51
|
Sun C, Jiang C, Wang X, Ma S, Zhang D, Jia W. MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma. Acad Radiol 2024:S1076-6332(24)00364-7. [PMID: 38964985 DOI: 10.1016/j.acra.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to assess the prognostic value of Cyclin-dependent kinases 6 (CDK6) expression levels and establish a machine learning-based radiomics model for predicting the expression levels of CDK6 in high-grade gliomas (HGG). MATERIALS AND METHODS Clinical parameters and genomic data were extracted from 310 HGG patients in the Cancer Genome Atlas (TCGA) database and 27 patients in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database. Univariate and multivariate Cox regression, as well as Kaplan-Meier analysis, were performed for prognosis analysis. The correlation between immune cell Infiltration with CDK6 was assessed using spearman correlation analysis. Radiomic features were extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) in the Cancer Imaging Archive (TCIA) database (n = 82) and REMBRANDT database (n = 27). Logistic regression (LR) and support vector machine (SVM) were employed to establish the radiomics model for predicting CDK6 expression. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were utilized to assess the predictive performance of the radiomics model. Generate radiomic scores (RS) based on the LR model. An RS-based nomogram was constructed to predict the prognosis of HGG. RESULTS CDK6 was significantly overexpressed in HGG tissues and was related to lower overall survival. A significant elevation in infiltrating M0 macrophages was observed in the CDK6 high group (P < 0.001). The LR radiomics model for the prediction of CDK6 expression levels (AUC=0.810 in the training cohort, AUC = 0.784 after cross-validation, AUC=0.750 in the testing cohort) was established utilizing three radiomic features. The predictive efficiencies of the RS-based nomogram, as measured by AUC, were 0.769 for 1-year, 0.815 for 3-year, and 0.780 for 5-year, respectively. CONCLUSION The expression level of CDK6 can impact the prognosis of patients with HGG. The expression level of HGG can be noninvasively prognosticated utilizing a radiomics model.
Collapse
Affiliation(s)
- Chen Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
52
|
Park S, Silva E, Singhal A, Kelly MR, Licon K, Panagiotou I, Fogg C, Fong S, Lee JJY, Zhao X, Bachelder R, Parker BA, Yeung KT, Ideker T. A deep learning model of tumor cell architecture elucidates response and resistance to CDK4/6 inhibitors. NATURE CANCER 2024; 5:996-1009. [PMID: 38443662 PMCID: PMC11286358 DOI: 10.1038/s43018-024-00740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have revolutionized breast cancer therapy. However, <50% of patients have an objective response, and nearly all patients develop resistance during therapy. To elucidate the underlying mechanisms, we constructed an interpretable deep learning model of the response to palbociclib, a CDK4/6i, based on a reference map of multiprotein assemblies in cancer. The model identifies eight core assemblies that integrate rare and common alterations across 90 genes to stratify palbociclib-sensitive versus palbociclib-resistant cell lines. Predictions translate to patients and patient-derived xenografts, whereas single-gene biomarkers do not. Most predictive assemblies can be shown by CRISPR-Cas9 genetic disruption to regulate the CDK4/6i response. Validated assemblies relate to cell-cycle control, growth factor signaling and a histone regulatory complex that we show promotes S-phase entry through the activation of the histone modifiers KAT6A and TBL1XR1 and the transcription factor RUNX1. This study enables an integrated assessment of how a tumor's genetic profile modulates CDK4/6i resistance.
Collapse
Affiliation(s)
- Sungjoon Park
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Erica Silva
- Program in Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Akshat Singhal
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Marcus R Kelly
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Kate Licon
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Isabella Panagiotou
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Catalina Fogg
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Samson Fong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - John J Y Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoyu Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Robin Bachelder
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Barbara A Parker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Kay T Yeung
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
53
|
Costa A, Forte IM, Pentimalli F, Iannuzzi CA, Alfano L, Capone F, Camerlingo R, Calabrese A, von Arx C, Benot Dominguez R, Quintiliani M, De Laurentiis M, Morrione A, Giordano A. Pharmacological inhibition of CDK4/6 impairs diffuse pleural mesothelioma 3D spheroid growth and reduces viability of cisplatin-resistant cells. Front Oncol 2024; 14:1418951. [PMID: 39011477 PMCID: PMC11246887 DOI: 10.3389/fonc.2024.1418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Diffuse pleural mesothelioma (DPM) of the pleura is a highly aggressive and treatment-resistant cancer linked to asbestos exposure. Despite multimodal treatment, the prognosis for DPM patients remains very poor, with an average survival of 2 years from diagnosis. Cisplatin, a platinum-based chemotherapy drug, is commonly used in the treatment of DPM. However, the development of resistance to cisplatin significantly limits its effectiveness, highlighting the urgent need for alternative therapeutic strategies. New selective inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have shown promise in various malignancies by inhibiting cell cycle progression and suppressing tumor growth. Recent studies have indicated the potential of abemaciclib for DPM therapy, and a phase II clinical trial has shown preliminary encouraging results. Methods Here, we tested abemaciclib, palbociclib, and ribociclib on a panel of DPM cell lines and non-tumor mesothelial(MET-5A) cells. Results Specifically, we focused on abemaciclib, which was the mosteffective cytotoxic agent on all the DPM cell lines tested. Abemaciclib reduced DPM cell viability, clonogenic potential, and ability to grow as three-dimensional (3D) spheroids. In addition, abemaciclib induced prolonged effects, thereby impairing second-generation sphere formation and inducing G0/G1 arrest and apoptosis/ necrosis. Interestingly, single silencing of RB family members did not impair cell response to abemaciclib, suggesting that they likely complement each other in triggering abemaciclib's cytostatic effect. Interestingly, abemaciclib reduced the phosphorylation of AKT, which is hyperactive in DPM and synergized with the pharmacological AKT inhibitor (AKTi VIII). Abemaciclib also synergized with cisplatin and reduced the viability of DPM cells with acquired resistance to cisplatin. Discussion Overall, our results suggest that CDK4/6 inhibitors alone or in combination with standard of care should be further explored for DPM therapy.
Collapse
Affiliation(s)
- Aurora Costa
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Iris Maria Forte
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Carmelina Antonella Iannuzzi
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Luigi Alfano
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit-Laboratories of Naples andMercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Alessandra Calabrese
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Claudia von Arx
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | | | - Michelino De Laurentiis
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
54
|
Wang S, Zhang Q, Zhang T, Mao X. Invasive papillary carcinoma of the breast: A case report. Oncol Lett 2024; 28:300. [PMID: 38765791 PMCID: PMC11099954 DOI: 10.3892/ol.2024.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Invasive papillary carcinoma (IPC) of the breast is a rare form of cancer. The current report documents a case of IPC characterized by a large tumor size and skin involvement. Surgical exploration revealed no evidence of axillary lymph node metastasis in breast cancer. Due to financial constraints, the patient opted solely for anastrozole endocrine therapy at a dosage of 1 mg/day for a period of 5 years post-surgery, foregoing other treatments such as radiotherapy and chemotherapy. Since discharge, 2.5 years have passed, during which the patient has been followed up via phone every 3 months, showing a good prognosis. A literature review indicated that IPC is prevalent amongst the elderly population and can be misdiagnosed due to its morphological, cytomorphological and immunophenotypic overlap with other types of papillary neoplasms. This tumor exhibits a more favorable prognosis compared with IDC, primarily attributed to its advantageous gene and molecular expression patterns, coupled with its decreased invasiveness. Despite limited evidence-based research on the treatment of IPC, the present case report, albeit with limitations, underscores the importance of avoiding over-treatment and suggests the feasibility of combining surgery with endocrine therapy for IPC.
Collapse
Affiliation(s)
- Shijing Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingfu Zhang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tangbo Zhang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
55
|
Hao M, Zhou Y, Chen S, Jin Y, Li X, Xue L, Shen M, Li W, Zhang C. Spatiotemporally Controlled T-Cell Combination Therapy for Solid Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401100. [PMID: 38634209 PMCID: PMC11220647 DOI: 10.1002/advs.202401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Due to multidimensional complexity of solid tumor, development of rational T-cell combinations and corresponding formulations is still challenging. Herein, a triple combination of T cells are developed with Indoleamine 2,3-dioxygenase inhibitors (IDOi) and Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). To maximize synergism, a spatiotemporally controlled T-cell engineering technology to formulate triple drugs into one cell therapeutic, is established. Specifically, a sequentially responsive core-shell nanoparticle (SRN) encapsulating IDOi and CDK4/6i is anchored onto T cells. The yielded SRN-T cells migrated into solid tumor, and achieved a 1st release of IDOi in acidic tumor microenvironment (TME). Released IDOi restored tryptophan supply in TME, which activated effector T cells and inhibited Tregs. Meanwhile, 1st released core is internalized by tumor cells and degraded by glutathione (GSH), to realize a 2nd release of CDK4/6i, which induced up-regulated expression of C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and thus significantly increased tumor infiltration of T cells. Together, with an enhanced recruitment and activation, T cells significantly suppressed tumor growth, and prolonged survival of tumor-bearing mice. This study demonstrated rationality and superiority of a tri-drug combination mediated by spatiotemporally controlled cell-engineering technology, which provides a new treatment regimen for solid tumor.
Collapse
Affiliation(s)
- Meixi Hao
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Ying Zhou
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Sijia Chen
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yu Jin
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Xiuqi Li
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Lingjing Xue
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Mingxuan Shen
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Weishuo Li
- Center for Molecular MetabolismSchool of Environmental and Biological EngineeringNanjing University of Science and Technology200 Xiao Ling Wei StreetNanjing210094China
| | - Can Zhang
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
56
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
57
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
58
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
59
|
Tang J, Zhang Y, Zhou L, Song X, Wei Y, Qi J, Wu J, Song Z, Zhan L. Design, synthesis and biological evaluation of indoline-maleimide conjugates as potential antitumor agents for the treatment of colorectal cancer. Bioorg Med Chem 2024; 108:117786. [PMID: 38843656 DOI: 10.1016/j.bmc.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/17/2024]
Abstract
An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3β pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.
Collapse
Affiliation(s)
- Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yusi Wei
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Qi
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
60
|
Bashi M, Madanchi H, Yousefi B. Investigation of cytotoxic effect and action mechanism of a synthetic peptide derivative of rabbit cathelicidin against MDA-MB-231 breast cancer cell line. Sci Rep 2024; 14:13497. [PMID: 38866982 PMCID: PMC11169400 DOI: 10.1038/s41598-024-64400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.
Collapse
Affiliation(s)
- Marzieh Bashi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Madanchi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, 35131-38111, Iran.
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13198, Iran.
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
61
|
Liang JD, Zhang YE, Qin F, Chen WN, Jiang WM, Fang Z, Liang XL, Zhang Q, Li J. Molecular docking and MD simulation studies of 4-thiazol-N-(pyridin-2-yl)pyrimidin-2-amine derivatives as novel inhibitors targeted to CDK2/4/6. J Cancer Res Clin Oncol 2024; 150:302. [PMID: 38856753 PMCID: PMC11164762 DOI: 10.1007/s00432-024-05818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Nowadays, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have been approved for treating metastatic breast cancer and have achieved inspiring curative effects. But some discoveries have indicated that CDK 4/6 are not the requisite factors in some cell types because CDK2 partly compensates for the inhibition of CDK4/6. Thus, it is urgent to design CDK2/4/6 inhibitors for significantly enhancing their potency. This study aims to explore the mechanism of the binding of CDK2/4/6 kinases and their inhibitors to design novel CDK2/4/6 inhibitors for significantly enhancing their potency in different kinds of cancers. MATERIALS AND METHODS A series of 72 disparately functionalized 4-substituted N-phenylpyrimidin-2-amine derivatives exhibiting potent inhibitor activities against CDK2, CDK4 and CDK6 were collected to apply to this research. The total set of these derivatives was divided into a training set (54 compounds) and a test set (18 compounds). The derivatives were constructed through the sketch molecule module in SYBYL 6.9 software. A Powell gradient algorithm and Tripos force field were used to calculate the minimal structural energy and the minimized structure was used as the initial conformation for molecular docking. By the means of 3D-QSAR models, partial least squares (PLS) analysis, molecular dynamics (MD) simulations and binding free energy calculations, we can find the relationship between structure and biological activity. RESULTS In this study, we used molecular docking, 3D-QSAR and molecular dynamics simulation methods to comprehensively analyze the interaction and structure-activity relationships of 72 new CDK2/4/6 inhibitors. We used detailed statistical data to reasonably verify the constructed 3D-QSAR models for three receptors (q2 of CDK2 = 0.714, R2pred = 0.764, q2 = 0.815; R2pred of CDK4 = 0.681, q2 = 0.757; R2pred of CDK6 = 0.674). MD simulations and decomposition energy analysis validated the reasonability of the docking results and identified polar interactions as crucial factors that influence the different bioactivities of the studied inhibitors of CDK2/4/6 receptors, especially the electrostatic interactions of Lys33/35/43 and Asp145/158/163. The nonpolar interaction with Ile10/12/19 was also critical for the differing potencies of the CDK2/4/6 inhibitors. We concluded that the following probably enhanced the bioactivity against CDK2/4/6 kinases: (1) electronegative groups at the N1-position and electropositive and moderate-sized groups at ring E; (2) electrogroups featured at R2; (3) carbon atoms at the X-position or ring C replaced by a benzene ring; and (4) an electrogroup as R4. CONCLUSION Previous studies, to our knowledge, only utilized a single approach of 3D-QSAR and did not integrate this method with other sophisticated techniques such as molecular dynamics simulations to discover new potential inhibitors of CDK2, CDK4, or CDK6. So we applied the intergenerational technology, such as 3D-QSAR technology, molecular docking simulation techniques, molecular dynamics simulations and MMPBSA19/MMGBSA20-binding free energy calculations to statistically explore the correlations between the structure with biological activities. The constructed 3D-QSAR models of the three receptors were reasonable and confirmed by the excellent statistical data. We hope the results obtained from this work will provide some useful references for the development of novel CDK2/4/6 inhibitors.
Collapse
Affiliation(s)
- Jia-Dong Liang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Yu-E Zhang
- Department of Pharmacy, The Affiliated Jiangmen TCM Hospital of Jinan University, No. 30 Huayuan East Road, Jiangmen, 529000, People's Republic of China
| | - Fei Qin
- Department of Nursing, The Linyi Mental Health Center, Linyi, People's Republic of China
| | - Wan-Na Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Wen-Mei Jiang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zeng Fang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Xiao-Li Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Quan Zhang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510623, Guangdong, People's Republic of China.
| |
Collapse
|
62
|
Fujii E, Kato MK, Yamaguchi M, Higuchi D, Koyama T, Komatsu M, Hamamoto R, Ishikawa M, Kato T, Kohno T, Shiraishi K, Yoshida H. Genomic profiles of Japanese patients with vulvar squamous cell carcinoma. Sci Rep 2024; 14:13058. [PMID: 38844774 PMCID: PMC11156893 DOI: 10.1038/s41598-024-63913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The incidence of vulvar carcinoma varies by race; however, it is a rare disease, and its genomic profiles remain largely unknown. This study examined the characteristics of vulvar squamous cell carcinoma (VSCC) in Japanese patients, focusing on genomic profiles and potential racial disparities. The study included two Japanese groups: the National Cancer Center Hospital (NCCH) group comprised 19 patients diagnosed between 2015 and 2023, and the Center for Cancer Genomics and Advanced Therapeutics group comprised 29 patients diagnosed between 2019 and 2022. Somatic mutations were identified by targeted or panel sequencing, and TP53 was identified as the most common mutation (52-81%), followed by HRAS (7-26%), CDKN2A (21-24%), and PIK3CA (5-10%). The mutation frequencies, except for TP53, were similar to those of Caucasian cohorts. In the NCCH group, 16 patients of HPV-independent tumors were identified by immunohistochemistry and genotyping. Univariate analysis revealed that TP53-mutated patients were associated with a poor prognosis (log-rank test, P = 0.089). Japanese VSCC mutations resembled those of Caucasian vulvar carcinomas, and TP53 mutations predicted prognosis regardless of ethnicity. The present findings suggest potential molecular-targeted therapies for select VSCC patients.
Collapse
Affiliation(s)
- Erisa Fujii
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Mayumi Kobayashi Kato
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Maiko Yamaguchi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daiki Higuchi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan.
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
63
|
Zhao L, Wang J, Yang W, Zhao K, Sun Q, Chen J. Unveiling Conformational States of CDK6 Caused by Binding of Vcyclin Protein and Inhibitor by Combining Gaussian Accelerated Molecular Dynamics and Deep Learning. Molecules 2024; 29:2681. [PMID: 38893554 PMCID: PMC11174096 DOI: 10.3390/molecules29112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
CDK6 plays a key role in the regulation of the cell cycle and is considered a crucial target for cancer therapy. In this work, conformational transitions of CDK6 were identified by using Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy landscapes (FELs). DL finds that the binding pocket as well as the T-loop binding to the Vcyclin protein are involved in obvious differences of conformation contacts. This result suggests that the binding pocket of inhibitors (LQQ and AP9) and the binding interface of CDK6 to the Vcyclin protein play a key role in the function of CDK6. The analyses of FELs reveal that the binding pocket and the T-loop of CDK6 have disordered states. The results from principal component analysis (PCA) indicate that the binding of the Vcyclin protein affects the fluctuation behavior of the T-loop in CDK6. Our QM/MM-GBSA calculations suggest that the binding ability of LQQ to CDK6 is stronger than AP9 with or without the binding of the Vcyclin protein. Interaction networks of inhibitors with CDK6 were analyzed and the results reveal that LQQ contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. In addition, the binding pocket endures flexibility changes from opening to closing states and the Vcyclin protein plays an important role in the stabilizing conformation of the T-loop. We anticipate that this work could provide useful information for further understanding the function of CDK6 and developing new promising inhibitors targeting CDK6.
Collapse
Affiliation(s)
- Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| | | | | | | | | | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| |
Collapse
|
64
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
65
|
Tong Z, Zhao Y, Bai S, Ebner B, Lienhard L, Zhao Y, Wang Z, Pan Q, Guo P, Bracht T, Sitek B, Gschwend JE, Xu W, Nawroth R. The mechanism of resistance to CDK4/6 inhibition and novel combination therapy with RNR inhibition for chemo-resistant bladder cancer. Cancer Commun (Lond) 2024; 44:700-704. [PMID: 38468431 PMCID: PMC11194448 DOI: 10.1002/cac2.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Zhichao Tong
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
- Department of UrologyThe Fourth Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Yubo Zhao
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Shiyu Bai
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
- Department of UrologyThe Fourth Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Benedikt Ebner
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
- Department of UrologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Lou Lienhard
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| | - Yuling Zhao
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| | - Ziqi Wang
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Qi Pan
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
- Department of UrologyShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Pengyu Guo
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Thilo Bracht
- Medizinisches Proteom‐Center, Ruhr‐Universität BochumBochumGermany
- Clinic for Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐Center, Ruhr‐Universität BochumBochumGermany
- Clinic for Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Knappschaftskrankenhaus BochumBochumGermany
| | - Jürgen E. Gschwend
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| | - Wanhai Xu
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Roman Nawroth
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| |
Collapse
|
66
|
Akdag G, Dogan A, Yildirim S, Kinikoglu O, Mokresh ME, Alomari O, Turkoglu E, Isik D, Sürmeli H, Basoglu T, Sever ON, Odabas H, Yildirim ME, Turan N. Exploring the Clinical Impact of RANK Pathway Inhibition in Advanced Breast Cancer: Insights From a Retrospective Study on CDK4/6 Inhibitors and Antiresorptive Therapy. Cureus 2024; 16:e63362. [PMID: 39070363 PMCID: PMC11283752 DOI: 10.7759/cureus.63362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Breast cancer (BC) remains a significant health concern, particularly in advanced stages where the prognosis is poor. The combination of endocrine therapy (ET) with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) has improved outcomes for advanced BC (aBC) patients. However, resistance to CDK4/6i remains a challenge, with no validated biomarkers to predict response. The receptor activator of the nuclear factor-kB (RANK) pathway has emerged as a key player in aBC, particularly in luminal BC. RANK overexpression has been associated with aggressive phenotypes and resistance to therapy. In view of these findings, we proceeded to investigate the potential involvement of the RANK pathway in luminal BC resistance to CDK4/6i. The objective was to evaluate the effectiveness of denosumab in increasing overall survival (OS) and progression-free survival (PFS). METHODS In this retrospective analysis, 158 BC patients with bone metastases were included. Patients with human epidermal growth factor receptor-2 (HER2)-negative and hormone receptor-positive BC who received palbociclib or ribociclib in addition to antiresorptive medication were included. Patients received either denosumab or zoledronic acid (ZA) therapy. The primary endpoint was OS, with PFS as a secondary endpoint. RESULTS Although the PFS and OS of denosumab were better than ZA in this study, it did not show a significant difference between the two drugs. Meanwhile, mOS was not achievable in patients in the denosumab group, while it was 34.1 months in patients in the ZA group. The hazard ratio (HR) showed a significant improvement for the denosumab group in patients under 60 of age (HR: 0.33, p<0.01), patients with a score of 1 HER2 overexpression (HR: 0.09, p=0.01), and patients with resistant endocrine (HR: 0.42, p=0.02) compared to ZA. CONCLUSION This study highlights the potential clinical relevance of the RANK pathway in BC treatment, and our findings suggest that denosumab may offer significant benefits in terms of PFS and OS for certain subgroups, particularly those with HER2 scores of 1, patients under 60, and those with endocrine-resistant BC. In conclusion, considering that RANK pathway status may be a predictive biomarker for CDK4/6i treatment and may cause treatment resistance, our results demonstrate the clinical relevance of the combination of CDK4/6i + ET with RANKL inhibition.
Collapse
Affiliation(s)
- Goncagul Akdag
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Akif Dogan
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Sedat Yildirim
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Oguzcan Kinikoglu
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Muhammed Edib Mokresh
- Medical School, Hamidiye International School of Medicine, University of Health Sciences, Istanbul, TUR
| | - Omar Alomari
- Medical School, Hamidiye International School of Medicine, University of Health Sciences, Istanbul, TUR
| | - Ezgi Turkoglu
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Deniz Isik
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Heves Sürmeli
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Tugba Basoglu
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Ozlem N Sever
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Hatice Odabas
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Mahmut E Yildirim
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Nedim Turan
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| |
Collapse
|
67
|
Vicente ATS, Salvador JAR. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: overview and future perspectives. MedComm (Beijing) 2024; 5:e575. [PMID: 38845697 PMCID: PMC11154823 DOI: 10.1002/mco2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.
Collapse
Affiliation(s)
- André T. S. Vicente
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| |
Collapse
|
68
|
Li X, Yu D, Wang Q, Chen Y, Jiang H. Elucidating the molecular mechanisms of pterostilbene against cervical cancer through an integrated bioinformatics and network pharmacology approach. Chem Biol Interact 2024; 396:111058. [PMID: 38761877 DOI: 10.1016/j.cbi.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pterostilbene (PTE), a natural phenolic compound, has exhibited promising anticancer properties in the preclinical treatment of cervical cancer (CC). This study aims to comprehensively investigate the potential targets and mechanisms underlying PTE's anticancer effects in CC, thereby providing a theoretical foundation for its future clinical application and development. To accomplish this, we employed a range of methodologies, including network pharmacology, bioinformatics, and computer simulation, with specific techniques such as WGCNA, PPI network construction, ROC curve analysis, KM survival analysis, GO functional enrichment, KEGG pathway enrichment, molecular docking, MDS, and single-gene GSEA. Utilizing eight drug target prediction databases, we have identified a total of 532 potential targets for PTE. By combining CC-related genes from the GeneCards disease database with significant genes derived from WGCNA analysis of the GSE63514 dataset, we obtained 7915 unique CC-related genes. By analyzing the intersection of the 7915 CC-related genes and the 2810 genes that impact overall survival time in CC, we identified 690 genes as crucial for CC. Through the use of a Venn diagram, we discovered 36 overlapping targets shared by PTE and CC. We have constructed a PPI network and identified 9 core candidate targets. ROC and KM curve analyses subsequently revealed IL1B, EGFR, IL1A, JUN, MYC, MMP1, MMP3, and ANXA5 as the key targets modulated by PTE in CC. GO and KEGG pathway enrichment analyses indicated significant enrichment of these key targets, primarily in the MAPK and IL-17 signaling pathways. Molecular docking analysis verified the effective binding of PTE to all nine key targets. MDS results showed that the protein-ligand complex between MMP1 and PTE was the most stable among the nine targets. Additionally, GSEA enrichment analysis suggested a potential link between elevated MMP1 expression and the activation of the IL-17 signaling pathway. In conclusion, our study has identified key targets and uncovered the molecular mechanism behind PTE's anticancer activity in CC, establishing a firm theoretical basis for further exploration of PTE's pharmacological effects in CC therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Dequan Yu
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Qiming Wang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Yating Chen
- Department of Clinical Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Jiang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
69
|
Wang L, Wu Y, Kang K, Zhang X, Luo R, Tu Z, Zheng Y, Lin G, Wang H, Tang M, Yu M, Zou B, Tong R, Yi L, Na F, Xue J, Yao Z, Lu Y. CDK4/6 inhibitor abemaciclib combined with low-dose radiotherapy enhances the anti-tumor immune response to PD-1 blockade by inflaming the tumor microenvironment in Rb-deficient small cell lung cancer. Transl Lung Cancer Res 2024; 13:1032-1046. [PMID: 38854937 PMCID: PMC11157372 DOI: 10.21037/tlcr-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/14/2024] [Indexed: 06/11/2024]
Abstract
Background Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors have shown significant activity against several solid tumors by reducing the phosphorylation of the canonical CDK4/6 substrate retinoblastoma (Rb) protein, while the anti-tumor effect of CDK4/6 inhibitors on Rb-deficient tumors is not clear. Most small cell lung cancers (SCLCs) are Rb-deficient and show very modest response to immune checkpoint blockade (ICB) despite recent advances in the use of immunotherapy. Here, we aimed to investigate the direct effect of CDK4/6 inhibition on SCLC cells and determine its efficacy in combination therapy for SCLC. Methods The immediate impact of CDK4/6 inhibitor abemaciclib on cell cycle, cell viability and apoptosis in four SCLC cell lines was initially checked. To explore the effect of abemaciclib on double-strand DNA (ds-DNA) damage induction and the combination impact of abemaciclib coupled with radiotherapy (RT), western blot, immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. An Rb-deficient immunocompetent murine SCLC model was established to evaluate efficacy of abemaciclib in combination therapy. Histological staining, flow cytometry analysis and RNA sequencing were performed to analyze alteration of infiltrating immune cells in tumor microenvironment (TME). Results Here, we demonstrated that abemaciclib induced increased ds-DNA damage in Rb-deficient SCLC cells. Combination of abemaciclib and RT induced more cytosolic ds-DNA, and activated the STING pathway synergistically. We further showed that combining low doses of abemaciclib with low-dose RT (LDRT) plus anti-programmed cell death protein-1 (anti-PD-1) antibody substantially potentiated CD8+ T cell infiltration and significantly inhibited tumor growth and prolonged survival in an Rb-deficient immunocompetent murine SCLC model. Conclusions Our results define previously uncertain DNA damage-inducing properties of CDK4/6 inhibitor abemaciclib in Rb-deficient SCLCs, and demonstrate that low doses of abemaciclib combined with LDRT inflame the TME and enhance the efficacy of anti-PD-1 immunotherapy in SCLC model, which represents a potential novel therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Laduona Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zegui Tu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Lin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Sun L, Wang Y, Li J, Xu S, Xu S, Li J. Bruceantinol works as a CDK2/4/6 inhibitor to inhibit the growth of breast cancer cells. Chem Biol Interact 2024; 395:110999. [PMID: 38608999 DOI: 10.1016/j.cbi.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Bruceantinol (BOL), isolated from the dried fruit of the Brucea javanica (L.) Merr., exhibits cytotoxic effects on breast cancer cells. However, the underlying mechanism remains to be fully addressed. In this paper, the MCF-7 and MDA-MB-231 human breast cancer cell lines were used as experimental models to uncover how BOL inhibits breast cancer cell growth. The effects of BOL on cell growth, proliferation, the cell cycle, and apoptosis were investigated using the MTT assays, EdU incorporation assays, and flow cytometry, respectively. Bioinformatics techniques were applied to predict the key targets of BOL in breast cancer. Subsequent validation of these targets and the anti-breast cancer mechanism of BOL was conducted through Western blotting, RT-PCR, siRNA transfection, and molecular docking analysis. The results demonstrated that BOL dose- and time-dependently reduced the growth of both cell lines, impeded cell proliferation, disrupted the cell cycle, and induced necrosis in MCF-7 cells and apoptosis in MDA-MB-231 cells. Furthermore, CDK2/4/6 were identified as BOL targets, and their knockdown reduced cell sensitivity to BOL. BOL was found to potentially bind with CDK2/4/6 to facilitate protein degradation through the proteasome pathway. Additionally, BOL activated ERK in MDA-MB-231 cells, and this activation was required for BOL's functions in these cells. Collectively, BOL may act as an inhibitor of CDK2/4/6 to exert anti-breast cancer effects. Its effects on cell growth and CDK2/4/6 expression may also depend on ERK activation in HRs-HER2- breast cancer cells. These results suggest the potential of using BOL for treating breast cancer.
Collapse
Affiliation(s)
- Li Sun
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
| | - Yumeng Wang
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jia Li
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Shiqing Xu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Shuang Xu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jun Li
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
71
|
Giannecchini GV, da Silva JL, de Oliveira Bretas G, Dos Santos ALS, Baltar LFR, de Melo AC. Exploring novel approaches in the systemic therapy of low-grade serous carcinoma of the ovary: a literature review. Front Med (Lausanne) 2024; 11:1366603. [PMID: 38835797 PMCID: PMC11148250 DOI: 10.3389/fmed.2024.1366603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
By presenting a comprehensive analysis of low-grade serous carcinomas (LGSCs), a subset of epithelial ovarian cancers, this review delves into their distinct molecular characteristics, clinicopathological features and systemic therapy options, emphasizing their differences from high-grade serous carcinomas (HGSCs). Notably, LGSCs exhibit prevalent RAS/RAF/MEK/MAPK pathway activation, KRAS and BRAF mutations, and infrequent p53 mutations. While chemotherapy is commonly employed, LGSCs display lower responsiveness compared to HGSCs. Hormone therapy, particularly endocrine maintenance therapy, is explored due to the higher estrogen receptor expression. Novel therapeutic approaches involving CDK4/6 inhibitors, MEK inhibitors, and antiangiogenic agents like bevacizumab are also investigated. Ongoing clinical trials are striving to enhance LGSC treatment strategies, offering valuable insights for future therapeutic advancements in this challenging ovarian cancer subtype.
Collapse
Affiliation(s)
| | - Jessé Lopes da Silva
- Oncoclínicas&Co - Medica Scientia Innovation Research (MEDSIR), Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
72
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
73
|
Shi Y, Wang Z, Shao Y, Guang Q, Zhang J, Liu B, Wu C, Wang Y, Sui P. Combined SET7/9 and CDK4 inhibition act synergistically against osteosarcoma. Biochem Biophys Res Commun 2024; 708:149808. [PMID: 38520914 DOI: 10.1016/j.bbrc.2024.149808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor. It has a poor prognosis because of a lack of therapeutic targets and strategies. The SET domain-containing lysine-specific methyltransferase, SET7/9, has various functions in different cancer types in tissue-type and signaling context-dependent manners. The role of SET7/9 in osteosarcoma cells is currently controversial and its potential as a therapeutic candidate in osteosarcoma is unknown. In the present study, SET7/9 inhibition or ablation suppressed osteosarcoma cell proliferation by causing G1 arrest. Mechanistically, SET7/9 inhibition disrupted the interaction between cyclin-dependent kinase 4 (CDK4) and cyclin D1, which affected CDK4-cyclin D1 complex function, leading to decreased phosphorylation of retinoblastoma protein. CDK4 was overexpressed in osteosarcoma tissues and was closely related to a poor prognosis in patients with osteosarcoma. We therefore hypothesized that SET7/9 inhibition might increase the sensitivity of osteosarcoma cells to CDK4 inhibitors, potentially decreasing the risk of adverse effects of CDK4 inhibitors. The combination of SET7/9 and CDK4 inhibition enabled dose reductions of both inhibitors and had a synergistic effect against osteosarcoma growth in vivo. Collectively, these findings indicate that SET7/9 plays an oncogenic role in osteosarcoma by regulating CDK4-cyclin D1 complex interaction and function. The combination of SET7/9 and CDK4 inhibition may thus provide a novel effective therapeutic strategy for osteosarcoma with no significant toxicity.
Collapse
Affiliation(s)
- Yingxu Shi
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Zhonghao Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, China
| | - Yiming Shao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, China
| | - Qianqian Guang
- Department of Pathology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272029, Shandong, China
| | - Jian Zhang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Baorui Liu
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Chunshen Wu
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Yexin Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China.
| | - Ping Sui
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
74
|
Song M, Wang T, Liu T, Lei T, Teng X, Peng Q, Zhu Q, Chen F, Zhao G, Li K, Qi L. DMC-siERCC2 hybrid nanoparticle enhances TRAIL sensitivity by inducing cell cycle arrest for glioblastoma treatment. Biomed Pharmacother 2024; 174:116470. [PMID: 38565061 DOI: 10.1016/j.biopha.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.
Collapse
Affiliation(s)
- Meihui Song
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; Technology School of Medicine, The South China University, Guangzhou, Guangdong 510000, China
| | - Tengfei Wang
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Tao Liu
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Ting Lei
- School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Xu Teng
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Qian Peng
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Qihui Zhu
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Feng Chen
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Guifang Zhao
- Department of Pathology, Jilin Medical University, Jilin, Jilin 130013, China
| | - Kaishu Li
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| |
Collapse
|
75
|
Xu W, Huang Z, Xiao Y, Li W, Xu M, Zhao Q, Yi P. HNRNPC promotes estrogen receptor-positive breast cancer cell cycle by stabilizing WDR77 mRNA in an m6A-dependent manner. Mol Carcinog 2024; 63:859-873. [PMID: 38353359 DOI: 10.1002/mc.23693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 04/13/2024]
Abstract
Breast cancer has become the most commonly diagnosed cancer. Heterogeneous nuclear ribonucleoprotein C (HNRNPC), a reader of N6-methyladenosine (m6A), has been observed to be upregulated in various types of cancer. Nevertheless, the role of HNRNPC in breast cancer and whether it is regulated by m6A modification deserve further investigation. The expression of HNRNPC in breast cancer was examined by quantitative real-time polymerase chain reaction and western blot analysis. RNA immunoprecipitation was performed to validate the binding relationships between HNRNPC and WD repeat domain 77 (WDR77). The effects of HNRNPC and m6A regulators on WDR77 were investigated by actinomycin D assay. The experiments in vivo were conducted in xenograft models. In this research, we found that HNRNPC was highly expressed in breast cancer, and played a crucial role in cell growth, especially in the luminal subtype. HNRNPC could combine and stabilize WDR77 mRNA. WDR77 successively drove the G1/S phase transition in the cell cycle and promoted cell proliferation. Notably, this regulation axis was closely tied to the m6A modification status of WDR77 mRNA. Overall, a critical regulatory mechanism was identified, as well as promising targets for potential treatment strategies for luminal breast cancer.
Collapse
Affiliation(s)
- Wenjie Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
76
|
Feng B, Wang X, Qiu D, Sun H, Deng J, Tan Y, Ji K, Xu S, Zhang S, Tang C. DDX18 Facilitates the Tumorigenesis of Lung Adenocarcinoma by Promoting Cell Cycle Progression through the Upregulation of CDK4. Int J Mol Sci 2024; 25:4953. [PMID: 38732173 PMCID: PMC11084921 DOI: 10.3390/ijms25094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.
Collapse
Affiliation(s)
- Bingbing Feng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Xinying Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Ding Qiu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Haiyang Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Jianping Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Ying Tan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Kaile Ji
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Shaoting Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ce Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
77
|
Sun J, Du R, Li X, Liu C, Wang D, He X, Li G, Zhang K, Wang S, Hao Q, Zhang Y, Li M, Gao Y, Zhang C. CD63 + cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett 2024; 588:216747. [PMID: 38403110 DOI: 10.1016/j.canlet.2024.216747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (CDK4/6i) have rapidly received Food and Drug Administration (FDA) approval as a new type of therapy for patients with advanced hormone receptor-positive breast cancer. However, with the widespread application of CDK4/6i, drug resistance has become a new challenge for clinical practice and has greatly limited the treatment effect. Here, the whole microenvironment landscape of ER+ breast cancer tumors was revealed through single-cell RNA sequencing, and a specific subset of cancer-associated fibroblasts (CD63+ CAFs) was identified as highly enriched in CDK4/6i resistant tumor tissues. Then, we found that CD63+ CAFs can distinctly promote resistance to CDK4/6i in breast cancer cells and tumor xenografts. In addition, it was discovered that miR-20 is markedly enriched in the CD63+ CAFs-derived exosomes, which are used to communicate with ER+ breast cancer cells, leading to CDK4/6i resistance. Furthermore, exosomal miR-20 could directly target the RB1 mRNA 3'UTR and negatively regulate RB1 expression to decrease CDK4/6i sensitivity in breast cancer cells. Most importantly, we designed and synthesized cRGD-miR-20 sponge nanoparticles and found that they can enhance the therapeutic effect of CDK4/6i in breast cancer. In summary, our findings reveal that CD63+ CAFs can promote CDK4/6i resistance via exosomal miR-20, which induces the downregulation of RB1 in breast cancer cells, and suggest that CD63+ CAFs may be a novel therapeutic target to enhance CDK4/6i sensitivity.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Ruoxin Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Xiaoju Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China; Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Chenlin Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Donghui Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Xiangmei He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Guodong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Kuo Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Shuning Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Qiang Hao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Yingqi Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China
| | - Meng Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China.
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China.
| | - Cun Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, PR China.
| |
Collapse
|
78
|
Abo-Salem HM, El Souda SSM, Shafey HI, Zoheir KMA, Ahmed KM, Mahmoud K, Mahrous KF, Fawzy NM. Synthesis, bioactivity assessment, molecular docking and ADMET studies of new chromone congeners exhibiting potent anticancer activity. Sci Rep 2024; 14:9636. [PMID: 38671055 PMCID: PMC11053072 DOI: 10.1038/s41598-024-59606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba I Shafey
- Cell Biology Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khairy M A Zoheir
- Cell Biology Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Kh Mahmoud
- Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
79
|
Weidle UH, Birzele F. Deregulated circRNAs in Epithelial Ovarian Cancer With Activity in Preclinical In Vivo Models: Identification of Targets and New Modalities for Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:213-237. [PMID: 38670587 PMCID: PMC11059596 DOI: 10.21873/cgp.20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is associated with a dismal prognosis due to development of resistance to chemotherapy and metastasis in the peritoneal cavity and distant organs. In order to identify new targets and treatment modalities we searched the literature for up- and and down-regulated circRNAs with efficacy in preclinical EOC-related in vivo systems. Our search yielded circRNAs falling into the following categories: cisplatin and paclitaxel resistance, transmembrane receptors, secreted factors, transcription factors, RNA splicing and processing factors, RAS pathway-related components, proteolysis and cell-cycle regulation, signaling-related proteins, and circRNAs regulating proteins in additional categories. These findings can be potentially translated by validation and manipulation of the corresponding targets, inhibition of circRNAs with antisense oligonucleotides (ASO), small interfering RNAs (siRNA) or small hairpin RNA (shRNA) or by reconstituting their activity.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
80
|
Wang R, Li S, Hu H, Hou Q, Chu H, Hou Y, Ni C, Ran Y, Zheng H. Transcriptomic analysis and experiments revealed that remimazolam promotes proliferation and G1/S transition in HCT8 cells. Front Oncol 2024; 14:1345656. [PMID: 38725628 PMCID: PMC11079263 DOI: 10.3389/fonc.2024.1345656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Background Remimazolam is a new ultrashort-acting benzodiazepine for sedation and anesthesia. The effects of remimazolam and the mechanism by which it functions in cancer cells have not been determined. This research aimed to explore the mechanism of remimazolam action in colon cancer treatment, using bioinformatics analysis and in vitro experiments. Methods Cell cycle progression, colony formation, self-renewal capacity, and apoptosis detection were performed in HCT8 cells treated with or without remimazolam. Transcriptome sequencing, Gene Ontology, Kyoto Encyclopedia of Genes and Genome, Protein-Protein Interaction, Gene Set Enrichment Analysis, Western blotting, and qPCR were performed to investigate the mechanism of action of remimazolam in HCT8 colon cancer cells. Results Remimazolam promoted proliferation and cell-cycle progression of HCT8 cells. After remimazolam treatment, a total of 1,096 differentially expressed genes (DEGs) were identified: 673 genes were downregulated, and 423 genes were upregulated. The DEGs were enriched mainly in "DNA replication", "cell cycle", and "G1/S transition" related pathways. There were 15 DEGs verified by qPCR, and representative biomarkers were detected by Western Bloting. The remimazolam-mediated promotion of cell proliferation and cell cycle was reversed by G1T28, a CDK4/6 inhibitor. Conclusion Remimazolam promoted cell-cycle progression and proliferation in HCT8 colon cancer cells, indicating that the long-term use of remimazolam has potential adverse effects in the anesthesia of patients with colon cancer.
Collapse
Affiliation(s)
- Runjia Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
81
|
Liu Y, Jiang H, Hu K, Zou H, Zhang W, Liu J, Jian X. CircPRMT5 promotes progression of osteosarcoma by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. PLoS One 2024; 19:e0298947. [PMID: 38626179 PMCID: PMC11020494 DOI: 10.1371/journal.pone.0298947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 04/18/2024] Open
Abstract
Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiguo Zhang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiangtao Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
82
|
Zhu X, Fu Z, Dutchak K, Arabzadeh A, Milette S, Steinberger J, Morin G, Monast A, Pilon V, Kong T, Adams BN, Prando Munhoz E, Hosein HJB, Fang T, Su J, Xue Y, Rayes R, Sangwan V, Walsh LA, Chen G, Quail DF, Spicer JD, Park M, Dankort D, Huang S. Cotargeting CDK4/6 and BRD4 Promotes Senescence and Ferroptosis Sensitivity in Cancer. Cancer Res 2024; 84:1333-1351. [PMID: 38277141 DOI: 10.1158/0008-5472.can-23-1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/21/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are approved for breast cancer treatment and show activity against other malignancies, including KRAS-mutant non-small cell lung cancer (NSCLC). However, the clinical efficacy of CDK4/6 inhibitors is limited due to frequent drug resistance and their largely cytostatic effects. Through a genome-wide cDNA screen, we identified that bromodomain-containing protein 4 (BRD4) overexpression conferred resistance to the CDK4/6 inhibitor palbociclib in KRAS-mutant NSCLC cells. Inhibition of BRD4, either by RNA interference or small-molecule inhibitors, synergized with palbociclib to induce senescence in NSCLC cells and tumors, and the combination prolonged survival in a KRAS-mutant NSCLC mouse model. Mechanistically, BRD4-inhibition enhanced cell-cycle arrest and reactive oxygen species (ROS) accumulation, both of which are necessary for senescence induction; this in turn elevated GPX4, a peroxidase that suppresses ROS-triggered ferroptosis. Consequently, GPX4 inhibitor treatment selectively induced ferroptotic cell death in the senescent cancer cells, resulting in tumor regression. Cotargeting CDK4/6 and BRD4 also promoted senescence and ferroptosis vulnerability in pancreatic and breast cancer cells. Together, these findings reveal therapeutic vulnerabilities and effective combinations to enhance the clinical utility of CDK4/6 inhibitors. SIGNIFICANCE The combination of cytostatic CDK4/6 and BRD4 inhibitors induces senescent cancer cells that are primed for activation of ferroptotic cell death by targeting GPX4, providing an effective strategy for treating cancer.
Collapse
Affiliation(s)
- Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Kendall Dutchak
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Azadeh Arabzadeh
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Simon Milette
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anie Monast
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Virginie Pilon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tim Kong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Bianca N Adams
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Erika Prando Munhoz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Hannah J B Hosein
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tianxu Fang
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jing Su
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Yibo Xue
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Roni Rayes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Veena Sangwan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Logan A Walsh
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Guojun Chen
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Daniela F Quail
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Jonathan D Spicer
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - David Dankort
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
83
|
Huang Y, Chen D, Bai Y, Zhang Y, Zheng Z, Fu Q, Yi B, Jiang Y, Zhang Z, Zhu J. ESCO2's oncogenic role in human tumors: a pan-cancer analysis and experimental validation. BMC Cancer 2024; 24:452. [PMID: 38605349 PMCID: PMC11007995 DOI: 10.1186/s12885-024-12213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) is involved in the mitotic S-phase adhesins acetylation and is responsible for bridging two sister chromatids. However, present ESCO2 cancer research is limited to a few cancers. No systematic pan-cancer analysis has been conducted to investigate its role in diagnosis, prognosis, and effector function. METHODS We thoroughly examined the ESCO2 carcinogenesis in pan-cancer by combining public databases such as The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), UALCAN and Tumor Immune Single-cell Hub (TISCH). The analysis includes differential expression analysis, survival analysis, cellular effector function, gene mutation, single cell analysis, and tumor immune cell infiltration. Furthermore, we confirmed ESCO2's impacts on clear cell renal cell carcinoma (ccRCC) cells' proliferative and invasive capacities in vitro. RESULTS In our study, 30 of 33 cancer types exhibited considerably greater levels of ESCO2 expression in tumor tissue using TCGA and GTEx databases, whereas acute myeloid leukemia (LAML) exhibited significantly lower levels. Kaplan-Meier survival analyses in adrenocortical carcinoma (ACC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), mesothelioma (MESO), and pancreatic adenocarcinoma (PAAD) demonstrated that tumor patients with high ESCO2 expression have short survival periods. However, in thymoma (THYM), colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ), ESCO2 was a favorable prognostic factor. Moreover, ESCO2 expression positively correlates with tumor stage and tumor size in several cancers, including LIHC, KIRC, KIRP and LUAD. Function analysis revealed that ESCO2 participates in mitosis, cell cycle, DNA damage repair, and other processes. CDK1 was identified as a downstream gene regulated by ESCO2. Furthermore, ESCO2 might also be implicated in immune cell infiltration. Finally, ESCO2'S knockdown significantly inhibited the A498 and T24 cells' proliferation, invasion, and migration. CONCLUSIONS In conclusion, ESCO2 is a possible pan-cancer biomarker and oncogene that can reliably predict the prognosis of cancer patients. ESCO2 was also implicated in the cell cycle and proliferation regulation. In a nutshell, ESCO2 is a therapeutically viable and dependable target.
Collapse
Affiliation(s)
- Yue Huang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zhiwen Zheng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qingfeng Fu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bocun Yi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuchen Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
84
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
85
|
Lashen A, Algethami M, Alqahtani S, Shoqafi A, Sheha A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. The Clinicopathological Significance of the Cyclin D1/E1-Cyclin-Dependent Kinase (CDK2/4/6)-Retinoblastoma (RB1/pRB1) Pathway in Epithelial Ovarian Cancers. Int J Mol Sci 2024; 25:4060. [PMID: 38612869 PMCID: PMC11012085 DOI: 10.3390/ijms25074060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cyclin-dependent kinases (CDK2, CDK4, CDK6), cyclin D1, cyclin E1 and phosphorylated retinoblastoma (pRB1) are key regulators of the G1/S cell cycle checkpoint and may influence platinum response in ovarian cancers. CDK2/4/6 inhibitors are emerging targets in ovarian cancer therapeutics. In the current study, we evaluated the prognostic and predictive significance of the CDK2/4/6-cyclin D1/E1-pRB1 axis in clinical ovarian cancers (OC). The CDK2/4/6, cyclin D1/E1 and RB1/pRB1 protein expression were investigated in 300 ovarian cancers and correlated with clinicopathological parameters and patient outcomes. CDK2/4/6, cyclin D1/E1 and RB1 mRNA expression were evaluated in the publicly available ovarian TCGA dataset. We observed nuclear and cytoplasmic staining for CDK2/4/6, cyclins D1/E1 and RB1/pRB1 in OCs with varying percentages. Increased nuclear CDK2 and nuclear cyclin E1 expression was linked with poor progression-free survival (PFS) and a shorter overall survival (OS). Nuclear CDK6 was associated with poor OS. The cytoplasmic expression of CDK4, cyclin D1 and cyclin E1 also has predictive and/or prognostic significance in OCs. In the multivariate analysis, nuclear cyclin E1 was an independent predictor of poor PFS. Tumours with high nuclear cyclin E1/high nuclear CDK2 have a worse PFS and OS. Detailed bioinformatics in the TCGA cohort showed a positive correlation between cyclin E1 and CDK2. We also showed that cyclin-E1-overexpressing tumours are enriched for genes involved in insulin signalling and release. Our data not only identified the prognostic/predictive significance of these key cell cycle regulators but also demonstrate the importance of sub-cellular localisation. CDK2 targeting in cyclin-E1-amplified OCs could be a rational approach.
Collapse
Affiliation(s)
- Ayat Lashen
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Mashael Algethami
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Shatha Alqahtani
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Ahmed Shoqafi
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Amera Sheha
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Jennie N. Jeyapalan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Nigel P. Mongan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emad A. Rakha
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Srinivasan Madhusudan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
86
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
87
|
Wang J, Zhang Z, Li Q, Hu Z, Chen Y, Chen H, Cai W, Du Q, Zhang P, Xiong D, Ye S. Network pharmacology and molecular docking reveal the mechanisms of curcumin activity against esophageal squamous cell carcinoma. Front Pharmacol 2024; 15:1282361. [PMID: 38633613 PMCID: PMC11021710 DOI: 10.3389/fphar.2024.1282361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Curcumin (CUR), an effective traditional Chinese medicinal extract, displays good anti-cancer activity against various cancers. Nevertheless, the impacts and fundamental mechanisms of CUR to treat esophageal squamous cell carcinoma (ESCC) yet to be comprehensively clarified. This study examined the suppressive impacts of CUR on ESCC. Methods: For a comprehensive understanding of the effect of CUR in ESCC. The CUR targets and ESCC-related genes were identified respectively, and the intersection targets between CUR and ESCC were acquired. Then, we examined the intersection targets and discovered genes that were expressed differently in ESCC. Using DAVID, enrichment analyses were conducted on the targets of CUR-ESCC. The STRING database and Cytoscape v.3.9.1 were utilized to build networks for protein-protein interaction (PPI) and drug-target-pathway. Furthermore, the interactions between CUR and its core targets were confirmed by molecular docking studies. To confirm the effects of CUR on ESCC cells, in vitro experiments were finally conducted. Results: Overall, 47 potential CUR targets for ESCC treatment were identified. The KEGG pathway enrichment analysis identified 61 signaling pathways, primarily associated with the FoxO signaling, the cell cycle, cellular senescence, the IL-17 signaling pathway which play important roles in ESCC progression. In the PPI network and the docking results identified CHEK1 and CDK6 as the core targets that positively associated with ESCC survival. CUR arrested ESCC cells at the G2/M and S phases, as shown by flow cytometry. Colony formation and CCK8 assays showed that CUR can inhibit the proliferative ability of ESCC cells. The Transwell invasion results validated that CUR can significantly inhibit the invasion rates of ESCC cells. Conclusion: Collectively, these findings indicate that CUR exhibits pharmacological effects on multiple targets and pathways in ESCC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Zhilong Zhang
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Qian Li
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Zilong Hu
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yuan Chen
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wei Cai
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Qiancheng Du
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Dian Xiong
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Shugao Ye
- Department of Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
88
|
Chen Z, Huang H, Hong H, Huang H, Weng H, Yu L, Xiao J, Wang Z, Fang X, Yao Y, Yue JX, Lin T. Full-spectral genome analysis of natural killer/T cell lymphoma highlights impacts of genome instability in driving its progression. Genome Med 2024; 16:48. [PMID: 38566223 PMCID: PMC10986005 DOI: 10.1186/s13073-024-01324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Natural killer/T cell lymphoma (NKTCL) is a clinically and genetically heterogeneous disease with poor prognosis. Genome sequencing and mutation characterization provides a powerful approach for patient stratification, treatment target discovery, and etiology identification. However, previous studies mostly concentrated on base-level mutations in primary NKTCL, whereas the large-scale genomic alterations in NKTCL and the mutational landscapes in relapsed/refractory NKTCL remain largely unexplored. METHODS Here, we assembled whole-genome sequencing and whole-exome sequencing data from 163 patients with primary or relapsed/refractory NKTCL and compared their somatic mutational landscapes at both nucleotide and structure levels. RESULTS Our study not only confirmed previously reported common NKTCL mutational targets like STAT3, TP53, and DDX3X but also unveiled several novel high-frequency mutational targets such as PRDM9, DST, and RBMX. In terms of the overall mutational landscape, we observed striking differences between primary and relapsed/refractory NKTCL patient groups, with the latter exhibits higher levels of tumor mutation burden, copy number variants (CNVs), and structural variants (SVs), indicating a strong signal of genomic instability. Complex structural rearrangements such as chromothripsis and focal amplification are also significantly enriched in relapsed/refractory NKTCL patients, exerting a substantial impact on prognosis. Accordingly, we devised a novel molecular subtyping system (i.e., C0-C4) with distinct prognosis by integrating potential driver mutations at both nucleotide and structural levels, which further provides an informative guidance for novel treatments that target these specific driver mutations and genome instability as a whole. CONCLUSIONS The striking differences underlying the mutational landscapes between the primary and relapsed/refractory NKTCL patients highlight the importance of genomic instability in driving the progression of NKTCL. Our newly proposed molecular subtyping system is valuable in assisting patient stratification and novel treatment design towards a better prognosis in the age of precision medicine.
Collapse
Affiliation(s)
- Zegeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - He Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Huageng Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huawei Weng
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Le Yu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaojie Fang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuyi Yao
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Tongyu Lin
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
89
|
Liu F, Xin M, Feng H, Zhang W, Liao Z, Sheng T, Wen P, Wu Q, Liang T, Shi J, Zhou R, He K, Gu Z, Li H. Cryo-shocked tumor cells deliver CRISPR-Cas9 for lung cancer regression by synthetic lethality. SCIENCE ADVANCES 2024; 10:eadk8264. [PMID: 38552011 PMCID: PMC10980270 DOI: 10.1126/sciadv.adk8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.
Collapse
Affiliation(s)
- Feng Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Minhang Xin
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiheng Feng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wentao Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziyan Liao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tao Sheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Wen
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qing Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingxizi Liang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiaqi Shi
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Ruyi Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaixin He
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
90
|
Hoshina H, Sakatani T, Kawamoto Y, Ohashi R, Takei H. Cytomorphological Disparities in Invasive Breast Cancer Cells following Neoadjuvant Endocrine Therapy and Chemotherapy. Pathobiology 2024; 91:288-298. [PMID: 38447546 PMCID: PMC11309077 DOI: 10.1159/000538227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Neoadjuvant endocrine therapy (NAE) offers a breast-conserving surgery rate and clinical response rate similar to those of neoadjuvant chemotherapy (NAC), while presenting fewer adverse events and lower pathological complete response rates. The assessment of pathological response determines degenerative changes and predicts the prognosis of breast cancer treated with NAC. This study clarified the degenerative changes occurring in breast cancer following NAE. METHODS Our study encompassed two groups: NAE, consisting of 15 patients, and NAC, comprising 18 patients. Tissue samples were obtained from core needle biopsies and surgeries. Nuclear and cell areas were calculated using Autocell analysis. Furthermore, we assessed markers associated with microtubule depolymerization (KIF2A) and initiators of apoptosis (caspase-9). RESULTS In the NAC group, we observed significant increases in both cytoplasmic and cell areas. These changes in cytoplasm and cells were notably more pronounced in the NAC group compared to the NAE group. After treatment, KIF2A exhibited a decrease, with the magnitude of change being greater in the NET group than in the NAC group. However, no discernible differences were found in caspase-9 expression between the two groups. CONCLUSION Our findings indicate that NAE induces condensation in cancer cells via cell cycle arrest or apoptosis. Conversely, NAC leads to cell enlargement due to the absence of microtubule depolymerization. These discrepancies underscore the importance of accounting for these distinctions when establishing criteria for evaluating pathological responses.
Collapse
Affiliation(s)
- Hideko Hoshina
- Department of Breast Surgery and Oncology, Nippon Medical School, Tokyo, Japan,
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Yoko Kawamoto
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Takei
- Department of Breast Surgery and Oncology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
91
|
Foy R, Lew KX, Saurin AT. The search for CDK4/6 inhibitor biomarkers has been hampered by inappropriate proliferation assays. NPJ Breast Cancer 2024; 10:19. [PMID: 38438376 PMCID: PMC10912267 DOI: 10.1038/s41523-024-00624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
CDK4/6 inhibitors are effective at treating advanced HR+ /HER2- breast cancer, however biomarkers that can predict response are urgently needed. We demonstrate here that previous large-scale screens designed to identify which tumour types or genotypes are most sensitive to CDK4/6 inhibitors have misrepresented the responsive cell lines because of a reliance on metabolic proliferation assays. CDK4/6-inhibited cells arrest in G1 but continue to grow in size, thereby producing more mitochondria. We show that this growth obscures the arrest using ATP-based proliferation assays but not if DNA-based assays are used instead. Furthermore, lymphoma lines, previously identified as the most sensitive, simply appear to respond the best using ATP-based assays because they fail to overgrow during the G1 arrest. Similarly, the CDK4/6 inhibitor abemaciclib appears to inhibit proliferation better than palbociclib because it also restricts cellular overgrowth through off-target effects. DepMap analysis of screening data using reliable assay types, demonstrates that palbociclib-sensitive cell types are also sensitive to Cyclin D1, CDK4 and CDK6 knockout/knockdown, whereas the palbociclib-resistant lines are sensitive to Cyclin E1, CDK2 and SKP2 knockout/knockdown. Potential biomarkers of palbociclib-sensitive cells are increased expression of CCND1 and RB1, and reduced expression of CCNE1 and CDKN2A. Probing DepMap with similar data from metabolic assays fails to reveal these associations. Together, this demonstrates why CDK4/6 inhibitors, and any other anti-cancer drugs that arrest the cell cycle but permit continued cell growth, must now be re-screened against a wide-range of cell types using an appropriate proliferation assay. This would help to better inform clinical trials and to identify much needed biomarkers of response.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Kah Xin Lew
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
92
|
Liang J, Bi G, Huang Y, Zhao G, Sui Q, Zhang H, Bian Y, Yin J, Wang Q, Chen Z, Zhan C. MAFF confers vulnerability to cisplatin-based and ionizing radiation treatments by modulating ferroptosis and cell cycle progression in lung adenocarcinoma. Drug Resist Updat 2024; 73:101057. [PMID: 38266355 DOI: 10.1016/j.drup.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
AIMS Lung cancer is the leading cause of cancer mortality and lung adenocarcinoma (LUAD) accounts for more than half of all lung cancer cases. Tumor elimination is mostly hindered by drug resistance and the mechanisms remain to be explored in LUAD. METHODS CRISPR screens in cell and murine models and single-cell RNA sequencing were conducted, which identified MAF bZIP transcription factor F (MAFF) as a critical factor regulating tumor growth and treatment resistance in LUAD. RNA and ChIP sequencing analyses were performed for transcriptional target expression and specific binding sites of MAFF. Functions of MAFF in inhibiting tumor growth and promoting cisplatin or irradiation efficacy were investigated using cellular and xenograft models. RESULTS Patients with lung adenocarcinoma and reduced MAFF expression had worse clinical outcomes. MAFF inhibited tumor cell proliferation by regulating the expression of SLC7A11, CDK6, and CDKN2C, promoting ferroptosis and preventing cell cycle progression from G1 to S. MAFF also conferred tumor cells vulnerable to cisplatin-based or ionizing radiation treatments. MAFF reduction was a final event in the acquisition of cisplatin resistance of LUAD cells. The intracellular cAMP/PKA/CREB1 pathway upregulated MAFF in response to cisplatin-based or ionizing radiation treatments. CONCLUSIONS MAFF suppresses tumor growth, and pharmacological agonists targeting MAFF may improve cisplatin or irradiation therapies for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Jiacheng Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
93
|
Asencio-Durán M, Fernández-Gutiérrez E, Larrañaga-Cores M, Klein-Burgos C, Dabad-Moreno JV, Capote-Díez M. Ocular side effects of oncological therapies: Review. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2024; 99:109-132. [PMID: 37949110 DOI: 10.1016/j.oftale.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
With the advance of cancer therapy in recent years, the knowledge of the mechanisms involved in this disease has increased, which has meant an increase in the quality of life and survival of patients with tumor pathologies previously considered incurable or refractory to treatment. The number of drugs used has increased exponentially in number, and although the implicit toxicity is lower than that of conventional antineoplastic therapy, they lead to the appearance of new associated adverse effects that the ophthalmologist must recognize and manage.
Collapse
Affiliation(s)
- M Asencio-Durán
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain.
| | - E Fernández-Gutiérrez
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - M Larrañaga-Cores
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - C Klein-Burgos
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - J V Dabad-Moreno
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - M Capote-Díez
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| |
Collapse
|
94
|
Shang Q, Jiang Y, Wan Z, Peng J, Xu Z, Li W, Yang D, Zhao H, Xu X, Zhou Y, Zeng X, Chen Q, Xu H. The clinical implication and translational research of OSCC differentiation. Br J Cancer 2024; 130:660-670. [PMID: 38177661 PMCID: PMC10876927 DOI: 10.1038/s41416-023-02566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The clinical value and molecular characteristics of tumor differentiation in oral squamous cell carcinoma (OSCC) remain unclear. There is a lack of a related molecular classification prediction system based on pathological images for precision medicine. METHODS Integration of epidemiology, genomics, experiments, and deep learning to clarify the clinical value and molecular characteristics, and develop a novel OSCC molecular classification prediction system. RESULTS Large-scale epidemiology data (n = 118,817) demonstrated OSCC differentiation was a significant prognosis indicator (p < 0.001), and well-differentiated OSCC was more chemo-resistant than poorly differentiated OSCC. These results were confirmed in the TCGA database and in vitro. Furthermore, we found chemo-resistant related pathways and cell cycle-related pathways were up-regulated in well- and poorly differentiated OSCC, respectively. Based on the characteristics of OSCC differentiation, a molecular grade of OSCC was obtained and combined with pathological images to establish a novel prediction system through deep learning, named ShuffleNetV2-based Molecular Grade of OSCC (SMGO). Importantly, our independent multi-center cohort of OSCC (n = 340) confirmed the high accuracy of SMGO. CONCLUSIONS OSCC differentiation was a significant indicator of prognosis and chemotherapy selection. Importantly, SMGO could be an indispensable reference for OSCC differentiation and assist the decision-making of chemotherapy.
Collapse
Affiliation(s)
- Qianhui Shang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zixin Wan
- Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jiakuan Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ziang Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Weiqi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaoping Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, 310006, PR China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
95
|
Dietrich C, Trub A, Ahn A, Taylor M, Ambani K, Chan KT, Lu KH, Mahendra CA, Blyth C, Coulson R, Ramm S, Watt AC, Matsa SK, Bisi J, Strum J, Roberts P, Goel S. INX-315, a Selective CDK2 Inhibitor, Induces Cell Cycle Arrest and Senescence in Solid Tumors. Cancer Discov 2024; 14:446-467. [PMID: 38047585 PMCID: PMC10905675 DOI: 10.1158/2159-8290.cd-23-0954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) is thought to play an important role in driving proliferation of certain cancers, including those harboring CCNE1 amplification and breast cancers that have acquired resistance to CDK4/6 inhibitors (CDK4/6i). The precise impact of pharmacologic inhibition of CDK2 is not known due to the lack of selective CDK2 inhibitors. Here we describe INX-315, a novel and potent CDK2 inhibitor with high selectivity over other CDK family members. Using cell-based assays, patient-derived xenografts (PDX), and transgenic mouse models, we show that INX-315 (i) promotes retinoblastoma protein hypophosphorylation and therapy-induced senescence (TIS) in CCNE1-amplified tumors, leading to durable control of tumor growth; (ii) overcomes breast cancer resistance to CDK4/6i, restoring cell cycle control while reinstating the chromatin architecture of CDK4/6i-induced TIS; and (iii) delays the onset of CDK4/6i resistance in breast cancer by driving deeper suppression of E2F targets. Our results support the clinical development of selective CDK2 inhibitors. SIGNIFICANCE INX-315 is a novel, selective inhibitor of CDK2. Our preclinical studies demonstrate activity for INX-315 in both CCNE1-amplified cancers and CDK4/6i-resistant breast cancer. In each case, CDK2 inhibition induces cell cycle arrest and a phenotype resembling cellular senescence. Our data support the development of selective CDK2 inhibitors in clinical trials. See related commentary by Watts and Spencer, p. 386. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Catherine Dietrich
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alec Trub
- Incyclix Bio, Durham, North Carolina
| | - Antonio Ahn
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Taylor
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Krutika Ambani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Keefe T. Chan
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kun-Hui Lu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christabella A. Mahendra
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Catherine Blyth
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rhiannon Coulson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Susanne Ramm
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - April C. Watt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - John Bisi
- Incyclix Bio, Durham, North Carolina
| | - Jay Strum
- Incyclix Bio, Durham, North Carolina
| | | | - Shom Goel
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
96
|
Gleason CE, Dickson MA, Klein (Dooley) ME, Antonescu CR, Gularte-Mérida R, Benitez M, Delgado JI, Kataru RP, Tan MWY, Bradic M, Adamson TE, Seier K, Richards AL, Palafox M, Chan E, D'Angelo SP, Gounder MM, Keohan ML, Kelly CM, Chi P, Movva S, Landa J, Crago AM, Donoghue MT, Qin LX, Serra V, Turkekul M, Barlas A, Firester DM, Manova-Todorova K, Mehrara BJ, Kovatcheva M, Tan NS, Singer S, Tap WD, Koff A. Therapy-Induced Senescence Contributes to the Efficacy of Abemaciclib in Patients with Dedifferentiated Liposarcoma. Clin Cancer Res 2024; 30:703-718. [PMID: 37695642 PMCID: PMC10870201 DOI: 10.1158/1078-0432.ccr-23-2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.
Collapse
Affiliation(s)
- Caroline E. Gleason
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mark A. Dickson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mary E. Klein (Dooley)
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | | - Rodrigo Gularte-Mérida
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Marimar Benitez
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Juliana I. Delgado
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Raghu P. Kataru
- Department of Plastic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark Wei Yi Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Martina Bradic
- The Marie Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis E. Adamson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Kenneth Seier
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allison L. Richards
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Marta Palafox
- The Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Eric Chan
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P. D'Angelo
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mrinal M. Gounder
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mary Louise Keohan
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Ciara M. Kelly
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sujana Movva
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Jonathan Landa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mark T.A. Donoghue
- The Marie Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Violetta Serra
- The Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mesruh Turkekul
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Afsar Barlas
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel M. Firester
- Department of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Katia Manova-Todorova
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J. Mehrara
- Department of Plastic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marta Kovatcheva
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - William D. Tap
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Andrew Koff
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
97
|
Jin M, Mi Y, Li F, Ren F, Deng Y, Zheng P. ZNF131 facilitates the growth of hepatocellular carcinoma by acting as a transcriptional activator of SMC4 expression. Biochem Biophys Res Commun 2024; 696:149515. [PMID: 38241815 DOI: 10.1016/j.bbrc.2024.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
ZNF131 is a Zinc finger protein that acts as a transcription factor with oncogenic effects in multiple cancers. In this study, we aimed to explore the alternative splicing profile of ZNF131 in hepatocellular carcinoma (HCC), its regulatory effects on cell-cycle progression, and the downstream effectors. ZNF131 transcriptional profile and HCC survival analysis were conducted using data from the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Cancer (LIHC) dataset. Chromatin immunoprecipitation (ChIP)-qPCR and dual-luciferase reporter assays were utilized to explore transcriptional regulation. CCK-8, colony formation and xenograft tumor models were used to study HCC tumor growth. Results showed that ZNF131 isoform 2 is upregulated in HCC tissues and its upregulation was associated with unfavorable overall survival (OS) and progression-free interval (PFI). Knockdown of endogenous ZNF131 inhibits HCC cell growth and induces G2/M cell-cycle arrest. ZNF131 binds to the SMC4 promoter by interacting with ZBTB33 and the ZBTB33 recognizing motif. ZNF131 transcriptionally activates SMC4 expression in HCC cells. The tumor-suppressive effects of ZNF131 shRNA could be partially reversed by enforced SMC4 overexpression. In summary, this study highlights the ZNF131/ZBTB33/SMC4 axis as a driver of pathological cell cycling and proliferation in HCC.
Collapse
Affiliation(s)
- Meng Jin
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Ren
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Deng
- Cancer Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
98
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
99
|
Yu Z, Deng P, Chen Y, Lin D, Liu S, Hong J, Guan P, Chen J, Zhong ME, Chen J, Chen X, Sun Y, Wang Y, Wang P, Cai Z, Chan JY, Huang Y, Xiao R, Guo Y, Zeng X, Wang W, Zou Y, Yu Q, Lan P, Teh BT, Wu X, Tan J. Pharmacological modulation of RB1 activity mitigates resistance to neoadjuvant chemotherapy in locally advanced rectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2304619121. [PMID: 38289962 PMCID: PMC10861914 DOI: 10.1073/pnas.2304619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024] Open
Abstract
Resistance to neoadjuvant chemotherapy leads to poor prognosis of locally advanced rectal cancer (LARC), representing an unmet clinical need that demands further exploration of therapeutic strategies to improve clinical outcomes. Here, we identified a noncanonical role of RB1 for modulating chromatin activity that contributes to oxaliplatin resistance in colorectal cancer (CRC). We demonstrate that oxaliplatin induces RB1 phosphorylation, which is associated with the resistance to neoadjuvant oxaliplatin-based chemotherapy in LARC. Inhibition of RB1 phosphorylation by CDK4/6 inhibitor results in vulnerability to oxaliplatin in both intrinsic and acquired chemoresistant CRC. Mechanistically, we show that RB1 modulates chromatin activity through the TEAD4/HDAC1 complex to epigenetically suppress the expression of DNA repair genes. Antagonizing RB1 phosphorylation through CDK4/6 inhibition enforces RB1/TEAD4/HDAC1 repressor activity, leading to DNA repair defects, thus sensitizing oxaliplatin treatment in LARC. Our study identifies a RB1 function in regulating chromatin activity through TEAD4/HDAC1. It also provides the combination of CDK4/6 inhibitor with oxaliplatin as a potential synthetic lethality strategy to mitigate oxaliplatin resistance in LARC, whereby phosphorylated RB1/TEAD4 can serve as potential biomarkers to guide the patient stratification.
Collapse
Affiliation(s)
- Zhaoliang Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Peng Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Yufeng Chen
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Dezheng Lin
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510060, People’s Republic of China
| | - Shini Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Jinghan Hong
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
| | - Peiyong Guan
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore138672, Singapore
| | - Jianfeng Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Min-er Zhong
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Jinghong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Xiaochuan Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Yichen Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Yali Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Peili Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Zerong Cai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore169610, Singapore
| | - Yulin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Rong Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Yaoyu Guo
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Xian Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Wenyu Wang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Yifeng Zou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore138672, Singapore
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore169610, Singapore
| | - Xiaojian Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Jing Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore169610, Singapore
| |
Collapse
|
100
|
McGale JP, Howell HJ, Beddok A, Tordjman M, Sun R, Chen D, Wu AM, Assi T, Ammari S, Dercle L. Integrating Artificial Intelligence and PET Imaging for Drug Discovery: A Paradigm Shift in Immunotherapy. Pharmaceuticals (Basel) 2024; 17:210. [PMID: 38399425 PMCID: PMC10892847 DOI: 10.3390/ph17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of artificial intelligence (AI) and positron emission tomography (PET) imaging has the potential to become a powerful tool in drug discovery. This review aims to provide an overview of the current state of research and highlight the potential for this alliance to advance pharmaceutical innovation by accelerating the development and deployment of novel therapeutics. We previously performed a scoping review of three databases (Embase, MEDLINE, and CENTRAL), identifying 87 studies published between 2018 and 2022 relevant to medical imaging (e.g., CT, PET, MRI), immunotherapy, artificial intelligence, and radiomics. Herein, we reexamine the previously identified studies, performing a subgroup analysis on articles specifically utilizing AI and PET imaging for drug discovery purposes in immunotherapy-treated oncology patients. Of the 87 original studies identified, 15 met our updated search criteria. In these studies, radiomics features were primarily extracted from PET/CT images in combination (n = 9, 60.0%) rather than PET imaging alone (n = 6, 40.0%), and patient cohorts were mostly recruited retrospectively and from single institutions (n = 10, 66.7%). AI models were used primarily for prognostication (n = 6, 40.0%) or for assisting in tumor phenotyping (n = 4, 26.7%). About half of the studies stress-tested their models using validation sets (n = 4, 26.7%) or both validation sets and test sets (n = 4, 26.7%), while the remaining six studies (40.0%) either performed no validation at all or used less stringent methods such as cross-validation on the training set. Overall, the integration of AI and PET imaging represents a paradigm shift in drug discovery, offering new avenues for more efficient development of therapeutics. By leveraging AI algorithms and PET imaging analysis, researchers could gain deeper insights into disease mechanisms, identify new drug targets, or optimize treatment regimens. However, further research is needed to validate these findings and address challenges such as data standardization and algorithm robustness.
Collapse
Affiliation(s)
- Jeremy P. McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Harrison J. Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Godinot, 51100 Reims, France
| | - Mickael Tordjman
- Department of Radiology, Hôtel Dieu Hospital, APHP, 75014 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Delphine Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Anna M. Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Tarek Assi
- International Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| |
Collapse
|