51
|
Maemoto M, Hirata Y, Hosoe S, Ouchi J, Narushima K, Akizawa E, Tsuji Y, Takada H, Yanagisawa A, Shuto S. Discovery of Gut-Restricted Small-Molecule Inhibitors of Intestinal Sodium-Dependent Phosphate Transport Protein 2b (NaPi2b) for the Treatment of Hyperphosphatemia. J Med Chem 2022; 65:1946-1960. [PMID: 35034442 DOI: 10.1021/acs.jmedchem.1c01474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NaPi2b is primarily expressed in the small intestine, lungs, and testes and plays an important role in phosphate homeostasis. The inhibition of NaPi2b, responsible for intestinal phosphate absorption, is considered to reduce serum phosphate levels, making it a promising therapeutic approach for hyperphosphatemia. Using a novel phosphate uptake inhibitor 3 (IC50 = 87 nM), identified from an in-house compound collection in human NaPi2b-transfected cells as a prototype compound, we conducted its derivatization based on a Ro5-deviated strategy to develop orally administrable small-molecule NaPi2b inhibitors with nonsystemic exposure. Consequently, compound 15, a zwitterionic compound with a potent in vitro phosphate uptake inhibitory activity (IC50 = 64 nM) and a low membrane permeability (Pe < 0.025 × 10-6 cm/s), was developed. Compound 15 showed a low bioavailability (F = 0.1%) in rats and a reduction in phosphate absorption in the rat intestinal loop assay comparable to sevelamer hydrochloride, a clinically effective phosphate binder for treating hyperphosphatemia.
Collapse
Affiliation(s)
- Michihiro Maemoto
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo-shi, Hokkaido 060-0812, Japan
| | - Yuuki Hirata
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shintaro Hosoe
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Jun Ouchi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Kazuya Narushima
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Emi Akizawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yoshiro Tsuji
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Hidenori Takada
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Arata Yanagisawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo-shi, Hokkaido 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo-shi, Hokkaido 060-0812, Japan
| |
Collapse
|
52
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
53
|
Mitobe R, Sasaki Y, Tang W, Zhou Q, Lyu X, Ohshiro K, Kamiko M, Minami T. Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22903-22911. [PMID: 35040626 DOI: 10.1021/acsami.1c21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein report an organic field-effect transistor (OFET) based chemical sensor for multi-oxyanion detection with pattern recognition techniques. The oxyanions ubiquitously play versatile roles in biological systems, and accessing the chemical information they provide would potentially facilitate fundamental research in diagnosis and pharmacology. In this regard, phosphates in human blood serum would be a promising indicator for early case detection of significant diseases. Thus, the development of an easy-to-use chemical sensor for qualitative and quantitative detection of oxyanions is required in real-world scenarios. To this end, an extended-gate-type OFET has been functionalized with a metal complex consisting of 2,2'-dipicolylamine and a copper(II) ion (CuII-dpa), allowing a compact chemical sensor for oxyanion detection. The OFET combined with a uniform CuII-dpa-based self-assembled monolayer (SAM) on the extended-gate gold electrode shows a cross-reactive response, which suggests a discriminatory power for pattern recognition. Indeed, the qualitative detection of 13 oxyanions (i.e., hydrogen monophosphate, pyrophosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, terephthalate, phthalate, isophthalate, malonate, oxalate, lactate, benzoate, and acetate) has been demonstrated by only using a single OFET-based sensor with linear discriminant analysis, which has shown 100% correct classification. The OFET has been further applied to the quantification of hydrogen monophosphate in human blood serum using a support vector machine (SVM). The multiple predictions of hydrogen monophosphate at 49 and 89 μM have been successfully realized with low errors, which indicates that the OFET-based sensor with pattern recognition techniques would be a practical sensing platform for medical assays. We believe that a combination of the OFET functionalized with the SAM-based recognition scaffold and powerful pattern recognition methods can achieve multi-analyte detection from just a single sensor.
Collapse
Affiliation(s)
- Riho Mitobe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
54
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
55
|
Sasaki S, Koike M, Tanifuji K, Uga M, Kawahara K, Komiya A, Miura M, Harada Y, Hamaguchi Y, Sasaki S, Shiozaki Y, Kaneko I, Miyamoto KI, Segawa H. Dietary polyphosphate has a greater effect on renal damage and FGF23 secretion than dietary monophosphate. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:173-179. [DOI: 10.2152/jmi.69.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sumire Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minori Uga
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kota Kawahara
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aoi Komiya
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mizuki Miura
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yamato Harada
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Hamaguchi
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shohei Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
56
|
Ye G, Zhang J, Bi Z, Zhang W, Zhang M, Zhang Q, Wang M, Chen J. Dominant factors of the phosphorus regulatory network differ under various dietary phosphate loads in healthy individuals. Ren Fail 2021; 43:1076-1086. [PMID: 34193019 PMCID: PMC8253199 DOI: 10.1080/0886022x.2021.1945463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to explore the contribution of each factor of the phosphorus metabolism network following phosphorus diet intervention via Granger causality analysis. METHODS In this study, a total of six healthy male volunteers were enrolled. All participants sequentially received regular, low-, and high-phosphorus diets. Consumption of each diet lasted for five days, with a 5-day washout period between different diets. Blood and urinary samples were collected on the fifth day of consumption of each diet at 9 time points (00:00, 04:00, 08:00, 10:00, 12:00, 14:00, 16:00, 20:00, 24:00) for measurements of serum levels of phosphate, calcium, PTH, FGF23, BALP, α-Klotho, and 1,25 D and urinary phosphorus excretion. Granger causality and the centrality of the above variables in the phosphorus network were analyzed by pairwise panel Granger causality analysis using the time-series data. RESULTS The mean age of the participants was 28.5 ± 2.1 years. By using Granger causality analysis, we found that the α-Klotho level had the strongest connection with and played a key role in influencing the other variables. In addition, urinary phosphorus excretion was frequently regulated by other variables in the network of phosphorus metabolism following a regular phosphorus diet. After low-phosphorus diet intervention, serum phosphate affected the other factors the most, and the 1,25 D level was the main outcome factor, while urinary phosphorus excretion was the most strongly associated variable in the network of phosphorus metabolism. After high-phosphorus diet intervention, FGF23 and 1,25 D played a more critical role in active regulation and passive regulation in the Granger causality analysis. CONCLUSIONS Variations in dietary phosphorus intake led to changes in the central factors involved in phosphorus metabolism.
Collapse
Affiliation(s)
- Guoxin Ye
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Zhang
- Division of Nutrition, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaori Bi
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weichen Zhang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Minmin Zhang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Zhang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjing Wang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Bosman A, Campos-Obando N, Medina-Gomez C, Voortman T, Uitterlinden AG, Zillikens MC. Serum Phosphate, BMI, and Body Composition of Middle-Aged and Older Adults: A Cross-Sectional Association Analysis and Bidirectional Mendelian Randomization Study. J Nutr 2021; 152:276-285. [PMID: 34601595 PMCID: PMC8754515 DOI: 10.1093/jn/nxab351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Observational studies have reported associations between serum phosphate and BMI in specific clinical settings, but the nature of this relation in the general population is unclear. OBJECTIVES The aim of this study was twofold: to investigate the association between serum phosphate and BMI and body composition, as well as to explore evidence of causality through a bidirectional one-sample Mendelian randomization (MR) in the population-based Rotterdam Study (RS). METHODS Observational associations between phosphate (mg/dL) and BMI, lean mass, and fat percentage (fat%), estimated by DXA, were analyzed using multivariable regression models in 9202 participants aged 45-100 y from 3 RS cohorts. The role of serum leptin was examined in a subgroup of 1089 participants. For MR analyses, allele scores with 6 single-nucleotide polymorphisms (SNPs) for phosphate and 905 SNPs for BMI were constructed in 7983 participants. RESULTS Phosphate was inversely associated with BMI in the total population (β: -0.89; 95% CI: -1.17, -0.62), and stronger in women (β: -1.92; 95% CI: -2.20, -1.65) than in men (β: -0.37; 95% CI: -0.68, -0.06) (P-interaction < 0.05). Adjustment for leptin did not change results in men. In women, adjustment for leptin attenuated the association, but it was not abolished (β: -0.94; 95% CI: -1.45, -0.42). Phosphate was inversely associated with fat%, but not with lean mass, in both sexes. MR analyses suggested a causal effect of BMI on serum phosphate (β: -0.01; 95% CI: -0.02, 0.00) but not vice versa. CONCLUSIONS Serum phosphate was inversely associated with BMI and fat% in a population-based study of middle-aged and older adults, with a stronger effect in women than in men. Adjusting for leptin attenuated this relation in women only. MR results suggest a causal effect of BMI on phosphate but not vice versa. An underlying sex dimorphism in phosphate homeostasis should be further explored.
Collapse
Affiliation(s)
| | | | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
58
|
Silva PAO, Lima SMDF, Martins DCM, Amorim IA, Lacorte C, de Almeida JA, Franco OL, Rezende TMB. Concentrated MTA Repair HP reduced biofilm and can cause reparative action at a distance. Int Endod J 2021; 54:1925-1936. [PMID: 34164821 DOI: 10.1111/iej.13592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
AIM To evaluate in vitro whether MTA Repair HP can induce repair processes at a distance, including its effects on biofilm, cell viability, migration, production of TGF-β, phosphate and ALP, evaluated through MTA diluted extracts. METHODOLOGY Initially, antibacterial tests were performed with the bacterium Streptococcus mutans (ATCC 25175) in the presence of MTA extracts (dilutions of 1:1, 1:2 and 1:4). Growth inhibition assay by microdilution in broth, antibiofilm plate assay of young biofilm and antibiofilm assay in confocal microscopy of mature biofilm were carried out. Then, pulp cells were stimulated in the presence of several MTA dilutions, and cell viability (MTT assay), proliferation and migration capacity (scratch assay) were evaluated. To evaluate the capacity of 1:1, 1:2 and 1:4 dilutions of MTA Repair HP to promote the production of important agents of odontogenic differentiation and mineralization, ALP activity, TGF-β secretion and phosphate quantification were measured. Statistical differences were verified using one-way and two-way anova and Tukey's post-tests. RESULTS The test dilutions of MTA Repair HP did not inhibit planktonic S. mutans growth but were able to reduce young and mature S. mutans biofilm (p < 0.001). In addition, none of the MTA Repair HP dilutions was cytotoxic for pulp cells. The 1:2 and 1:4 dilutions of MTA Repair HP induced migration and proliferation of pulp cells (p < 0.05). ALP activity and TGF-β secretion were independent of the tested dilution (p < 0.001). Diluted 1:4 MTA Repair HP produced less phosphate than the more concentrated 1:1 and 1:2 MTA dilutions (p < 0.001). CONCLUSIONS Undiluted MTA Repair HP reduced S. mutans biofilm, when compared to 1:2 and 1:4 MTA dilutions. Furthermore, none of the tested dilutions was cytotoxic to pulp cells. MTA Repair HP promoted cell migration and proliferation at a distance, assessed through the dilution of the MTA. Even from a distance, MTA Repair HP has the ability to participate in some events related to repair, such as migration, proliferation and TGF production.
Collapse
Affiliation(s)
| | - Stella Maris de Freitas Lima
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Curso de Odontologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Danilo César Mota Martins
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.,Curso de Odontologia, Centro Universitário ICESP, Brasília, Brazil
| | - Ingrid Aquino Amorim
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Curso de Odontologia, Centro Universitário UNIEURO, Brasília, Brazil
| | - Cristiano Lacorte
- Laboratório de Biologia Sintética, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Jeesser Alves de Almeida
- Curso de Educação Física, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Taia Maria Berto Rezende
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Curso de Odontologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
59
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
60
|
Xu J, Gao Z, Dou X, Song YY. Needle-like Co3O4 nanoarrays as a dual-responsive amperometric sensor for enzyme-free detection of glucose and phosphate anion. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
61
|
Gao H, Zhang P, Guan T, Yang Y, Chen M, Wei J, Han S, Liu Y, Chen X. Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence. Talanta 2021; 231:122243. [PMID: 33965056 DOI: 10.1016/j.talanta.2021.122243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022]
Abstract
Rapid and accurate detection of phosphate (Pi) in complex biological fluid is of critical importance for timely warning of Pi accumulation and monitoring Pi related pathological process. Up to date, various luminescent probes have been developed for Pi determination in aqueous media. However, the huge obstacles of the current probes suffer from the inherent issues such as time-consuming, tedious preparation and unavoidable background interference during Pi detection. To circumvent this limitation, we proposed a universal and facile strategy to fabricate a novel sensitizer-Ln3+@surfactant micelle probe with time-resolved luminescent (TRL) superiority through the self-assembly of sensitizer, Ln3+ and surfactant. Through this design, the sensitizer-Ln3+ chelate can be encapsulated into the surfactant constructed micelle and Ln3+ luminescence can be substantially lighted up through the effective energy transfer from the coordinated sensitizer and the assistance of Triton X-100. Such high TRL signal can be sensitively and specifically quenched by Pi, which was attributed to the specific coordination competition between sensitizer and Pi towards Ln3+. Benefitting from the background-free interference and highly sensitive TRL response of the sensitizer-Ln3+@surfactant probe, we achieved the rapid, selective and sensitive detection of Pi in the range of 0.5-120 μM with a limit of detection (LOD) of 0.19 μM. Furthermore, the accuracy of the proposed method based on the Ln3+ involved micelle probes was further verified through the quantitation of Pi in real biological samples.
Collapse
Affiliation(s)
- Hang Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Peng Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Tianyong Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yingjie Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| | - Jiaojiao Wei
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Siyuan Han
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yan Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Xueyuan Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, And State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
62
|
Moritoh Y, Abe SI, Akiyama H, Kobayashi A, Koyama R, Hara R, Kasai S, Watanabe M. The enzymatic activity of inositol hexakisphosphate kinase controls circulating phosphate in mammals. Nat Commun 2021; 12:4847. [PMID: 34381031 PMCID: PMC8358040 DOI: 10.1038/s41467-021-24934-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Circulating phosphate levels are tightly controlled within a narrow range in mammals. By using a novel small-molecule inhibitor, we show that the enzymatic activity of inositol hexakisphosphate kinases (IP6K) is essential for phosphate regulation in vivo. IP6K inhibition suppressed XPR1, a phosphate exporter, thereby decreasing cellular phosphate export, which resulted in increased intracellular ATP levels. The in vivo inhibition of IP6K decreased plasma phosphate levels without inhibiting gut intake or kidney reuptake of phosphate, demonstrating a pivotal role of IP6K-regulated cellular phosphate export on circulating phosphate levels. IP6K inhibition-induced decrease in intracellular inositol pyrophosphate, an enzymatic product of IP6K, was correlated with phosphate changes. Chronic IP6K inhibition alleviated hyperphosphataemia, increased kidney ATP, and improved kidney functions in chronic kidney disease rats. Our results demonstrate that the enzymatic activity of IP6K regulates circulating phosphate and intracellular ATP and suggest that IP6K inhibition is a potential novel treatment strategy against hyperphosphataemia. Inositol hexakisphosphate kinase (IP6K) is involved in diverse cellular signalling pathways, but the physiological roles of IP6K in vivo remain unknown in mammals. Here, the authors show that the enzymatic activity of IP6K is essential for phosphate regulation in vivo.
Collapse
Affiliation(s)
| | - Shin-Ichi Abe
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | | | | | | | - Ryoma Hara
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | - Shizuo Kasai
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | | |
Collapse
|
63
|
Xu X, Wei W, Xu J, Huang J, Li L, Han T, Qi J, Sun C, Li Y, Jiang W. The association of minerals intake in three meals with cancer and all-cause mortality: the U.S. National Health and Nutrition Examination Survey, 2003-2014. BMC Cancer 2021; 21:912. [PMID: 34380458 PMCID: PMC8359108 DOI: 10.1186/s12885-021-08643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intake time of diet has recently been demonstrated to be associated with the internal clock and circadian pattern. However, whether and how the intake time of minerals would influence the natural course of cancer was largely unknown. METHODS This study aimed to assess the association of mineral intake at different periods with cancer and all-cause mortality. A total of 27,455 participants aged 18-85 years old in the National Health and Nutrition Examination Survey were recruited. The main exposures were the mineral intakes in the morning, afternoon and evening, which were categorized into quintiles, respectively. The main outcomes were mortality of cancer and all causes. RESULTS During the 178,182 person-years of follow-up, 2680 deaths, including 601 deaths due to cancer, were documented. After adjusting for potential confounders, compared to the participants who were in the lowest quintile(quintile-1) of mineral intakes at dinner, the participants in the highest quintile intake(quintile-5) of dietary potassium, calcium and magnesium had lower mortality risks of cancer (HRpotassium = 0.72, 95% CI:0.55-0.94, P for trend = 0.023; HRcalcium = 0.74, 95% CI:0.57-0.98, P for trend = 0.05; HRmagnesium = 0.75, 95% CI:0.56-0.99, P for trend = 0.037) and all-cause (HRpotassium = 0.83, 95% CI:0.73-0.94, P for trend = 0.012; HRcalcium = 0.87, 95% CI:0.76-0.99, P for trend = 0.025; HRmagnesium = 0.85, 95% CI:0.74-0.97, P for trend = 0.011; HRcopper = 0.80, 95%CI: 0.68-0.94, P for trend = 0.012). Further, equivalently replacing 10% of dietary potassium, calcium and magnesium consumed in the morning with those in the evening were associated with lower mortality risk of cancer (HRpotassium = 0.94, 95%CI:0.91-0.97; HRcalcium = 0.95, 95%CI:0.92-0.98; HRmagnesium = 0.95, 95%CI: 0.92-0.98). CONCLUSIONS This study demonstrated that the optimal intake time of potassium, calcium and magnesium for reducing the risk of cancer and all-cause mortality was in the evening.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
| | - Wei Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
| | - Jiaxu Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
| | - Jiaxin Huang
- Department of Postgraduate, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, People's Republic of China
| | - Li Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081.
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, People's Republic of China, 150081.
| |
Collapse
|
64
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Extracellular Inorganic Phosphate-Induced Release of Reactive Oxygen Species: Roles in Physiological Processes and Disease Development. Int J Mol Sci 2021; 22:ijms22157768. [PMID: 34360534 PMCID: PMC8346167 DOI: 10.3390/ijms22157768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for living organisms and is maintained in equilibrium in the range of 0.8-1.4 mM Pi. Pi is a source of organic constituents for DNA, RNA, and phospholipids and is essential for ATP formation mainly through energy metabolism or cellular signalling modulators. In mitochondria isolated from the brain, liver, and heart, Pi has been shown to induce mitochondrial reactive oxygen species (ROS) release. Therefore, the purpose of this review article was to gather relevant experimental records of the production of Pi-induced reactive species, mainly ROS, to examine their essential roles in physiological processes, such as the development of bone and cartilage and the development of diseases, such as cardiovascular disease, diabetes, muscle atrophy, and male reproductive system impairment. Interestingly, in the presence of different antioxidants or inhibitors of cytoplasmic and mitochondrial Pi transporters, Pi-induced ROS production can be reversed and may be a possible pharmacological target.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| |
Collapse
|
65
|
Gallant KMH, Vorland CJ. Intestinal phosphorus absorption: recent findings in translational and clinical research. Curr Opin Nephrol Hypertens 2021; 30:404-410. [PMID: 34027902 PMCID: PMC8153371 DOI: 10.1097/mnh.0000000000000719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss recent findings in intestinal phosphorus absorption pathways, particularly the contributions of paracellular versus transcellular absorption, and the differential findings from studies using in vitro versus in vivo techniques of assessing phosphorus absorption in experimental animal studies. RECENT FINDINGS Experimental animal studies show that in vivo effects of low phosphorus diets, 1,25D, and chronic kidney disease on intestinal phosphorus absorption efficiency contradict effects previously established ex vivo/in vitro. Recent in vivo studies also suggest that the paracellular pathway accounts for the majority of phosphorus absorption in animals across very low to high luminal phosphate concentrations. The data from experimental animal studies correspond to recent human studies showing the effectiveness of targeted inhibition of paracellular phosphate absorption. Additionally, recent human studies have demonstrated that NaPi-2b inhibition alone does not appear to be effective in lowering serum phosphate levels in patients with chronic kidney disease. Pursuit of other transcellular phosphate transporter inhibitors may still hold promise. SUMMARY In vivo animal and human studies have added to our understanding of intestinal phosphorus absorption pathways, regulation, and mechanisms. This is beneficial for developing effective new strategies for phosphate management in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Kathleen M. Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis-St. Paul, MN
- Department of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN
| | - Colby J. Vorland
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN
| |
Collapse
|
66
|
Zavatta G, Tebben PJ, McCollough CH, Yu L, Vrieze T, Clarke BL. Basal Ganglia Calcification Is Associated With Local and Systemic Metabolic Mechanisms in Adult Hypoparathyroidism. J Clin Endocrinol Metab 2021; 106:1900-1917. [PMID: 33788935 DOI: 10.1210/clinem/dgab162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypoparathyroidism is characterized by low serum calcium, increased serum phosphorus, and inappropriately low or decreased serum parathyroid hormone, which may be associated with soft tissue calcification in the basal ganglia of the brain. OBJECTIVE To assess the prevalence and factors involved in the pathophysiology of basal ganglia calcification (BGC) in the brain in chronic hypoparathyroidism and to evaluate proposed pathophysiologic mechanisms. DESIGN Case-control study with retrospective review of medical records over 20 years. SETTING Single academic medical center. PATIENTS 142 patients with chronic hypoparathyroidism and computed tomography (CT) head scans followed between January 1, 2000 and July 9, 2020, and 426 age- and sex-matched controls with CT head scans over the same interval. INTERVENTIONS None. MAIN OUTCOME MEASURES Demographic, biochemical, and CT head imaging findings, with semiquantitative assessment of volumetric BGC. RESULTS The study found that 25.4% of 142 patients followed for a median of 17 years after diagnosis of chronic hypoparathyroidism had BGC, which developed at a younger age than in controls. BGC was 5.1-fold more common in nonsurgical patients and less common in postsurgical patients. Low serum calcium and low calcium/phosphate ratio correlated with BGC. Neither serum phosphorus nor calcium × phosphate product predicted BGC. Lower serum calcium was associated with greater volume of BGC. The extent of BGC varied widely, with nonsurgical patients generally having a greater volume and distribution of calcification. CONCLUSIONS BGC is associated with low serum calcium and low serum calcium/phosphate ratio, which may be related to severity of the disease, its etiology, or duration of treatment.
Collapse
Affiliation(s)
- Guido Zavatta
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Peter J Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | | | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas Vrieze
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Bart L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
67
|
Figueres L, Beck-Cormier S, Beck L, Marks J. The Complexities of Organ Crosstalk in Phosphate Homeostasis: Time to Put Phosphate Sensing Back in the Limelight. Int J Mol Sci 2021; 22:5701. [PMID: 34071837 PMCID: PMC8199323 DOI: 10.3390/ijms22115701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Phosphate homeostasis is essential for health and is achieved via interaction between the bone, kidney, small intestine, and parathyroid glands and via intricate processes involving phosphate transporters, phosphate sensors, and circulating hormones. Numerous genetic and acquired disorders are associated with disruption in these processes and can lead to significant morbidity and mortality. The role of the kidney in phosphate homeostasis is well known, although it is recognized that the cellular mechanisms in murine models and humans are different. Intestinal phosphate transport also appears to differ in humans and rodents, with recent studies demonstrating a dominant role for the paracellular pathway. The existence of phosphate sensing has been acknowledged for decades; however, the underlying molecular mechanisms are poorly understood. At least three phosphate sensors have emerged. PiT2 and FGFR1c both act as phosphate sensors controlling Fibroblast Growth Factor 23 secretion in bone, whereas the calcium-sensing receptor controls parathyroid hormone secretion in response to extracellular phosphate. All three of the proposed sensors are expressed in the kidney and intestine but their exact function in these organs is unknown. Understanding organ interactions and the mechanisms involved in phosphate sensing requires significant research to develop novel approaches for the treatment of phosphate homeostasis disorders.
Collapse
Affiliation(s)
- Lucile Figueres
- Department of Neuroscience, Physiology and Pharmacology, Royal Free Campus, University College London, London NW3 2PF, UK;
- CHU de Nantes, Université de Nantes, F-44042 Nantes, France
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France; (S.B.-C.); (L.B.)
| | - Laurent Beck
- Inserm, UMR 1229, RMeS Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France; (S.B.-C.); (L.B.)
| | - Joanne Marks
- Department of Neuroscience, Physiology and Pharmacology, Royal Free Campus, University College London, London NW3 2PF, UK;
| |
Collapse
|
68
|
Arnold A, Dennison E, Kovacs CS, Mannstadt M, Rizzoli R, Brandi ML, Clarke B, Thakker RV. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021; 17:261-275. [PMID: 33727709 DOI: 10.1038/s41574-021-00477-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Biomineralization is the process by which organisms produce mineralized tissues. This crucial process makes possible the rigidity and flexibility that the skeleton needs for ambulation and protection of vital organs, and the hardness that teeth require to tear and grind food. The skeleton also serves as a source of mineral in times of short supply, and the intestines absorb and the kidneys reclaim or excrete minerals as needed. This Review focuses on physiological and pathological aspects of the hormonal regulation of biomineralization. We discuss the roles of calcium and inorganic phosphate, dietary intake of minerals and the delicate balance between activators and inhibitors of mineralization. We also highlight the importance of tight regulation of serum concentrations of calcium and phosphate, and the major regulators of biomineralization: parathyroid hormone (PTH), the vitamin D system, vitamin K, fibroblast growth factor 23 (FGF23) and phosphatase enzymes. Finally, we summarize how developmental stresses in the fetus and neonate, and in the mother during pregnancy and lactation, invoke alternative hormonal regulatory pathways to control mineral delivery, skeletal metabolism and biomineralization.
Collapse
Affiliation(s)
- Andrew Arnold
- Division of Endocrinology & Metabolism and Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
69
|
Marstein HS, Godang K, Flatø B, Sjaastad I, Bollerslev J, Sanner H. Bone mineral density and explanatory factors in children and adults with juvenile dermatomyositis at long term follow-up; a cross sectional study. Pediatr Rheumatol Online J 2021; 19:56. [PMID: 33902632 PMCID: PMC8077908 DOI: 10.1186/s12969-021-00543-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Juvenile dermatomyositis (JDM) is the most common idiopathic inflammatory myopathy in children and adolescents. Both the disease and its treatment with glucocorticoids may negatively impact bone formation. In this study we compare BMD in patients (children/adolescence and adults) with long-standing JDM with matched controls; and in patients, explore how general/disease characteristics and bone turnover markers are associated with BMD. METHODS JDM patients (n = 59) were examined median 16.8y (range 6.6-27.0y) after disease onset and compared with 59 age/sex-matched controls. Dual-energy X-ray absorptiometry (DXA) was used to measure BMD of the whole body and lumbar spine (spine) in all participants, and of ultra-distal radius, forearm and total hip in participants ≥20y only. Markers of bone turnover were analysed, and associations with outcomes explored. RESULTS Reduced BMD Z-scores (<-1SD) were found in 19 and 29% of patients and 7 and 9% of controls in whole body and spine, respectively (p-values < 0.05). BMD and BMD Z-scores for whole body and spine were lower in all patients and for < 20y compared with their respective controls. In participants ≥20y, only BMD and BMD Z-score of forearm were lower in the patients versus controls. In patients, BMD Z-scores for whole body and/or spine were found to correlate negatively with prednisolone use at follow-up (yes/no) (age < 20y), inflammatory markers (age ≥ 20y) and levels of interferon gamma-induced protein 10 (IP-10) (both age groups). In all patients, prednisolone use at follow-up (yes/no) and age ≥ 20y were independent correlates of lower BMD Z-scores for whole body and spine, respectively. CONCLUSION In long-term JDM, children have more impairment of BMD than adults in spine and whole-body. Associations with BMD were found for both prednisolone and inflammatory markers, and a novel association was discovered with the biomarker of JDM activity, IP-10.
Collapse
Affiliation(s)
- Henriette Schermacher Marstein
- Institute for Experimental Medical Research and KG Jebsen Center for Cardiac Research, University of Oslo and Oslo University Hospital, Ullevål, 0027, Oslo, Norway. .,Bjørknes University College, Oslo, Norway.
| | - Kristin Godang
- grid.55325.340000 0004 0389 8485Section of Specialized Endocrinology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Medical Clinic, Oslo University Hospital, Oslo, Norway
| | - Berit Flatø
- grid.5510.10000 0004 1936 8921Institute for Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ivar Sjaastad
- grid.5510.10000 0004 1936 8921Institute for Experimental Medical Research and KG Jebsen Center for Cardiac Research, University of Oslo and Oslo University Hospital, Ullevål, 0027 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Jens Bollerslev
- grid.55325.340000 0004 0389 8485Section of Specialized Endocrinology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Medical Clinic, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute for Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Helga Sanner
- grid.510411.00000 0004 0578 6882Bjørknes University College, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
70
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
71
|
Vötterl JC, Klinsoda J, Hennig-Pauka I, Verhovsek D, Metzler-Zebeli BU. Evaluation of serum parameters to predict the dietary intake of calcium and available phosphorus in growing pigs. Transl Anim Sci 2021; 5:txab059. [PMID: 34222820 PMCID: PMC8244991 DOI: 10.1093/tas/txab059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Adequate provision of calcium (Ca) and phosphorus (P) is essential for bone formation and high growth performance in pigs. Nevertheless, reliable serum biomarkers for pig's Ca and P intake are still missing. Here, we used phytase supplementation to alter the dietary available P (aP) level in order to investigate the effect of differences in dietary aP levels on serum parameters related to the Ca and P homeostasis in pigs. Moreover, we assessed whether serum parameters can be used to predict the Ca, total P (tP), and aP intake in barrows and gilts throughout the fattening period. In total, 216 pigs (115 gilts and 101 barrows) were randomly allotted to one of the two diets in three replicate batches, each lasting 56 d (n = 108/diet). Pigs had free access to the diets without (Con) or with phytase (Phy; 650 phytase units/kg) via a transponder-based feeding system. Blood samples were collected on days 2, 23, and 52, and serum parameters were correlated with the daily Ca, tP, and aP intake. The intake of tP, aP, and Ca was overall 14.2%, 13.8%, and 14.2% higher in barrows compared with gilts, respectively (P < 0.001). Concurrently, phytase decreased the intake of tP and Ca by 8.4% and 6.7%, respectively, whereas it raised the intake of aP by 16.3% compared with the Con diet (P < 0.001). Serum levels of fibroblast growth factor 23, alkaline phosphatase (ALP), vitamin D (VitD), and osteocalcin (OCN) decreased with age (P < 0.05). The higher aP intake of pigs fed the Phy diet increased serum P on days 2 and 23 but decreased it on day 52 compared with the Con diet (P = 0.004). Pigs fed the Phy diet had higher serum ALP compared with pigs fed the Con diet on days 23 and 52 (P < 0.05). Correlation analysis between serum parameters and Ca, tP, and aP intake showed age- and sex-related associations. With 12 wk of age, serum P in both sexes, serum VitD in barrows, and serum OCN and ALP in gilts correlated with aP intake (|r| > 0.38), whereas serum OCN correlated with Ca in both sexes' intake (r > 0.50). At 20 wk, serum Ca and ALP in gilts correlated with aP intake, whereas serum P, Ca, and VitD correlated with Ca intake in both sexes (|r| > 0.39). In conclusion, the present results showed that the daily Ca and aP intake could be most reliably estimated from serum parameters for an approximate age of 12 and 20 wk. Serum P and the Ca:P ratio at 12 wk of age and serum VitD at 20 wk of age may be used to predict pig's daily aP intake in both sexes.
Collapse
Affiliation(s)
- Julia C Vötterl
- Unit of Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jutamat Klinsoda
- Institute of Food Research and Product Development, University of Kasetsart, 10900 Bangkok, Thailand
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany
| | - Doris Verhovsek
- University Clinic of Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara U Metzler-Zebeli
- Unit of Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
72
|
Zhou C, Shi Z, Ouyang N, Ruan X. Hyperphosphatemia and Cardiovascular Disease. Front Cell Dev Biol 2021; 9:644363. [PMID: 33748139 PMCID: PMC7970112 DOI: 10.3389/fcell.2021.644363] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphatemia or even serum phosphate levels within the “normal laboratory range” are highly associated with increased cardiovascular disease risk and mortality in the general population and patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the development of hypertension, vascular calcification, cardiac valvular calcification, atherosclerosis, left ventricular hypertrophy and myocardial fibrosis by distinct mechanisms. Therefore, phosphate is considered as a promising therapeutic target to improve the cardiovascular outcome in CKD patients. The current therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate levels to prevent hyperphosphatemia in CKD patients. Large randomized clinical trials with hard endpoints are urgently needed to establish a causal relationship between phosphate excess and cardiovascular disease (CVD) and to determine if lowering serum phosphate constitutes an effective intervention for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengyu Shi
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Ouyang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiongzhong Ruan
- John Moorhead Research Laboratory, Centre for Nephrology, University College London (UCL) Medical School, London, United Kingdom.,Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
73
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
74
|
Zavatta G, Clarke BL. Basal ganglia calcification in hypoparathyroidism and pseudohypoparathyroidism: local and systemic metabolic mechanisms. J Endocrinol Invest 2021; 44:245-253. [PMID: 32661948 DOI: 10.1007/s40618-020-01355-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypoparathyroidism and pseudohypoparathyroidism are rare disorders of mineral metabolism which may be associated with soft tissue calcification in the basal ganglia in the brain, and occasionally the skin and other tissues. The basal ganglia are the most common sites of calcification in the central nervous system in these disorders, and were first associated with this manifestation in a report from the Mayo Clinic in 1939. The reasons why the basal ganglia are a common site of soft tissue calcification in these rare disorders has been a matter of investigation for many years. FINDINGS Due to recent increased understanding of phosphate transport and new insights gained from mRNA expression in the basal ganglia, the pathophysiology of basal ganglia calcification (BGC) is now clearer. There is evidence that the absence of parathyroid hormone in hypoparathyroidism may play a direct role, but this is clearly not the case in pseudohypoparathyroidism, which is associated with increased parathyroid hormone levels. Maintaining the calcium/phosphorus ratio as close to normal as possible, and maintaining normal serum phosphate levels, may help mitigate the progression of BGC. There is no evidence of regression of BGC with conventional treatment, and long-term data with adjunctive or replacement therapy with parathyroid hormone or its analogues are not yet available. PURPOSE OF THE REVIEW This review will focus on the pathophysiology of BGC in hypoparathyroidism and pseudohypoparathyroidism, and review the proposed pathophysiologic mechanisms, as well as the clinical implications of BGC on patient quality of life.
Collapse
Affiliation(s)
- G Zavatta
- Mayo Clinic E18-A, 200 1st Street SW, Rochester, MN, 55905, USA
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - B L Clarke
- Mayo Clinic E18-A, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
75
|
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
76
|
Zhang Y, Wang X, Huang X, Shen L, Zhang L, Shou D, Fan X. Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion. Bone 2021; 143:115619. [PMID: 32858253 DOI: 10.1016/j.bone.2020.115619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
Bone nonunion caused by bacterial infection accounts for bone fractures, bone trauma and bone transplantation surgeries. Severe consequences include delayed unions and amputation and result in functional limitations, work disability, and poor quality of life. However, the mechanism of bone nonunion remains unknown. In this study, we aimed to screen the miRNA biomarkers of bacterial bone infection and investigated whether miRNAs regulate the osteoblasts and thus contribute to bone nonunion. We established a miRNA-mRNA network based on high-throughput RNA sequencing to compare the model rabbits infected with Staphylococcus aureus with the control rabbits. After validation experiments, miRNA-331-3p and fibroblast growth factor 23 (FGF23) were found to be inversely correlated with the pathways of osteoblast mineralization and pathology of infected bone nonunion. In in vitro experiments, miRNA-331-3p was downregulated and FGF23 was upregulated in lipopolysaccharide (LPS)-induced mouse calvarial osteoblasts. Further studies of the mechanism showed that mutated of putative miRNA-331-3p can bind to FGF23 3'-untranslated region sites. MiRNA-331-3p acted as an osteoblast mineralization promoter by directly targeting FGF23. Downregulation of miRNA-331-3p led to inhibition of osteoblast mineralization by regulating the DKK1/β-catenin mediated signaling. Thus, we established an improved animal model and identified new bone-related biomarkers in the infected bone nonunion. The miRNA-331-3p biomarker was demonstrated to regulate osteoblast mineralization by targeting FGF23. The novel mechanism can be used as potential diagnostic biomarkers and therapeutic targets in the infected bone nonunion and other inflammatory bone disorders.
Collapse
Affiliation(s)
- Yang Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaowen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou 310012, China
| | - Li Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
77
|
Lin H, Zhou Y, Lei Q, Lin D, Chen J, Wu C. Effect of inorganic phosphate on migration and osteogenic differentiation of bone marrow mesenchymal stem cells. BMC DEVELOPMENTAL BIOLOGY 2021; 21:1. [PMID: 33407089 PMCID: PMC7788862 DOI: 10.1186/s12861-020-00229-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
Background Phosphate is the major ingredient of bone tissue, and is also an important component of commercial bone substitute materials, bone scaffolds, and implant surface coatings. With the dissolution of the bone substitute materials and the degradation by cells, local ion concentrations will change and affect bone tissue reconstruction. Bone marrow -derived mesenchymal stem cells (BM-MSCs) are main autologous cells to repair injured bone. When bone injure occurs, BM-MSCs migrate to the damaged area, differentiate into osteoblasts, and secrete bioactive factors to promote bone tissue repaired. This study aimed to investigate the effect of inorganic phosphate (Pi) at a series of concentration on migration and osteogenic differentiation of human bone marrow -derived mesenchymal stem cells(hBM-MSCs). Methods The culture of hBM-MSCs in mediums with different concentration of Pi from 2 mM to 10 mM were performed. HBM-MSCs migration were examined with transwell assays. HBM-MSCs proliferation were evaluated by cell counting kit-8 colorimetric method. Osteogenic genes expression were analyzed by real-time reverse transcriptase polymerase chain reaction. Mineralized nodules formation were demonstrated by Alizarin red staining. Result 4–10 mM Pi could effectively promote the migration of hBM-MSCs at 12 h and 18 h. There was no significant difference in the migration number of hBM-MSCs in Pi culture mediums at a concentration of 6, 8, and10mM. 2–10 mM Pi could promote the proliferation of hBM-MSCs to varying degrees in the observation period, while 4–10 mM Pi could promote the osteogenic differentiation and mineralization of hBM-MSCs. Conclusion The findings in our study showed 4-10 mM Pi could promote the migration, osteogenic differentiation, and mineralization of hBM-MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-020-00229-x.
Collapse
Affiliation(s)
- Hengzhang Lin
- Department of Stomatology, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Yong Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qun Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dong Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chuhuo Wu
- Fujian Medical University, Fuzhou, China
| |
Collapse
|
78
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
79
|
Abstract
Inorganic phosphate is a vital constituent of cells and cell membranes, body fluids, and hard tissues. It is a major intracellular divalent anion, participates in many genetic, energy and intermediary metabolic pathways, and is important for bone health. Although we usually think of phosphate mostly in terms of its level in the serum, it is needed for many biological and structural functions of the body. Availability of adequate calcium and inorganic phosphate in the right proportions at the right place is essential for proper acquisition, biomineralization, and maintenance of mass and strength of the skeleton. The three specialized mineralized tissues, bones, teeth, and ossicles, differ from all other tissues in the human body because of their unique ability to mineralize, and the degree and process of mineralization in these tissues also differ to suit the specific functions: locomotion, chewing, and hearing, respectively. Biomineralization is a dynamic, complex, and lifelong process by which precipitations of inorganic calcium and inorganic phosphate divalent ions form biological hard tissues. Understanding the biomineralization process is important for the management of diseases caused by both defective and abnormal mineralization. Hypophosphatemia results in mineralization defects and osteomalacia, and hyperphosphatemia is implicated in abnormal excess calcification and/or ossification, but the exact mechanisms underlying these processes are not fully understood. In this review, we summarize available evidence on the role of phosphate in biomineralization. Other manuscripts in this issue of the journal deal with other relevant aspects of phosphate homeostasis, phosphate signaling and sensing, and disorders resulting from hypo- and hyperphosphatemic states.
Collapse
Affiliation(s)
| | - Sudhaker D Rao
- Division of Endocrinology, Diabetes, and Bone & Mineral Disorders, Henry Ford Hospital, New Center One; Suite # 800, Detroit, MI, 48202, USA.
- Bone & Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
80
|
Ryhänen EM, Schalin-Jäntti C, Matikainen N. Prolonged Hypophosphatemia and Intensive Care After Curative Surgery of Tumor Induced Osteomalacia: A Case Report. Front Endocrinol (Lausanne) 2021; 12:686135. [PMID: 34149623 PMCID: PMC8209372 DOI: 10.3389/fendo.2021.686135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Rare FGF23-producing mesenchymal tumors lead to paraneoplastic tumor-induced osteomalacia (TIO) presenting with phosphate wasting, hypophosphatemia, chronic hypomineralization of the bone, fragility fractures and muscle weakness. Diagnosis of TIO requires exclusion of other etiologies and careful search for a mesenchymal tumor that often is very small and can appear anywhere in the body. Surgical removal of the tumor is the only definitive treatment of TIO. Surgical complications due to chronic hypophosphatemia are not well recognized. CASE DESCRIPTION The current case describes severe fragility fractures in a 58-year-old woman, who lost her ability to walk and was bedridden for two years. First, the initial diagnostic laboratory work-up did not include serum phosphorus measurements, second, the suspicion of adverse effects of pioglitazone as an underlying cause delayed correct diagnosis for at least two years. After biochemical discovery of hyperphosphaturic hypophosphatemia at a tertiary referral centre, a FGF23-producing tumor of the mandible was discovered on physical examination, and then surgically removed. Postoperatively, severe hypophosphatemia and muscle weakness prolonged the need for ventilation support, intensive care and phosphate supplementation. After two years of rehabilitation, the patient was able to walk short distances. The tumor has not recurred, and serum phosphate concentration has remained within normal limits during 3.5 years of follow-up. CONCLUSIONS The case report illustrates knowledge gaps in the diagnostic work-up of rare causes of low bone mass and fragility fractures. Compared to other low phosphate conditions, surgical recovery from TIO-induced hypophosphatemia warrants special attention. Increased alkaline phosphatase concentration may indicate impaired postsurgical recovery due to prolonged hypophosphatemia, underlining the need for proactive perioperative correction of hypophosphatemia.
Collapse
|
81
|
Sellars KB, Ryan BA, Hartery SA, Kirby BJ, Kovacs CS. Murine Fetal Serum Phosphorus is Set Independent of FGF23 and PTH, Except in the Presence of Maternal Phosphate Loading. Endocrinology 2021; 162:5956315. [PMID: 33150413 PMCID: PMC7737482 DOI: 10.1210/endocr/bqaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor 23 (FGF23) appears to play no role until after birth, given unaltered phosphate and bone metabolism in Fgf23- and Klotho-null fetuses. However, in those studies maternal serum phosphorus was normal. We studied whether maternal phosphate loading alters fetal serum phosphorus and invokes a fetal FGF23 or parathyroid hormone (PTH) response. C57BL/6 wild-type (WT) female mice received low (0.3%), normal (0.7%), or high (1.65%) phosphate diets beginning 1 week prior to mating to WT males. Fgf23+/- female mice received the normal or high-phosphate diets 1 week before mating to Fgf23+/- males. One day before expected birth, we harvested maternal and fetal blood, intact fetuses, placentas, and fetal kidneys. Increasing phosphate intake in WT resulted in progressively higher maternal serum phosphorus and FGF23 during pregnancy, while PTH remained undetectable. Fetal serum phosphorus was independent of the maternal phosphorus and PTH remained low, but FGF23 showed a small nonsignificant increase with high maternal serum phosphorus. There were no differences in fetal ash weight and mineral content, or placental gene expression. High phosphate intake in Fgf23+/- mice also increased maternal serum phosphorus and FGF23, but there was no change in PTH. WT fetuses remained unaffected by maternal high-phosphate intake, while Fgf23-null fetuses became hyperphosphatemic but had no change in PTH, skeletal ash weight or mineral content. In conclusion, fetal phosphate metabolism is generally regulated independently of maternal serum phosphorus and fetal FGF23 or PTH. However, maternal phosphate loading reveals that fetal FGF23 can defend against the development of fetal hyperphosphatemia.
Collapse
Affiliation(s)
- K Berit Sellars
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brittany A Ryan
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
- Correspondence: Dr Christopher Kovacs, Health Sciences Centre, 300 Prince Philip Drive, St. John’s, Newfoundland, A1B 3V6, Canada. E-mail:
| |
Collapse
|
82
|
Cheret C, Ganzella M, Preobraschenski J, Jahn R, Ahnert-Hilger G. Vesicular Glutamate Transporters (SLCA17 A6, 7, 8) Control Synaptic Phosphate Levels. Cell Rep 2021; 34:108623. [PMID: 33440152 PMCID: PMC7809625 DOI: 10.1016/j.celrep.2020.108623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 10/27/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate. VGLUTs were originally identified as sodium-dependent transporters of inorganic phosphate (Pi), but the physiological relevance of this activity remains unclear. Heterologous expression of all three VGLUTs greatly augments intracellular Pi levels. Using neuronal models, we show that translocation of VGLUTs to the plasma membrane during exocytosis results in highly increased Pi uptake. VGLUT-mediated Pi influx is counteracted by Pi efflux. Synaptosomes prepared from perinatal VGLUT2-/- mice that are virtually free of VGLUTs show drastically reduced cytosolic Pi levels and fail to import Pi. Glutamate partially competes with sodium (Na+)/Pi (NaPi)-uptake mediated by VGLUTs but does not appear to be transported. A nanobody that blocks glutamate transport by binding to the cytoplasmic domain of VGLUT1 abolishes Pi transport when co-expressed with VGLUT1. We conclude that VGLUTs have a dual function that is essential for both vesicular glutamate loading and Pi restoration in neurons.
Collapse
Affiliation(s)
- Cyril Cheret
- Institute for Integrative Neuroanatomy, Charité, Medical University of Berlin, 10115 Berlin, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany.
| | - Gudrun Ahnert-Hilger
- Institute for Integrative Neuroanatomy, Charité, Medical University of Berlin, 10115 Berlin, Germany; Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
83
|
Taylor-Miller T, Allgrove J. Endocrine Diseases of Newborn: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome "Current Insights Into Disorders of Calcium and Phosphate in the Newborn". Front Pediatr 2021; 9:600490. [PMID: 33614549 PMCID: PMC7892781 DOI: 10.3389/fped.2021.600490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
The physiology and regulation of bone minerals in the fetus and the newborn is significantly different from children and adults. The bone minerals calcium, phosphate and magnesium are all maintained at higher concentrations in utero to achieve adequate bone accretion. This is an integral component of normal fetal development which facilitates safe neonatal transition to post-natal life. When deciphering the cause of bone mineral disorders in newborns, the potential differential diagnosis list is broad and complex, including several extremely rare conditions. Also, significant discoveries including new embryological molecular genetic transcription factors, the role of active placental mineral transport, and hormone regulation factors have changed the understanding of calcium and phosphate homeostasis in the fetus and the newborn. This article will guide clinicians through an updated review of calcium and phosphate physiology, then review specific conditions pertinent to successful neonatal care. Furthermore, with the advancement of increasingly rapid molecular genetic testing, genomics will continue to play a greater role in this area of fetal diagnostics and prognostication.
Collapse
Affiliation(s)
- Tashunka Taylor-Miller
- Department of Endocrinology and Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jeremy Allgrove
- Department of Endocrinology and Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
84
|
Nagasaki A, Nagasaki K, Chu EY, Kear BD, Tadesse WD, Ferebee SE, Li L, Foster BL, Somerman MJ. Ablation of Pyrophosphate Regulators Promotes Periodontal Regeneration. J Dent Res 2020; 100:639-647. [PMID: 33356859 DOI: 10.1177/0022034520981854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biomineralization is regulated by inorganic pyrophosphate (PPi), a potent physiological inhibitor of hydroxyapatite crystal growth. Progressive ankylosis protein (ANK) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) act to increase local extracellular levels of PPi, inhibiting mineralization. The periodontal complex includes 2 mineralized tissues, cementum and alveolar bone (AB), both essential for tooth attachment. Previous studies demonstrated that loss of function of ANK or ENPP1 (reducing PPi) resulted in increased cementum formation, suggesting PPi metabolism may be a target for periodontal regenerative therapies. To compare the effects of genetic ablation of Ank, Enpp1, and both factors concurrently on cementum and AB regeneration, mandibular fenestration defects were created in Ank knockout (Ank KO), Enpp1 mutant (Enpp1asj/asj), and double KO (dKO) mice. Genetic ablation of Ank, Enpp1, or both factors increased cementum regeneration compared to controls at postoperative days (PODs) 15 and 30 (Ank KO: 8-fold, 3-fold; Enpp1asj/asj: 7-fold, 3-fold; dKO: 11-fold, 4-fold, respectively) associated with increased fluorochrome labeling and expression of mineralized tissue markers, dentin matrix protein 1 (Dmp1/DMP1), osteopontin (Spp1/OPN), and bone sialoprotein (Ibsp/BSP). Furthermore, dKO mice featured increased cementum thickness compared to single KOs at POD15 and Ank KO at POD30. No differences were noted in AB volume between genotypes, but osteoblast/osteocyte markers were increased in all KOs, partially mineralized osteoid volume was increased in dKO versus controls at POD15 (3-fold), and mineral density was decreased in Enpp1asj/asj and dKOs at POD30 (6% and 9%, respectively). Increased numbers of osteoclasts were present in regenerated AB of all KOs versus controls. These preclinical studies suggest PPi modulation as a potential and novel approach for cementum regeneration, particularly targeting ENPP1 and/or ANK. Differences in cementum and AB regeneration in response to reduced PPi conditions highlight the need to consider tissue-specific responses in strategies targeting regeneration of the entire periodontal complex.
Collapse
Affiliation(s)
- A Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - E Y Chu
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B D Kear
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - W D Tadesse
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - S E Ferebee
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - L Li
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
85
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
86
|
Ferreira SA, Young G, Jones JR, Rankin S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111393. [PMID: 33254998 DOI: 10.1016/j.msec.2020.111393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
OssiMend® Bioactive (Collagen Matrix Inc., NJ) is a three-component porous composite bone graft device of 45S5 Bioglass/carbonate apatite/collagen. Our in vitro studies showed that conditioned media of the dissolution products of OssiMend Bioactive stimulated primary human osteoblasts to form mineralized bone-like nodules in vitro in one week, in basal culture media (no osteogenic supplements). Osteoblast differentiation was followed by gene expression analysis and a mineralization assay. In contrast, the dissolution products from commercial OssiMend (Bioglass-free carbonate apatite/collagen scaffolds), or from 45S5 Bioglass particulate alone, did not induce the mineralization of the extracellular matrix, but did induce osteoblast differentiation to mature osteoblasts, evidenced by the strong upregulation of BGLAP and IBSP mRNA levels. The calcium ions and soluble silicon species released from 45S5 Bioglass particles and additional phosphorus release from OssiMend mediated the osteostimulatory effects. Medium conditioned with OssiMend Bioactive dissolution had a much higher concentration of phosphorus and silicon than media conditioned with OssiMend and 45S5 Bioglass alone. While OssiMend and OssiMend Bioactive led to calcium precipitation in cell culture media, OssiMend Bioactive produced a higher concentration of soluble silicon than 45S5 Bioglass and higher dissolution of phosphorus than OssiMend. These in vitro results suggest that adding 45S5 Bioglass to OssiMend produces a synergistic osteostimulation effect on primary human osteoblasts. In summary, dissolution products of a Bioglass/carbonate apatite/collagen composite scaffold (OssiMend® Bioactive) stimulate human osteoblast differentiation and mineralization of extracellular matrix in vitro without any osteogenic supplements. The mineralization was faster than for dissolution products of ordinary Bioglass.
Collapse
Affiliation(s)
- Silvia A Ferreira
- National Heart & Lung Institute, Imperial College London, London, UK.
| | - Gloria Young
- Department of Materials, Imperial College London, London, UK.
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK.
| | - Sara Rankin
- National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
87
|
Robinson ME, AlQuorain H, Murshed M, Rauch F. Mineralized tissues in hypophosphatemic rickets. Pediatr Nephrol 2020; 35:1843-1854. [PMID: 31392510 DOI: 10.1007/s00467-019-04290-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
Hypophosphatemic rickets is caused by renal phosphate wasting that is most commonly due to X-linked dominant mutations in PHEX. PHEX mutations cause hypophosphatemia indirectly, through the increased expression of fibroblast growth factor 23 (FGF23) by osteocytes. FGF23 decreases renal phosphate reabsorption and thereby increases phosphate excretion. The lack of phosphate leads to a mineralization defect at the level of growth plates (rickets), bone tissue (osteomalacia), and teeth, where the defect facilitates the formation of abscesses. The bone tissue immediately adjacent to osteocytes often remains unmineralized ("periosteocytic lesions"), highlighting the osteocyte defect in this disorder. Common clinical features of XLH include deformities of the lower extremities, short stature, enthesopathies, dental abscesses, as well as skull abnormalities such as craniosynostosis and Chiari I malformation. For the past four decades, XLH has been treated by oral phosphate supplementation and calcitriol, which improves rickets and osteomalacia and the dental manifestations, but often does not resolve all aspects of the mineralization defects. A newer treatment approach using inactivating FGF23 antibodies leads to more stable control of serum inorganic phosphorus levels and seems to heal rickets more reliably. However, the long-term benefits of FGF23 antibody treatment remain to be elucidated.
Collapse
Affiliation(s)
- Marie-Eve Robinson
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Haitham AlQuorain
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Monzur Murshed
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada.
| |
Collapse
|
88
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
89
|
Wang L, Wang J, Zhou X, Sun J, Zhu B, Duan C, Chen P, Guo X, Zhang T, Guo H. A New Self-Healing Hydrogel Containing hucMSC-Derived Exosomes Promotes Bone Regeneration. Front Bioeng Biotechnol 2020; 8:564731. [PMID: 33042966 PMCID: PMC7521201 DOI: 10.3389/fbioe.2020.564731] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fractures are a medical disease with a high incidence, and about 5-10% of patients need bone transplantation to fill the defect. In this study, we aimed to synthesize a new type of coralline hydroxyapatite (CHA)/silk fibroin (SF)/glycol chitosan (GCS)/difunctionalized polyethylene glycol (DF-PEG) self-healing hydrogel and to evaluate the therapeutic effects of this novel self-healing hydrogel as a human umbilical cord mesenchymal stem cells (hucMSC)-derived exosome carrier on bone defects in SD rat. METHODS HucMSCs were isolated from fetal umbilical cord tissue and characterized by surface antigen analysis and pluripotent differentiation in vitro. The cell supernatant after ultracentrifugation was collected to isolate exosomes, which were characterized by transmission electron microscopy and western blot analysis. In vitro cell induction experiments were performed to observe the effects of hucMSC-derived exosomes on the biological behavior of mouse osteoblast progenitor cells (mOPCs) and human umbilical vein endothelial cells (HUVECs). The CHA/SF/GCS/DF-PEG hydrogels were prepared using DF-PEG as the gel factor and then structural and physical properties were characterized. HucMSCs-derived exosomes were added to the hydrogel and their effects were evaluated in SD rats with induced femoral condyle defect. These effects were analyzed by X-ray and micro-CT imaging and H&E, Masson and immunohistochemistry staining. RESULTS HucMSC-derived exosomes can promote osteogenic differentiation of mOPCs and promote the proliferation and migration of HUVECs. The CHA/SF/GCS/DF-PEG hydrogel has a high self-healing capacity, perfect surface morphology and the precipitated CHA crystals have a small size and low crystallinity similar to natural bone minerals. The MTT results showed that the hydrogel was non-toxic and have a good biocompatibility. The in vivo studies have shown that the hydrogel containing exosomes could effectively promote healing of rat bone defect. The histological analysis revealed more new bone tissue and morphogenetic protein 2 (BMP-2) in the hydrogel-exosome group. In addition, the hydrogel-exosome group had the highest microvessel density. CONCLUSION A self-healing CHA/SF/GCS/DF-PEG hydrogel was successfully prepared. The hydrogel has excellent comprehensive properties and is expected to become a new type of bone graft material. This hydrogel has the effect of promoting bone repair, which is more significant after the addition of hucMSC-derived exosomes.
Collapse
Affiliation(s)
- Li Wang
- Graduate School, Jinzhou Medical University, Jinzhou, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jian Wang
- Medical Devices Control, National Institutes for Food and Drug Control, Beijng, China
| | - Xiangbin Zhou
- Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Jie Sun
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Biao Zhu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cuimi Duan
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | - Peng Chen
- Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | - Tong Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongyan Guo
- Graduate School, Jinzhou Medical University, Jinzhou, China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
90
|
Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone 2020; 138:115447. [PMID: 32454257 DOI: 10.1016/j.bone.2020.115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.
Collapse
Affiliation(s)
- N Reznikov
- Object Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada.
| | - B Hoac
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - D J Buss
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - W N Addison
- Department of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - N M T Barros
- Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - M D McKee
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
91
|
Shao J, Ruan C, Xie H, Chu PK, Yu X. Photochemical Activity of Black Phosphorus for Near-Infrared Light Controlled In Situ Biomineralization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000439. [PMID: 32714754 PMCID: PMC7375256 DOI: 10.1002/advs.202000439] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Indexed: 05/10/2023]
Abstract
The photochemical activity of black phosphorus (BP) in near-infrared (NIR) light controlled in situ biomineralization is investigated. Owing to the excellent NIR absorption, irradiation with NIR light not only promotes degradation of BP into PO4 3-, but also enhances the chemical activity to accelerate the reaction between PO4 3- and Ca2+ and promote in situ biomineralization. Mineralization of hydrogels is demonstrated by the preparation of BP incorporated hydrogel (BP@Hydrogel) which delivers greatly improved biomineralization performance under NIR illumination. The biomineralization process which can be controlled by modulating the light irradiation time and location has a high potential in controlling the mechanical properties and osteoinductive ability in tissue engineering. This study also provides insights into the degradation, photochemical activity, and new biological/biomedical applications of BP.
Collapse
Affiliation(s)
- Jundong Shao
- Materials and Interfaces CenterShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- International Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringHealth Science CenterShenzhen UniversityShenzhen518060P. R. China
| | - Changshun Ruan
- Materials and Interfaces CenterShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Hanhan Xie
- Materials and Interfaces CenterShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
| | - Xue‐Feng Yu
- Materials and Interfaces CenterShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| |
Collapse
|
92
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
93
|
Chande S, Caballero D, Ho BB, Fetene J, Serna J, Pesta D, Nasiri A, Jurczak M, Chavkin NW, Hernando N, Giachelli CM, Wagner CA, Zeiss C, Shulman GI, Bergwitz C. Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival. Sci Rep 2020; 10:3069. [PMID: 32080237 PMCID: PMC7033257 DOI: 10.1038/s41598-020-59430-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/29/2020] [Indexed: 01/25/2023] Open
Abstract
Low blood phosphate (Pi) reduces muscle function in hypophosphatemic disorders. Which Pi transporters are required and whether hormonal changes due to hypophosphatemia contribute to muscle function is unknown. To address these questions we generated a series of conditional knockout mice lacking one or both house-keeping Pi transporters Pit1 and Pit2 in skeletal muscle (sm), using the postnatally expressed human skeletal actin-cre. Simultaneous conditional deletion of both transporters caused skeletal muscle atrophy, resulting in death by postnatal day P13. smPit1-/-, smPit2-/- and three allele mutants are fertile and have normal body weights, suggesting a high degree of redundance for the two transporters in skeletal muscle. However, these mice show a gene-dose dependent reduction in running activity also seen in another hypophosphatemic model (Hyp mice). In contrast to Hyp mice, grip strength is preserved. Further evaluation of the mechanism shows reduced ERK1/2 activation and stimulation of AMP kinase in skeletal muscle from smPit1-/-; smPit2-/- mice consistent with energy-stress. Similarly, C2C12 myoblasts show a reduced oxygen consumption rate mediated by Pi transport-dependent and ERK1/2-dependent metabolic Pi sensing pathways. In conclusion, we here show that Pit1 and Pit2 are essential for normal myofiber function and survival, insights which may improve management of hypophosphatemic myopathy.
Collapse
Affiliation(s)
- Sampada Chande
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Caballero
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan Fetene
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Juan Serna
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Dominik Pesta
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- German Diabetes Center, Düsseldorf, Germany, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Ali Nasiri
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Jurczak
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Nicholas W Chavkin
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Switzerland and National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Switzerland and National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Caroline Zeiss
- Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
94
|
Ma Y, Zhang Y, Li X, Yang P, Yue JY, Jiang Y, Tang B. Linker-Eliminated Nano Metal-Organic Framework Fluorescent Probe for Highly Selective and Sensitive Phosphate Ratiometric Detection in Water and Body Fluids. Anal Chem 2020; 92:3722-3727. [PMID: 32022542 DOI: 10.1021/acs.analchem.9b04958] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphate is an important anion in both the aquatic environment and biological systems. The search for a selective and sensitive phosphate ratiometric fluorescent probe to quantify the phosphate level in water samples and body fluids is of great significance for the protection of the ecological environment and human health. Here, a porphyrin-based nano metal-organic framework (NMOF), PCN-224, was successfully exploited as a simple but highly sensitive and selective single-component ratiometric fluorescent probe with accurate composition and measurable structure for the quantitative determination of phosphate, based on the interesting double-emission fluorescence of the porphyrin ligand itself. Compared with other zirconium-based NMOF probes for phosphate, the reduced number of connections for ZrO clusters with the ligand in PCN-224 obtained by a linker-elimination strategy simultaneously provides more active recognition sites for phosphate, which effectively improves the sensitivity of the zirconium-based NMOF probes. The detection limit of the probe is only 54 nM. Additionally, the accuracy of the ratiometric detection based on this probe was further proved by the detection of phosphate in human serum and drinking water.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yingqiu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiangyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
95
|
Control of XPR1-dependent cellular phosphate efflux by InsP 8 is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc Natl Acad Sci U S A 2020; 117:3568-3574. [PMID: 32019887 DOI: 10.1073/pnas.1908830117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (K d = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
Collapse
|
96
|
Lorenzo‐Orts L, Couto D, Hothorn M. Identity and functions of inorganic and inositol polyphosphates in plants. THE NEW PHYTOLOGIST 2020; 225:637-652. [PMID: 31423587 PMCID: PMC6973038 DOI: 10.1111/nph.16129] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
Inorganic polyphosphates (polyPs) and inositol pyrophosphates (PP-InsPs) form important stores of inorganic phosphate and can act as energy metabolites and signaling molecules. Here we review our current understanding of polyP and inositol phosphate (InsP) metabolism and physiology in plants. We outline methods for polyP and InsP detection, discuss the known plant enzymes involved in their synthesis and breakdown, and summarize the potential physiological and signaling functions for these enigmatic molecules in plants.
Collapse
Affiliation(s)
- Laura Lorenzo‐Orts
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Daniel Couto
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| | - Michael Hothorn
- Structural Plant Biology LaboratoryDepartment of Botany and Plant BiologyUniversity of Geneva30 Quai E. AnsermetGeneva1211Switzerland
| |
Collapse
|
97
|
Vogt I, Haffner D, Leifheit-Nestler M. FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins (Basel) 2019; 11:E647. [PMID: 31698866 PMCID: PMC6891626 DOI: 10.3390/toxins11110647] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of fibroblast growth factor 23 (FGF23) and phosphate are highly associated with increased cardiovascular disease and mortality in patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the secretion of the phosphaturic hormone FGF23. In early stages of CKD, FGF23 prevents the increase of serum phosphate levels and thereby attenuates phosphate-induced vascular calcification, whereas in end-stage kidney disease, FGF23 fails to maintain phosphate homeostasis. Both hyperphosphatemia and elevated FGF23 levels promote the development of hypertension, vascular calcification, and left ventricular hypertrophy by distinct mechanisms. Therefore, FGF23 and phosphate are considered promising therapeutic targets to improve the cardiovascular outcome in CKD patients. Previous therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate, and consequently FGF23 levels. However, clinical trials proving the effects on the cardiovascular outcome are lacking. Recent publications provide evidence for new promising therapeutic interventions, such as magnesium supplementation and direct targeting of phosphate and FGF receptors to prevent toxicity of FGF23 and hyperphosphatemia in CKD patients.
Collapse
Affiliation(s)
| | | | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases Hannover Medical School, 30625 Hannover, Germany; (I.V.); (D.H.)
| |
Collapse
|
98
|
Wang Y, Weng W, Xu H, Luo Y, Guo D, Li D, Li D. Negatively charged molybdate mediated nitrogen-doped graphene quantum dots as a fluorescence turn on probe for phosphate ion in aqueous media and living cells. Anal Chim Acta 2019; 1080:196-205. [DOI: 10.1016/j.aca.2019.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
|
99
|
Chande S, Ho B, Fetene J, Bergwitz C. Transgenic mouse model for conditional expression of influenza hemagglutinin-tagged human SLC20A1/PIT1. PLoS One 2019; 14:e0223052. [PMID: 31613887 PMCID: PMC6793878 DOI: 10.1371/journal.pone.0223052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022] Open
Abstract
To further investigate the role of the phosphate (Pi) transporter PIT1 in Pi homeostasis and tissue mineralization, we developed a transgenic mouse expressing the C-terminal influenza hemagglutinin (HA) epitope-tagged human PIT1 transporter under control of the cytomegalovirus/chicken beta actin/rabbit beta-globin gene (CAG) promotor and a loxP-stop-loxP (LSL) cassette permitting conditional activation of transgene expression (LSL-HA-hPITtg/+). For an initial characterization of this conditional mouse model, germline excision of the LSL cassette was performed to induce expression of the transgene in all mouse tissues (HA-hPIT1tg/+). Recombination was confirmed using genomic DNA obtained from blood samples of these mice. Furthermore, expression of HA-hPIT1 was found to be at least 10-fold above endogenous mouse Pit1 in total RNA isolated from multiple tissues and from cultured primary calvaria osteoblasts (PCOB) estimated by semi-quantitative RT-PCR. Robust expression of the HA-hPIT1 protein was also observed upon immunoblot analysis in most tissues and permits HA-mediated immunoprecipitation of the transporter. Characterization of the phenotype of HA-hPIT1tg/+ mice at 80 days of age when fed a standard chow (0.7% Pi and 1% calcium) showed elevated plasma Pi, but normal plasma iPTH, iFGF23, serum calcium, BUN, 1,25-dihydroxy vitamin D levels and urine Pi, calcium and protein excretion when compared to WT littermates. Likewise, no change in bone mineral density was observed upon uCT analysis of the distal femur obtained from these mice. In conclusion, heterozygous overexpression of HA-hPIT1 is compatible with life and causes hyperphosphatemia while bone and mineral metabolism of these mice are otherwise normal.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, United States of America
| | - Bryan Ho
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jonathan Fetene
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, United States of America
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
100
|
Reyer H, Oster M, Wittenburg D, Murani E, Ponsuksili S, Wimmers K. Genetic Contribution to Variation in Blood Calcium, Phosphorus, and Alkaline Phosphatase Activity in Pigs. Front Genet 2019; 10:590. [PMID: 31316547 PMCID: PMC6610066 DOI: 10.3389/fgene.2019.00590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Blood values of calcium (Ca), inorganic phosphorus (IP), and alkaline phosphatase activity (ALP) are valuable indicators for mineral status and bone mineralization. The mineral homeostasis is maintained by absorption, retention, and excretion processes employing a number of known and unknown sensing and regulating factors with implications on immunity. Due to the high inter-individual variation of Ca and P levels in the blood of pigs and to clarify molecular contributions to this variation, the genetics of hematological traits related to the Ca and P balance were investigated in a German Landrace population, integrating both single-locus and multi-locus genome-wide association study (GWAS) approaches. Genomic heritability estimates suggest a moderate genetic contribution to the variation of hematological Ca (N = 456), IP (N = 1049), ALP (N = 439), and the Ca/P ratio (N = 455), with values ranging from 0.27 to 0.54. The genome-wide analysis of markers adds a number of genomic regions to the list of quantitative trait loci, some of which overlap with previous results. Despite the gaps in knowledge of genes involved in Ca and P metabolism, genes like THBS2, SHH, PTPRT, PTGS1, and FRAS1 with reported connections to bone metabolism were derived from the significantly associated genomic regions. Additionally, genomic regions included TRAFD1 and genes coding for phosphate transporters (SLC17A1-SLC17A4), which are linked to Ca and P homeostasis. The study calls for improved functional annotation of the proposed candidate genes to derive features involved in maintaining Ca and P balance. This gene information can be exploited to diagnose and predict characteristics of micronutrient utilization, bone development, and a well-functioning musculoskeletal system in pig husbandry and breeding.
Collapse
Affiliation(s)
- Henry Reyer
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Dörte Wittenburg
- Biomathematics and Bioinformatics Unit, Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Eduard Murani
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Functional Genome Analysis Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.,Department of Animal Breeding and Genetics, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|