51
|
Proteomics and Metabolomics Profiling of Platelets and Plasma Mediators of Thrombo-Inflammation in Gestational Hypertension and Preeclampsia. Cells 2022; 11:cells11081256. [PMID: 35455936 PMCID: PMC9027992 DOI: 10.3390/cells11081256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets may be pivotal mediators of the thrombotic and coagulopathic complications of preeclampsia (PE), linking inflammation and thrombosis with endothelial and vascular dysfunction. Both PE and gestational hypertension (GH) fall within the spectrum of hypertensive complications of pregnancy, with GH being a risk factor for preeclampsia. However, it is unclear what biomarkers distinguish PE from GH. Using a discovery size cohort, we aimed to characterize specific plasma and platelet thrombo-inflammatory drivers indicative of PE and differentiate PE from GH. We performed multiplex immunoassays, platelet and plasma quantitative proteomics and metabolomics of PE patients, comparing with non-pregnant (NP), healthy pregnant controls (PC) and GH participants. The expression pattern of plasma proteins and metabolites in PE/GH platelets was distinct from that of NP and PC. Whilst procoagulation in PC may be fibrinogen driven, inter-alpha-trypsin inhibitors ITIH2 and ITIH3 are likely mediators of thrombo-inflammation in GH and PE, and fibronectin and S100A8/9 may be major procoagulant agonists in PE only. Also enriched in PE were CCL1 and CCL27 plasma cytokines, and the platelet leucine-rich repeat-containing protein 27 and 42 (LRRC27/42), whose effects on platelets were explored using STRING analysis. Through protein-protein interactions analysis, we generated a new hypothesis for platelets’ contribution to the thrombo-inflammatory states of preeclampsia.
Collapse
|
52
|
Zhang J, Yuan C, Li E, Guo Y, Cui J, Liu H, Hao X, Guo L. The significance of serum S100 calcium-binding protein A4 in silicosis. BMC Pulm Med 2022; 22:127. [PMID: 35379204 PMCID: PMC8981710 DOI: 10.1186/s12890-022-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Silicosis is a chronic occupational pulmonary disease characterized by persistent inflammation and irreversible fibrosis. Considerable evidences now indicate that S100 calcium-binding protein A4 (S100A4) has been associated with fibrotic diseases. However, the role of S100A4 in silicosis is still unclear. Methods In this study, serum levels of S100A4, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in patients with silicosis (n = 42) and control group (CG, n = 12) were measured by ELISA. S100A4 expression in lung tissues and primary alveolar macrophages (AMs) of mice with and without silicosis was detected by immunohistochemistry (IHC)/real-time PCR. The correlations between S100A4 and cytokines or lung function were assessed by Spearman's rank correlation analyses. Results Compared with CG, the levels of S100A4 were significantly increased in silicosis patients (70.84 (46.22, 102.46) ng/ml vs (49.84 (42.86, 60.02) ng/ml). The secretions of TGF-β1, CTGF, IL-6 and TNF-α in silicosis group were significantly higher than that in control group (p < 0.05). Serum S100A4 levels were positively correlated with TGF-β1 and IL-6, while were negatively correlated with lung function parameters including percentage of predicted forced vital capacity (FVC%pre), maximum vital capacity (Vcmax), deep inspiratory capacity (IC) and peak expiratory flow at 75% of vital capacity (PEF75). In receiver operating characteristic (ROC) analyses, S100A4 > 61.7 ng/ml had 63.4% sensitivity and 83.3% specificity for silicosis, and the area under the curve (AUC) was 0.707. Furthermore, immunostaining of lung tissues showed the accumulation of S100A4-positive cells in the areas of nodules of silicotic mice. The mRNA expression of S100A4 in the lung tissues and AMs of silicotic mice were significantly higher than controls. Conclusion These data suggested that increased S100A4 might contribute to the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Cuifang Yuan
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Enhong Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yiming Guo
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jie Cui
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiaohui Hao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Lingli Guo
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
53
|
Centa M, Weinstein EG, Clemente JC, Faith JJ, Fiel MI, Lyallpuri R, Herbin O, Alexandropoulos K. Impaired central tolerance induces changes in the gut microbiota that exacerbate autoimmune hepatitis. J Autoimmun 2022; 128:102808. [PMID: 35276587 PMCID: PMC8963681 DOI: 10.1016/j.jaut.2022.102808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
Abstract
Medullary thymic epithelial cells (mTECs) induce T cell tolerance in the thymus through the elimination of self-reactive thymocytes. Commensal bacteria are also critical for shaping T cell responses in the gut and distal organs. We previously showed that mice depleted of mTECs (Traf6ΔTEC) generated autoreactive T cells and developed autoimmune hepatitis (AIH). In this report, we found that Toll-like receptor (TLR)-mediated microbial sensing on liver hematopoietic cells and the gut microbiota contributed to AIH development in Traf6ΔTEC mice. While adoptive transfer of thymic Traf6ΔTEC T cells in immune-deficient mice was sufficient for AIH development, colonization of germ-free mice with Traf6ΔTEC microbiota failed to induce AIH, suggesting that the gut microbiota contributes to but is not sufficient for AIH development. Microbiota-mediated exacerbation of AIH associated with increased numbers of hepatic Foxp3+ T cells and their increase was proportional to the degree of inflammation. The contribution of the gut microbiota to AIH development associated with an altered microbial signature whose composition was influenced by the qualitative nature of the thymic T cell compartment. These results suggest that aberrant selection of T cells in the thymus can induce changes in the gut microbiota that lead to exacerbation of organ-specific autoimmunity and AIH. Our results add to our understanding of the mechanisms of AIH development and create a platform towards developing novel therapeutic approaches for treating this disease.
Collapse
Affiliation(s)
- Monica Centa
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jose C Clemente
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J Faith
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robby Lyallpuri
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Konstantina Alexandropoulos
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
54
|
Hu Q, Wu C, Yu J, Luo J, Peng X. Angelica sinensis polysaccharide improves rheumatoid arthritis by modifying the expression of intestinal Cldn5, Slit3 and Rgs18 through gut microbiota. Int J Biol Macromol 2022; 209:153-161. [PMID: 35318077 DOI: 10.1016/j.ijbiomac.2022.03.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with a high incidence. Recent studies have demonstrated that diet can contribute to the development and progression of RA. Indeed, non-starch polysaccharides (NSPs) were known to be related to the improvement of RA. In this study, the collagen-induced rats were administrated with Angelica sinensis polysaccharide (ASP) at 200 mg/kg (L), 400 mg/kg (M), or 800 mg/kg (H). Results showed that ASP could reduce joint swelling and significantly inhibit anti-CII-antibodies and pro-inflammatory factors in RA, H group showed the best treatment among them. Further analysis using 16S rDNA sequencing suggested that ASP could shape the gut microbiota composition. Several key bacteria, including norank_f__norank_o__Clostridia_UCG-014, Lactobacillus, norank_f__Oscillospiraceae, and norank_f__Desulfovibrionaceae, were found to be related to the development of RA. The colonic transcriptome showed that ASP could restore RA-induced intestinal dysfunction, such as tight junction disarrangement, by upregulating Cldn5. The balance between osteoblasts and osteoclasts might be modified by regulating the expression of Slit3 and Rgs18 to alleviate RA, which may be correlated with gut microbiota. Our results suggested that ASP improved RA by regulating gut microbiota and gene expression, revealing a positive relationship between dietary patterns and RA.
Collapse
Affiliation(s)
- Qing Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Changyu Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
55
|
The S100A7 nuclear interactors in autoimmune diseases: a coevolutionary study in mammals. Immunogenetics 2022; 74:271-284. [PMID: 35174412 DOI: 10.1007/s00251-022-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/10/2022] [Indexed: 11/05/2022]
Abstract
S100A7, a member of the S100A family of Ca2+-binding proteins, is considered a key effector in immune response. In particular, S100A7 dysregulation has been associated with several diseases, including autoimmune disorders. At the nuclear level, S100A7 interacts with several protein-binding partners which are involved in transcriptional regulation and DNA repair. By using the BioGRID and GAAD databases, S100A7 nuclear interactors with a putative involvement in autoimmune diseases were retrieved. We selected fatty acid-binding protein 5 (FABP5), autoimmune regulator (AIRE), cystic fibrosis transmembrane conductance regulator (CFTR), chromodomain helicase DNA-binding protein 4 (CHD4), epidermal growth factor receptor (EGFR), estrogen receptor 1 (ESR1), histone deacetylase 2 (HDAC2), v-myc avian myelocytomatosis viral oncogene homolog (MYC), protection of telomeres protein 1 (POT1), telomeric repeat-binding factor (NIMA-interacting) 1 (TERF1), telomeric repeat-binding factor 2 (TERF2), and Zic family member 1 (ZIC1). Linear correlation coefficients between interprotein distances were calculated with MirrorTree. Coevolution clusters were also identified with the use of a recent version of the Blocks in Sequences (BIS2) algorithm implemented in the BIS2Analyzer web server. Analysis of pair positions identified interprotein coevolving clusters between S100A7 and the binding partners CFTR and TERF1. Such findings could guide further analysis to better elucidate the function of S100A7 and its binding partners and to design drugs targeting for these molecules in autoimmune diseases.
Collapse
|
56
|
Associations among S100A4, Sphingosine-1-Phosphate, and Pulmonary Function in Patients with Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6041471. [PMID: 35165531 PMCID: PMC8837900 DOI: 10.1155/2022/6041471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022]
Abstract
Background. S100A4 is a member of the S100 calcium-binding protein family and is increased in patients with chronic obstructive pulmonary disease (COPD). Sphingosine-1-phosphate (S1P) is a naturally occurring bioactive sphingolipid, which regulates the adhesion between the cells and the extracellular matrix and affects cell migration and differentiation. The goal of this study was to analyze the correlations among S100A4, S1P, and pulmonary function among COPD patients. Methods. All 139 serum samples and 15 lung specimens were collected in COPD patients and control subjects. S100A4 and S1P were detected in two groups. The markers of fibrosis and epithelial-mesenchymal transition (EMT) were measured in the lungs of COPD patients and control subjects. Results. The protein expression of S100A4 was higher in the lungs and serum of COPD patients than control cases. Additionally, serum S100A4 was inversely associated with pulmonary function among COPD patients. Meanwhile, collagen deposition and EMT nuclear transcription factors were elevated in the lungs of COPD patients. Moreover, the protein expression of S1P was increased in the serum of COPD patients. Serum S1P was gradually increased along with pulmonary function decline in COPD patients. Further correlation analysis revealed that serum S1P was negatively associated with pulmonary function in COPD patients. Furthermore, there was a positive correlation between S1P and S100A4 in COPD patients. Conclusions. These results provide evidence that the elevation of S100A4 and S1P may be involved in the onset and progression of COPD.
Collapse
|
57
|
Wu YY, Li XF, Wu S, Niu XN, Yin SQ, Huang C, Li J. Role of the S100 protein family in rheumatoid arthritis. Arthritis Res Ther 2022; 24:35. [PMID: 35101111 PMCID: PMC8802512 DOI: 10.1186/s13075-022-02727-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/16/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease characterized by synovial hyperplasia, inflammatory cell infiltration, and proliferation of inflammatory tissue (angiogranuloma). The destruction of joints and surrounding tissues eventually causes joint deformities and dysfunction or even loss. The S100 protein family is one of the biggest subtribes in the calcium-binding protein family and has more than 20 members. The overexpression of most S100 proteins in rheumatoid arthritis is closely related to its pathogenesis. This paper reviews the relationship between S100 proteins and the occurrence and development of rheumatoid arthritis. It will provide insights into the development of new clinical diagnostic markers and therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Postdoctoral Station of Clinical Medicine of Anhui Medical University, Hefei, Anhui, China
| | - Sha Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Su-Qin Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
58
|
Tan G, Baby B, Zhou Y, Wu T. Emerging Molecular Markers Towards Potential Diagnostic Panels for Lupus. Front Immunol 2022; 12:808839. [PMID: 35095896 PMCID: PMC8792845 DOI: 10.3389/fimmu.2021.808839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease which can affect various tissues and organs, posing significant challenges for clinical diagnosis and treatment. The etiology of SLE is highly complex with contributions from environmental factors, stochastic factors as well as genetic susceptibility. The current criteria for diagnosing SLE is based primarily on a combination of clinical presentations and traditional lab testing. However, these tests have suboptimal sensitivity and specificity. They are unable to indicate disease cause or guide physicians in decision-making for treatment. Therefore, there is an urgent need to develop a more accurate and robust tool for effective clinical management and drug development in lupus patients. It is fortunate that the emerging Omics have empowered scientists in the discovery and identification of potential novel biomarkers of SLE, especially the markers from blood, urine, cerebrospinal fluids (CSF), and other bodily fluids. However, many of these markers have not been carefully validated for clinical use. In addition, it is apparent that individual biomarkers lack sensitivity or specificity. This review summarizes the sensitivity, specificity and diagnostic value of emerging biomarkers from recent studies, and discusses the potential of these markers in the development of biomarker panel based diagnostics or disease monitoring system in SLE.
Collapse
Affiliation(s)
- Gongjun Tan
- Department of Clinical Laboratory, Zhuhai Maternal and Child Healthcare Hospital, Zhuhai, China
| | - Binila Baby
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yuqiu Zhou
- Department of Clinical Laboratory, Zhuhai Maternal and Child Healthcare Hospital, Zhuhai, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
59
|
An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease. Int J Mol Sci 2021; 22:ijms222313038. [PMID: 34884842 PMCID: PMC8657670 DOI: 10.3390/ijms222313038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are innate immune phagocytes that play a key role in immune defense against invading pathogens. The main offensive mechanisms of neutrophils are the phagocytosis of pathogens, release of granules, and production of cytokines. The formation of neutrophil extracellular traps (NETs) has been described as a novel defense mechanism in the literature. NETs are a network of fibers assembled from chromatin deoxyribonucleic acid, histones, and neutrophil granule proteins that have the ability to kill pathogens, while they can also cause toxic effects in hosts. Activated neutrophils with NET formation stimulate autoimmune responses related to a wide range of inflammatory autoimmune diseases by exposing autoantigens in susceptible individuals. The association between increased NET formation and autoimmunity was first reported in antineutrophil cytoplasmic antibody-related vasculitis, and the role of NETs in various diseases, including systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, has since been elucidated in research. Herein, we discuss the mechanistic role of neutrophils, including NETs, in the pathogenesis of systemic juvenile idiopathic arthritis (SJIA) and adult-onset Still’s disease (AOSD), and provide their clinical values as biomarkers for monitoring and prognosis.
Collapse
|
60
|
Xiao H, Fan Y, Li Y, Dong J, Zhang S, Wang B, Liu J, Liu X, Fan S, Guan J, Cui M. Oral microbiota transplantation fights against head and neck radiotherapy-induced oral mucositis in mice. Comput Struct Biotechnol J 2021; 19:5898-5910. [PMID: 34815834 PMCID: PMC8579069 DOI: 10.1016/j.csbj.2021.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Oral mucositis is a common radiotherapy-induced complication among nasal, oral and laryngeal cancer (NOALC) patients. This complication leads to decreased quality of life and has few treatments. Here, fractionated radiation was performed to mimic radiotherapy for NOALCs in mouse models. Oral microbiota transplantation (OMT) mitigated oral mucositis, as judged by reconstructed epithelium and tongue papillae, fewer infiltrated leukocytes and more proliferative cells in the oral epithelium. The gut microbiota impacted oral mucositis progression, and OMT restructured oral and gut bacteria configurations and reprogrammed the gene expression profile of tongue tissues. In vivo silencing of glossal S100 calcium binding protein A9 debilitated the radioprotection of OMT. In light of clinical samples, we identified that patients with different alteration trends of Lactobacillaceae frequency presented different primary lesions and prognoses of NOALC following radiotherapy. Together, our findings provide new insights into the oral-gut microbiota axis and underpin the suggestion that OMT might be harnessed as a novel remedy to fight against oral mucositis in NOALC patients following radiotherapy in preclinical settings. Of note, oral microorganisms, such as Lactobacillaceae, might be employed as biomarkers to predict the prognosis of NOALC with radiotherapy.
Collapse
Affiliation(s)
- Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jia Liu
- Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| |
Collapse
|
61
|
Ecsédi P, Gógl G, Nyitray L. Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. Front Mol Biosci 2021; 8:749052. [PMID: 34708078 PMCID: PMC8542695 DOI: 10.3389/fmolb.2021.749052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
S100 proteins are small, dimeric, Ca2+-binding proteins of considerable interest due to their associations with cancer and rheumatic and neurodegenerative diseases. They control the functions of numerous proteins by forming protein–protein complexes with them. Several of these complexes were found to display “fuzzy” properties. Examining these highly flexible interactions, however, is a difficult task, especially from a structural biology point of view. Here, we summarize the available in vitro techniques that can be deployed to obtain structural information about these dynamic complexes. We also review the current state of knowledge about the structures of S100 complexes, focusing on their often-asymmetric nature.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
62
|
Qian SJ, Huang QR, Chen RY, Mo JJ, Zhou LY, Zhao Y, Li B, Lai HC. Single-Cell RNA Sequencing Identifies New Inflammation-Promoting Cell Subsets in Asian Patients With Chronic Periodontitis. Front Immunol 2021; 12:711337. [PMID: 34566966 PMCID: PMC8455889 DOI: 10.3389/fimmu.2021.711337] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Periodontitis is a highly prevalent chronic inflammatory disease leading to periodontal tissue breakdown and subsequent tooth loss, in which excessive host immune response accounts for most of the tissue damage and disease progression. Despite of the imperative need to develop host modulation therapy, the inflammatory responses and cell population dynamics which are finely tuned by the pathological microenvironment in periodontitis remained unclear. To investigate the local microenvironment of the inflammatory response in periodontitis, 10 periodontitis patients and 10 healthy volunteers were involved in this study. Single-cell transcriptomic profilings of gingival tissues from two patients and two healthy donors were performed. Histology, immunohistochemistry, and flow cytometry analysis were performed to further validate the identified cell subtypes and their involvement in periodontitis. Based on our single-cell resolution analysis, we identified HLA-DR-expressing endothelial cells and CXCL13+ fibroblasts which are highly associated with immune regulation. We also revealed the involvement of the proinflammatory NLRP3+ macrophages in periodontitis. We further showed the increased cell-cell communication between macrophage and T/B cells in the inflammatory periodontal tissues. Our data generated an intriguing catalog of cell types and interaction networks in the human gingiva and identified new inflammation-promoting cell subtypes involved in chronic periodontitis, which will be helpful in advancing host modulation therapy.
Collapse
Affiliation(s)
- Shu-jiao Qian
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian-ru Huang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-ying Chen
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-ji Mo
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-yi Zhou
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-chang Lai
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
63
|
Seethaler A, Stenner M, McNally A, Rudack C, Roth J, Vogl T, Spiekermann C. IL-8 and IFN-γ as Preoperative Predictors of the Outcome of Tonsillectomy. EAR, NOSE & THROAT JOURNAL 2021; 100:822S-827S. [PMID: 32182134 DOI: 10.1177/0145561320910682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Tonsillectomy (TE) and tonsillotomy (TO) due to recurrent episodes of acute tonsillitis (RAT) belong to the most frequent surgical procedures. However, an adequate objective marker predicting the outcome of TE/TO preoperatively is missing. METHODS Patients with RAT who underwent TE/TO (n = 31) were included in this pilot study. A panel of cytokines and chemokines in serum and saliva were determined preoperatively. Health-related quality of life was assessed pre- and postoperatively by the Tonsillectomy Outcome Inventory-14. RESULTS Health-related quality of life improved significantly after surgery. Increased serum levels of interleukin-8 (IL-8) and interferon gamma (IFN-γ) are associated with a less successful outcome. No correlation between the number of acute tonsillitis episodes and the health-related quality of life after TE or TO could be observed. CONCLUSIONS Tonsillectomy and TO improve health-related quality of life independently from the number of past acute tonsillitis episodes. Interleukin-8 and IFN-γ in serum may serve as promising markers, predicting the benefit of TE or TO for patients preoperatively.
Collapse
Affiliation(s)
- Alicia Seethaler
- Department of Otorhinolaryngology-Head and Neck Surgery, 155983University Hospital Münster, Germany
| | - Markus Stenner
- Department of Otorhinolaryngology-Head and Neck Surgery, 155983University Hospital Münster, Germany
| | - Annika McNally
- Institute of Immunology, 155983University Hospital Münster, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology-Head and Neck Surgery, 155983University Hospital Münster, Germany
| | - Johannes Roth
- Institute of Immunology, 155983University Hospital Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, 155983University Hospital Münster, Germany
| | - Christoph Spiekermann
- Department of Otorhinolaryngology-Head and Neck Surgery, 155983University Hospital Münster, Germany
- Institute of Immunology, 155983University Hospital Münster, Germany
| |
Collapse
|
64
|
Carlsson E, Beresford MW, Ramanan AV, Dick AD, Hedrich CM. Juvenile Idiopathic Arthritis Associated Uveitis. CHILDREN-BASEL 2021; 8:children8080646. [PMID: 34438537 PMCID: PMC8393258 DOI: 10.3390/children8080646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease. The development of associated uveitis represents a significant risk for serious complications, including permanent loss of vision. Initiation of early treatment is important for controlling JIA-uveitis, but the disease can appear asymptomatically, making frequent screening procedures necessary for patients at risk. As our understanding of pathogenic drivers is currently incomplete, it is difficult to assess which JIA patients are at risk of developing uveitis. Identification of specific risk factors for JIA-associated uveitis is an important field of research, and in this review, we highlight the genomic, transcriptomic, and proteomic factors identified as potential uveitis risk factors in JIA, and discuss therapeutic strategies.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, UK;
- Correspondence: (E.C.); (C.M.H.); Tel.: +44-151-228-4811 (ext. 2690) (E.C.); +44-151-252-5849 (C.M.H.)
| | - Michael W. Beresford
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, UK;
- Department of Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
| | - Athimalaipet V. Ramanan
- Bristol Royal Hospital for Children & Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, UK;
| | - Andrew D. Dick
- Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, UK;
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Christian M. Hedrich
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, UK;
- Department of Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- Correspondence: (E.C.); (C.M.H.); Tel.: +44-151-228-4811 (ext. 2690) (E.C.); +44-151-252-5849 (C.M.H.)
| |
Collapse
|
65
|
Ahn SS, Yoon T, Song JJ, Park YB, Lee SW. Association Between Serum Alarmin Levels and Disease-specific Indices in Patients With Anti-neutrophil Cytoplasmic Antibody-associated Vasculitis. In Vivo 2021; 35:1761-1768. [PMID: 33910860 DOI: 10.21873/invivo.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIM We evaluated the relationship between serum alarmin levels and disease-specific indices in patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). PATIENTS AND METHODS Sera and data from 79 patients were utilized. For AAV-specific indices, Birmingham vasculitis activity score (BVAS), five-factor score (FFS), and vasculitis damage index (VDI) were collected and serum levels of four alarmins (hepatoma-derived growth factor, high mobility group box protein 1, S100A9, and S100A12) were measured using enzyme-linked immunosorbent assay. Associations between alarmin levels, AAV-specific indices, and inflammatory laboratory markers were assessed. RESULTS S100A9 levels were significantly correlated with C-reactive protein levels (r=0.316, p=0.005) and S100A12 levels correlated with VDI (r=0.232, p=0.040), which was consistent in a subgroup of patients with myeloperoxidase (perinuclear)-ANCA positivity. No other associations were found between alarmin levels and BVAS, FFS, and VDI. CONCLUSION The serum S100A12 level was associated with organ damage in AAV, especially in myeloperoxidase (perinuclear)-ANCA-positive patients.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
66
|
Qu H, Gong X, Liu X, Zhang R, Wang Y, Huang B, Zhang L, Zheng H, Zheng Y. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Exacerbates Podocyte Injury and the Progression of Diabetic Kidney Disease. Diabetes 2021; 70:1372-1387. [PMID: 33741719 DOI: 10.2337/db20-1157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022]
Abstract
Mitochondrial function is essential for bioenergetics, metabolism, and signaling and is compromised in diseases such as proteinuric kidney diseases, contributing to the global burden of kidney failure, cardiovascular morbidity, and death. The key cell type that prevents proteinuria is the terminally differentiated glomerular podocyte. In this study, we characterized the importance of mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH), located on the inner mitochondrial membrane, in regulating podocyte function and glomerular disease. Specifically, podocyte-dominated mGPDH expression was downregulated in the glomeruli of patients and mice with diabetic kidney disease and adriamycin nephropathy. Podocyte-specific depletion of mGPDH in mice exacerbated diabetes- or adriamycin-induced proteinuria, podocyte injury, and glomerular pathology. RNA sequencing revealed that mGPDH regulated the receptor for the advanced glycation end product (RAGE) signaling pathway, and inhibition of RAGE or its ligand, S100A10, protected against the impaired mitochondrial bioenergetics and increased reactive oxygen species generation caused by mGPDH knockdown in cultured podocytes. Moreover, RAGE deletion in podocytes attenuated nephropathy progression in mGPDH-deficient diabetic mice. Rescue of podocyte mGPDH expression in mice with established glomerular injury significantly improved their renal function. In summary, our study proposes that activation of mGPDH induces mitochondrial biogenesis and reinforces mitochondrial function, which may provide a potential therapeutic target for preventing podocyte injury and proteinuria in diabetic kidney disease.
Collapse
Affiliation(s)
- Hua Qu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rui Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Bangliang Huang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
67
|
Zandstra J, Jongerius I, Kuijpers TW. Future Biomarkers for Infection and Inflammation in Febrile Children. Front Immunol 2021; 12:631308. [PMID: 34079538 PMCID: PMC8165271 DOI: 10.3389/fimmu.2021.631308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Febrile patients, suffering from an infection, inflammatory disease or autoimmunity may present with similar or overlapping clinical symptoms, which makes early diagnosis difficult. Therefore, biomarkers are needed to help physicians form a correct diagnosis and initiate the right treatment to improve patient outcomes following first presentation or admittance to hospital. Here, we review the landscape of novel biomarkers and approaches of biomarker discovery. We first discuss the use of current plasma parameters and whole blood biomarkers, including results obtained by RNA profiling and mass spectrometry, to discriminate between bacterial and viral infections. Next we expand upon the use of biomarkers to distinguish between infectious and non-infectious disease. Finally, we discuss the strengths as well as the potential pitfalls of current developments. We conclude that the use of combination tests, using either protein markers or transcriptomic analysis, have advanced considerably and should be further explored to improve current diagnostics regarding febrile infections and inflammation. If proven effective when combined, these biomarker signatures will greatly accelerate early and tailored treatment decisions.
Collapse
Affiliation(s)
- Judith Zandstra
- Division Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Ilse Jongerius
- Division Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, Netherlands
- Division Research and Landsteiner Laboratory, Department of Blood Cell Research, Sanquin Blood Supply, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
68
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Novel approaches to develop biomarkers predicting treatment responses to TNF-blockers. Expert Rev Clin Immunol 2021; 17:331-354. [PMID: 33622154 DOI: 10.1080/1744666x.2021.1894926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Chronic inflammatory diseases (CIDs) cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function, and diminished quality of life. Important progress in CID treatment has been obtained with biological therapies, such as tumor-necrosis-factor blockers. However, more than a third of the patients fail to respond to these inhibitors and are exposed to the side effects of treatment, without the benefits. Therefore, there is a strong interest in developing tools to predict response of patients to biologics. Areas covered: The authors searched PubMed for recent studies on biomarkers for disease assessment and prediction of therapeutic responses, focusing on the effect of TNF blockers on immune responses in spondyloarthritis (SpA), and other CID, in particular rheumatoid arthritis and inflammatory bowel disease. Conclusions will be drawn about the possible development of predictive biomarkers for response to treatment. Expert opinion: No validated biomarker is currently available to predict treatment response in CID. New insight could be generated through the development of new bioinformatic modeling approaches to combine multidimensional biomarkers that explain the different genetic, immunological and environmental determinants of therapeutic responses.
Collapse
Affiliation(s)
- Ikram Mezghiche
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Université De Paris, Sorbonne Paris Cité, Paris, France
| | - Hanane Yahia-Cherbal
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Fondation AP-HP, Paris, France
| | - Lars Rogge
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| | - Elisabetta Bianchi
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| |
Collapse
|
69
|
Tombetti E, Hysa E, Mason JC, Cimmino MA, Camellino D. Blood Biomarkers for Monitoring and Prognosis of Large Vessel Vasculitides. Curr Rheumatol Rep 2021; 23:17. [PMID: 33569633 PMCID: PMC7875948 DOI: 10.1007/s11926-021-00980-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Large vessel vasculitides (LVVs) are inflammatory conditions of the wall of large-sized arteries, mainly represented by giant cell arteritis (GCA) and Takayasu arteritis (TA). The inflammatory process within the vessel wall can lead to serious consequences such as development of aneurysms, strokes and blindness; therefore, early diagnosis and follow-up of LVV are fundamental. However, the arterial wall is poorly accessible and blood biomarkers are intended to help physicians not only in disease diagnosis but also in monitoring and defining the prognosis of these conditions, thus assisting therapeutic decisions and favouring personalised management. The field is the object of intense research as the identification of reliable biomarkers is likely to shed light on the mechanisms of disease progression and arterial remodelling. In this review, we will discuss the role of blood biomarkers in LVVs in the light of the latest evidence. RECENT FINDINGS In clinical practice, the most widely performed laboratory investigations are the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). However, these indices may be within normal limits during disease relapse and they are not reliable in patients receiving interleukin-6 (IL-6) receptor inhibitors. New biomarkers struggle to gain traction in clinical practice and no molecule with good accuracy has been identified to date. IL-6, a pro-inflammatory cytokine that drives CRP synthesis and increases the ESR, is one of the most promising biomarkers in the field. IL-6 analysis is increasingly performed, and serum levels are more sensitive than ESR for active GCA and might reflect persistent inflammation with high risk of relapse in patients on IL-6 receptor inhibitors. A future with biomarkers that reflect different disease features is an important aspiration. Accordingly, intense effort is being made to identify IL-6-independent inflammatory biomarkers, such as S100 proteins, pentraxin-3 and osteopontin. Moreover, metalloproteinases such as MMP2/9 and angiogenic modulators such as VEGF, YLK-40 and angiopoietins are being studied as markers of arterial remodelling. Lastly, biomarkers indicating organ damage may guide prognostic stratification as well as emergency therapeutic decisions: the most promising biomarkers so far identified are NT-proBNP, which reflects myocardial strain; pentraxin-3, which has been associated with recent optic nerve ischemia; and endothelin-1, which is associated with ischaemic complications. Currently, the use of these molecules in clinical practice is limited because of their restricted availability, lack of sufficient studies supporting their validity and associated costs. Further evidence is required to better interpret their biological and clinical value.
Collapse
Affiliation(s)
- Enrico Tombetti
- Internal Medicine, Department of Biomedical and Clinical Sciences "Luigi Sacco", Milan, Italy
- Internal Medicine and Rheumatology, Sacco and Fatebenefratelli Hospitals, Milan, Italy
| | - Elvis Hysa
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Justin C Mason
- National Heart and Lung Institute, Imperial College London, London, UK
- Rheumatology, Hammersmith Hospital, Imperial College NHS Trust, London, UK
| | - Marco A Cimmino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Dario Camellino
- Division of Rheumatology, Musculoskeletal System Department, La Colletta Hospital, Local Health Trust 3 Genoa, Via del Giappone 3, 16011, Arenzano, Italy.
- Autoimmunology Laboratory, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|
70
|
A Review of Selected IBD Biomarkers: From Animal Models to Bedside. Diagnostics (Basel) 2021; 11:diagnostics11020207. [PMID: 33573291 PMCID: PMC7911946 DOI: 10.3390/diagnostics11020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a dysregulated inflammatory condition induced by multiple factors. The etiology of IBD is largely unknown, and the disease progression and prognosis are variable and unpredictable with uncontrolled disease behavior. Monitoring the status of chronic colitis closely is challenging for physicians, because the assessment of disease activity and severity require invasive methods. Using laboratory biomarkers may provide a useful alternative to invasive methods in the diagnosis and management of IBD. Furthermore, patients with ulcerative colitis or Crohn’s disease are also at risk of developing cancer. Annual colonoscopies can help lower the risk for developing colorectal cancer. However, laboratory biomarkers may also be helpful as non-invasive indicators in predicting treatment responses, improving prognosis, and predicting possible tumors. This review addresses selected laboratory biomarkers (including ANCA, chitinase 3-like 1, S100A12/RAGE, calprotectin, and TNF/TNFR2), which are identified by utilizing two well-accepted animal models of colitis, dextran sodium sulfate-induced and T cell receptor alpha knockout colitis models. In addition to being useful for monitoring disease severity, these biomarkers are associated with therapeutic strategies. The factors may regulate the initiation and perpetuation of inflammatory factors in the gut.
Collapse
|
71
|
Barendregt AM, Veldkamp SR, Hissink Muller PCE, van de Geer A, Aarts C, van Gulik EC, Schilham MW, Kessel C, Keizer MP, Hemke R, Nassar-Sheikh Rashid A, Dolman KM, Schonenberg-Meinema D, Ten Cate R, van den Berg JM, Maas M, Kuijpers TW. MRP8/14 and neutrophil elastase for predicting treatment response and occurrence of flare in patients with juvenile idiopathic arthritis. Rheumatology (Oxford) 2021; 59:2392-2401. [PMID: 31904851 PMCID: PMC7449815 DOI: 10.1093/rheumatology/kez590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
Objective To study two neutrophil activation markers, myeloid-related protein (MRP) 8/14 and neutrophil elastase (NE), for their ability to predict treatment response and flare in patients with JIA. Methods Using samples from two cohorts (I and II), we determined MRP8/14 and NE levels of 32 (I) and 81 (II) patients with new-onset, DMARD-naïve arthritis and compared patients who responded to treatment (defined as fulfilling ≥ adjusted ACRpedi50 response and/or inactive disease) with non-responders (defined as fulfilling < adjusted ACRpedi50 response and/or active disease) at 6 and 12 months. Secondly, we compared biomarker levels of 54 (I) and 34 (II) patients with clinically inactive disease who did or did not suffer from a flare of arthritis after 6 or 12 months. Receiver operating characteristic analyses were carried out to study the predictive value of MRP8/14 and NE for treatment response and flare. Results For both cohorts, baseline MRP8/14 and NE levels for patients who did or did not respond to treatment were not different. Also, MRP8/14 and NE levels were not different in patients who did or did not flare. Receiver operating characteristic analysis of MRP8/14 and NE demonstrated areas under the curve <0.7 in both cohorts. Conclusion In our cohorts, MRP8/14 and NE could not predict treatment response. Also, when patients had inactive disease, neither marker could predict flares.
Collapse
Affiliation(s)
- Anouk M Barendregt
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Saskia R Veldkamp
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam
| | | | | | - Cathelijn Aarts
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - E Charlotte van Gulik
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Marco W Schilham
- Department of Paediatric Rheumatology, Leiden University Medical Center, Leiden
| | - Christoph Kessel
- Department of Paediatric Rheumatology and Immunology, University Children's Hospital Muenster, Muenster, Germany
| | - Mischa P Keizer
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Robert Hemke
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Amara Nassar-Sheikh Rashid
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Koert M Dolman
- Department of Paediatric Rheumatology, Reade, Amsterdam.,Department of Paediatrics, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Rebecca Ten Cate
- Department of Paediatric Rheumatology, Leiden University Medical Center, Leiden
| | - J Merlijn van den Berg
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Taco W Kuijpers
- Department of Paediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam.,Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Proteomics of Muscle Microdialysates Identifies Potential Circulating Biomarkers in Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 22:ijms22010290. [PMID: 33396627 PMCID: PMC7795508 DOI: 10.3390/ijms22010290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by a complex epigenetic mechanism finally leading to the misexpression of DUX4 in skeletal muscle. Detecting DUX4 and quantifying disease progression in FSHD is extremely challenging, thus increasing the need for surrogate biomarkers. We applied a shotgun proteomic approach with two different setups to analyze the protein repertoire of interstitial fluids obtained from 20 muscles in different disease stages classified by magnetic resonance imaging (MRI) and serum samples from 10 FSHD patients. A total of 1156 proteins were identified in the microdialysates by data independent acquisition, 130 of which only found in muscles in active disease stage. Proteomic profiles were able to distinguish FSHD patients from controls. Two innate immunity mediators (S100-A8 and A9) and Dermcidin were upregulated in muscles with active disease and selectively present in the sera of FSHD patients. Structural muscle and plasminogen pathway proteins were downregulated. Together with the upstream inhibition of myogenic factors, this suggests defective muscle regeneration and increased fibrosis in early/active FSHD. Our MRI targeted exploratory approach confirmed that inflammatory response has a prominent role, together with impaired muscle regeneration, before clear muscle wasting occurs. We also identified three proteins as tissue and possibly circulating biomarkers in FSHD.
Collapse
|
73
|
Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, Kossenkov A, Montaner LJ, Xu X, Xu W, Zheng C, Schuchter LM, Amaravadi RK, Mitchell TC, Karakousis GC, Mulligan C, Nam B, Masters G, Hockstein N, Bennett J, Nefedova Y, Gabrilovich DI. Distinct Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer. Cell Rep 2020; 33:108571. [PMID: 33378668 PMCID: PMC7809772 DOI: 10.1016/j.celrep.2020.108571] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we report that functional heterogeneity of macrophages in cancer could be determined by the nature of their precursors: monocytes (Mons) and monocytic myeloid-derived suppressor cells (M-MDSCs). Macrophages that are differentiated from M-MDSCs, but not from Mons, are immune suppressive, with a genomic profile matching that of M-MDSCs. Immune-suppressive activity of M-MDSC-derived macrophages is dependent on the persistent expression of S100A9 protein in these cells. S100A9 also promotes M2 polarization of macrophages. Tissue-resident- and Mon-derived macrophages lack expression of this protein. S100A9-dependent immune-suppressive activity of macrophages involves transcription factor C/EBPβ. The presence of S100A9-positive macrophages in tumor tissues is associated with shorter survival in patients with head and neck cancer and poor response to PD-1 antibody treatment in patients with metastatic melanoma. Thus, this study reveals the pathway of the development of immune-suppressive macrophages and suggests an approach to their selective targeting.
Collapse
Affiliation(s)
| | - Fang Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hui Deng
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Vinit Kumar
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Tara Miller Melanoma Center, Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center and Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Mulligan
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Brian Nam
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Gregory Masters
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Neil Hockstein
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | - Joseph Bennett
- Helen F Graham Cancer Center and Research Institute, Christiana Care, Newark, DE 19713, USA
| | | | | |
Collapse
|
74
|
Steigmann L, Maekawa S, Sima C, Travan S, Wang CW, Giannobile WV. Biosensor and Lab-on-a-chip Biomarker-identifying Technologies for Oral and Periodontal Diseases. Front Pharmacol 2020; 11:588480. [PMID: 33343358 PMCID: PMC7748088 DOI: 10.3389/fphar.2020.588480] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a complex multifactorial disease that can lead to destruction of tooth supporting tissues and subsequent tooth loss. The most recent global burden of disease studies highlight that severe periodontitis is one of the most prevalent chronic inflammatory conditions affecting humans. Periodontitis risk is attributed to genetics, host-microbiome and environmental factors. Empirical diagnostic and prognostic systems have yet to be validated in the field of periodontics. Early diagnosis and intervention prevents periodontitis progression in most patients. Increased susceptibility and suboptimal control of modifiable risk factors can result in poor response to therapy, and relapse. The chronic immune-inflammatory response to microbial biofilms at the tooth or dental implant surface is associated with systemic conditions such as cardiovascular disease, diabetes or gastrointestinal diseases. Oral fluid-based biomarkers have demonstrated easy accessibility and potential as diagnostics for oral and systemic diseases, including the identification of SARS-CoV-2 in saliva. Advances in biotechnology have led to innovations in lab-on-a-chip and biosensors to interface with oral-based biomarker assessment. This review highlights new developments in oral biomarker discovery and their validation for clinical application to advance precision oral medicine through improved diagnosis, prognosis and patient stratification. Their potential to improve clinical outcomes of periodontitis and associated chronic conditions will benefit the dental and overall public health.
Collapse
Affiliation(s)
- Larissa Steigmann
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Shogo Maekawa
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Suncica Travan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Chin-Wei Wang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
- Biointerfaces Institute and Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
75
|
Affiliation(s)
- Jong Gyun Ahn
- Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
76
|
Abbasifard M, Kamiab Z, Noori M, Khorramdelazad H. The S100 proteins expression in newly diagnosed systemic lupus erythematosus patients: Can they be potential diagnostic biomarkers? GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Weisz J, Uversky VN. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Int J Mol Sci 2020; 21:ijms21165879. [PMID: 32824294 PMCID: PMC7461550 DOI: 10.3390/ijms21165879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Annexins and S100 proteins form two large families of Ca2+-binding proteins. They are quite different both structurally and functionally, with S100 proteins being small (10–12 kDa) acidic regulatory proteins from the EF-hand superfamily of Ca2+-binding proteins, and with annexins being at least three-fold larger (329 ± 12 versus 98 ± 7 residues) and using non-EF-hand-based mechanism for calcium binding. Members of both families have multiple biological roles, being able to bind to a large cohort of partners and possessing a multitude of functions. Furthermore, annexins and S100 proteins can interact with each other in either a Ca2+-dependent or Ca2+-independent manner, forming functional annexin-S100 complexes. Such functional polymorphism and binding indiscrimination are rather unexpected, since structural information is available for many annexins and S100 proteins, which therefore are considered as ordered proteins that should follow the classical “one protein–one structure–one function” model. On the other hand, the ability to be engaged in a wide range of interactions with multiple, often unrelated, binding partners and possess multiple functions represent characteristic features of intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs); i.e., functional proteins or protein regions lacking unique tertiary structures. The aim of this paper is to provide an overview of the functional roles of human annexins and S100 proteins, and to use the protein intrinsic disorder perspective to explain their exceptional multifunctionality and binding promiscuity.
Collapse
Affiliation(s)
- Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-5816 (ext. 123); Fax: +1-813-974-7357
| |
Collapse
|
78
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
79
|
Davies JC, Midgley A, Carlsson E, Donohue S, Bruce IN, Beresford MW, Hedrich CM. Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open 2020; 6:e001257. [PMID: 32723832 PMCID: PMC7722276 DOI: 10.1136/rmdopen-2020-001257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Approximately 30% of patients with the systemic autoimmune/inflammatory disorder systemic lupus erythematosus (SLE) develop lupus nephritis (LN) that affects treatment and prognosis. Easily accessible biomarkers do not exist to reliably predict renal disease. The Maximizing SLE Therapeutic Potential by Application of Novel and Systemic Approaches and the Engineering Consortium aims to identify indicators of treatment responses in SLE. This study tested the applicability of calcium-binding S100 proteins in serum and urine as biomarkers for disease activity and response to treatment with rituximab (RTX) in LN. METHODS S100A8/A9 and S100A12 proteins were quantified in the serum and urine of 243 patients with SLE from the British Isles Lupus Assessment Group Biologics Register (BILAG-BR) study and 48 controls matched for age using Meso Scale Discovery's technology to determine whether they perform as biomarkers for active LN and/or may be used to predict response to treatment with RTX. Renal disease activity and response to treatment was based on BILAG-BR scores and changes in response to treatment. RESULTS Serum S100A12 (p<0.001), and serum and urine S100A8/A9 (p<0.001) levels are elevated in patients with SLE. While serum and urine S100 levels do not correlate with global disease activity (SLE Disease Activity Index), levels in urine and urine/serum ratios are elevated in patients with active LN. S100 proteins perform better as biomarkers for active LN involvement in patients with SLE who tested positive for anti-double-stranded DNA antibodies. Binary logistic regression and area under the curve analyses suggest the combination of serum S100A8/A9 and S100A12 can predict response to RTX treatment in LN after 6 months. CONCLUSIONS Findings from this study show promise for clinical application of S100 proteins to predict active renal disease in SLE and response to treatment with RTX.
Collapse
Affiliation(s)
- Jennifer C Davies
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Angela Midgley
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sean Donohue
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ian N Bruce
- Arc Epidemiology Unit, University of Manchester, Manchester, UK
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
80
|
Tengvall K, Bergvall K, Olsson M, Ardesjö-Lundgren B, Farias FHG, Kierczak M, Hedhammar Å, Lindblad-Toh K, Andersson G. Transcriptomes from German shepherd dogs reveal differences in immune activity between atopic dermatitis affected and control skin. Immunogenetics 2020; 72:315-323. [PMID: 32556497 PMCID: PMC7320941 DOI: 10.1007/s00251-020-01169-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
Canine atopic dermatitis (CAD) is an inflammatory and pruritic allergic skin disease with both genetic and environmental risk factors described. We performed mRNA sequencing of non-lesional axillary skin biopsies from nine German shepherd dogs. Obtained RNA sequences were mapped to the dog genome (CanFam3.1) and a high-quality skin transcriptome was generated with 23,510 expressed gene transcripts. Differentially expressed genes (DEGs) were defined by comparing three controls to five treated CAD cases. Using a leave-one-out analysis, we identified seven DEGs: five known to encode proteins with functions related to an activated immune system (CD209, CLEC4G, LOC102156842 (lipopolysaccharide-binding protein-like), LOC480601 (regakine-1-like), LOC479668 (haptoglobin-like)), one (OBP) encoding an odorant-binding protein potentially connected to rhinitis, and the last (LOC607095) encoding a novel long non-coding RNA. Furthermore, high mRNA expression of inflammatory genes was found in axillary skin from an untreated mild CAD case compared with healthy skin. In conclusion, we define genes with different expression patterns in CAD case skin helping us understand post-treatment atopic skin. Further studies in larger sample sets are warranted to confirm and to transfer these results into clinical practice.
Collapse
Affiliation(s)
- K Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - K Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Olsson
- Division of Rheumatology, Department Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - B Ardesjö-Lundgren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - F H G Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Kierczak
- Department of Cell and Molecular Biology, Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
81
|
Abstract
Kawasaki disease is an acute febrile illness and systemic vasculitis of unknown aetiology that predominantly afflicts young children, causes coronary artery aneurysms and can result in long-term cardiovascular sequelae. Kawasaki disease is the leading cause of acquired heart disease among children in the USA. Coronary artery aneurysms develop in some untreated children with Kawasaki disease, leading to ischaemic heart disease and myocardial infarction. Although intravenous immunoglobulin (IVIG) treatment reduces the risk of development of coronary artery aneurysms, some children have IVIG-resistant Kawasaki disease and are at increased risk of developing coronary artery damage. In addition, the lack of specific diagnostic tests and biomarkers for Kawasaki disease make early diagnosis and treatment challenging. The use of experimental mouse models of Kawasaki disease vasculitis has considerably improved our understanding of the pathology of the disease and helped characterize the cellular and molecular immune mechanisms contributing to cardiovascular complications, in turn leading to the development of innovative therapeutic approaches. Here, we outline the pathophysiology of Kawasaki disease and summarize and discuss the progress gained from experimental mouse models and their potential therapeutic translation to human disease. This Review outlines the pathophysiology of Kawasaki disease and discusses the progress gained from experimental mouse models and their potential therapeutic translation to human disease. Kawasaki disease is a childhood systemic vasculitis leading to the development of coronary artery aneurysms; it is the leading cause of acquired heart disease in children in developed countries. The cause of Kawasaki disease is unknown, although it is suspected to be triggered by an unidentified infectious pathogen in genetically predisposed children. Kawasaki disease might not be a normal immune response to an unusual environmental stimulus, but rather a genetically determined unusual and uncontrolled immune response to a common stimulus. Although the aetiological agent in humans is unknown, mouse models of Kawasaki disease vasculitis demonstrate similar pathological features and have substantially accelerated discoveries in the field. Genetic and transcriptomic analysis of blood samples from patients with Kawasaki disease and experimental evidence generated using mouse models have demonstrated the critical role of IL-1β in the pathogenesis of this disease and the therapeutic potential of targeting this pathway (currently under investigation in clinical trials).
Collapse
|
82
|
Li Z, Li Y, Liu S, Qin Z. Extracellular S100A4 as a key player in fibrotic diseases. J Cell Mol Med 2020; 24:5973-5983. [PMID: 32307910 PMCID: PMC7294136 DOI: 10.1111/jcmm.15259] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is characterized by fibroblast activation, extracellular matrix (ECM) accumulation and infiltration of inflammatory cells that sometimes leads to irreversible organ dysfunction. Considerable evidence now indicates that inflammation plays a critical role in the initiation and progression of organ fibrosis. S100A4 protein, a ubiquitous member of the S100 family, has recently been discovered as a potential factor implicated in fibrotic diseases. S100A4 protein is released at inflammatory site and has a certain biological function to promote cell motility, invasion, ECM remodelling, autophagy and angiogenesis. In addition, extracellular S100A4 is also a potential causation of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions. Elevated S100A4 level in patients’ serum closely correlates with disease activity in several fibrotic diseases and serves as a useful biomarker for diagnosis and monitoring disease progression. Analyses of knockout mouse models have identified a functional role of extracellular S100A4 protein in fibrotic diseases, suggesting that suppressing its expression, release or function might be a promising therapeutic strategy. This review will focus on the role of extracellular S100A4 as a key regulator of pro‐inflammatory signalling pathways and its relative biological processes involved in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanan Li
- School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
83
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
84
|
Tomonobu N, Kinoshita R, Sakaguchi M. S100 Soil Sensor Receptors and Molecular Targeting Therapy Against Them in Cancer Metastasis. Transl Oncol 2020; 13:100753. [PMID: 32193075 PMCID: PMC7078545 DOI: 10.1016/j.tranon.2020.100753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying the ‘seed and soil’ theory are unknown. S100A8/A9 (a heterodimer complex of S100A8 and S100A9 proteins that exhibits a ‘soil signal’) is a ligand for Toll-like receptor 4, causing distant melanoma cells to approach the lung as a ‘seeding’ site. Unknown soil sensors for S100A8/A9 may exist, e.g., extracellular matrix metalloproteinase inducer, neuroplastin, activated leukocyte cell adhesion molecule, and melanoma cell adhesion molecule. We call these receptor proteins ‘novel S100 soil sensor receptors (novel SSSRs).’ Here we review and summarize a crucial role of the S100A8/A9-novel SSSRs' axis in cancer metastasis. The binding of S100A8/A9 to individual SSSRs is important in cancer metastasis via upregulations of the epithelial-mesenchymal transition, cellular motility, and cancer cell invasiveness, plus the formation of an inflammatory immune suppressive environment in metastatic organ(s). These metastatic cellular events are caused by the SSSR-featured signal transductions we identified that provide cancer cells a driving force for metastasis. To deprive cancer cells of these metastatic forces, we developed novel biologics that prevent the interaction of S100A8/A9 with SSSRs, followed by the efficient suppression of S100A8/A9-mediated lung-tropic metastasis in vivo.
Collapse
Affiliation(s)
- Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
85
|
Donohue SJ, Midgley A, Davies JC, Wright RD, Bruce I, Beresford MW, Hedrich CM. Differential analysis of serum and urine S100 proteins in juvenile-onset systemic lupus erythematosus (jSLE). Clin Immunol 2020; 214:108375. [PMID: 32135275 DOI: 10.1016/j.clim.2020.108375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
Up to 80% of juvenile-onset systemic lupus erythematosus (jSLE) patients develop lupus nephritis (LN) that affects treatment and prognosis. Easily accessible biomarkers do not exist to reliably diagnose LN, leaving kidney biopsies as the gold-standard. Calcium-binding S100 proteins are expressed by innate immune cells and epithelia and may act as biomarkers in systemic inflammatory conditions. We quantified S100 proteins in the serum and urine of jSLE patients, matched healthy and inflammatory (IgA vasculitis) controls. Serum S100A8/A9, and serum and urine S100A12 are increased in jSLE patients when compared to controls. Furthermore, serum S100A8/A9, and serum and urine S100A12 are increased in jSLE patients with active as compared to patients with inactive/no LN. No differences in S100A4 levels were seen between groups. This study demonstrates potential promise for S100A8/A9 and S100A12 as biomarkers for jSLE and active LN. Findings require to be confirmed and tested prospectively in independent and larger multi-ethnic cohorts.
Collapse
Affiliation(s)
- S J Donohue
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - A Midgley
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J C Davies
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R D Wright
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - I Bruce
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - M W Beresford
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK; National Institute for Health Research (NIHR) Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, UK
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK; National Institute for Health Research (NIHR) Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, UK.
| | | | | |
Collapse
|
86
|
Permyakov SE, Yundina EN, Kazakov AS, Permyakova ME, Uversky VN, Permyakov EA. Mouse S100G protein exhibits properties characteristic of a calcium sensor. Cell Calcium 2020; 87:102185. [PMID: 32114281 DOI: 10.1016/j.ceca.2020.102185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Bovine S100 G (calbindin D9k, small Ca2+-binding protein of the EF-hand superfamily) is considered as a calcium buffer protein; i.e., the binding of Ca2+ practically does not change its general conformation. A set of experimental approaches has been used to study structural properties of apo- and Ca2+-loaded forms of mouse S100 G (81.4% identity in amino acid sequence with bovine S100 G). This analysis revealed that, in contrast to bovine S100 G, the removal of calcium ions increases α-helices content of mouse S100 G protein and enhances its accessibility to digestion by α-chymotrypsin. Furthermore, mouse apo-S100 G is characterized by a decreased surface hydrophobicity and reduced tendency for oligomerization. Such behavior is typical of calcium sensor proteins. Apo-state of mouse S100 G still has rather compact structure, which can be cooperatively unfolded by temperature and GdnHCl. Computational analysis of amino acid sequences of S100 G proteins shows that these proteins could be in a disordered state upon a removal of the bound calcium ions. The experimental data show that, although mouse apo-S100 G is flexible compared to the Ca2+-loaded state, the apo-form is not completely disordered and preserves some cooperatively meting structure. The origin of the unexpectedly high stability of mouse S100 G can be rationalized by an exceptionally strong association of its N- and C-terminal parts containing the EF-hands I and II, respectively.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Elena N Yundina
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexei S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maria E Permyakova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
87
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
88
|
Treffon J, Chaves-Moreno D, Niemann S, Pieper DH, Vogl T, Roth J, Kahl BC. Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell Microbiol 2020; 22:e13158. [PMID: 31895486 DOI: 10.1111/cmi.13158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is one of the earliest pathogens that persists the airways of cystic fibrosis (CF) patients and contributes to increased inflammation and decreased lung function. In contrast to other staphylococci, S. aureus possesses two superoxide dismutases (SODs), SodA and SodM, with SodM being unique to S. aureus. Both SODs arm S. aureus for its fight against oxidative stress, a by-product of inflammatory reactions. Despite complex investigations, it is still unclear if both enzymes are crucial for the special pathogenicity of S. aureus. To investigate the role of both SODs during staphylococcal persistence in CF airways, we analysed survival and gene expression of S. aureus CF isolates and laboratory strains in different CF-related in vitro and ex vivo settings. Bacteria located in inflammatory and oxidised CF sputum transcribed high levels of sodA and sodM. Especially expression values of sodM were remarkably higher in CF sputum than in bacterial in vitro cultures. Interestingly, also S. aureus located in airway epithelial cells expressed elevated transcript numbers of both SODs, indicating that S. aureus is exposed to oxidative stress at various sites within CF airways. Both enzymes promoted survival of S. aureus during polymorphonuclear leukocyte killing and seem to act compensatory, thereby giving evidence that the interwoven interaction of SodA and SodM contributes to S. aureus virulence and facilitates S. aureus persistence within CF airways.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
89
|
Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci 2020; 77:129-147. [PMID: 31363816 PMCID: PMC11104817 DOI: 10.1007/s00018-019-03257-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
90
|
Wu RW, Lian WS, Kuo CW, Chen YS, Ko JY, Wang FS. S100 Calcium Binding Protein A9 Represses Angiogenic Activity and Aggravates Osteonecrosis of the Femoral Head. Int J Mol Sci 2019; 20:ijms20225786. [PMID: 31752076 PMCID: PMC6887714 DOI: 10.3390/ijms20225786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic damage aggravation of femoral head collapse is a prominent pathologic feature of osteonecrosis of the femoral head (ONFH). In this regard, S100 calcium binding protein A9 (S100A9) is known to deteriorate joint integrity, however, little is understood about which role S100A9 may play in ONFH. In this study, a proteomics analysis has revealed a decrease in the serum S100A9 level in patients with ONFH upon hyperbaric oxygen therapy. Serum S100A9 levels, along with serum vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-6 (IL-6), and tartrate-resistant acid phosphatase 5b levels were increased in patients with ONFH, whereas serum osteocalcin levels were decreased as compared to healthy controls. Serum S100A9 levels were increased with the Ficat and Arlet stages of ONFH and correlated with the patients with a history of being on glucocorticoid medication and alcohol consumption. Osteonecrotic tissue showed hypovasculature histopathology together with weak immunostaining for vessel marker CD31 and von Willrbrand factor (vWF) as compared to femoral head fracture specimens. Thrombosed vessels, fibrotic tissue, osteocytes, and inflammatory cells displayed strong S100A9 immunoreactivity in osteonecrotic lesion. In vitro, ONFH serum and S100A9 inhibited the tube formation of vessel endothelial cells and vessel outgrowth of rat aortic rings, whereas the antibody blockade of S100A9 improved angiogenic activities. Taken together, increased S100A9 levels are relevant to the development of ONFH. S100A9 appears to provoke avascular damage, ultimately accelerating femoral head deterioration through reducing angiogenesis. This study provides insight into the molecular mechanism underlying the development of ONFH. Here, analysis also highlights that serum S100A9 is a sensitive biochemical indicator of ONFH.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Feng-Sheng Wang
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence:
| |
Collapse
|
91
|
miRNAs Regulate Cytokine Secretion Induced by Phosphorylated S100A8/A9 in Neutrophils. Int J Mol Sci 2019; 20:ijms20225699. [PMID: 31739406 PMCID: PMC6887701 DOI: 10.3390/ijms20225699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022] Open
Abstract
The release of cytokines by neutrophils constitutes an essential process in the development of inflammation by recruiting and activating additional cells. Neutrophils are also able to secrete a complex of S100A8 and S100A9 proteins (S100A8/A9), which can amplify the general inflammatory state of the host and is involved in the pathogenesis of several chronic inflammatory diseases, such as rheumatoid arthritis (RA). S100A8/A9 have received renewed attention due to their susceptibility to several function-altering post-translational modifications. In that context, it has been recently demonstrated that only the phosphorylated form of S100A8/A9 (S100A8/A9-P) is able to induce the secretion of several cytokines in neutrophils. Here, we investigate the mechanism by which this post-translational modification of S100A8/A9 can regulate the extracellular activity of the protein complex and its impact on the inflammatory functions of neutrophils. We found that S100A8/A9-P are present in large amounts in the synovial fluids from RA patients, highlighting the importance of this form of S100A8/A9 complex in the inflammation process. Using miRNA-sequencing on S100A8/A9-P-stimulated differentiated HL-60 cells, we identified a dysregulation of miR-146a-5p and miR-155-5p expression through TRL4 signaling pathways. Our data reveal that overexpression of these miRNAs in neutrophil-like cells reduces S100A8/A9-P-mediated secretion of pro-inflammatory cytokines.
Collapse
|
92
|
Akiyama M, Zeisbrich M, Ibrahim N, Ohtsuki S, Berry GJ, Hwang PH, Goronzy JJ, Weyand CM. Neutrophil Extracellular Traps Induce Tissue-Invasive Monocytes in Granulomatosis With Polyangiitis. Front Immunol 2019; 10:2617. [PMID: 31798577 PMCID: PMC6874157 DOI: 10.3389/fimmu.2019.02617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: Granulomatosis with polyangiitis (GPA) is a multi-organ vasculitic syndrome typically associated with neutrophil extracellular trap (NET) formation and aggressive tissue inflammation. Manifestations in head and neck (H&N) GPA include septal perforations, saddle-nose deformities, bony erosions of the orbital and sinus walls, middle ear damage and epiglottitis, indicative of bone, cartilage, and connective tissue destruction. Whether H&N-centric lesions engage disease pathways distinctive from the ischemic tissue damage in the lungs, kidneys, skin, and peripheral nerves is unknown. We have compared inflammatory responses triggered by neutrophilic NETs in patients with H&N GPA and systemic GPA (sGPA). Methods: Neutrophils and monocytes were isolated from the peripheral blood of patients with H&N GPA, sGPA, and age/gender matched healthy individuals. Neutrophil NETosis was induced. NETs were isolated and cocultured with monocytes. Gene induction was quantified by RT-PCR, protein upregulation by flow cytometry. Tissue invasiveness of monocytes was measured in a 3D collagen matrix system. Expression of MMP-9 in tissue-residing macrophages was assessed by immunohistochemistry in tissue biopsies. Results: Neutrophils from H&N GPA patients showed more intense NETosis with higher frequencies of netting neutrophils (P < 0.001) and release of higher amounts of NETs (P < 0.001). Isolated NETs from H&N GPA functioned as an inducer of danger-associated molecular patterns in monocytes; specifically, alarmin S100A9. NET-induced upregulation of monocyte S100A9 required recognition of DNA. S100A9 release resulted in the induction of metalloproteinases, including MMP-9, and enabled monocytes to invade into extracellular matrix. Anti-MMP-9 treatment attenuated the tissue invasiveness of monocytes primed with NETs from H&N GPA patients. MMP-9-producing macrophages dominated the tissue infiltrates in naso-sinal biopsies from H&N GPA patients. Conclusion: Distinct disease patterns in GPA are associated with differences in NET formation and NET content. H&N GPA patients with midline cartilaginous and bony lesions are highly efficient in generating NETs. H&N GPA neutrophils trigger the induction of the alarmin S100A9, followed by production of MMP-9, endowing monocytes with tissue-invasive capabilities.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Markus Zeisbrich
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nour Ibrahim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
93
|
RNA sequencing for ligature induced periodontitis in mice revealed important role of S100A8 and S100A9 for periodontal destruction. Sci Rep 2019; 9:14663. [PMID: 31605018 PMCID: PMC6789140 DOI: 10.1038/s41598-019-50959-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease caused by pathogenic oral microorganisms that induce the destruction of periodontal tissue. We sought to identify the relevant differentially expressed genes (DEGs) and clarify the mechanism underlying the rapid alveolar bone loss by using ligature-induced periodontitis in mice. A silk ligature was tied around the maxillary left second molar in 9-week-old C57BL/6 J male mice. In-vivo micro-CT analysis revealed that ligation induced severe bone loss. RNA-sequencing analysis, to examine host responses at 3 days post-ligation, detected 12,853 genes with fragments per kilobase of exon per million mapped reads ≥ 1, and 78 DEGs. Gene ontology term enrichment analysis revealed the expression profiles related to neutrophil chemotaxis and inflammatory responses were significantly enriched in the ligated gingiva. The expression levels of innate immune response-related genes, including S100a8 and S100a9, were significantly higher in the ligated side. S100A8 was strongly detected by immunohistochemistry at the attached epithelium in ligated sites. Inhibition of S100A8 and S100A9 expression revealed that they regulated IL1B and CTSK expression in Ca9-22 cells. Thus, innate immune response-related molecules might be associated with the burst-destruction of periodontal tissue in ligature-induced periodontitis. Especially, S100A8 and S100A9 may play an important role in alveolar bone resorption.
Collapse
|
94
|
Wei L, Liu M, Xiong H. Role of Calprotectin as a Biomarker in Periodontal Disease. Mediators Inflamm 2019; 2019:3515026. [PMID: 31530995 PMCID: PMC6721252 DOI: 10.1155/2019/3515026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease (PD) is a common infectious and inflammatory disease characterised by inflammation of tissues surrounding and supporting the teeth and destruction of the associated alveolar bone, eventually resulting in tooth loss. This disease is caused by periodontopathic bacteria in plaque biofilm and resultant innate and adaptive immune responses in periodontal tissues. Calprotectin (CLP) is a calcium-binding protein of the S-100 protein family and is found to be induced by activated granulocytes, monocytes, and epithelial cells. CLP has been shown to play an important role in numerous inflammatory diseases and disorders. Increasing evidence indicates that CLP is involved in the progression of PD, and its levels may be associated with disease severity and outcome of periodontal treatments. This review will summarise recent studies regarding the presence, regulation, and function of CLP in PD. The findings indicate that CLP may be an effective biomarker for diagnosis and treatment for the PD.
Collapse
Affiliation(s)
- Lili Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingwen Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haofei Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
95
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
96
|
Cecchettini A, Finamore F, Ucciferri N, Donati V, Mattii L, Polizzi E, Ferro F, Sernissi F, Mosca M, Bombardieri S, Rocchiccioli S, Baldini C. Phenotyping multiple subsets in Sjögren's syndrome: a salivary proteomic SWATH-MS approach towards precision medicine. Clin Proteomics 2019; 16:26. [PMID: 31249499 PMCID: PMC6587286 DOI: 10.1186/s12014-019-9245-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background This proof of concept study was aimed at characterizing novel salivary biomarkers specific for different subsets in primary Sjögren's syndrome (pSS) in order to improve patients' profiling. Methods pSS patients were stratified in three subgroups according to both (a) focus score in the minor salivary gland biopsies (i.e. intensity of immune cell infiltration in the tissue) and (b) unstimulated salivary flow rate. Healthy volunteers were included as controls. A nano-HPLC-SWATH-MS approach was used for the analysis of saliva proteome of different subsets. Results We found 203 differentially expressed proteins in pSS patients with respect to controls with evident differences in the expression of normal constituents of the human salivary proteome (i.e. prolactin-inducible protein, proline-rich proteins, cystatins) and several mediators of inflammatory processes. The comparative analysis of the pSS phenotypes unrevealed 63 proteins that were shared and specifically modulated in the three subsets of pSS patients converging on several inflammatory pathways. Among them S100A protein appeared of particular interest merging on IL-12 signaling and being significantly influenced by either salivary flow impairment or intensity of immune cell infiltration in the tissue. Conclusions Constellations of proteins, including S100A proteins, characterize different pSS subsets reflecting either salivary gland dysfunction or inflammation. Salivary proteomics may foster future research projects ultimately aimed at developing personalized treatments for pSS patients.
Collapse
Affiliation(s)
- Antonella Cecchettini
- National Research Council - Clinical Institute of Physiology, Pisa, Italy.,4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Finamore
- National Research Council - Clinical Institute of Physiology, Pisa, Italy
| | - Nadia Ucciferri
- National Research Council - Clinical Institute of Physiology, Pisa, Italy
| | - Valentina Donati
- 2Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Letizia Mattii
- 3Section Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza Polizzi
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Ferro
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Sernissi
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Mosca
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Bombardieri
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Chiara Baldini
- 4Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
97
|
Silveira AAA, Mahon OR, Cunningham CC, Corr EM, Mendonça R, Saad STO, Costa FF, Dunne A, Conran N. S100A8 acts as an autocrine priming signal for heme-induced human Mϕ pro-inflammatory responses in hemolytic inflammation. J Leukoc Biol 2019; 106:35-43. [PMID: 31091351 DOI: 10.1002/jlb.3mia1118-418rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intravascular hemolysis, in addition to reducing red cell counts, incurs extensive vascular inflammation and oxidative stress. One product of hemolysis, heme, is a potent danger associated molecular pattern (DAMP), activating leukocytes and inducing cytokine expression and processing, among other pro-inflammatory effects. We explored pathways by which heme-induced inflammation may be amplified under sterile conditions. Incubation of human Mϕs, differentiated from CD14+ cells, with heme induced time- and concentration-dependent gene and protein expression of S100A8, a myeloid cell-derived alarmin. Human Mϕ stimulation with recombinant S100A8, in turn, induced robust pro-IL-1β expression that was dependent upon NF-κB activation, gene transcription, and partially dependent upon TLR4-mediated signaling. Moreover, heme itself stimulated significant Mϕ pro-IL-1β gene and protein expression via an S100A8-mediated mechanism and greatly amplified S100A8-driven NLRP3 inflammasome-mediated IL-1β secretion. In vivo, induction of acute intravascular hemolysis in mice induced a rapid elevation of plasma S100A8 that could be abolished by hemopexin, a heme scavenger. Finally, plasma S100A8 levels were found to be significantly elevated in patients with the inherited hemolytic anemia, sickle cell anemia, when compared with levels in healthy individuals. In conclusion, we demonstrate that hemolytic processes are associated with S100A8 generation and that some of the inflammatory effects of heme may be amplified by autocrine S100A8 production. Findings suggest a mechanism by which hemolytic inflammation could be propagated via leukocyte priming by endogenous proteins, even in sterile inflammatory environments such as those that occur in the hemolytic diseases. S100A8 may represent a therapeutic target for reducing inflammation in hemolytic disorders.
Collapse
Affiliation(s)
| | - Olwyn R Mahon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emma M Corr
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rafaela Mendonça
- Hematology Center, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sara T O Saad
- Hematology Center, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando F Costa
- Hematology Center, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicola Conran
- Hematology Center, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
98
|
Signaling mechanisms inducing hyporesponsiveness of phagocytes during systemic inflammation. Blood 2019; 134:134-146. [PMID: 31076441 DOI: 10.1182/blood.2019000320] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
The inflammatory responsiveness of phagocytes to exogenous and endogenous stimuli is tightly regulated. This regulation plays an important role in systemic inflammatory response syndromes (SIRSs). In SIRSs, phagocytes initially develop a hyperinflammatory response, followed by a secondary state of hyporesponsiveness, a so-called "tolerance." This hyporesponsiveness can be induced by endotoxin stimulation of Toll-like receptor 4 (TLR4), resulting in an ameliorated response after subsequent restimulation. This modification of inflammatory response patterns has been described as innate immune memory. Interestingly, tolerance can also be triggered by endogenous TLR4 ligands, such as the alarmins myeloid-related protein 8 (MRP8, S100A8) and MRP14 (S100A9), under sterile conditions. However, signaling pathways that trigger hyporesponsiveness of phagocytes in clinically relevant diseases are only barely understood. Through our work, we have now identified 2 main signaling cascades that are activated during MRP-induced tolerance of phagocytes. We demonstrate that the phosphatidylinositol 3-kinase/AKT/GSK-3β pathway interferes with NF-κB-driven gene expression and that inhibition of GSK-3β mimics tolerance in vivo. Moreover, we identified interleukin-10-triggered activation of transcription factors STAT3 and BCL-3 as master regulators of MRP-induced tolerance. Accordingly, patients with dominant-negative STAT3 mutations show no tolerance development. In a clinically relevant condition of systemic sterile stress, cardiopulmonary bypass surgery, we confirmed the initial induction of MRP expression and the tolerance induction of monocytes associated with nuclear translocation of STAT3 and BCL-3 as relevant mechanisms. Our data indicate that the use of pharmacological JAK-STAT inhibitors may be promising targets for future therapeutic approaches to prevent complications associated with secondary hyporesponsiveness during SIRS.
Collapse
|
99
|
Holzinger D, Tenbrock K, Roth J. Alarmins of the S100-Family in Juvenile Autoimmune and Auto-Inflammatory Diseases. Front Immunol 2019; 10:182. [PMID: 30828327 PMCID: PMC6384255 DOI: 10.3389/fimmu.2019.00182] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Autoimmune and auto-inflammatory diseases in children are causing chronic inflammation, organ damage, and pain. Although several options for treatment are nowadays available a significant number of patients does not respond sufficiently to current therapies. In these diseases inflammatory processes are triggered by numerous exogenous and endogenous factors. There is now increasing evidence that especially a novel family of pro-inflammatory molecules, named alarmins, play a significant role in inflammatory processes underlying these diseases. Alarmins are endogenous proteins released during stress reactions that confer inflammatory signaling via Pattern Recognition Receptors (PRRs), like the Toll-like receptor 4 (TLR4). The most abundant alarmins in juvenile rheumatic diseases belong to the family of pro-inflammatory calcium-binding S100-proteins. In this review we will give a general introduction in S100-biology. We will demonstrate the functional relevance of these proteins in animal models of autoimmune and auto-inflammatory diseases. We will show the expression patterns of S100-alarmins and correlation to disease activity in different forms of juvenile idiopathic arthritis, auto-inflammatory diseases, and systemic autoimmune disorders. Finally, we will discuss the clinical use of S100-alarmins as biomarkers for diagnosis and monitoring of rheumatic diseases in children and will point out potential future therapeutic approaches targeting inflammatory effects mediated by S100-alarmins.
Collapse
Affiliation(s)
- Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Münster, Germany
| |
Collapse
|
100
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|