51
|
Bei Q, Reitz T, Schnabel B, Eisenhauer N, Schädler M, Buscot F, Heintz-Buschart A. Extreme summers impact cropland and grassland soil microbiomes. THE ISME JOURNAL 2023; 17:1589-1600. [PMID: 37419993 PMCID: PMC10504347 DOI: 10.1038/s41396-023-01470-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Collapse
Affiliation(s)
- Qicheng Bei
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Beatrix Schnabel
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
52
|
Diao M, Dyksma S, Koeksoy E, Ngugi DK, Anantharaman K, Loy A, Pester M. Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction. FEMS Microbiol Rev 2023; 47:fuad058. [PMID: 37796897 PMCID: PMC10591310 DOI: 10.1093/femsre/fuad058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Sulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism. We show: (i) 19 out of 23 bacterial and 2 out of 4 archaeal phyla harbor uncharacterized SRM, (ii) four phyla including the Desulfobacterota harbor microorganisms with the genetic potential to switch between sulfate/sulfite reduction and sulfur oxidation, and (iii) the combination as well as presence/absence of different dsrAB-types, dsrL-types and dsrD provides guidance on the inferred direction of dissimilatory sulfur metabolism. We further provide an updated dsrAB database including > 60% taxonomically resolved, uncultured family-level lineages and recommendations on existing dsrAB-targeted primers for environmental surveys. Our work summarizes insights into the inferred ecophysiology of newly discovered SRM, puts SRM diversity into context of the major recent changes in bacterial and archaeal taxonomy, and provides an up-to-date framework to study SRM in a global context.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Stefan Dyksma
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Elif Koeksoy
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - David Kamanda Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna A-1030, Austria
| | - Michael Pester
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
- Technical University of Braunschweig, Institute of Microbiology, Braunschweig D-38106, Germany
| |
Collapse
|
53
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
54
|
Pavia MJ, Chede A, Wu Z, Cadillo-Quiroz H, Zhu Q. BinaRena: a dedicated interactive platform for human-guided exploration and binning of metagenomes. MICROBIOME 2023; 11:186. [PMID: 37596696 PMCID: PMC10439608 DOI: 10.1186/s40168-023-01625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/16/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Exploring metagenomic contigs and "binning" them into metagenome-assembled genomes (MAGs) are essential for the delineation of functional and evolutionary guilds within microbial communities. Despite the advances in automated binning algorithms, their capabilities in recovering MAGs with accuracy and biological relevance are so far limited. Researchers often find that human involvement is necessary to achieve representative binning results. This manual process however is expertise demanding and labor intensive, and it deserves to be supported by software infrastructure. RESULTS We present BinaRena, a comprehensive and versatile graphic interface dedicated to aiding human operators to explore metagenome assemblies via customizable visualization and to associate contigs with bins. Contigs are rendered as an interactive scatter plot based on various data types, including sequence metrics, coverage profiles, taxonomic assignments, and functional annotations. Various contig-level operations are permitted, such as selection, masking, highlighting, focusing, and searching. Binning plans can be conveniently edited, inspected, and compared visually or using metrics including silhouette coefficient and adjusted Rand index. Completeness and contamination of user-selected contigs can be calculated in real time. In demonstration of BinaRena's usability, we show that it facilitated biological pattern discovery, hypothesis generation, and bin refinement in a complex tropical peatland metagenome. It enabled isolation of pathogenic genomes within closely related populations from the gut microbiota of diarrheal human subjects. It significantly improved overall binning quality after curating results of automated binners using a simulated marine dataset. CONCLUSIONS BinaRena is an installation-free, dependency-free, client-end web application that operates directly in any modern web browser, facilitating ease of deployment and accessibility for researchers of all skill levels. The program is hosted at https://github.com/qiyunlab/binarena , together with documentation, tutorials, example data, and a live demo. It effectively supports human researchers in intuitive interpretation and fine tuning of metagenomic data. Video Abstract.
Collapse
Affiliation(s)
- Michael J Pavia
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Abhinav Chede
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Zijun Wu
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
55
|
Michoud G, Kohler TJ, Ezzat L, Peter H, Nattabi JK, Nalwanga R, Pramateftaki P, Styllas M, Tolosano M, De Staercke V, Schön M, Marasco R, Daffonchio D, Bourquin M, Busi SB, Battin TJ. The dark side of the moon: first insights into the microbiome structure and function of one of the last glacier-fed streams in Africa. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230329. [PMID: 37564072 PMCID: PMC10410210 DOI: 10.1098/rsos.230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
The glaciers on Africa's 'Mountains of the Moon' (Rwenzori National Park, Uganda) are predicted to disappear within the next decades owing to climate change. Consequently, the glacier-fed streams (GFSs) that drain them will vanish, along with their resident microbial communities. Despite the relevance of microbial communities for performing ecosystem processes in equatorial GFSs, their ecology remains understudied. Here, we show that the benthic microbiome from the Mt. Stanley GFS is distinct at several levels from other GFSs. Specifically, several novel taxa were present, and usually common groups such as Chrysophytes and Polaromonas exhibited lower relative abundances compared to higher-latitude GFSs, while cyanobacteria and diatoms were more abundant. The rich primary producer community in this GFS likely results from the greater environmental stability of the Afrotropics, and accordingly, heterotrophic processes dominated in the bacterial community. Metagenomics revealed that almost all prokaryotes in the Mt. Stanley GFS are capable of organic carbon oxidation, while greater than 80% have the potential for fermentation and acetate oxidation. Our findings suggest a close coupling between photoautotrophs and other microbes in this GFS, and provide a glimpse into the future for high-latitude GFSs globally where primary production is projected to increase with ongoing glacier shrinkage.
Collapse
Affiliation(s)
- Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Leïla Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juliet Kigongo Nattabi
- Department of Zoology, Entomology and Fisheries Sciences (ZEFs), College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Rosemary Nalwanga
- Department of Zoology, Entomology and Fisheries Sciences (ZEFs), College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michail Styllas
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Tolosano
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent De Staercke
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Schön
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
56
|
Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 2023; 20:1203-1212. [PMID: 37500759 DOI: 10.1038/s41592-023-01940-w] [Citation(s) in RCA: 149] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Advances in sequencing technologies and bioinformatics tools have dramatically increased the recovery rate of microbial genomes from metagenomic data. Assessing the quality of metagenome-assembled genomes (MAGs) is a critical step before downstream analysis. Here, we present CheckM2, an improved method of predicting genome quality of MAGs using machine learning. Using synthetic and experimental data, we demonstrate that CheckM2 outperforms existing tools in both accuracy and computational speed. In addition, CheckM2's database can be rapidly updated with new high-quality reference genomes, including taxa represented only by a single genome. We also show that CheckM2 accurately predicts genome quality for MAGs from novel lineages, even for those with reduced genome size (for example, Patescibacteria and the DPANN superphylum). CheckM2 provides accurate genome quality predictions across bacterial and archaeal lineages, giving increased confidence when inferring biological conclusions from MAGs.
Collapse
Affiliation(s)
- Alex Chklovski
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Donovan H Parks
- Donovan Parks, Bioinformatic Consultant, Castlegar, British Columbia, Canada
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
57
|
Santana-Pereira ALR, Moen FS, Severance B, Liles MR. Influence of soil nutrients on the presence and distribution of CPR bacteria in a long-term crop rotation experiment. Front Microbiol 2023; 14:1114548. [PMID: 37577441 PMCID: PMC10413278 DOI: 10.3389/fmicb.2023.1114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Bacteria affiliated with the Candidate Phyla Radiation (CPR) are a hyper-diverse group of ultra-small bacteria with versatile yet sparse metabolisms. However, most insights into this group come from a surprisingly small number of environments, and recovery of CPR bacteria from soils has been hindered due to their extremely low abundance within complex microbial assemblages. In this study we enriched soil samples from 14 different soil fertility treatments for ultra-small (<0.45 μm) bacteria in order to study rare soil CPR. 42 samples were sequenced, enabling the reconstruction of 27 quality CPR metagenome-assembled genomes (MAGs) further classified as Parcubacteria/Paceibacteria, Saccharibacteria/Saccharimonadia and ABY1, in addition to representative genomes from Gemmatimonadetes, Dependentiae and Chlamydae phyla. These genomes were fully annotated and used to reconstruct the CPR community across all 14 plots. Additionally, for five of these plots, the entire microbiota was reconstructed using 16S amplification, showing that specific soil CPR may form symbiotic relationships with a varied and circumstantial range of hosts. Cullars CPR had a prevalence of enzymes predicted to degrade plant-derived carbohydrates, which suggests they have a role in plant biomass degradation. Parcubacteria appear to be more apt at microfauna necromass degradation. Cullars Saccharibacteria and a Parcubacteria group were shown to carry a possible aerotolerance mechanism coupled with potential for aerobic respiration, which appear to be a unique adaptation to the oxic soil environment. Reconstruction of CPR communities across treatment plots showed that they were not impacted by changes in nutrient levels or microbiota composition, being only impacted by extreme conditions, causing some CPR to dominate the community. These findings corroborate the understanding that soil-dwelling CPR bacteria have a very broad symbiont range and have metabolic capabilities associated to soil environments which allows them to scavenge resources and form resilient communities. The contributions of these microbial dark matter species to soil ecology and plant interactions will be of significant interest in future studies.
Collapse
Affiliation(s)
| | | | | | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
58
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
59
|
Bourak K, Sare AR, Allaoui A, Jijakli MH, Massart S. Impact of Two Phosphorus Fertilizer Formulations on Wheat Physiology, Rhizosphere, and Rhizoplane Microbiota. Int J Mol Sci 2023; 24:9879. [PMID: 37373026 DOI: 10.3390/ijms24129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphorus (P) is the second most important macronutrient for crop growth and a limiting factor in food production. Choosing the right P fertilizer formulation is important for crop production systems because P is not mobile in soils, and placing phosphate fertilizers is a major management decision. In addition, root microorganisms play an important role in helping phosphorus fertilization management by regulating soil properties and fertility through different pathways. Our study evaluated the impact of two phosphorous formulations (polyphosphates and orthophosphates) on physiological traits of wheat related to yield (photosynthetic parameters, biomass, and root morphology) and its associated microbiota. A greenhouse experiment was conducted using agricultural soil deficient in P (1.49%). Phenotyping technologies were used at the tillering, stem elongation, heading, flowering, and grain-filling stages. The evaluation of wheat physiological traits revealed highly significant differences between treated and untreated plants but not between phosphorous fertilizers. High-throughput sequencing technologies were applied to analyse the wheat rhizosphere and rhizoplane microbiota at the tillering and the grain-filling growth stages. The alpha- and beta-diversity analyses of bacterial and fungal microbiota revealed differences between fertilized and non-fertilized wheat, rhizosphere, and rhizoplane, and the tillering and grain-filling growth stages. Our study provides new information on the composition of the wheat microbiota in the rhizosphere and rhizoplane during growth stages (Z39 and Z69) under polyphosphate and orthophosphate fertilization. Hence, a deeper understanding of this interaction could provide better insights into managing microbial communities to promote beneficial plant-microbiome interactions for P uptake.
Collapse
Affiliation(s)
- Kaoutar Bourak
- Terra Research Center, Integrated and Urban Plant Pathology Laboratory, Liege University, Gembloux Agro-Bio-Tech, B-5030 Gembloux, Belgium
- Microbiology Laboratory, African Genome Center (AGC), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdoul Razack Sare
- Terra Research Center, Integrated and Urban Plant Pathology Laboratory, Liege University, Gembloux Agro-Bio-Tech, B-5030 Gembloux, Belgium
| | - Abdelmounaaim Allaoui
- Microbiology Laboratory, African Genome Center (AGC), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - M Haissam Jijakli
- Terra Research Center, Integrated and Urban Plant Pathology Laboratory, Liege University, Gembloux Agro-Bio-Tech, B-5030 Gembloux, Belgium
| | - Sébastien Massart
- Terra Research Center, Integrated and Urban Plant Pathology Laboratory, Liege University, Gembloux Agro-Bio-Tech, B-5030 Gembloux, Belgium
| |
Collapse
|
60
|
Zhong S, Li B, Hou B, Xu X, Hu J, Jia R, Yang S, Zhou S, Ni J. Structure, stability, and potential function of groundwater microbial community responses to permafrost degradation on varying permafrost of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162693. [PMID: 36898548 DOI: 10.1016/j.scitotenv.2023.162693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The ongoing permafrost degradation under climate warming has modified aboveground biogeochemical processes mediated by microbes, yet groundwater microbial structure and function as well as their response to permafrost degradation remain poorly understood. We separately collect 20 and 22 sub-permafrost groundwater samples from Qilian Mountain (alpine and seasonal permafrost) and Southern Tibet Valley (plateau isolated permafrost) on the Qinghai-Tibet Plateau (QTP) to investigate the effects of permafrost groundwater characteristics on the diversity, structure, stability, and potential function of bacterial and fungal communities. Regional discrepancy of groundwater microbes between two permafrost regions reveals that permafrost degradation might reshape microbial community structure, increase community stability and potential functions relevant to carbon metabolism. Bacterial community assembly in permafrost groundwater is governed by deterministic processes, whereas fungal communities are mainly controlled by stochastic processes, suggesting that bacterial biomarkers might provide the better 'early warning signals' to permafrost degradation in deeper layers. Our study highlights the importance of groundwater microbes in ecological stability and carbon emission on the QTP.
Collapse
Affiliation(s)
- Sining Zhong
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Bin Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Bowen Hou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Jinyun Hu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Rong Jia
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Shungui Zhou
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
61
|
Anstett J, Plominsky AM, DeLong EF, Kiesser A, Jürgens K, Morgan-Lang C, Stepanauskas R, Stewart FJ, Ulloa O, Woyke T, Malmstrom R, Hallam SJ. A compendium of bacterial and archaeal single-cell amplified genomes from oxygen deficient marine waters. Sci Data 2023; 10:332. [PMID: 37244914 DOI: 10.1038/s41597-023-02222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.
Collapse
Affiliation(s)
- Julia Anstett
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Alvaro M Plominsky
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Alyse Kiesser
- School of Engineering, The University of British Columbia, Kelowna, BC, Canada
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Osvaldo Ulloa
- Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
- Instituto Milenio de Oceanografía, Casilla 1313, 4070386, Concepción, Chile
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven J Hallam
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
62
|
Waldrop MP, Chabot CL, Liebner S, Holm S, Snyder MW, Dillon M, Dudgeon SR, Douglas TA, Leewis MC, Walter Anthony KM, McFarland JW, Arp CD, Bondurant AC, Taş N, Mackelprang R. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. THE ISME JOURNAL 2023:10.1038/s41396-023-01429-6. [PMID: 37217592 DOI: 10.1038/s41396-023-01429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.
Collapse
Affiliation(s)
- Mark P Waldrop
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA.
| | - Christopher L Chabot
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, 14476, Potsdam, Germany
| | - Stine Holm
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Michael W Snyder
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Megan Dillon
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven R Dudgeon
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory 9th Avenue, Building 4070 Fort, Wainwright, AK, 99703, USA
| | - Mary-Cathrine Leewis
- Agriculture and Agri-Food Canada, 2560 Boulevard Hochelaga, Québec, QC, G1V 2J3, Canada
| | - Katey M Walter Anthony
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jack W McFarland
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA
| | - Christopher D Arp
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Allen C Bondurant
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rachel Mackelprang
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA.
| |
Collapse
|
63
|
Yang C, Zhang H, Zhao X, Liu P, Wang L, Wang W. A functional metagenomics study of soil carbon and nitrogen degradation networks and limiting factors on the Tibetan plateau. Front Microbiol 2023; 14:1170806. [PMID: 37228377 PMCID: PMC10203874 DOI: 10.3389/fmicb.2023.1170806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The Three-River Source Nature Reserve is located in the core area of the Qinghai-Tibetan Plateau, with the alpine swamp, meadow and steppe as the main ecosystem types. However, the microbial communities in these alpine ecosystems, and their carbon and nitrogen degrading metabolic networks and limiting factors remain unclear. Methods We sequenced the diversity of bacteria and fungi in alpine swamps, meadows, steppes, and their degraded and artificially restored ecosystems and analyzed soil environmental conditions. Results The results indicated that moisture content had a greater influence on soil microbial community structure compared to degradation and restoration. Proteobacteria dominated in high moisture alpine swamps and alpine meadows, while Actinobacteria dominated in low moisture alpine steppes and artificial grasslands. A metabolic network analysis of carbon and nitrogen degradation and transformation using metagenomic sequencing revealed that plateau microorganisms lacked comprehensive and efficient enzyme systems to degrade organic carbon, nitrogen, and other biological macromolecules, so that the short-term degradation of alpine vegetation had no effect on the basic composition of soil microbial community. Correlation analysis found that nitrogen fixation was strong in meadows with high moisture content, and their key nitrogen-fixing enzymes were significantly related to Sphingomonas. Denitrification metabolism was enhanced in water-deficient habitats, and the key enzyme, nitrous oxide reductase, was significantly related to Phycicoccus and accelerated the loss of nitrogen. Furthermore, Bacillus contained a large number of amylases (GH13 and GH15) and proteases (S8, S11, S26, and M24) which may promote the efficient degradation of organic carbon and nitrogen in artificially restored grasslands. Discussion This study illustrated the irrecoverability of meadow degradation and offered fundamental information for altering microbial communities to restore alpine ecosystems.
Collapse
Affiliation(s)
- Chong Yang
- School of Geographical Sciences, Qinghai Normal University, Xining, China
- School of Life Sciences, Qinghai Normal University, Xining, China
| | - Hong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinquan Zhao
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
| | - Pan Liu
- School of Geographical Sciences, Qinghai Normal University, Xining, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining, China
| |
Collapse
|
64
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
65
|
Zhang C, Fang YX, Yin X, Lai H, Kuang Z, Zhang T, Xu XP, Wegener G, Wang JH, Dong X. The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules. MICROBIOME 2023; 11:37. [PMID: 36864529 PMCID: PMC9979476 DOI: 10.1186/s40168-023-01482-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Gas hydrate-bearing subseafloor sediments harbor a large number of microorganisms. Within these sediments, organic matter and upward-migrating methane are important carbon and energy sources fueling a light-independent biosphere. However, the type of metabolism that dominates the deep subseafloor of the gas hydrate zone is poorly constrained. Here we studied the microbial communities in gas hydrate-rich sediments up to 49 m below the seafloor recovered by drilling in the South China Sea. We focused on distinct geochemical conditions and performed metagenomic and metatranscriptomic analyses to characterize microbial communities and their role in carbon mineralization. RESULTS Comparative microbial community analysis revealed that samples above and in sulfate-methane interface (SMI) zones were clearly distinguished from those below the SMI. Chloroflexota were most abundant above the SMI, whereas Caldatribacteriota dominated below the SMI. Verrucomicrobiota, Bathyarchaeia, and Hadarchaeota were similarly present in both types of sediment. The genomic inventory and transcriptional activity suggest an important role in the fermentation of macromolecules. In contrast, sulfate reducers and methanogens that catalyze the consumption or production of commonly observed chemical compounds in sediments are rare. Methanotrophs and alkanotrophs that anaerobically grow on alkanes were also identified to be at low abundances. The ANME-1 group actively thrived in or slightly below the current SMI. Members from Heimdallarchaeia were found to encode the potential for anaerobic oxidation of short-chain hydrocarbons. CONCLUSIONS These findings indicate that the fermentation of macromolecules is the predominant energy source for microorganisms in deep subseafloor sediments that are experiencing upward methane fluxes. Video Abstract.
Collapse
Affiliation(s)
- Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yun-Xin Fang
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Xiuran Yin
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hongfei Lai
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Zenggui Kuang
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Tianxueyu Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Xiang-Po Xu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
66
|
Tundra Soil Viruses Mediate Responses of Microbial Communities to Climate Warming. mBio 2023; 14:e0300922. [PMID: 36786571 PMCID: PMC10127799 DOI: 10.1128/mbio.03009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The rise of global temperature causes the degradation of the substantial reserves of carbon (C) stored in tundra soils, in which microbial processes play critical roles. Viruses are known to influence the soil C cycle by encoding auxiliary metabolic genes and infecting key microorganisms, but their regulation of microbial communities under climate warming remains unexplored. In this study, we evaluated the responses of viral communities for about 5 years of experimental warming at two depths (15 to 25 cm and 45 to 55 cm) in the Alaskan permafrost region. Our results showed that the viral community and functional gene composition and abundances (including viral functional genes related to replication, structure, infection, and lysis) were significantly influenced by environmental conditions such as total nitrogen (N), total C, and soil thawing duration. Although long-term warming did not impact the viral community composition at the two depths, some glycoside hydrolases encoded by viruses were more abundant at both depths of the warmed plots. With the continuous reduction of total C, viruses may alleviate methane release by altering infection strategies on methanogens. Importantly, viruses can adopt lysogenic and lytic lifestyles to manipulate microbial communities at different soil depths, respectively, which could be one of the major factors causing the differences in microbial responses to warming. This study provides a new ecological perspective on how viruses regulate the responses of microbes to warming at community and functional scales. IMPORTANCE Permafrost thawing causes microbial release of greenhouse gases, exacerbating climate warming. Some previous studies examined the responses of the microbial communities and functions to warming in permafrost region, but the roles of viruses in mediating the responses of microbial communities to warming are poorly understood. This study revealed that warming induced changes in some viral functional classes and in the virus/microbe ratios for specific lineages, which might influence the entire microbial community. Furthermore, differences in viral communities and functions, along with soil depths, are important factors influencing microbial responses to warming. Collectively, our study revealed the regulation of microbial communities by viruses and demonstrated the importance of viruses in the microbial ecology research.
Collapse
|
67
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
68
|
Langlois V, Girard C, Vincent WF, Culley AI. A Tale of Two Seasons: Distinct Seasonal Viral Communities in a Thermokarst Lake. Microorganisms 2023; 11:microorganisms11020428. [PMID: 36838393 PMCID: PMC9964402 DOI: 10.3390/microorganisms11020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Thermokarst lakes are important features of subarctic landscapes and are a substantial source of greenhouse gases, although the extent of gas produced varies seasonally. Microbial communities are responsible for the production of methane and CO2 but the "top down" forces that influence microbial dynamics (i.e., grazers and viruses) and how they vary temporally within these lakes are still poorly understood. The aim of this study was to examine viral diversity over time to elucidate the seasonal structure of the viral communities in thermokarst lakes. We produced virus-enriched metagenomes from a subarctic peatland thermokarst lake in the summer and winter over three years. The vast majority of vOTUs assigned to viral families belonged to Caudovirales (Caudoviricetes), notably the morphological groups myovirus, siphovirus and podovirus. We identified two distinct communities: a dynamic, seasonal community in the oxygenated surface layer during the summer and a stable community found in the anoxic water layer at the bottom of the lake in summer and throughout much of the water column in winter. Comparison with other permafrost and northern lake metagenomes highlighted the distinct composition of viral communities in this permafrost thaw lake ecosystem.
Collapse
Affiliation(s)
- Valérie Langlois
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Catherine Girard
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Warwick F. Vincent
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
69
|
Xia Y, Li X, Wu Z, Nie C, Cheng Z, Sun Y, Liu L, Zhang T. Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data. IMETA 2023; 2:e72. [PMID: 38868337 PMCID: PMC10989838 DOI: 10.1002/imt2.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Metagenomic strategy serves as the foundation for the ecological exploration of novel bioresources (e.g., industrial enzymes and bioactive molecules) and biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. Recent advancements in sequencing technology have fostered rapid development in the field of microbiome research where an increasing number of studies have applied both illumina short reads (SRs) and nanopore long reads (LRs) sequencing in their metagenomic workflow. However, given the high complexity of an environmental microbiome data set and the bioinformatic challenges caused by the unique features of these sequencing technologies, integrating SRs and LRs is not as straightforward as one might assume. The fast renewal of existing tools and growing diversity of new algorithms make access to this field even more difficult. Therefore, here we systematically summarized the complete workflow from DNA extraction to data processing strategies for applying illumina and nanopore-integrated metagenomics in the investigation in environmental microbiomes. Overall, this review aims to provide a timely knowledge framework for researchers that are interested in or are struggling with the SRs and LRs integration in their metagenomic analysis. The discussions presented will facilitate improved ecological understanding of community functionalities and assembly of natural, engineered, and human microbiomes, benefiting researchers from multiple disciplines.
Collapse
Affiliation(s)
- Yu Xia
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Xiang Li
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Cailong Nie
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology LaboratoryThe University of Hong KongHong Kong SARChina
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology LaboratoryThe University of Hong KongHong Kong SARChina
| |
Collapse
|
70
|
Dong X, Lan H, Huang L, Zhang H, Lin X, Weng S, Peng Y, Lin J, Wang JH, Peng J, Yang Y. Metagenomic Views of Microbial Communities in Sand Sediments Associated with Coral Reefs. MICROBIAL ECOLOGY 2023; 85:465-477. [PMID: 35113183 DOI: 10.1007/s00248-021-01957-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Reef sediments, the home for microbes with high abundances, provide an important source of carbonates and nutrients for the growth and maintenance of coral reefs. However, there is a lack of systematic research on the composition of microbial community in sediments of different geographic sites and their potential effect on nutrient recycling and health of the coral reef ecosystem. In combination of biogeochemical measurements with gene- and genome-centric metagenomics, we assessed microbial community compositions and functional diversity, as well as profiles of antibiotic resistance genes in surface sediments of 16 coral reef sites at different depths from the Xisha islands in the South China Sea. Reef sediment microbiomes are diverse and novel at lower taxonomic ranks, dominated by Proteobacteria and Planctomycetota. Most reef sediment bacteria potentially participate in biogeochemical cycling via oxidizing various organic and inorganic compounds as energy sources. High abundances of Proteobacteria (mostly Rhizobiales and Woeseiales) are metabolically flexible and contain rhodopsin genes. Various classes of antibiotic resistance genes, hosted by diverse bacterial lineages, were identified to confer resistance to multidrug, aminoglycoside, and other antibiotics. Overall, our findings expanded the understanding of reef sediment microbial ecology and provided insights for their link to the coral reef ecosystem health.
Collapse
Affiliation(s)
- Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Haoyu Lan
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Liangtian Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xianbiao Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jia Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Juan Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
71
|
Uzun M, Koziaeva V, Dziuba M, Alekseeva L, Krutkina M, Sukhacheva M, Baslerov R, Grouzdev D. Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil. THE ISME JOURNAL 2023; 17:204-214. [PMID: 36302955 PMCID: PMC9859788 DOI: 10.1038/s41396-022-01339-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/22/2023]
Abstract
Studying the minor part of the uncultivated microbial majority ("rare biosphere") is difficult even with modern culture-independent techniques. The enormity of microbial diversity creates particular challenges for investigating low-abundance microbial populations in soils. Strategies for selective sample enrichment to reduce community complexity can aid in studying the rare biosphere. Magnetotactic bacteria, apart from being a minor part of the microbial community, are also found in poorly studied bacterial phyla and certainly belong to a rare biosphere. The presence of intracellular magnetic crystals within magnetotactic bacteria allows for their significant enrichment using magnetic separation techniques for studies using a metagenomic approach. This work investigated the microbial diversity of a black bog soil and its magnetically enriched fraction. The poorly studied phylum representatives in the magnetic fraction were enriched compared to the original soil community. Two new magnetotactic species, Candidatus Liberimonas magnetica DUR002 and Candidatus Obscuribacterium magneticum DUR003, belonging to different classes of the relatively little-studied phylum Elusimicrobiota, were proposed. Their genomes contain clusters of magnetosome genes that differ from the previously described ones by the absence of genes encoding magnetochrome-containing proteins and the presence of unique Elusimicrobiota-specific genes, termed mae. The predicted obligately fermentative metabolism in DUR002 and lack of flagellar motility in the magnetotactic Elusimicrobiota broadens our understanding of the lifestyles of magnetotactic bacteria and raises new questions about the evolutionary advantages of magnetotaxis. The findings presented here increase our understanding of magnetotactic bacteria, soil microbial communities, and the rare biosphere.
Collapse
Affiliation(s)
- Maria Uzun
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Koziaeva
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marina Dziuba
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Lolita Alekseeva
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Marina Sukhacheva
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Roman Baslerov
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Denis Grouzdev
- SciBear OU, Tallinn, Estonia.
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
72
|
Roux S, Fischer MG, Hackl T, Katz LA, Schulz F, Yutin N. Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules 2023; 13:204. [PMID: 36830574 PMCID: PMC9952930 DOI: 10.3390/biom13020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of "hyperparasitism" in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other "virophage-like" mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages 'sensu stricto', i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthias G. Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
73
|
Chen L, Chen S, Zhang Y, Long Y, Kong X, Wang S, Li L, Wang F, Sun Y, Xu A. Co-occurrence network of microbial communities affected by application of anaerobic fermentation residues during phytoremediation of ionic rare earth tailings area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159223. [PMID: 36208748 DOI: 10.1016/j.scitotenv.2022.159223] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 04/14/2023]
Abstract
The long-term exploitation of ionic rare earth elements (REEs) in southern China has produced a large-scale of abandoned tailings area. While the application of anaerobic fermentation residues to cultivate economically valuable remediation plants (e.g. energy plant) has become a hotspot due to their merits in low-cost and sustainability in recent years, the succession and co-occurrence patterns of these microbial communities remain unclear. In this study, soil samples were collected from the sustainable restoration area, natural restoration area and tailings area. The composition and diversity of bacterial and fungal communities on five soil samples were evaluated using high-throughput sequencing technology. The results shown that the phytoremediation with anaerobic fermentation residues could significantly improve the physicochemical properties (especially for soil nutrients) and microbial diversity of soil within 3 years, while these parameters in natural restoration area were lower. The nonmetric multidimensional scaling (NMDS) ordinations revealed the shifts of microbial communities depending on soil physicochemical properties and plant species, and soil nutrients were the main factors affecting the microbial variation explained by the variation partition analysis (VPA). The soil nutrient accumulation obviously changed the proportion of oligotrophic and copiotrophic groups, among which the copiotrophic groups were significantly increased, such as Proteobacteria, Bacteroidetes, Gemmatimonadetes and Glomeromycota. The microbial co-occurrence network analysis indicated that application of anaerobic fermentation residues could significantly improve the topological properties and the stability of microbial network. The copiotrophic groups (e.g. Proteobacteria, Ascomycota) became the key to assemble stable network structure. Moreover, herbaceous plants could increase the proportion of fungi (e.g. Ascomycota) in microbial network, which improved the topological properties with bacteria synergistically. Therefore, the soil environment of REEs tailings area was effectively optimized by anaerobic fermentation residues and herbaceous plants, which furthered understanding of co-occurrence pattern and mutualistic relationships of microbial communities during sustainable restoration.
Collapse
Affiliation(s)
- Liumeng Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Shasha Chen
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yun Long
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shujia Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fei Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yongmin Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - An Xu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
74
|
Permafrost in the Cretaceous supergreenhouse. Nat Commun 2022; 13:7946. [PMID: 36572668 PMCID: PMC9792593 DOI: 10.1038/s41467-022-35676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Earth's climate during the last 4.6 billion years has changed repeatedly between cold (icehouse) and warm (greenhouse) conditions. The hottest conditions (supergreenhouse) are widely assumed to have lacked an active cryosphere. Here we show that during the archetypal supergreenhouse Cretaceous Earth, an active cryosphere with permafrost existed in Chinese plateau deserts (astrochonological age ca. 132.49-132.17 Ma), and that a modern analogue for these plateau cryospheric conditions is the aeolian-permafrost system we report from the Qiongkuai Lebashi Lake area, Xinjiang Uygur Autonomous Region, China. Significantly, Cretaceous plateau permafrost was coeval with largely marine cryospheric indicators in the Arctic and Australia, indicating a strong coupling of the ocean-atmosphere system. The Cretaceous permafrost contained a rich microbiome at subtropical palaeolatitude and 3-4 km palaeoaltitude, analogous to recent permafrost in the western Himalayas. A mindset of persistent ice-free greenhouse conditions during the Cretaceous has stifled consideration of permafrost thaw as a contributor of C and nutrients to the palaeo-oceans and palaeo-atmosphere.
Collapse
|
75
|
Greenlon A, Sieradzki E, Zablocki O, Koch BJ, Foley MM, Kimbrel JA, Hungate BA, Blazewicz SJ, Nuccio EE, Sun CL, Chew A, Mancilla CJ, Sullivan MB, Firestone M, Pett-Ridge J, Banfield JF. Quantitative Stable-Isotope Probing (qSIP) with Metagenomics Links Microbial Physiology and Activity to Soil Moisture in Mediterranean-Climate Grassland Ecosystems. mSystems 2022; 7:e0041722. [PMID: 36300946 PMCID: PMC9765451 DOI: 10.1128/msystems.00417-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/02/2022] [Indexed: 12/25/2022] Open
Abstract
The growth and physiology of soil microorganisms, which play vital roles in biogeochemical cycling, are shaped by both current and historical soil environmental conditions. Here, we developed and applied a genome-resolved metagenomic implementation of quantitative stable isotope probing (qSIP) with an H218O labeling experiment to identify actively growing soil microorganisms and their genomic capacities. qSIP enabled measurement of taxon-specific growth because isotopic incorporation into microbial DNA requires production of new genome copies. We studied three Mediterranean grassland soils across a rainfall gradient to evaluate the hypothesis that historic precipitation levels are an important factor controlling trait selection. We used qSIP-informed genome-resolved metagenomics to resolve the active subset of soil community members and identify their characteristic ecophysiological traits. Higher year-round precipitation levels correlated with higher activity and growth rates of flagellar motile microorganisms. In addition to heavily isotopically labeled bacteria, we identified abundant isotope-labeled phages, suggesting phage-induced cell lysis likely contributed to necromass production at all three sites. Further, there was a positive correlation between phage activity and the activity of putative phage hosts. Contrary to our expectations, the capacity to decompose the diverse complex carbohydrates common in soil organic matter or oxidize methanol and carbon monoxide were broadly distributed across active and inactive bacteria in all three soils, implying that these traits are not highly selected for by historical precipitation. IMPORTANCE Soil moisture is a critical factor that strongly shapes the lifestyle of soil organisms by changing access to nutrients, controlling oxygen diffusion, and regulating the potential for mobility. We identified active microorganisms in three grassland soils with similar mineral contexts, yet different historic rainfall inputs, by adding water labeled with a stable isotope and tracking that isotope in DNA of growing microbes. By examining the genomes of active and inactive microorganisms, we identified functions that are enriched in growing organisms, and showed that different functions were selected for in different soils. Wetter soil had higher activity of motile organisms, but activity of pathways for degradation of soil organic carbon compounds, including simple carbon substrates, were comparable for all three soils. We identified many labeled, and thus active bacteriophages (viruses that infect bacteria), implying that the cells they killed contributed to soil organic matter. The activity of these bacteriophages was significantly correlated with activity of their hosts.
Collapse
Affiliation(s)
- Alex Greenlon
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Ella Sieradzki
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
| | - Benjamin J. Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Megan M. Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Christine L. Sun
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
| | - Aaron Chew
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Cynthia-Jeanette Mancilla
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA
| | - Mary Firestone
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California, Merced, Merced, California, USA
| | - Jillian F. Banfield
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkley, California, USA
| |
Collapse
|
76
|
Abstract
Microorganisms dominate all ecosystems on Earth and play a key role in the turnover of organic matter. By producing enzymes, they degrade complex carbohydrates, facilitating the recycling of nutrients and controlling the carbon cycle. Despite their importance, our knowledge regarding microbial carbohydrate utilization has been limited to genome-sequenced taxa and thus heavily biased to specific groups and environments. Here, we used the Genomes from Earth's Microbiomes (GEM) catalog to describe the carbohydrate utilization potential in >7000 bacterial and archaeal taxa originating from a range of terrestrial, marine and host-associated habitats. We show that the production of carbohydrate-active enzymes (CAZymes) is phylogenetically conserved and varies significantly among microbial phyla. High numbers of carbohydrate-active enzymes were recorded in phyla known for their versatile use of carbohydrates, such as Firmicutes, Fibrobacterota, and Armatimonadota, but also phyla without cultured representatives whose carbohydrate utilization potential was so far unknown, such as KSB1, Hydrogenedentota, Sumerlaeota, and UBP3. Carbohydrate utilization potential reflected the specificity of various habitats: the richest complements of CAZymes were observed in MAGs of plant microbiomes, indicating the structural complexity of plant biopolymers. IMPORTANCE This study expanded our knowledge of the phylogenetic distribution of carbohydrate-active enzymes across prokaryotic tree of life, including new phyla where the carbohydrate-active enzymes composition have not been described until now and demonstrated the potential for carbohydrate utilization of numerous yet uncultured phyla. Profiles of carbohydrate-active enzymes are largely habitat-specific and reflect local carbohydrate availability by selecting taxa with appropriate complements of these enzymes. This information should aid in the prediction of functions in microbiomes of known taxonomic composition and helps to identify key components of habitat-specific carbohydrate pools. In addition, these findings have a high relevance for the understanding of carbohydrate utilization and carbon cycling in the environment, the process that is closely link to the carbon storage potential of Earth habitats and the production of greenhouse gasses.
Collapse
|
77
|
Yabe S, Muto K, Abe K, Yokota A, Staudigel H, Tebo BM. Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum "Eremiobacterota", is a metabolically versatile aerobic anoxygenic phototroph. ISME COMMUNICATIONS 2022; 2:120. [PMID: 37749227 PMCID: PMC9758169 DOI: 10.1038/s43705-022-00201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 09/27/2023]
Abstract
The previously uncultured phylum "Candidatus Eremiobacterota" is globally distributed and often abundant in oligotrophic environments. Although it includes lineages with the genetic potential for photosynthesis, one of the most important metabolic pathways on Earth, the absence of pure cultures has limited further insights into its ecological and physiological traits. We report the first successful isolation of a "Ca. Eremiobacterota" strain from a fumarolic ice cave on Mt. Erebus volcano (Antarctica). Polyphasic analysis revealed that this organism is an aerobic anoxygenic photoheterotrophic bacterium with a unique lifestyle, including bacteriochlorophyll a production, CO2 fixation, a high CO2 requirement, and phototactic motility using type IV-pili, all of which are highly adapted to polar and fumarolic environments. The cells are rods or filaments with a vesicular type intracytoplasmic membrane system. The genome encodes novel anoxygenic Type II photochemical reaction centers and bacteriochlorophyll synthesis proteins, forming a deeply branched monophyletic clade distinct from known phototrophs. The first cultured strain of the eighth phototrophic bacterial phylum which we name Vulcanimicrobium alpinus gen. nov., sp. nov. advances our understanding of ecology and evolution of photosynthesis.
Collapse
Affiliation(s)
- Shuhei Yabe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan.
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Sendai, Miyagi, 989-1311, Japan.
| | - Kiyoaki Muto
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Akira Yokota
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hubert Staudigel
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bradley M Tebo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| |
Collapse
|
78
|
Ren Z, Cao S, Chen T, Zhang C, Yu J. Bacterial functional redundancy and carbon metabolism potentials in soil, sediment, and water of thermokarst landscapes across the Qinghai-Tibet Plateau: Implications for the fate of permafrost carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158340. [PMID: 36041614 DOI: 10.1016/j.scitotenv.2022.158340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Permafrost thaw create widespread thermokarst landscapes. As a result, distinct habitats are provided to harbor different bacterial communities in degraded permafrost soil (PBCs), thermokarst lake sediment (SBCs), and lake water (WBCs), driving carbon metabolism differentially. In this study, we investigated functional diversity and redundancy, and carbon metabolism potentials of PBCs, SBCs, and WBCs in thermokarst landscapes across the Qinghai-Tibet Plateau. The results showed that PBCs and SBCs had higher taxonomic and functional alpha diversity than WBCs, while WBCs had lower functional redundancy. WBCs had the highest beta diversity followed by SBCs and PBCs, suggesting strong determination of taxonomic variations on functional differences. Community assembly processes also had significant influences on beta diversity, especially for SBCs. Metabolism pathways of carbohydrate metabolism, methane metabolism, and carbon fixation were enriched differentially in PBCs, SBCs, and WBCs, suggesting different C fate in distinct habitats. Carbohydrate metabolism data suggested that PBCs might have stronger potentials to mineralize a greater diversity of organic carbon substrate than SBCs and WBCs, promoting degradation of organic carbon stocks in degraded permafrost soils. Methane metabolism data showed that SBCs had a stronger methanogenesis potential followed by PBCs and WBCs, while PBCs had a stronger methane oxidation potential. High abundance of genes involving in formaldehyde assimilation might suggested that a large proportion of produced methane might be assimilated by methanotrophs in the thermokarst landscapes. Both aerobic and anaerobic carbon fixation pathways were enriched in PBCs. The results added our understanding of functional properties and biogeochemical carbon cycles in thermokarst landscapes, improving our abilities in accurate modeling of carbon dynamics and the ultimate fate of permafrost carbon in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Shengkui Cao
- School of Geographical Science, Qinghai Normal University, Xining 810008, China.
| | - Tao Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Jinlei Yu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
79
|
Qi Q, Zhao J, Tian R, Zeng Y, Xie C, Gao Q, Dai T, Wang H, He JS, Konstantinidis KT, Yang Y, Zhou J, Guo X. Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland. GLOBAL CHANGE BIOLOGY 2022; 28:6906-6920. [PMID: 36191158 DOI: 10.1111/gcb.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/25/2023]
Abstract
The alpine grasslands of the Tibetan Plateau store 23.2 Pg soil organic carbon, which becomes susceptible to microbial degradation with climate warming. However, accurate prediction of how the soil carbon stock changes under future climate warming is hampered by our limited understanding of belowground complex microbial communities. Here, we show that 4 years of warming strongly stimulated methane (CH4 ) uptake by 93.8% and aerobic respiration (CO2 ) by 11.3% in the soils of alpine grassland ecosystem. Due to no significant effects of warming on net ecosystem CO2 exchange (NEE), the warming-stimulated CH4 uptake enlarged the carbon sink capacity of whole ecosystem. Furthermore, precipitation alternation did not alter such warming effects, despite the significant effects of precipitation on NEE and soil CH4 fluxes were observed. Metagenomic sequencing revealed that warming led to significant shifts in the overall microbial community structure and the abundances of functional genes, which contrasted to no detectable changes after 2 years of warming. Carbohydrate utilization genes were significantly increased by warming, corresponding with significant increases in soil aerobic respiration. Increased methanotrophic genes and decreased methanogenic genes were observed under warming, which significantly (R2 = .59, p < .001) correlated with warming-enhanced CH4 uptakes. Furthermore, 212 metagenome-assembled genomes were recovered, including many populations involved in the degradation of various organic matter and a highly abundant methylotrophic population of the Methyloceanibacter genus. Collectively, our results provide compelling evidence that specific microbial functional traits for CH4 and CO2 cycling processes respond to climate warming with differential effects on soil greenhouse gas emissions. Alpine grasslands may play huge roles in mitigating climate warming through such microbially enhanced CH4 uptake.
Collapse
Affiliation(s)
- Qi Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jianshu Zhao
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Changyi Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tianjiao Dai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin-Sheng He
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
80
|
McDaniel EA, van Steenbrugge JJM, Noguera DR, McMahon KD, Raaijmakers JM, Medema MH, Oyserman BO. TbasCO: trait-based comparative 'omics identifies ecosystem-level and niche-differentiating adaptations of an engineered microbiome. ISME COMMUNICATIONS 2022; 2:111. [PMID: 37938301 PMCID: PMC9723799 DOI: 10.1038/s43705-022-00189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2023]
Abstract
A grand challenge in microbial ecology is disentangling the traits of individual populations within complex communities. Various cultivation-independent approaches have been used to infer traits based on the presence of marker genes. However, marker genes are not linked to traits with complete fidelity, nor do they capture important attributes, such as the timing of gene expression or coordination among traits. To address this, we present an approach for assessing the trait landscape of microbial communities by statistically defining a trait attribute as a shared transcriptional pattern across multiple organisms. Leveraging the KEGG pathway database as a trait library and the Enhanced Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate that a majority (65%) of traits present in 10 or more genomes have niche-differentiating expression attributes. For example, while many genomes containing high-affinity phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under phosphorus starvation), we identified another attribute shared by many genomes where transcription was highest under high phosphorus conditions. Taken together, we provide a novel framework for unravelling the functional dynamics of uncultivated microorganisms by assigning trait-attributes through genome-resolved time-series metatranscriptomics.
Collapse
Affiliation(s)
- E A McDaniel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - J J M van Steenbrugge
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands.
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | - D R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - K D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J M Raaijmakers
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - M H Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - B O Oyserman
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands.
| |
Collapse
|
81
|
Adam PS, Kolyfetis GE, Bornemann TLV, Vorgias CE, Probst AJ. Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling. SCIENCE ADVANCES 2022; 8:eabm9651. [PMID: 36332026 PMCID: PMC9635834 DOI: 10.1126/sciadv.abm9651] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/19/2022] [Indexed: 05/19/2023]
Abstract
Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO2-reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called "methanogenesis markers" but could not oxidize alkanes. Overturning recent inferences, we demonstrate that methyl-dependent hydrogenotrophic methanogenesis has emerged multiple times independently, either due to a loss of Mtr while Mcr is inherited vertically or from an ancient lateral acquisition of Mcr. Even if Mcr is lost, Mtr, Eha, Ehb, and the markers can persist, resulting in mixotrophic metabolisms centered around the Wood-Ljungdahl pathway. Through their methanogenesis remnants, Thorarchaeia and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeia act as metabolically versatile players in carbon cycling of anoxic environments across the globe.
Collapse
Affiliation(s)
- Panagiotis S. Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Corresponding author.
| | - George E. Kolyfetis
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Till L. V. Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Alexander J. Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Environmental Metagenomics, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
82
|
Zhou B, Zhao L, Sun Y, Li X, Weng L, Xue Y, Li Y. Effects of phthalate esters on soil microbial community under different planting patterns in Northern China: Case study of Hebei Province. CHEMOSPHERE 2022; 307:135882. [PMID: 35931260 DOI: 10.1016/j.chemosphere.2022.135882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Soil microorganisms are biological factors involved in the farmland environment. The factors that shape soil microbial communities and how these are influenced by geographic location, planting pattern (open-field or greenhouse), and soil organic pollutants (phthalate esters, PAEs) remain poorly understood at large scales. Using 16 S rRNA gene and ITS sequencing, we characterized the soil microbiota in open-field and greenhouse soils in Hebei Province, China, and correlated their structure and composition to geographic location, planting pattern and PAEs. Compared with geographic location, planting pattern is more decisive for shaping soil microbes and has more significant effects on bacteria, and the effects are shaped by the number and types of core OTUs. PAEs participated in the shaping of soil microbial communities by altering the relative abundances of dominant microorganisms in the two planting patterns, and the effects of PAEs with high Kow were more significant. PAEs have a greater impact on bacteria than fungi in both planting patterns. Bacteria in the greenhouse soil were sensitive to the 9 kinds of PAEs detected, however in the open-field samples, mainly responded to PAEs with high Kow and rarely respond to PAEs with low Kow. DEHP and DBP, as two monomers with the highest concentration, have significant effects on dominant genera of microorganisms under both planting patterns, with inhibiting effect on bacteria and significantly promotion on fungi. Our study clarified the factors that have a substantial impact on soil microorganisms at the provincial scale and the mechanisms involved in shaping soil microbial community structure, as well as the significant impact of PAEs on soil microbial dominant microorganisms.
Collapse
Affiliation(s)
- Bin Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation/Shanghai Environmental Protection Monitoring Station of Agriculture/Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA)/Shanghai Key Laboratory of Protected Horticultural Technology/ Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China.
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs /Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA /Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China; Department of Soil Quality, Wageningen University, Wageningen P.O. Box 47, 6700, AA, Netherlands
| | - Yong Xue
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation/Shanghai Environmental Protection Monitoring Station of Agriculture/Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA)/Shanghai Key Laboratory of Protected Horticultural Technology/ Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
83
|
Genome-Resolved Metagenomics Informs the Functional Ecology of Uncultured Acidobacteria in Redox Oscillated Sphagnum Peat. mSystems 2022; 7:e0005522. [PMID: 36036503 PMCID: PMC9599518 DOI: 10.1128/msystems.00055-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding microbial niche differentiation along ecological and geochemical gradients is critical for assessing the mechanisms of ecosystem response to hydrologic variation and other aspects of global change. The lineage-specific biogeochemical roles of the widespread phylum Acidobacteria in hydrologically sensitive ecosystems, such as peatlands, are poorly understood. Here, we demonstrate that Acidobacteria sublineages in Sphagnum peat respond differentially to redox fluctuations due to variable oxygen (O2) availability, a typical feature of hydrologic variation. Our genome-centric approach disentangles the mechanisms of niche differentiation between the Acidobacteria genera Holophaga and Terracidiphilus in response to the transient O2 exposure of peat in laboratory incubations. Interlineage functional diversification explains the enrichment of the otherwise rare Holophaga in anoxic peat after transient O2 exposure in comparison to Terracidiphilus dominance in continuously anoxic peat. The observed niche differentiation of the two lineages is linked to differences in their carbon degradation potential. Holophaga appear to be primarily reliant on carbohydrate oligomers and amino acids, produced during the prior period of O2 exposure via the O2-stimulated breakdown of peat carbon, rich in complex aromatics and carbohydrate polymers. In contrast, Terracidiphilus genomes are enriched in diverse respiratory hydrogenases and carbohydrate active enzymes, enabling the degradation of complex plant polysaccharides into monomers and oligomers for fermentation. We also present the first evidence for the potential contribution of Acidobacteria in peat nitrogen fixation. In addition to canonical molybdenum-based diazotrophy, the Acidobacteria genomes harbor vanadium and iron-only alternative nitrogenases. Together, the results better inform the different functional roles of Acidobacteria in peat biogeochemistry under global change. IMPORTANCE Acidobacteria are among the most widespread and abundant members of the soil bacterial community, yet their ecophysiology remains largely underexplored. In acidic peat systems, Acidobacteria are thought to perform key biogeochemical functions, yet the mechanistic links between the phylogenetic and metabolic diversity within this phylum and peat carbon transformations remain unclear. Here, we employ genomic comparisons of Acidobacteria subgroups enriched in laboratory incubations of peat under variable O2 availability to disentangle the lineage-specific functional roles of these microorganisms in peat carbon transformations. Our genome-centric approach reveals that the diversification of Acidobacteria subpopulations across transient O2 exposure is linked to differences in their carbon substrate preferences. We also identify a previously unknown functional potential for biological nitrogen fixation in these organisms. This has important implications for carbon, nitrogen, and trace metal cycling in peat systems.
Collapse
|
84
|
Microbial Communities of Ferromanganese Sedimentary Layers and Nodules of Lake Baikal (Bolshoy Ushkany Island). DIVERSITY 2022. [DOI: 10.3390/d14100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ferromanganese (Fe-Mn) sedimentary layers and nodules occur at different depths within sediments at deep basins and ridges of Lake Baikal. We studied Fe-Mn nodules and host sediments recovered at the slope of Bolshoy Ushkany Island. Layer-by-layer 230Th/U dating analysis determined the initial age of the Fe-Mn nodule formation scattered in the sediments as 96 ± 5–131 ± 8 Ka. The distribution profiles of the main ions in the pore waters of the studied sediment are similar to those observed in the deep-sea areas of Lake Baikal, while the chemical composition of Fe-Mn nodules indicates their diagenetic formation with hydrothermal influence. Among the bacteria in microbial communities of sediments, members of organoheterotrophic Gammaproteobacteria, Chloroflexi, Actinobacteriota, Acidobacteriota, among them Archaea—chemolithoautotrophic ammonia-oxidizing archaea Nitrososphaeria, dominated. About 13% of the bacterial 16S rRNA gene sequences in Fe-Mn layers belonged to Methylomirabilota representatives which use nitrite ions as electron acceptors for the anaerobic oxidation of methane (AOM). Nitrospirota comprised up to 9% of the layers of Bolshoy Ushkany Island. In bacterial communities of Fe-Mn nodule, a large percentage of sequences were attributed to Alphaproteobacteria, Actinobacteriota and Firmicutes, as well as a variety of OTUs with a small number of sequences characteristic of hydrothermal ecosystems. The contribution of representatives of Methylomirabilota and Nitrospirota in communities of Fe-Mn nodule was minor. Our data support the hypothesis that chemolithoautotrophs associated with ammonium-oxidizing archaea and nitrite-oxidizing bacteria can potentially play an important role as primary producers of Fe-Mn substrates in freshwater Lake Baikal.
Collapse
|
85
|
Zha Y, Chong H, Yang P, Ning K. Microbial Dark Matter: from Discovery to Applications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:867-881. [PMID: 35477055 PMCID: PMC10025686 DOI: 10.1016/j.gpb.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 03/22/2022] [Indexed: 01/12/2023]
Abstract
With the rapid increase of the microbiome samples and sequencing data, more and more knowledge about microbial communities has been gained. However, there is still much more to learn about microbial communities, including billions of novel species and genes, as well as countless spatiotemporal dynamic patterns within the microbial communities, which together form the microbial dark matter. In this work, we summarized the dark matter in microbiome research and reviewed current data mining methods, especially artificial intelligence (AI) methods, for different types of knowledge discovery from microbial dark matter. We also provided case studies on using AI methods for microbiome data mining and knowledge discovery. In summary, we view microbial dark matter not as a problem to be solved but as an opportunity for AI methods to explore, with the goal of advancing our understanding of microbial communities, as well as developing better solutions to global concerns about human health and the environment.
Collapse
Affiliation(s)
- Yuguo Zha
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Chong
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengshuo Yang
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kang Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
86
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
87
|
Crits-Christoph A, Diamond S, Al-Shayeb B, Valentin-Alvarado L, Banfield JF. A widely distributed genus of soil Acidobacteria genomically enriched in biosynthetic gene clusters. ISME COMMUNICATIONS 2022; 2:70. [PMID: 37938723 PMCID: PMC9723581 DOI: 10.1038/s43705-022-00140-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 07/01/2023]
Abstract
Bacteria of the phylum Acidobacteria are one of the most abundant groups across soil ecosystems, yet they are represented by comparatively few sequenced genomes, leaving gaps in our understanding of their metabolic diversity. Recently, genomes of Acidobacteria species with unusually large repertoires of biosynthetic gene clusters (BGCs) were reconstructed from grassland soil metagenomes, but the degree to which species with this trait are widespread is still unknown. To investigate this, we assembled 46 metagenome-assembled genomes recovered from permanently saturated organic-rich soils of a vernal (spring) pool ecosystem in Northern California. We obtained high and medium-quality draft genomes for three novel species from Candidatus Angelobacter (a proposed subdivision 1 Acidobacterial genus), a genus that is genomically enriched in genes for specialized metabolite biosynthesis. Acidobacteria were particularly abundant in the vernal pool sediments, and a Ca. Angelobacter species was the most abundant bacterial species detected in some samples. We identified numerous diverse biosynthetic gene clusters in these genomes, and also in five additional genomes from other publicly available soil metagenomes for other related Ca. Angelobacter species. Metabolic analysis indicates that Ca. Angelobacter likely are aerobes that ferment organic carbon, with potential to contribute to carbon compound turnover in soils. Using metatranscriptomics, we identified in situ metabolic activity and expression of specialized metabolic traits for two species from this genus. In conclusion, we expand genomic sampling of the uncultivated Ca. Angelobacter, and show that they represent common and sometimes highly abundant members of dry and saturated soil communities, with a high degree of capacity for synthesis of diverse specialized metabolites.
Collapse
Affiliation(s)
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
88
|
Kieft K, Adams A, Salamzade R, Kalan L, Anantharaman K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res 2022; 50:e83. [PMID: 35544285 PMCID: PMC9371927 DOI: 10.1093/nar/gkac341] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023] Open
Abstract
Genome binning has been essential for characterization of bacteria, archaea, and even eukaryotes from metagenomes. Yet, few approaches exist for viruses. We developed vRhyme, a fast and precise software for construction of viral metagenome-assembled genomes (vMAGs). vRhyme utilizes single- or multi-sample coverage effect size comparisons between scaffolds and employs supervised machine learning to identify nucleotide feature similarities, which are compiled into iterations of weighted networks and refined bins. To refine bins, vRhyme utilizes unique features of viral genomes, namely a protein redundancy scoring mechanism based on the observation that viruses seldom encode redundant genes. Using simulated viromes, we displayed superior performance of vRhyme compared to available binning tools in constructing more complete and uncontaminated vMAGs. When applied to 10,601 viral scaffolds from human skin, vRhyme advanced our understanding of resident viruses, highlighted by identification of a Herelleviridae vMAG comprised of 22 scaffolds, and another vMAG encoding a nitrate reductase metabolic gene, representing near-complete genomes post-binning. vRhyme will enable a convention of binning uncultivated viral genomes and has the potential to transform metagenome-based viral ecology.
Collapse
Affiliation(s)
- Kristopher Kieft
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Alyssa Adams
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Rauf Salamzade
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | | |
Collapse
|
89
|
Zhang J, Ma A, Zhou H, Chen X, Zhou X, Liu G, Zhuang X, Qin X, Priemé A, Zhuang G. Unexpected high carbon losses in a continental glacier foreland on the Tibetan Plateau. ISME COMMUNICATIONS 2022; 2:68. [PMID: 37938688 PMCID: PMC9723710 DOI: 10.1038/s43705-022-00148-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 10/21/2023]
Abstract
Closely related with microbial activities, soil developments along the glacier forelands are generally considered a carbon sink; however, those of continental glacier forelands remain unclear. Continental glaciers are characterized by dry conditions and low temperature that limit microbial growth. We investigated the carbon characteristics along a chronosequence of the Laohugou Glacier No. 12 foreland, a typical continental glacier on the Tibetan Plateau, by analyzing soil bacterial community structure and microbial carbon-related functional potentials. We found an unexpected carbon loss in which soil organic carbon decreased from 22.21 g kg-1 to 10.77 g kg-1 after receding 50 years. Structural equation modeling verified the important positive impacts from bacterial community. Lower carbon fixation efficiency along the chronosequence was supported by less autotrophic bacteria and carbon fixation genes relating to the reductive tricarboxylic acid cycle. Lower carbon availability and higher carbon requirements were identified by an increasing bacterial copy number and a shift of the dominant bacterial community from Proteobacteria and Bacteroidetes (r-strategists) to Actinobacteria and Acidobacteria (K-strategists). Our findings show that the carbon loss of continental glacier foreland was significantly affected by the changes of bacterial community, and can help to avoid overestimating the carbon sink characteristics of glacier forelands in climate models.
Collapse
Affiliation(s)
- Jiejie Zhang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101400, China
- Sino-Danish Center for Education and Research, Beijing, 101400, China
| | - Anzhou Ma
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hanchang Zhou
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianke Chen
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101400, China
- Sino-Danish Center for Education and Research, Beijing, 101400, China
| | - Xiaorong Zhou
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Qin
- Qilian Shan Station of Glaciology and Eco-environment, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Anders Priemé
- Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Center for Permafrost, University of Copenhagen, Copenhagen, DK-1350, Denmark
| | - Guoqiang Zhuang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
90
|
Computational approach to modeling microbiome landscapes associated with chronic human disease progression. PLoS Comput Biol 2022; 18:e1010373. [PMID: 35926003 PMCID: PMC9380910 DOI: 10.1371/journal.pcbi.1010373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/16/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
A microbial community is a dynamic system undergoing constant change in response to internal and external stimuli. These changes can have significant implications for human health. However, due to the difficulty in obtaining longitudinal samples, the study of the dynamic relationship between the microbiome and human health remains a challenge. Here, we introduce a novel computational strategy that uses massive cross-sectional sample data to model microbiome landscapes associated with chronic disease development. The strategy is based on the rationale that each static sample provides a snapshot of the disease process, and if the number of samples is sufficiently large, the footprints of individual samples populate progression trajectories, which enables us to recover disease progression paths along a microbiome landscape by using computational approaches. To demonstrate the validity of the proposed strategy, we developed a bioinformatics pipeline and applied it to a gut microbiome dataset available from a Crohn’s disease study. Our analysis resulted in one of the first working models of microbial progression for Crohn’s disease. We performed a series of interrogations to validate the constructed model. Our analysis suggested that the model recapitulated the longitudinal progression of microbial dysbiosis during the known clinical trajectory of Crohn’s disease. By overcoming restrictions associated with complex longitudinal sampling, the proposed strategy can provide valuable insights into the role of the microbiome in the pathogenesis of chronic disease and facilitate the shift of the field from descriptive research to mechanistic studies. The delineation of system dynamics of a microbial community can provide a wealth of insights into the roles of the microbiome in the pathogenesis of chronic disease. However, due to the difficulty in obtaining longitudinal samples, most existing microbiome studies have been cross-sectional and largely descriptive. Here, we present a novel computational strategy that leverages massive static sample data to model microbiome landscapes associated with chronic disease development. To demonstrate the validity of the proposed strategy, we applied it to a gut microbiome dataset available from a Crohn’s disease study and constructed one of the first microbial progression models of the disease. We performed a series of interrogations on the constructed model. Our analysis suggested that the constructed model recapitulated the longitudinal progression of microbial dysbiosis during the known clinical trajectory of Crohn’s disease. By overcoming the sampling restrictions inherent to slowly progressive diseases, our approach is potentially widely applicable in many different studies across body sites, diseases, and other conditions.
Collapse
|
91
|
Viitamäki S, Pessi IS, Virkkala AM, Niittynen P, Kemppinen J, Eronen-Rasimus E, Luoto M, Hultman J. The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiol Ecol 2022; 98:fiac079. [PMID: 35776963 PMCID: PMC9341781 DOI: 10.1093/femsec/fiac079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Due to climate change, increased microbial activity in high-latitude soils may lead to higher greenhouse gas (GHG) emissions. However, microbial GHG production and consumption mechanisms in tundra soils are not thoroughly understood. To investigate how the diversity and functional potential of bacterial and archaeal communities vary across vegetation types and soil layers, we analyzed 116 soil metatranscriptomes from 73 sites in the Finnish sub-Arctic. Meadow soils were characterized by higher pH and lower soil organic matter (SOM) and carbon/nitrogen ratio. By contrast, dwarf shrub-dominated ecosystems had higher SOM and lower pH. Although Actinobacteria, Acidobacteria, Alphaproteobacteria and Planctomycetes were dominant in all communities, there were significant differences at the genus level between vegetation types; plant polymer-degrading groups were more active in shrub-dominated soils than in meadows. Given that climate-change scenarios predict the expansion of shrubs at high latitudes, our results indicate that tundra soil microbial communities harbor potential decomposers of increased plant litter, which may affect the rate of carbon turnover in tundra soils. Additionally, transcripts of methanotrophs were detected in the mineral layer of all soils, which may moderate methane fluxes. This study provides new insights into possible shifts in tundra microbial diversity and activity due to climate change.
Collapse
Affiliation(s)
- Sirja Viitamäki
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
| | - Igor S Pessi
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), 00014 University of Helsinki, Helsinki, Finland
| | - Anna-Maria Virkkala
- Department of Geosciences and Geography, 00014 University of Helsinki, Helsinki, Finland
- Woodwell Climate Research Center, MA, 02540-1644, USA
| | - Pekka Niittynen
- Department of Geosciences and Geography, 00014 University of Helsinki, Helsinki, Finland
| | - Julia Kemppinen
- Geography Research Unit, 90014 University of Oulu, Oulu, Finland
| | - Eeva Eronen-Rasimus
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
- Marine Research Centre, Finnish Environment Institute (SYKE), 00790, Helsinki, Finland
| | - Miska Luoto
- Helsinki Institute of Sustainability Science (HELSUS), 00014 University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, 00014 University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, 00014 University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), 00014 University of Helsinki, Helsinki, Finland
- Soil Ecosystems Group, Natural Resources Institute Finland, 00790 Helsinki, Finland
| |
Collapse
|
92
|
Karaoz U, Brodie EL. microTrait: A Toolset for a Trait-Based Representation of Microbial Genomes. FRONTIERS IN BIOINFORMATICS 2022; 2:918853. [PMID: 36304272 PMCID: PMC9580909 DOI: 10.3389/fbinf.2022.918853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2023] Open
Abstract
Remote sensing approaches have revolutionized the study of macroorganisms, allowing theories of population and community ecology to be tested across increasingly larger scales without much compromise in resolution of biological complexity. In microbial ecology, our remote window into the ecology of microorganisms is through the lens of genome sequencing. For microbial organisms, recent evidence from genomes recovered from metagenomic samples corroborate a highly complex view of their metabolic diversity and other associated traits which map into high physiological complexity. Regardless, during the first decades of this omics era, microbial ecological research has primarily focused on taxa and functional genes as ecological units, favoring breadth of coverage over resolution of biological complexity manifested as physiological diversity. Recently, the rate at which provisional draft genomes are generated has increased substantially, giving new insights into ecological processes and interactions. From a genotype perspective, the wide availability of genome-centric data requires new data synthesis approaches that place organismal genomes center stage in the study of environmental roles and functional performance. Extraction of ecologically relevant traits from microbial genomes will be essential to the future of microbial ecological research. Here, we present microTrait, a computational pipeline that infers and distills ecologically relevant traits from microbial genome sequences. microTrait maps a genome sequence into a trait space, including discrete and continuous traits, as well as simple and composite. Traits are inferred from genes and pathways representing energetic, resource acquisition, and stress tolerance mechanisms, while genome-wide signatures are used to infer composite, or life history, traits of microorganisms. This approach is extensible to any microbial habitat, although we provide initial examples of this approach with reference to soil microbiomes.
Collapse
Affiliation(s)
- Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Eoin L. Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
| |
Collapse
|
93
|
Salt flat microbial diversity and dynamics across salinity gradient. Sci Rep 2022; 12:11293. [PMID: 35788147 PMCID: PMC9253026 DOI: 10.1038/s41598-022-15347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sabkhas are hypersaline, mineral-rich, supratidal mudflats that harbor microbes that are adapted to high salt concentration. Sabkha microbial diversity is generally studied for their community composition, but less is known about their genetic structure and heterogeneity. In this study, we analyzed a coastal sabkha for its microbial composition using 16S rDNA and whole metagenome, as well as for its population genetic structure. Our 16S rDNA analysis show high alpha diversity in both inner and edge sabkha than outer sabkha. Beta diversity result showed similar kind of microbial composition between inner and edge sabkha, while outer sabkha samples show different microbial composition. At phylum level, Bacteroidetes (~ 22 to 34%), Euryarchaeota (~ 18 to ~ 30%), unclassified bacteria (~ 24 to ~ 35%), Actinobacteria (~ 0.01 to ~ 11%) and Cyanobacteria (less than 1%) are predominantly found in both inside and edge sabkha regions, whereas Proteobacteria (~ 92 to ~ 97%) and Parcubacteria (~ 1 to ~ 2%) are predominately found in outer sabkha. Our 225 metagenomes assembly from this study showed similar bacterial community profile as observed in 16S rDNA-based analysis. From the assembled genomes, we found important genes that are involved in biogeochemical cycles and secondary metabolite biosynthesis. We observed a dynamic, thriving ecosystem that engages in metabolic activity that shapes biogeochemical structure via carbon fixation, nitrogen, and sulfur cycling. Our results show varying degrees of horizontal gene transfers (HGT) and homologous recombination, which correlates with the observed high diversity for these populations. Moreover, our pairwise population differentiation (Fst) for the abundance of species across the salinity gradient of sabkhas identified genes with strong allelic differentiation, lower diversity and elevated nonsynonymous to synonymous ratio of variants, which suggest selective sweeps for those gene variants. We conclude that the process of HGT, combined with recombination and gene specific selection, constitute the driver of genetic variation in bacterial population along a salinity gradient in the unique sabkha ecosystem.
Collapse
|
94
|
Cernava T, Rybakova D, Buscot F, Clavel T, McHardy AC, Meyer F, Meyer F, Overmann J, Stecher B, Sessitsch A, Schloter M, Berg G. Metadata harmonization-Standards are the key for a better usage of omics data for integrative microbiome analysis. ENVIRONMENTAL MICROBIOME 2022; 17:33. [PMID: 35751093 PMCID: PMC9233336 DOI: 10.1186/s40793-022-00425-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tremendous amounts of data generated from microbiome research studies during the last decades require not only standards for sampling and preparation of omics data but also clear concepts of how the metadata is prepared to ensure re-use for integrative and interdisciplinary microbiome analysis. RESULTS In this Commentary, we present our views on the key issues related to the current system for metadata submission in omics research, and propose the development of a global metadata system. Such a system should be easy to use, clearly structured in a hierarchical way, and should be compatible with all existing microbiome data repositories, following common standards for minimal required information and common ontology. Although minimum metadata requirements are essential for microbiome datasets, the immense technological progress requires a flexible system, which will have to be constantly improved and re-thought. While FAIR principles (Findable, Accessible, Interoperable, and Reusable) are already considered, international legal issues on genetic resource and sequence sharing provided by the Convention on Biological Diversity need more awareness and engagement of the scientific community. CONCLUSIONS The suggested approach for metadata entries would strongly improve retrieving and re-using data as demonstrated in several representative use cases. These integrative analyses, in turn, would further advance the potential of microbiome research for novel scientific discoveries and the development of microbiome-derived products.
Collapse
Affiliation(s)
- Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Daria Rybakova
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - François Buscot
- 2Soil Ecology Department, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany
- 3German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig site, Hannover, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| | - Fernando Meyer
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University of Braunschweig, Braunschweig, Germany
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz-Institute for Agricultural Engineering Potsdam (ATB), Potsdam, Germany
- University of Potsdam, Potsdam, Germany
| |
Collapse
|
95
|
Abstract
Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters (‘Candidatus Eudoremicrobiaceae’) that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments. Global ocean microbiome survey reveals the bacterial family ‘Candidatus Eudoremicrobiaceae’, which includes some of the most biosynthetically diverse microorganisms in the ocean environment.
Collapse
|
96
|
Pessi IS, Viitamäki S, Virkkala AM, Eronen-Rasimus E, Delmont TO, Marushchak ME, Luoto M, Hultman J. In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. ENVIRONMENTAL MICROBIOME 2022; 17:30. [PMID: 35690846 PMCID: PMC9188126 DOI: 10.1186/s40793-022-00424-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. RESULTS We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. CONCLUSIONS By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Yliopistonkatu 3, 00014 Helsinki, Finland
| | - Sirja Viitamäki
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Anna-Maria Virkkala
- Woodwell Climate Research Center, 149 Woods Hole Road, Falmouth, MA 02540-1644 USA
- Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| | - Eeva Eronen-Rasimus
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Marine Research Centre, Finnish Environment Institute (SYKE), Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Tom O. Delmont
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, 91057 Evry, France
| | - Maija E. Marushchak
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miska Luoto
- Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Yliopistonkatu 3, 00014 Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
97
|
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, Kavagutti VS, Layoun P, Ghai R, Salcher MM. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. MICROBIOME 2022; 10:84. [PMID: 35659305 PMCID: PMC9166423 DOI: 10.1186/s40168-022-01274-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.
Collapse
Affiliation(s)
- Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Shin-ichi Nakano
- Center of Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga Japan
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
98
|
Dang C, Wu Z, Zhang M, Li X, Sun Y, Wu R, Zheng Y, Xia Y. Microorganisms as bio-filters to mitigate greenhouse gas emissions from high-altitude permafrost revealed by nanopore-based metagenomics. IMETA 2022; 1:e24. [PMID: 38868568 PMCID: PMC10989947 DOI: 10.1002/imt2.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2024]
Abstract
The distinct climatic and geographical conditions make high-altitude permafrost on the Tibetan Plateau suffer more severe degradation than polar permafrost. However, the microbial responses associated with greenhouse gas production in thawing permafrost remain obscured. Here we applied nanopore-based long-read metagenomics and high-throughput RNA-seq to explore microbial functional activities within the freeze-thaw cycle in the active layers of permafrost at the Qilian Mountain. A bioinformatic framework was established to facilitate phylogenetic and functional annotation of the unassembled nanopore metagenome. By deploying this strategy, 42% more genera could be detected and 58% more genes were annotated to nitrogen and methane cycle. With the aid of such enlarged resolution, we observed vigorous aerobic methane oxidation by Methylomonas, which could serve as a bio-filter to mitigate CH4 emissions from permafrost. Such filtering effect could be further consolidated by both on-site gas phase measurement and incubation experiment that CO2 was the major form of carbon released from permafrost. Despite the increased transcriptional activities of aceticlastic methanogenesis pathways in the thawed permafrost active layer, CH4 generated during the thawing process could be effectively consumed by the microbiome. Additionally, the nitrogen metabolism in permafrost tends to be a closed cycle and active N2O consumption by the topsoil community was detected in the near-surface gas phase. Our findings reveal that although the increased thawed state facilitated the heterotrophic nitrogen and methane metabolism, effective microbial methane oxidation in the active layer could serve as a bio-filter to relieve the overall warming potentials of greenhouse gas emitted from thawed permafrost.
Collapse
Affiliation(s)
- Chenyuan Dang
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- Laboratory of High‐Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical PhysicsChinese Academy of Sciences (CAS)DalianChina
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Miao Zhang
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Xiang Li
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yuqin Sun
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Ren'an Wu
- Laboratory of High‐Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical PhysicsChinese Academy of Sciences (CAS)DalianChina
| | - Yan Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yu Xia
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
99
|
Schultz J, Argentino ICV, Kallies R, Nunes da Rocha U, Rosado AS. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front Microbiol 2022; 13:885557. [PMID: 35602031 PMCID: PMC9114708 DOI: 10.3389/fmicb.2022.885557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.
Collapse
Affiliation(s)
- Júnia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Alexandre Soares Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
100
|
Wilson RM, Hough MA, Verbeke BA, Hodgkins SB, Chanton JP, Saleska SD, Rich VI, Tfaily MM. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152757. [PMID: 35031367 DOI: 10.1016/j.scitotenv.2021.152757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.
Collapse
Affiliation(s)
- Rachel M Wilson
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA.
| | - Moira A Hough
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| | - Brittany A Verbeke
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Suzanne B Hodgkins
- The Ohio State University, Department of Microbiology, Columbus, OH 43210, USA
| | - Jeff P Chanton
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Scott D Saleska
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| | - Virginia I Rich
- The Ohio State University, Department of Microbiology, Columbus, OH 43210, USA
| | - Malak M Tfaily
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| |
Collapse
|