- German Cardiovascular Research Center (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany.
- Leipzig Heart Institute, Leipzig Heart Science at Heart Center Leipzig, Leipzig, Germany.
| | - Philipp Lurz
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany.
- Leipzig Heart Institute, Leipzig Heart Science at Heart Center Leipzig, Leipzig, Germany.
| |
Collapse
|
74
|
Loeffler CML, El Nahhas OSM, Muti HS, Seibel T, Cifci D, van Treeck M, Gustav M, Carrero ZI, Gaisa NT, Lehmann KV, Leary A, Selenica P, Reis-Filho JS, Bruechle NO, Kather JN. Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: a development and validation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286975. [PMID: 36945540 PMCID: PMC10029072 DOI: 10.1101/2023.03.08.23286975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on routine Hematoxylin & Eosin (H&E) histology images in ten cancer types. Methods We developed a fully automated deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. A combined genomic scar HRD score, which integrated loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) was calculated from whole genome sequencing data for n=4,565 patients from two independent cohorts. The primary statistical endpoint was the Area Under the Receiver Operating Characteristic curve (AUROC) for the prediction of genomic scar HRD with a clinically used cutoff value. Results We found that HRD status is predictable in tumors of the endometrium, pancreas and lung, reaching cross-validated AUROCs of 0.79, 0.58 and 0.66. Predictions generalized well to an external cohort with AUROCs of 0.93, 0.81 and 0.73 respectively. Additionally, an HRD classifier trained on breast cancer yielded an AUROC of 0.78 in internal validation and was able to predict HRD in endometrial, prostate and pancreatic cancer with AUROCs of 0.87, 0.84 and 0.67 indicating a shared HRD-like phenotype is across tumor entities. Conclusion In this study, we show that HRD is directly predictable from H&E slides using attMIL within and across ten different tumor types.
Collapse
Affiliation(s)
- Chiara Maria Lavinia Loeffler
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Omar S M El Nahhas
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Hannah Sophie Muti
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department for Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tobias Seibel
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Didem Cifci
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Marco Gustav
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Kjong-Van Lehmann
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Alexandra Leary
- Gynecological Cancer Unit, Department of Medicine, Institut Gustave Roussy, Villejuif, France
| | - Pier Selenica
- Experimental Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Experimental Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadina Ortiz Bruechle
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
75
|
Miao Q, Yuan Q. Machine learning coarse-grained models of dissolutive wetting: a droplet on soluble surfaces. Phys Chem Chem Phys 2023; 25:7487-7495. [PMID: 36853270 DOI: 10.1039/d3cp00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Dissolutive wetting is not only a key problem in application fields such as energy, medicine, micro-devices and etc., but also a frontier issue of academic research. As an important tool for exploring the micro-mechanisms of dissolutive wetting, molecular dynamics simulations are limited by simulation scale and force field parameters. Thus, artificial intelligence is introduced into the multi-scale simulation framework to tackle such challenges. By combining density functional theory, molecular dynamics simulations and experiments, we obtain a coarse-grained model of the glucose-water dissolution pair. Furthermore, the structure of the solid molecules and the hydration shell near the solute particles are calculated by quantum mechanics/molecular mechanics to verify the accuracy of the model. Finally, the applicability of the coarse-grained model in dissolutive wetting is proven by experimental results. We believe our machine learning method not only lays a foundation for exploring the micro-mechanisms of dissolutive wetting, but also provides a general approach for obtaining the force field parameters of different systems.
Collapse
Affiliation(s)
- Qing Miao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Hypervelocity Aerodynamics Institute of CARDC, Mianyang 621000, People's Republic of China
| | - Quanzi Yuan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
76
|
Li T, Li Y, Zhu X, He Y, Wu Y, Ying T, Xie Z. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin Cancer Biol 2023; 91:50-69. [PMID: 36870459 DOI: 10.1016/j.semcancer.2023.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Cancer immunotherapy is a method of controlling and eliminating tumors by reactivating the body's cancer-immunity cycle and restoring its antitumor immune response. The increased availability of data, combined with advancements in high-performance computing and innovative artificial intelligence (AI) technology, has resulted in a rise in the use of AI in oncology research. State-of-the-art AI models for functional classification and prediction in immunotherapy research are increasingly used to support laboratory-based experiments. This review offers a glimpse of the current AI applications in immunotherapy, including neoantigen recognition, antibody design, and prediction of immunotherapy response. Advancing in this direction will result in more robust predictive models for developing better targets, drugs, and treatments, and these advancements will eventually make their way into the clinical setting, pushing AI forward in the field of precision oncology.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yupeng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China
| | - Yao He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China.
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
77
|
Xue P, Si M, Qin D, Wei B, Seery S, Ye Z, Chen M, Wang S, Song C, Zhang B, Ding M, Zhang W, Bai A, Yan H, Dang L, Zhao Y, Rezhake R, Zhang S, Qiao Y, Qu Y, Jiang Y. Unassisted Clinicians Versus Deep Learning-Assisted Clinicians in Image-Based Cancer Diagnostics: Systematic Review With Meta-analysis. J Med Internet Res 2023; 25:e43832. [PMID: 36862499 PMCID: PMC10020907 DOI: 10.2196/43832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND A number of publications have demonstrated that deep learning (DL) algorithms matched or outperformed clinicians in image-based cancer diagnostics, but these algorithms are frequently considered as opponents rather than partners. Despite the clinicians-in-the-loop DL approach having great potential, no study has systematically quantified the diagnostic accuracy of clinicians with and without the assistance of DL in image-based cancer identification. OBJECTIVE We systematically quantified the diagnostic accuracy of clinicians with and without the assistance of DL in image-based cancer identification. METHODS PubMed, Embase, IEEEXplore, and the Cochrane Library were searched for studies published between January 1, 2012, and December 7, 2021. Any type of study design was permitted that focused on comparing unassisted clinicians and DL-assisted clinicians in cancer identification using medical imaging. Studies using medical waveform-data graphics material and those investigating image segmentation rather than classification were excluded. Studies providing binary diagnostic accuracy data and contingency tables were included for further meta-analysis. Two subgroups were defined and analyzed, including cancer type and imaging modality. RESULTS In total, 9796 studies were identified, of which 48 were deemed eligible for systematic review. Twenty-five of these studies made comparisons between unassisted clinicians and DL-assisted clinicians and provided sufficient data for statistical synthesis. We found a pooled sensitivity of 83% (95% CI 80%-86%) for unassisted clinicians and 88% (95% CI 86%-90%) for DL-assisted clinicians. Pooled specificity was 86% (95% CI 83%-88%) for unassisted clinicians and 88% (95% CI 85%-90%) for DL-assisted clinicians. The pooled sensitivity and specificity values for DL-assisted clinicians were higher than for unassisted clinicians, at ratios of 1.07 (95% CI 1.05-1.09) and 1.03 (95% CI 1.02-1.05), respectively. Similar diagnostic performance by DL-assisted clinicians was also observed across the predefined subgroups. CONCLUSIONS The diagnostic performance of DL-assisted clinicians appears better than unassisted clinicians in image-based cancer identification. However, caution should be exercised, because the evidence provided in the reviewed studies does not cover all the minutiae involved in real-world clinical practice. Combining qualitative insights from clinical practice with data-science approaches may improve DL-assisted practice, although further research is required. TRIAL REGISTRATION PROSPERO CRD42021281372; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=281372.
Collapse
Affiliation(s)
- Peng Xue
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyu Si
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongxu Qin
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingrui Wei
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, United Kingdom
| | - Zichen Ye
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyang Chen
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sumeng Wang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Song
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zhang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ding
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenling Zhang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anying Bai
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijiao Yan
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Dang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqian Zhao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, Sichuan, China
| | - Remila Rezhake
- Affiliated Cancer Hospital, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University, Xinjiang, China
| | - Shaokai Zhang
- Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Henan, China
| | - Youlin Qiao
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yimin Qu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
78
|
Abstract
Machine learning methods have been growing in prominence across all areas of medicine. In pathology, recent advances in deep learning (DL) have enabled computational analysis of histological samples, aiding in diagnosis and characterization in multiple disease areas. In cancer, and particularly endocrine cancer, DL approaches have been shown to be useful in tasks ranging from tumor grading to gene expression prediction. This review summarizes the current state of DL research in endocrine cancer histopathology with an emphasis on experimental design, significant findings, and key limitations.
Collapse
Affiliation(s)
- Siddhi Ramesh
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA; The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
| | - James M Dolezal
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA; The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL, USA; The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA.
| |
Collapse
|
79
|
Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map. Cancers (Basel) 2023; 15:cancers15051421. [PMID: 36900210 PMCID: PMC10001266 DOI: 10.3390/cancers15051421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Convolutional neural networks have demonstrated excellent performance in oral cancer detection and classification. However, the end-to-end learning strategy makes CNNs hard to interpret, and it can be challenging to fully understand the decision-making procedure. Additionally, reliability is also a significant challenge for CNN based approaches. In this study, we proposed a neural network called the attention branch network (ABN), which combines the visual explanation and attention mechanisms to improve the recognition performance and interpret the decision-making simultaneously. We also embedded expert knowledge into the network by having human experts manually edit the attention maps for the attention mechanism. Our experiments have shown that ABN performs better than the original baseline network. By introducing the Squeeze-and-Excitation (SE) blocks to the network, the cross-validation accuracy increased further. Furthermore, we observed that some previously misclassified cases were correctly recognized after updating by manually editing the attention maps. The cross-validation accuracy increased from 0.846 to 0.875 with the ABN (Resnet18 as baseline), 0.877 with SE-ABN, and 0.903 after embedding expert knowledge. The proposed method provides an accurate, interpretable, and reliable oral cancer computer-aided diagnosis system through visual explanation, attention mechanisms, and expert knowledge embedding.
Collapse
|
80
|
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology. Semin Cancer Biol 2023; 91:1-15. [PMID: 36801447 DOI: 10.1016/j.semcancer.2023.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.
Collapse
|
81
|
Canellas R, Kohli MD, Westphalen AC. The Evidence for Using Artificial Intelligence to Enhance Prostate Cancer MR Imaging. Curr Oncol Rep 2023; 25:243-250. [PMID: 36749494 DOI: 10.1007/s11912-023-01371-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current status of artificial intelligence applied to prostate cancer MR imaging. RECENT FINDINGS Artificial intelligence has been applied to prostate cancer MR imaging to improve its diagnostic accuracy and reproducibility of interpretation. Multiple models have been tested for gland segmentation and volume calculation, automated lesion detection, localization, and characterization, as well as prediction of tumor aggressiveness and tumor recurrence. Studies show, for example, that very robust automated gland segmentation and volume calculations can be achieved and that lesions can be detected and accurately characterized. Although results are promising, we should view these with caution. Most studies included a small sample of patients from a single institution and most models did not undergo proper external validation. More research is needed with larger and well-design studies for the development of reliable artificial intelligence tools.
Collapse
Affiliation(s)
- Rodrigo Canellas
- Department of Radiology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA
| | - Marc D Kohli
- Clinical Informatics, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA.,Imaging Informatics, UCSF Health, 500 Parnassus Ave, 3rd Floor, San Francisco, CA, 94143, USA
| | - Antonio C Westphalen
- Department of Radiology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA. .,Department of Urology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA. .,Department Radiation Oncology, University of Washington, 1959 NE Pacific St., 2nd Floor, Seattle, WA, 98195, USA.
| |
Collapse
|
82
|
Foersch S, Glasner C, Woerl AC, Eckstein M, Wagner DC, Schulz S, Kellers F, Fernandez A, Tserea K, Kloth M, Hartmann A, Heintz A, Weichert W, Roth W, Geppert C, Kather JN, Jesinghaus M. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat Med 2023; 29:430-439. [PMID: 36624314 DOI: 10.1038/s41591-022-02134-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023]
Abstract
Although it has long been known that the immune cell composition has a strong prognostic and predictive value in colorectal cancer (CRC), scoring systems such as the immunoscore (IS) or quantification of intraepithelial lymphocytes are only slowly being adopted into clinical routine use and have their limitations. To address this we established and evaluated a multistain deep learning model (MSDLM) utilizing artificial intelligence (AI) to determine the AImmunoscore (AIS) in more than 1,000 patients with CRC. Our model had high prognostic capabilities and outperformed other clinical, molecular and immune cell-based parameters. It could also be used to predict the response to neoadjuvant therapy in patients with rectal cancer. Using an explainable AI approach, we confirmed that the MSDLM's decisions were based on established cellular patterns of anti-tumor immunity. Hence, the AIS could provide clinicians with a valuable decision-making tool based on the tumor immune microenvironment.
Collapse
Affiliation(s)
- Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.
| | - Christina Glasner
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ann-Christin Woerl
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
- Institute of Computer Science, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Eckstein
- Institute of Pathology and Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Stefan Schulz
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Franziska Kellers
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
- Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Aurélie Fernandez
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Michael Kloth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Arndt Hartmann
- Institute of Pathology and Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Heintz
- Department of General Visceral and Vascular Surgery, Marien Hospital Mainz, Mainz, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Carol Geppert
- Institute of Pathology and Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, Technical University Munich, Munich, Germany
- Institute of Pathology, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
83
|
Predicting the HER2 status in oesophageal cancer from tissue microarrays using convolutional neural networks. Br J Cancer 2023; 128:1369-1376. [PMID: 36717673 PMCID: PMC10050393 DOI: 10.1038/s41416-023-02143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor receptor 2 (HER2). We present a deep-learning method for scoring microscopy images of GEA for the presence of HER2 overexpression. METHODS Our method is based on convolutional neural networks (CNNs) trained on a rich dataset of 1602 patient samples and tested on an independent set of 307 patient samples. We additionally verified the CNN's generalisation capabilities with an independent dataset with 653 samples from a separate clinical centre. We incorporated an attention mechanism in the network architecture to identify the tissue regions, which are important for the prediction outcome. Our solution allows for direct automated detection of HER2 in immunohistochemistry-stained tissue slides without the need for manual assessment and additional costly in situ hybridisation (ISH) tests. RESULTS We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our approach offers accurate predictions in cases that pathologists cannot resolve and that require additional ISH testing. We confirmed our findings in an independent dataset collected in a different clinical centre. The attention-based CNN exploits morphological information in microscopy images and is superior to a predictive model based on the staining intensity only. CONCLUSIONS We demonstrate that our approach not only automates an important diagnostic process for GEA patients but also paves the way for the discovery of new morphological features that were previously unknown for GEA pathology.
Collapse
|
84
|
Wang X, Wang Y, Qi C, Qiao S, Yang S, Wang R, Jin H, Zhang J. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks. Technol Cancer Res Treat 2023; 22:15330338221150069. [PMID: 36700246 PMCID: PMC9896096 DOI: 10.1177/15330338221150069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The evaluation of megakaryocytes is an important part of the work up on bone marrow smear examination. It has significance in the differential diagnosis, therapeutic efficacy assessment, and predication of prognosis of many hematologic diseases. The process of manual identification of megakaryocytes are tedious and lack of reproducibility; therefore, a reliable method of automated megakaryocytic identification is urgently needed. Three hundred and thirty-three bone marrow aspirate smears were digitized by Morphogo system. Pathologists annotated megakaryocytes on the digital images of marrow smears are applied to construct a large dataset for testing the system's predictive performance. Subsequently, we obtained megakaryocyte count and classification for each sample by different methods (system-automated analysis, system-assisted analysis, and microscopic examination) to study the correlation between different counting and classification methods. Morphogo system localized cells likely to be megakaryocytes on digital smears, which were later annotated by pathologists and the system, respectively. The system showed outstanding performance in identifying megakaryocytes in bone marrow smears with high sensitivity (96.57%) and specificity (89.71%). The overall correlation between the different methods was confirmed the high consistency (r ≥ 0.7218, R2 ≥ 0.5211) with microscopic examination in classifying megakaryocytes. Morphogo system was proved as a reliable screen tool for analyzing megakaryocytes. The application of Morphogo system shows promises to advance the automation and standardization of bone marrow smear examination.
Collapse
Affiliation(s)
- Xiaofen Wang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Ying Wang
- Department of Medical Development, Hangzhou Zhiwei
Information&Technology Ltd., Hangzhou, China
| | - Chao Qi
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Sai Qiao
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Suwen Yang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Rongrong Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital,
Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Jin
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Jun Zhang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China,Jun Zhang, Clinical Laboratory, Sir Run Run
Shaw Hospital, School of Medicine, Zhejiang University, No.3, Qingchun East
Road, Shangcheng District, Hangzhou, Zhejiang 310016, China.
Hong Jin, Clinical Laboratory, Sir
Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3, Qingchun
East Road, Shangcheng District, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
85
|
Lightweight ResGRU: a deep learning-based prediction of SARS-CoV-2 (COVID-19) and its severity classification using multimodal chest radiography images. Neural Comput Appl 2023; 35:9637-9655. [PMID: 36714075 PMCID: PMC9873217 DOI: 10.1007/s00521-023-08200-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
The new COVID-19 emerged in a town in China named Wuhan in December 2019, and since then, this deadly virus has infected 324 million people worldwide and caused 5.53 million deaths by January 2022. Because of the rapid spread of this pandemic, different countries are facing the problem of a shortage of resources, such as medical test kits and ventilators, as the number of cases increased uncontrollably. Therefore, developing a readily available, low-priced, and automated approach for COVID-19 identification is the need of the hour. The proposed study uses chest radiography images (CRIs) such as X-rays and computed tomography (CTs) to detect chest infections, as these modalities contain important information about chest infections. This research introduces a novel hybrid deep learning model named Lightweight ResGRU that uses residual blocks and a bidirectional gated recurrent unit to diagnose non-COVID and COVID-19 infections using pre-processed CRIs. Lightweight ResGRU is used for multi-modal two-class classification (normal and COVID-19), three-class classification (normal, COVID-19, and viral pneumonia), four-class classification (normal, COVID-19, viral pneumonia, and bacterial pneumonia), and COVID-19 severity types' classification (i.e., atypical appearance, indeterminate appearance, typical appearance, and negative for pneumonia). The proposed architecture achieved f-measure of 99.0%, 98.4%, 91.0%, and 80.5% for two-class, three-class, four-class, and COVID-19 severity level classifications, respectively, on unseen data. A large dataset is created by combining and changing different publicly available datasets. The results prove that radiologists can adopt this method to screen chest infections where test kits are limited.
Collapse
|
86
|
Ghaffari Laleh N, Ligero M, Perez-Lopez R, Kather JN. Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer. Clin Cancer Res 2023; 29:316-323. [PMID: 36083132 DOI: 10.1158/1078-0432.ccr-22-0390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.
Collapse
Affiliation(s)
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
87
|
Zhang H, Xi Q, Zhang F, Li Q, Jiao Z, Ni X. Application of Deep Learning in Cancer Prognosis Prediction Model. Technol Cancer Res Treat 2023; 22:15330338231199287. [PMID: 37709267 PMCID: PMC10503281 DOI: 10.1177/15330338231199287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
| | - Qianyi Xi
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Fan Zhang
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Qixuan Li
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Zhuqing Jiao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
| |
Collapse
|
88
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
89
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
90
|
He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol 2023; 88:187-200. [PMID: 36596352 DOI: 10.1016/j.semcancer.2022.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.
Collapse
Affiliation(s)
- Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, PR China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, PR China
| | - Fengli Zuo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, PR China
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, PR China
| | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, PR China.
| |
Collapse
|
91
|
A narrative review of cancer molecular diagnostics: past, present, and future. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
92
|
Lazard T, Bataillon G, Naylor P, Popova T, Bidard FC, Stoppa-Lyonnet D, Stern MH, Decencière E, Walter T, Vincent-Salomon A. Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images. Cell Rep Med 2022; 3:100872. [PMID: 36516847 PMCID: PMC9798078 DOI: 10.1016/j.xcrm.2022.100872] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first show that digital pathology workflows are sensitive to potential biases in the training set, then we propose a method to overcome the influence of these biases, and we develop an interpretation method capable of identifying complex phenotypes. Application to our carefully curated in-house dataset allows us to predict HRD with high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morphological phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open new hypotheses regarding its phenotypic impact.
Collapse
Affiliation(s)
- Tristan Lazard
- Center for Computational Biology (CBIO), Mines Paris, PSL University, 60 Boulevard Saint Michel, 75006 Paris, France,Institut Curie, PSL University, 75005 Paris, France,INSERM U900, 75005 Paris, France
| | - Guillaume Bataillon
- Institut Curie, PSL University, 75005 Paris, France,INSERM U900, 75005 Paris, France,Diagnostic and Theranostic Medicine Division, Institut Curie, PSL University, Paris, France
| | - Peter Naylor
- Center for Computational Biology (CBIO), Mines Paris, PSL University, 60 Boulevard Saint Michel, 75006 Paris, France,Institut Curie, PSL University, 75005 Paris, France,INSERM U900, 75005 Paris, France
| | - Tatiana Popova
- INSERM U830, DNA Repair and Uveal Melanoma (DRUM), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 75005 Paris, France
| | - François-Clément Bidard
- Department of Medical Oncology, Institut Curie, Université de Versailles Saint-Quentin, Saint-Cloud, France,INSERM CIC-BT 1428, Institut Curie, Paris, France
| | - Dominique Stoppa-Lyonnet
- INSERM U830, DNA Repair and Uveal Melanoma (DRUM), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 75005 Paris, France,Université Paris Cité, 75006 Paris, France
| | - Marc-Henri Stern
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL University, Paris, France,INSERM U830, DNA Repair and Uveal Melanoma (DRUM), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 75005 Paris, France
| | - Etienne Decencière
- Center for Mathematical Morphology (CMM), Mines Paris, PSL University, 77300 Fontainebleau, France
| | - Thomas Walter
- Center for Computational Biology (CBIO), Mines Paris, PSL University, 60 Boulevard Saint Michel, 75006 Paris, France,Institut Curie, PSL University, 75005 Paris, France,INSERM U900, 75005 Paris, France,Corresponding author
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL University, Paris, France,INSERM U934, CNRS UMR 3215, Paris, France,Corresponding author
| |
Collapse
|
93
|
Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration. Biomolecules 2022; 12:biom12121839. [PMID: 36551266 PMCID: PMC9775093 DOI: 10.3390/biom12121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Early diagnosis of lung cancer to increase the survival rate, which is currently at a low range of mid-30%, remains a critical need. Despite this, multi-omics data have rarely been applied to non-small-cell lung cancer (NSCLC) diagnosis. We developed a multi-omics data-affinitive artificial intelligence algorithm based on the graph convolutional network that integrates mRNA expression, DNA methylation, and DNA sequencing data. This NSCLC prediction model achieved a 93.7% macro F1-score, indicating that values for false positives and negatives were substantially low, which is desirable for accurate classification. Gene ontology enrichment and pathway analysis of features revealed that two major subtypes of NSCLC, lung adenocarcinoma and lung squamous cell carcinoma, have both specific and common GO biological processes. Numerous biomarkers (i.e., microRNA, long non-coding RNA, differentially methylated regions) were newly identified, whereas some biomarkers were consistent with previous findings in NSCLC (e.g., SPRR1B). Thus, using multi-omics data integration, we developed a promising cancer prediction algorithm.
Collapse
|
94
|
Guo J, Cao W, Nie B, Qin Q. Unsupervised Learning Composite Network to Reduce Training Cost of Deep Learning Model for Colorectal Cancer Diagnosis. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 11:54-59. [PMID: 36544891 PMCID: PMC9762730 DOI: 10.1109/jtehm.2022.3224021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Deep learning facilitates complex medical data analysis and is increasingly being explored in colorectal cancer diagnostics. However, the training cost of the deep learning model limits its real-world medical utility. In this study, we present a composite network that combines deep learning and unsupervised K-means clustering algorithm (RK-net) for automatic processing of medical images. RK-net was more efficient in image refinement compared with manual screening and annotation. The training of a deep learning model for colorectal cancer diagnosis was accelerated by two times with utilization of RK-net-processed images. Better performance was observed in training loss and accuracy achievement as well. RK-net could be useful to refine medical images of the ever-expanding quantity and assist in subsequent construction of the artificial intelligence model.
Collapse
Affiliation(s)
- Jirui Guo
- Department of Colorectal SurgeryThe Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510655 China
| | - Wuteng Cao
- Department of RadiologyThe Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510655 China
| | - Bairun Nie
- School of Electrical Computer and Telecommunications EngineeringUniversity of Wollongong Wollongong NSW 2522 Australia
| | - Qiyuan Qin
- Department of Colorectal SurgeryThe Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510655 China
| |
Collapse
|
95
|
Kim I, Kang K, Song Y, Kim TJ. Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics (Basel) 2022; 12:2794. [PMID: 36428854 PMCID: PMC9688959 DOI: 10.3390/diagnostics12112794] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Given the recent success of artificial intelligence (AI) in computer vision applications, many pathologists anticipate that AI will be able to assist them in a variety of digital pathology tasks. Simultaneously, tremendous advancements in deep learning have enabled a synergy with artificial intelligence (AI), allowing for image-based diagnosis on the background of digital pathology. There are efforts for developing AI-based tools to save pathologists time and eliminate errors. Here, we describe the elements in the development of computational pathology (CPATH), its applicability to AI development, and the challenges it faces, such as algorithm validation and interpretability, computing systems, reimbursement, ethics, and regulations. Furthermore, we present an overview of novel AI-based approaches that could be integrated into pathology laboratory workflows.
Collapse
Affiliation(s)
- Inho Kim
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Kyungmin Kang
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Youngjae Song
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
96
|
Cui L, Fan Z, Yang Y, Liu R, Wang D, Feng Y, Lu J, Fan Y. Deep Learning in Ischemic Stroke Imaging Analysis: A Comprehensive Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2456550. [PMID: 36420096 PMCID: PMC9678444 DOI: 10.1155/2022/2456550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 09/15/2023]
Abstract
Ischemic stroke is a cerebrovascular disease with a high morbidity and mortality rate, which poses a serious challenge to human health and life. Meanwhile, the management of ischemic stroke remains highly dependent on manual visual analysis of noncontrast computed tomography (CT) or magnetic resonance imaging (MRI). However, artifacts and noise of the equipment as well as the radiologist experience play a significant role on diagnostic accuracy. To overcome these defects, the number of computer-aided diagnostic (CAD) methods for ischemic stroke is increasing substantially during the past decade. Particularly, deep learning models with massive data learning capabilities are recognized as powerful auxiliary tools for the acute intervention and guiding prognosis of ischemic stroke. To select appropriate interventions, facilitate clinical practice, and improve the clinical outcomes of patients, this review firstly surveys the current state-of-the-art deep learning technology. Then, we summarized the major applications in acute ischemic stroke imaging, particularly in exploring the potential function of stroke diagnosis and multimodal prognostication. Finally, we sketched out the current problems and prospects.
Collapse
Affiliation(s)
- Liyuan Cui
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiyuan Fan
- Centre of Intelligent Medical Technology and Equipment, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingjian Yang
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Rui Liu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dajiang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingying Feng
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Jiahui Lu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifeng Fan
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
97
|
Gerussi A, Scaravaglio M, Cristoferi L, Verda D, Milani C, De Bernardi E, Ippolito D, Asselta R, Invernizzi P, Kather JN, Carbone M. Artificial intelligence for precision medicine in autoimmune liver disease. Front Immunol 2022; 13:966329. [PMID: 36439097 PMCID: PMC9691668 DOI: 10.3389/fimmu.2022.966329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Autoimmune liver diseases (AiLDs) are rare autoimmune conditions of the liver and the biliary tree with unknown etiology and limited treatment options. AiLDs are inherently characterized by a high degree of complexity, which poses great challenges in understanding their etiopathogenesis, developing novel biomarkers and risk-stratification tools, and, eventually, generating new drugs. Artificial intelligence (AI) is considered one of the best candidates to support researchers and clinicians in making sense of biological complexity. In this review, we offer a primer on AI and machine learning for clinicians, and discuss recent available literature on its applications in medicine and more specifically how it can help to tackle major unmet needs in AiLDs.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Miki Scaravaglio
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Milani
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Elisabetta De Bernardi
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy
| | | | - Rosanna Asselta
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
98
|
Jarkman S, Karlberg M, Pocevičiūtė M, Bodén A, Bándi P, Litjens G, Lundström C, Treanor D, van der Laak J. Generalization of Deep Learning in Digital Pathology: Experience in Breast Cancer Metastasis Detection. Cancers (Basel) 2022; 14:5424. [PMID: 36358842 PMCID: PMC9659028 DOI: 10.3390/cancers14215424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Poor generalizability is a major barrier to clinical implementation of artificial intelligence in digital pathology. The aim of this study was to test the generalizability of a pretrained deep learning model to a new diagnostic setting and to a small change in surgical indication. A deep learning model for breast cancer metastases detection in sentinel lymph nodes, trained on CAMELYON multicenter data, was used as a base model, and achieved an AUC of 0.969 (95% CI 0.926-0.998) and FROC of 0.838 (95% CI 0.757-0.913) on CAMELYON16 test data. On local sentinel node data, the base model performance dropped to AUC 0.929 (95% CI 0.800-0.998) and FROC 0.744 (95% CI 0.566-0.912). On data with a change in surgical indication (axillary dissections) the base model performance indicated an even larger drop with a FROC of 0.503 (95%CI 0.201-0.911). The model was retrained with addition of local data, resulting in about a 4% increase for both AUC and FROC for sentinel nodes, and an increase of 11% in AUC and 49% in FROC for axillary nodes. Pathologist qualitative evaluation of the retrained model´s output showed no missed positive slides. False positives, false negatives and one previously undetected micro-metastasis were observed. The study highlights the generalization challenge even when using a multicenter trained model, and that a small change in indication can considerably impact the model´s performance.
Collapse
Affiliation(s)
- Sofia Jarkman
- Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
| | - Micael Karlberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Milda Pocevičiūtė
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
| | - Anna Bodén
- Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
| | - Péter Bándi
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Geert Litjens
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Claes Lundström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
- Sectra AB, Teknikringen 20, 583 30 Linköping, Sweden
| | - Darren Treanor
- Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
- Leeds Teaching Hospitals NHS Trust, St James´s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Department of Pathology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Jeroen van der Laak
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
99
|
Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker's guide to cancer models. Trends Biotechnol 2022; 40:1361-1373. [PMID: 35534320 PMCID: PMC9588514 DOI: 10.1016/j.tibtech.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/21/2023]
Abstract
Cancer is a complex and uniquely personal disease. More than 1.7 million people in the United States are diagnosed with cancer every year. As the burden of cancer grows, so does the need for new, more effective therapeutics and for predictive tools to identify optimal, personalized treatment options for every patient. Cancer models that recapitulate various aspects of the disease are fundamental to making advances along the continuum of cancer treatment from benchside discoveries to bedside delivery. In this review, we use a thought experiment as a vehicle to arrive at four broad categories of cancer models and explore the strengths, weaknesses, opportunities, and threats for each category in advancing our understanding of the disease and improving treatment strategies.
Collapse
Affiliation(s)
- Karim I Budhwani
- CerFlux, Inc., Birmingham, AL, USA; Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Physics, Coe College, Cedar Rapids, IA, USA.
| | | | | | | |
Collapse
|
100
|
Combi C, Amico B, Bellazzi R, Holzinger A, Moore JH, Zitnik M, Holmes JH. A manifesto on explainability for artificial intelligence in medicine. Artif Intell Med 2022; 133:102423. [PMID: 36328669 DOI: 10.1016/j.artmed.2022.102423] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022]
Abstract
The rapid increase of interest in, and use of, artificial intelligence (AI) in computer applications has raised a parallel concern about its ability (or lack thereof) to provide understandable, or explainable, output to users. This concern is especially legitimate in biomedical contexts, where patient safety is of paramount importance. This position paper brings together seven researchers working in the field with different roles and perspectives, to explore in depth the concept of explainable AI, or XAI, offering a functional definition and conceptual framework or model that can be used when considering XAI. This is followed by a series of desiderata for attaining explainability in AI, each of which touches upon a key domain in biomedicine.
Collapse
Affiliation(s)
| | | | | | | | - Jason H Moore
- Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Marinka Zitnik
- Harvard Medical School and Broad Institute of MIT & Harvard, MA, USA
| | - John H Holmes
- University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|