51
|
Chen S, Liu Y, Wang ZA, Colonell J, Liu LD, Hou H, Tien NW, Wang T, Harris T, Druckmann S, Li N, Svoboda K. Brain-wide neural activity underlying memory-guided movement. Cell 2024; 187:676-691.e16. [PMID: 38306983 PMCID: PMC11492138 DOI: 10.1016/j.cell.2023.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 02/04/2024]
Abstract
Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
Collapse
Affiliation(s)
- Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi Liu
- Stanford University, Palo Alto, CA, USA
| | | | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Liu D Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Baylor College of Medicine, Houston, TX, USA
| | - Han Hou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nai-Wen Tien
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tim Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Timothy Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Johns Hopkins University, Baltimore, MD, USA
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Stanford University, Palo Alto, CA, USA.
| | - Nuo Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
52
|
Gonzalo-Martín E, Alonso-Martínez C, Sepúlveda LP, Clasca F. Micropopulation mapping of the mouse parafascicular nucleus connections reveals diverse input-output motifs. Front Neuroanat 2024; 17:1305500. [PMID: 38260117 PMCID: PMC10800635 DOI: 10.3389/fnana.2023.1305500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction In primates, including humans, the centromedian/parafascicular (CM-Pf) complex is a key thalamic node of the basal ganglia system. Deep brain stimulation in CM-Pf has been applied for the treatment of motor disorders such as Parkinson's disease or Tourette syndrome. Rodents have become widely used models for the study of the cellular and genetic mechanisms of these and other motor disorders. However, the equivalence between the primate CM-Pf and the nucleus regarded as analogous in rodents (Parafascicular, Pf) remains unclear. Methods Here, we analyzed the neurochemical architecture and carried out a brain-wide mapping of the input-output motifs in the mouse Pf at micropopulation level using anterograde and retrograde labeling methods. Specifically, we mapped and quantified the sources of cortical and subcortical input to different Pf subregions, and mapped and compared the distribution and terminal structure of their axons. Results We found that projections to Pf arise predominantly (>75%) from the cerebral cortex, with an unusually strong (>45%) Layer 5b component, which is, in part, contralateral. The intermediate layers of the superior colliculus are the main subcortical input source to Pf. On its output side, Pf neuron axons predominantly innervate the striatum. In a sparser fashion, they innervate other basal ganglia nuclei, including the subthalamic nucleus (STN), and the cerebral cortex. Differences are evident between the lateral and medial portions of Pf, both in chemoarchitecture and in connectivity. Lateral Pf axons innervate territories of the striatum, STN and cortex involved in the sensorimotor control of different parts of the contralateral hemibody. In contrast, the mediodorsal portion of Pf innervates oculomotor-limbic territories in the above three structures. Discussion Our data thus indicate that the mouse Pf consists of several neurochemically and connectively distinct domains whose global organization bears a marked similarity to that described in the primate CM-Pf complex.
Collapse
Affiliation(s)
| | | | | | - Francisco Clasca
- Department of Anatomy and Neuroscience, Autónoma de Madrid University, Madrid, Spain
| |
Collapse
|
53
|
Ding X, Froudist-Walsh S, Jaramillo J, Jiang J, Wang XJ. Cell type-specific connectome predicts distributed working memory activity in the mouse brain. eLife 2024; 13:e85442. [PMID: 38174734 PMCID: PMC10807864 DOI: 10.7554/elife.85442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Recent advances in connectomics and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the multiregional mouse brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for interareal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous attractor states, which are self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.
Collapse
Affiliation(s)
- Xingyu Ding
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of BristolBristolUnited Kingdom
| | - Jorge Jaramillo
- Center for Neural Science, New York UniversityNew YorkUnited States
- Campus Institute for Dynamics of Biological Networks, University of GöttingenGöttingenGermany
| | - Junjie Jiang
- Center for Neural Science, New York UniversityNew YorkUnited States
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,Institute of Health and Rehabilitation Science,School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi’an Jiaotong UniversityXi'anChina
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
54
|
Xu FX, Wang XT, Cai XY, Liu JY, Guo JW, Yang F, Chen W, Schonewille M, De Zeeuw C, Zhou L, Shen Y. Purkinje-cell-specific MeCP2 deficiency leads to motor deficits and autistic-like behavior due to aberrations in PTP1B-TrkB-SK signaling. Cell Rep 2023; 42:113559. [PMID: 38100348 DOI: 10.1016/j.celrep.2023.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/05/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with Rett syndrome suffer from a loss-of-function mutation of the Mecp2 gene, which results in various symptoms including autistic traits and motor deficits. Deletion of Mecp2 in the brain mimics part of these symptoms, but the specific function of methyl-CpG-binding protein 2 (MeCP2) in the cerebellum remains to be elucidated. Here, we demonstrate that Mecp2 deletion in Purkinje cells (PCs) reduces their intrinsic excitability through a signaling pathway comprising the small-conductance calcium-activated potassium channel PTP1B and TrkB, the receptor of brain-derived neurotrophic factor. Aberration of this cascade, in turn, leads to autistic-like behaviors as well as reduced vestibulocerebellar motor learning. Interestingly, increasing activity of TrkB in PCs is sufficient to rescue PC dysfunction and abnormal motor and non-motor behaviors caused by Mecp2 deficiency. Our findings highlight how PC dysfunction may contribute to Rett syndrome, providing insight into the underlying mechanism and paving the way for rational therapeutic designs.
Collapse
Affiliation(s)
- Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xin-Tai Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yu Cai
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jia-Yu Liu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jing-Wen Guo
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Fan Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Science, 1105 CA Amsterdam, the Netherlands.
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
55
|
Vincent JP, Economo MN. Assessing cross-contamination in spike-sorted electrophysiology data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572882. [PMID: 38187738 PMCID: PMC10769346 DOI: 10.1101/2023.12.21.572882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent advances in extracellular electrophysiology now facilitate the recording of spikes from hundreds or thousands of neurons simultaneously. This has necessitated both the development of new computational methods for spike sorting and better methods to determine spike sorting accuracy. One longstanding method of assessing the false discovery rate (FDR) of spike sorting - the rate at which spikes are misassigned to the wrong cluster - has been the rate of inter-spike-interval (ISI) violations. Despite their near ubiquitous usage in spike sorting, our understanding of how exactly ISI violations relate to FDR, as well as best practices for using ISI violations as a quality metric, remain limited. Here, we describe an analytical solution that can be used to predict FDR from ISI violation rate. We test this model in silico through Monte Carlo simulation, and apply it to publicly available spike-sorted electrophysiology datasets. We find that the relationship between ISI violation rate and FDR is highly nonlinear, with additional dependencies on firing rate, the correlation in activity between neurons, and contaminant neuron count. Predicted median FDRs in public datasets were found to range from 3.1% to 50.0%. We find that stochasticity in the occurrence of ISI violations as well as uncertainty in cluster-specific parameters make it difficult to predict FDR for single clusters with high confidence, but that FDR can be estimated accurately across a population of clusters. Our findings will help the growing community of researchers using extracellular electrophysiology assess spike sorting accuracy in a principled manner.
Collapse
Affiliation(s)
- Jack P. Vincent
- Department of Biomedical Engineering, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
| | - Michael N. Economo
- Department of Biomedical Engineering, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| |
Collapse
|
56
|
Guzulaitis R, Palmer LM. A thalamocortical pathway controlling impulsive behavior. Trends Neurosci 2023; 46:1018-1024. [PMID: 37778915 DOI: 10.1016/j.tins.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
Planning and anticipating motor actions enables movements to be quickly and accurately executed. However, if anticipation is not properly controlled, it can lead to premature impulsive actions. Impulsive behavior is defined as actions that are poorly conceived and are often risky and inappropriate. Historically, impulsive behavior was thought to be primarily controlled by the frontal cortex and basal ganglia. More recently, two additional brain regions, the ventromedial (VM) thalamus and the anterior lateral motor cortex (ALM), have been shown to have an important role in mice. Here, we explore this newly discovered role of the thalamocortical pathway and suggest cellular mechanisms that may be involved in driving the cortical activity that contributes to impulsive behavior.
Collapse
Affiliation(s)
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
57
|
Garofalo M, Vansenne F, Sival DA, Verbeek DS. Pathogenetic Insights into Developmental Coordination Disorder Reveal Substantial Overlap with Movement Disorders. Brain Sci 2023; 13:1625. [PMID: 38137073 PMCID: PMC10741651 DOI: 10.3390/brainsci13121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Developmental Coordination Disorder (DCD) is a neurodevelopmental condition characterized by non-progressive central motor impairments. Mild movement disorder features have been observed in DCD. Until now, the etiology of DCD has been unclear. Recent studies suggested a genetic substrate in some patients with DCD, but comprehensive knowledge about associated genes and underlying pathogenetic mechanisms is still lacking. In this study, we first identified genes described in the literature in patients with a diagnosis of DCD according to the official diagnostic criteria. Second, we exposed the underlying pathogenetic mechanisms of DCD, by investigating tissue- and temporal gene expression patterns and brain-specific biological mechanisms. Third, we explored putative shared pathogenetic mechanisms between DCD and frequent movement disorders with a known genetic component, including ataxia, chorea, dystonia, and myoclonus. We identified 12 genes associated with DCD in the literature, which are ubiquitously expressed in the central nervous system throughout brain development. These genes are involved in cellular processes, neural signaling, and nervous system development. There was a remarkable overlap (62%) in pathogenetic mechanisms between DCD-associated genes and genes linked with movement disorders. Our findings suggest that some patients might have a genetic etiology of DCD, which could be considered part of a pathogenetic movement disorder spectrum.
Collapse
Affiliation(s)
- Martinica Garofalo
- Department of Pediatric Neurology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.G.); (D.A.S.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Fleur Vansenne
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Deborah A. Sival
- Department of Pediatric Neurology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.G.); (D.A.S.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Dineke S. Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
58
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
59
|
Chong HR, Ranjbar-Slamloo Y, Ho MZH, Ouyang X, Kamigaki T. Functional alterations of the prefrontal circuit underlying cognitive aging in mice. Nat Commun 2023; 14:7254. [PMID: 37945561 PMCID: PMC10636129 DOI: 10.1038/s41467-023-43142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Executive function is susceptible to aging. How aging impacts the circuit-level computations underlying executive function remains unclear. Using calcium imaging and optogenetic manipulation during memory-guided behavior, we show that working-memory coding and the relevant recurrent connectivity in the mouse medial prefrontal cortex (mPFC) are altered as early as middle age. Population activity in the young adult mPFC exhibits dissociable yet overlapping patterns between tactile and auditory modalities, enabling crossmodal memory coding concurrent with modality-dependent coding. In middle age, however, crossmodal coding remarkably diminishes while modality-dependent coding persists, and both types of coding decay in advanced age. Resting-state functional connectivity, especially among memory-coding neurons, decreases already in middle age, suggesting deteriorated recurrent circuits for memory maintenance. Optogenetic inactivation reveals that the middle-aged mPFC exhibits heightened vulnerability to perturbations. These findings elucidate functional alterations of the prefrontal circuit that unfold in middle age and deteriorate further as a hallmark of cognitive aging.
Collapse
Affiliation(s)
- Huee Ru Chong
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yadollah Ranjbar-Slamloo
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Malcolm Zheng Hao Ho
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 308232, Singapore
| | - Xuan Ouyang
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
60
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
61
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565869. [PMID: 37986810 PMCID: PMC10659339 DOI: 10.1101/2023.11.06.565869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different contexts. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are clocked by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics, which is minimally affected by cerebellar perturbation and significantly larger than the response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A. Kirk
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | - Keenan T. Hope
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | | | | |
Collapse
|
62
|
Franzova E, Shen Q, Doyle K, Chen JM, Egbebike J, Vrosgou A, Carmona JC, Grobois L, Heinonen GA, Velazquez A, Gonzales IJ, Egawa S, Agarwal S, Roh D, Park S, Connolly ES, Claassen J. Injury patterns associated with cognitive motor dissociation. Brain 2023; 146:4645-4658. [PMID: 37574216 PMCID: PMC10629765 DOI: 10.1093/brain/awad197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 08/15/2023] Open
Abstract
In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.
Collapse
Affiliation(s)
- Eva Franzova
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Qi Shen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Kevin Doyle
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Justine M Chen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jennifer Egbebike
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Athina Vrosgou
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jerina C Carmona
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Lauren Grobois
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Gregory A Heinonen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Angela Velazquez
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Satoshi Egawa
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
63
|
Zhu J, Hasanbegović H, Liu LD, Gao Z, Li N. Activity map of a cortico-cerebellar loop underlying motor planning. Nat Neurosci 2023; 26:1916-1928. [PMID: 37814026 PMCID: PMC10620095 DOI: 10.1038/s41593-023-01453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Liu D Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
64
|
Chen CH, Newman LN, Stark AP, Bond KE, Zhang D, Nardone S, Vanderburg CR, Nadaf NM, Yao Z, Mutume K, Flaquer I, Lowell BB, Macosko EZ, Regehr WG. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain. Nat Neurosci 2023; 26:1929-1941. [PMID: 37919612 PMCID: PMC11348979 DOI: 10.1038/s41593-023-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.
Collapse
Affiliation(s)
- Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Leannah N Newman
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Amanda P Stark
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Katherine E Bond
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Dawei Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Stefano Nardone
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles R Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kefiloe Mutume
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
65
|
Chia XW, Tan JK, Ang LF, Kamigaki T, Makino H. Emergence of cortical network motifs for short-term memory during learning. Nat Commun 2023; 14:6869. [PMID: 37898638 PMCID: PMC10613236 DOI: 10.1038/s41467-023-42609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Learning of adaptive behaviors requires the refinement of coordinated activity across multiple brain regions. However, how neural communications develop during learning remains poorly understood. Here, using two-photon calcium imaging, we simultaneously recorded the activity of layer 2/3 excitatory neurons in eight regions of the mouse dorsal cortex during learning of a delayed-response task. Across learning, while global functional connectivity became sparser, there emerged a subnetwork comprising of neurons in the anterior lateral motor cortex (ALM) and posterior parietal cortex (PPC). Neurons in this subnetwork shared a similar choice code during action preparation and formed recurrent functional connectivity across learning. Suppression of PPC activity disrupted choice selectivity in ALM and impaired task performance. Recurrent neural networks reconstructed from ALM activity revealed that PPC-ALM interactions rendered choice-related attractor dynamics more stable. Thus, learning constructs cortical network motifs by recruiting specific inter-areal communication channels to promote efficient and robust sensorimotor transformation.
Collapse
Affiliation(s)
- Xin Wei Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jian Kwang Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Lee Fang Ang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Hiroshi Makino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
66
|
Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, Aharoni D, Golshani P. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535750. [PMID: 37066345 PMCID: PMC10104017 DOI: 10.1101/2023.04.05.535750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Karen Safaryan
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Long Yang
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Daniel Aharoni
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Peyman Golshani
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
67
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
68
|
Hong-Yu L, Zhi-Jie Z, Juan L, Ting X, Wei-Chun H, Ning Z. Effects of Cerebellar Transcranial Direct Current Stimulation in Patients with Stroke: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:973-984. [PMID: 36028789 DOI: 10.1007/s12311-022-01464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cerebellum is involved in regulating motor, affective, and cognitive processes. It is a promising target for transcranial direct current stimulation (tDCS) intervention in stroke. OBJECTIVES To review the current evidence for cerebellar tDCS (ctDCS) in stroke, its problems, and its future directions. METHODS We searched the Web of Science, MEDLINE, CINAHL, EMBASE, Cochrane Library, and PubMed databases. Eligible studies were identified after a systematic literature review of the effects of ctDCS in stroke patients. The changes in assessment scale scores and objective indicators after stimulation were reviewed. RESULTS Eleven studies were included in the systematic review, comprising 169 stroke patients. Current evidence suggests that anode tDCS on the right cerebellar hemisphere does not appear to enhance language processing in stroke patients. Compared with the sham group, stroke patients showed a significant improvement in the verb generation task after cathodal ctDCS stimulation. However, with regard to naming, two studies came to the opposite conclusion. The contralesional anodal ctDCS is expected to improve standing balance but not motor learning in stroke patients. The bipolar bilateral ctDCS protocol to target dentate nuclei (PO10h and PO9h) had a positive effect on standing balance, goal-directed weight shifting, and postural control in stroke patients. CONCLUSIONS ctDCS appears to improve poststroke language and motor dysfunction (particularly gait). However, the evidence for these results was insufficient, and the quality of the relevant studies was low. ctDCS stimulation parameters and individual factors of participants may affect the therapeutic effect of ctDCS. Researchers need to take a more regulated approach in the future to conduct studies with large sample sizes. Overall, ctDCS remains a promising stroke intervention technique that could be used in the future.
Collapse
Affiliation(s)
- Li Hong-Yu
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China.
| | - Zhang Zhi-Jie
- Yinchuan Stomatology Hospital, Yinchuan, 750002, China
| | - Li Juan
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Xiong Ting
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - He Wei-Chun
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Zhu Ning
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| |
Collapse
|
69
|
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar Prediction and Feeding Behaviour. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1002-1019. [PMID: 36121552 PMCID: PMC10485105 DOI: 10.1007/s12311-022-01476-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
Collapse
Affiliation(s)
- Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
70
|
Liu J, Liu D, Pu X, Zou K, Xie T, Li Y, Yao H. The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior. Neurosci Bull 2023; 39:1544-1560. [PMID: 37253985 PMCID: PMC10533474 DOI: 10.1007/s12264-023-01073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/08/2023] [Indexed: 06/01/2023] Open
Abstract
The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaotian Pu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kexin Zou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaping Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
71
|
Mangin EN, Chen J, Lin J, Li N. Behavioral measurements of motor readiness in mice. Curr Biol 2023; 33:3610-3624.e4. [PMID: 37582373 PMCID: PMC10529875 DOI: 10.1016/j.cub.2023.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Motor planning facilitates rapid and precise execution of volitional movements. Although motor planning has been classically studied in humans and monkeys, the mouse has become an increasingly popular model system to study neural mechanisms of motor planning. It remains yet untested whether mice and primates share common behavioral features of motor planning. We combined videography and a delayed response task paradigm in an autonomous behavioral system to measure motor planning in non-body-restrained mice. Motor planning resulted in both reaction time (RT) savings and increased movement accuracy, replicating classic effects in primates. We found that motor planning was reflected in task-relevant body features. Both the specific actions prepared and the degree of motor readiness could be read out online during motor planning. The online readout further revealed behavioral evidence of simultaneous preparation for multiple actions under uncertain conditions. These results validate the mouse as a model to study motor planning, demonstrate body feature movements as a powerful real-time readout of motor readiness, and offer behavioral evidence that motor planning can be a parallel process that permits rapid selection of multiple prepared actions.
Collapse
Affiliation(s)
- Elise N Mangin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Lin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
72
|
Boven E, Cerminara NL. Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions. Front Syst Neurosci 2023; 17:1211530. [PMID: 37745783 PMCID: PMC10512466 DOI: 10.3389/fnsys.2023.1211530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Performing successful adaptive behaviour relies on our ability to process a wide range of temporal intervals with certain precision. Studies on the role of the cerebellum in temporal information processing have adopted the dogma that the cerebellum is involved in sub-second processing. However, emerging evidence shows that the cerebellum might be involved in suprasecond temporal processing as well. Here we review the reciprocal loops between cerebellum and cerebral cortex and provide a theoretical account of cerebro-cerebellar interactions with a focus on how cerebellar output can modulate cerebral processing during learning of complex sequences. Finally, we propose that while the ability of the cerebellum to support millisecond timescales might be intrinsic to cerebellar circuitry, the ability to support supra-second timescales might result from cerebellar interactions with other brain regions, such as the prefrontal cortex.
Collapse
Affiliation(s)
- Ellen Boven
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Neural and Machine Learning Group, Bristol Computational Neuroscience Unit, Intelligent Systems Labs, School of Engineering Mathematics and Technology, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Nadia L. Cerminara
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
73
|
Chae S, Sihn D, Kim SP. Bias in Prestimulus Motor Cortical Activity Determines Decision-making Error in Rodents. Exp Neurobiol 2023; 32:271-284. [PMID: 37749928 PMCID: PMC10569143 DOI: 10.5607/en23020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Decision-making is a complex process that involves the integration and interpretation of sensory information to guide actions. The rodent motor cortex, which is generally involved in motor planning and execution, also plays a critical role in decision-making processes. In perceptual delayed-response tasks, the rodent motor cortex can represent sensory cues, as well as the decision of where to move. However, it remains unclear whether erroneous decisions arise from incorrect encoding of sensory information or improper utilization of the collected sensory information in the motor cortex. In this study, we analyzed the rodent anterior lateral motor cortex (ALM) while the mice performed perceptual delayed-response tasks. We divided population activities into sensory and choice signals to separately examine the encoding and utilization of sensory information. We found that the encoding of sensory information in the error trials was similar to that in the hit trials, whereas choice signals evolved differently between the error and hit trials. In error trials, choice signals displayed an offset in the opposite direction of instructed licking even before stimulus presentation, and this tendency gradually increased after stimulus onset, leading to incorrect licking. These findings suggest that decision errors are caused by biases in choice-related activities rather than by incorrect sensory encoding. Our study elaborates on the understanding of decision-making processes by providing neural substrates for erroneous decisions.
Collapse
Affiliation(s)
- Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
74
|
Alonso-Martínez C, Rubio-Teves M, Porrero C, Clascá F. Cerebellar and basal ganglia inputs define three main nuclei in the mouse ventral motor thalamus. Front Neuroanat 2023; 17:1242839. [PMID: 37645018 PMCID: PMC10461449 DOI: 10.3389/fnana.2023.1242839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.
Collapse
Affiliation(s)
| | | | - César Porrero
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
75
|
Wang X, Liu Z, Angelov M, Feng Z, Li X, Li A, Yang Y, Gong H, Gao Z. Excitatory nucleo-olivary pathway shapes cerebellar outputs for motor control. Nat Neurosci 2023; 26:1394-1406. [PMID: 37474638 PMCID: PMC10400430 DOI: 10.1038/s41593-023-01387-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhao Feng
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Anan Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Hui Gong
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
76
|
Xu T, Jin Z, Yang M, Chen Z, Xiong H. Whole brain inputs to major descending pathways of the anterior lateral motor cortex. J Neurophysiol 2023; 130:278-290. [PMID: 37377198 DOI: 10.1152/jn.00112.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze, and compare whole brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC-, and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.NEW & NOTEWORTHY Distinct descending pathways of anterior lateral motor cortex (ALM) share common inputs. These inputs are with varied weights. Most inputs were from the ipsilateral side of brain. Preferential inputs were provided by cortex and thalamus (TH).
Collapse
Affiliation(s)
- Tonghui Xu
- Department of Laboratory Animal Science, Fudan University, Shanghai, People's Republic of China
| | - Zitao Jin
- Institute of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Mei Yang
- Department of Laboratory Animal Science, Fudan University, Shanghai, People's Republic of China
| | - Zhilong Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, People's Republic of China
- Piedmont Medical Technology Co., Ltd., Zhuhai, People's Republic of China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People's Republic of China
| |
Collapse
|
77
|
Nashef A, Spindle MS, Calame DJ, Person AL. A dual Purkinje cell rate and synchrony code sculpts reach kinematics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548720. [PMID: 37503038 PMCID: PMC10370034 DOI: 10.1101/2023.07.12.548720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cerebellar Purkinje cells (PCs) encode movement kinematics in their population firing rates. Firing rate suppression is hypothesized to disinhibit neurons in the cerebellar nuclei, promoting adaptive movement adjustments. Debates persist, however, about whether a second disinhibitory mechanism, PC simple spike synchrony, is a relevant population code. We addressed this question by relating PC rate and synchrony patterns recorded with high density probes, to mouse reach kinematics. We discovered behavioral correlates of PC synchrony that align with a known causal relationship between activity in cerebellar output. Reach deceleration was positively correlated with both Purkinje firing rate decreases and synchrony, consistent with both mechanisms disinhibiting target neurons, which are known to adjust reach velocity. Direct tests of the contribution of each coding scheme to nuclear firing using dynamic clamp, combining physiological rate and synchrony patterns ex vivo, confirmed that physiological levels of PC simple spike synchrony are highly facilitatory for nuclear firing. These findings suggest that PC firing rate and synchrony collaborate to exert fine control of movement.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Michael S Spindle
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Dylan J Calame
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Abigail L Person
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| |
Collapse
|
78
|
Mill RD, Cole MW. Neural representation dynamics reveal computational principles of cognitive task learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546751. [PMID: 37425922 PMCID: PMC10327096 DOI: 10.1101/2023.06.27.546751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During cognitive task learning, neural representations must be rapidly constructed for novel task performance, then optimized for robust practiced task performance. How the geometry of neural representations changes to enable this transition from novel to practiced performance remains unknown. We hypothesized that practice involves a shift from compositional representations (task-general activity patterns that can be flexibly reused across tasks) to conjunctive representations (task-specific activity patterns specialized for the current task). Functional MRI during learning of multiple complex tasks substantiated this dynamic shift from compositional to conjunctive representations, which was associated with reduced cross-task interference (via pattern separation) and behavioral improvement. Further, we found that conjunctions originated in subcortex (hippocampus and cerebellum) and slowly spread to cortex, extending multiple memory systems theories to encompass task representation learning. The formation of conjunctive representations hence serves as a computational signature of learning, reflecting cortical-subcortical dynamics that optimize task representations in the human brain.
Collapse
|
79
|
Li N, Liu J, Xie Y, Ji W, Chen Z. Age-related decline of online visuomotor adaptation: a combined effect of deteriorations of motor anticipation and execution. Front Aging Neurosci 2023; 15:1147079. [PMID: 37409009 PMCID: PMC10318141 DOI: 10.3389/fnagi.2023.1147079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
The literature has established that the capability of visuomotor adaptation decreases with aging. However, the underlying mechanisms of this decline are yet to be fully understood. The current study addressed this issue by examining how aging affected visuomotor adaptation in a continuous manual tracking task with delayed visual feedback. To distinguish separate contributions of the declined capability of motor anticipation and deterioration of motor execution to this age-related decline, we recorded and analyzed participants' manual tracking performances and their eye movements during tracking. Twenty-nine older people and twenty-three young adults (control group) participated in this experiment. The results showed that the age-related decline of visuomotor adaptation was strongly linked to degraded performance in predictive pursuit eye movement, indicating that declined capability motor anticipation with aging had critical influences on the age-related decline of visuomotor adaptation. Additionally, deterioration of motor execution, measured by random error after controlling for the lag between target and cursor, was found to have an independent contribution to the decline of visuomotor adaptation. Taking these findings together, we see a picture that the age-related decline of visuomotor adaptation is a joint effect of the declined capability of motor anticipation and the deterioration of motor execution with aging.
Collapse
Affiliation(s)
- Na Li
- Shanghai Changning Mental Health Center, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Junsheng Liu
- Shanghai Changning Mental Health Center, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yong Xie
- Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Weidong Ji
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zhongting Chen
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
80
|
Saban W, Gabay S. Contributions of Lower Structures to Higher Cognition: Towards a Dynamic Network Model. J Intell 2023; 11:121. [PMID: 37367523 DOI: 10.3390/jintelligence11060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Researchers often attribute higher cognition to the enlargement of cortical regions throughout evolution, reflecting the belief that humans sit at the top of the cognitive pyramid. Implicitly, this approach assumes that the subcortex is of secondary importance for higher-order cognition. While it is now recognized that subcortical regions can be involved in various cognitive domains, it remains unclear how they contribute to computations essential for higher-level cognitive processes such as endogenous attention and numerical cognition. Herein, we identify three models of subcortical-cortical relations in these cognitive processes: (i) subcortical regions are not involved in higher cognition; (ii) subcortical computations support elemental forms of higher cognition mainly in species without a developed cortex; and (iii) higher cognition depends on a whole-brain dynamic network, requiring integrated cortical and subcortical computations. Based on evolutionary theories and recent data, we propose the SEED hypothesis: the Subcortex is Essential for the Early Development of higher cognition. According to the five principles of the SEED hypothesis, subcortical computations are essential for the emergence of cognitive abilities that enable organisms to adapt to an ever-changing environment. We examine the implications of the SEED hypothesis from a multidisciplinary perspective to understand how the subcortex contributes to various forms of higher cognition.
Collapse
Affiliation(s)
- William Saban
- Center for Accessible Neuropsychology, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Occupational Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shai Gabay
- Department of Psychology, the Institute of Information Processing and Decision Making, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
81
|
Melchor-Eixea I, Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Pastor R, Miquel M. Putting forward a model for the role of the cerebellum in cocaine-induced pavlovian memory. Front Syst Neurosci 2023; 17:1154014. [PMID: 37388941 PMCID: PMC10303950 DOI: 10.3389/fnsys.2023.1154014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Substance Use Disorder (SUD) involves emotional, cognitive, and motivational dysfunction. Long-lasting molecular and structural changes in brain regions functionally and anatomically linked to the cerebellum, such as the prefrontal cortex, amygdala, hippocampus, basal ganglia, and ventral tegmental area, are characteristic of SUD. Direct and indirect reciprocal connectivity between the cerebellum and these brain regions can explain cerebellar roles in Pavlovian and reinforcement learning, fear memory, and executive functions. It is increasingly clear that the cerebellum modulates brain functions altered in SUD and other neuropsychiatric disorders that exhibit comorbidity with SUD. In the present manuscript, we review and discuss this evidence and present new research exploring the role of the cerebellum in cocaine-induced conditioned memory using chemogenetic tools (designer receptor exclusively activated by designer drug, DREADDs). Our preliminary data showed that inactivation of a region that includes the interposed and lateral deep cerebellar nuclei reduces the facilitating effect of a posterior vermis lesion on cocaine-induced preference conditioning. These findings support our previous research and suggest that posterior vermis damage may increase drug impact on the addiction circuitry by regulating activity in the DCN. However, they raise further questions that will also be discussed.
Collapse
|
82
|
Verpeut JL, Bergeler S, Kislin M, William Townes F, Klibaite U, Dhanerawala ZM, Hoag A, Janarthanan S, Jung C, Lee J, Pisano TJ, Seagraves KM, Shaevitz JW, Wang SSH. Cerebellar contributions to a brainwide network for flexible behavior in mice. Commun Biol 2023; 6:605. [PMID: 37277453 PMCID: PMC10241932 DOI: 10.1038/s42003-023-04920-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The cerebellum regulates nonmotor behavior, but the routes of influence are not well characterized. Here we report a necessary role for the posterior cerebellum in guiding a reversal learning task through a network of diencephalic and neocortical structures, and in flexibility of free behavior. After chemogenetic inhibition of lobule VI vermis or hemispheric crus I Purkinje cells, mice could learn a water Y-maze but were impaired in ability to reverse their initial choice. To map targets of perturbation, we imaged c-Fos activation in cleared whole brains using light-sheet microscopy. Reversal learning activated diencephalic and associative neocortical regions. Distinctive subsets of structures were altered by perturbation of lobule VI (including thalamus and habenula) and crus I (including hypothalamus and prelimbic/orbital cortex), and both perturbations influenced anterior cingulate and infralimbic cortex. To identify functional networks, we used correlated variation in c-Fos activation within each group. Lobule VI inactivation weakened within-thalamus correlations, while crus I inactivation divided neocortical activity into sensorimotor and associative subnetworks. In both groups, high-throughput automated analysis of whole-body movement revealed deficiencies in across-day behavioral habituation to an open-field environment. Taken together, these experiments reveal brainwide systems for cerebellar influence that affect multiple flexible responses.
Collapse
Affiliation(s)
- Jessica L Verpeut
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| | - Silke Bergeler
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Mikhail Kislin
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - F William Townes
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ugne Klibaite
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 01451, USA
| | - Zahra M Dhanerawala
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Austin Hoag
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Sanjeev Janarthanan
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Caroline Jung
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Junuk Lee
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Thomas J Pisano
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Kelly M Seagraves
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Samuel S-H Wang
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
83
|
Zeng C, Liao S, Pu W. Trait and state-related characteristics of thalamo-cortical circuit disruption in bipolar disorder: a prospective cross-sectional study. Front Psychiatry 2023; 14:1067819. [PMID: 37304427 PMCID: PMC10250647 DOI: 10.3389/fpsyt.2023.1067819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Objective The purpose of this study is to investigate the shared and distinct thalamic-cortical circuit between bipolar depression and remission, as well as to investigate the trait and state-related characteristics of the abnormal thalamic-cortical circuit in bipolar disorder. Methods Resting-state functional magnetic resonance imaging was performed on 38 bipolar depression patients, 40 bipolar remission patients, and 39 gender-matched healthy controls (rsfMRI). The thalamic subregions were used as seed points to draw the functional connectivity of the entire brain, and then the shared and distinct thalamic-cortical circuits between bipolar depression and remission were compared. Results When compared to the healthy group, both groups of patients had significantly lower functional connectivity between the rostral temporal thalamus and the lingual gyrus, the posterior parietal thalamus, the precuneus/cerebellum, and the occipital thalamus and the precuneus; however, functional connectivity between the premotor thalamus and the superior medial frontal was significantly lower in depression. Conclusion This study discovered that both bipolar depression and remission had abnormal sensorimotor-thalamic functional connectivity, implying that it is a trait-related characteristic of bipolar disorder; however, the decline in prefrontal-thalamic connectivity exists specifically in bipolar depression, implying that it is a state-related characteristic of bipolar disorder.
Collapse
Affiliation(s)
- Can Zeng
- Department of Psychology, Shaoguan University, Shaoguan, China
| | - SuQun Liao
- Department of Psychology, Shaoguan University, Shaoguan, China
| | - Weidan Pu
- Department of Clinical Psychology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
84
|
Zhu X, Yan H, Zhan Y, Feng F, Wei C, Yao YG, Liu C. An anatomical and connectivity atlas of the marmoset cerebellum. Cell Rep 2023; 42:112480. [PMID: 37163375 DOI: 10.1016/j.celrep.2023.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
The cerebellum is essential for motor control and cognitive functioning, engaging in bidirectional communication with the cerebral cortex. The common marmoset, a small non-human primate, offers unique advantages for studying cerebello-cerebral circuits. However, the marmoset cerebellum is not well described in published resources. In this study, we present a comprehensive atlas of the marmoset cerebellum comprising (1) fine-detailed anatomical atlases and surface-analysis tools of the cerebellar cortex based on ultra-high-resolution ex vivo MRI, (2) functional connectivity and gradient patterns of the cerebellar cortex revealed by awake resting-state fMRI, and (3) structural-connectivity mapping of cerebellar nuclei using high-resolution diffusion MRI tractography. The atlas elucidates the anatomical details of the marmoset cerebellum, reveals distinct gradient patterns of intra-cerebellar and cerebello-cerebral functional connectivity, and maps the topological relationship of cerebellar nuclei in cerebello-cerebral circuits. As version 5 of the Marmoset Brain Mapping project, this atlas is publicly available at https://marmosetbrainmapping.org/MBMv5.html.
Collapse
Affiliation(s)
- Xiaojia Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Yan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Furui Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanyao Wei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
85
|
Nakai N, Sato M, Yamashita O, Sekine Y, Fu X, Nakai J, Zalesky A, Takumi T. Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral transitions in a mouse model of autism. Cell Rep 2023; 42:112258. [PMID: 36990094 DOI: 10.1016/j.celrep.2023.112258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Functional connectivity (FC) can provide insight into cortical circuit dysfunction in neuropsychiatric disorders. However, dynamic changes in FC related to locomotion with sensory feedback remain to be elucidated. To investigate FC dynamics in locomoting mice, we develop mesoscopic Ca2+ imaging with a virtual reality (VR) environment. We find rapid reorganization of cortical FC in response to changing behavioral states. By using machine learning classification, behavioral states are accurately decoded. We then use our VR-based imaging system to study cortical FC in a mouse model of autism and find that locomotion states are associated with altered FC dynamics. Furthermore, we identify FC patterns involving the motor area as the most distinguishing features of the autism mice from wild-type mice during behavioral transitions, which might correlate with motor clumsiness in individuals with autism. Our VR-based real-time imaging system provides crucial information to understand FC dynamics linked to behavioral abnormality of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo 060-8638, Japan.
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo 103-0027, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Seika, Kyoto 619-0288, Japan
| | - Yukiko Sekine
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Xiaochen Fu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, Aoba, Sendai 980-8575, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
86
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
87
|
Henschke JU, Pakan JMP. Engaging distributed cortical and cerebellar networks through motor execution, observation, and imagery. Front Syst Neurosci 2023; 17:1165307. [PMID: 37114187 PMCID: PMC10126249 DOI: 10.3389/fnsys.2023.1165307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
When we interact with the environment around us, we are sometimes active participants, making directed physical motor movements and other times only mentally engaging with our environment, taking in sensory information and internally planning our next move without directed physical movement. Traditionally, cortical motor regions and key subcortical structures such as the cerebellum have been tightly linked to motor initiation, coordination, and directed motor behavior. However, recent neuroimaging studies have noted the activation of the cerebellum and wider cortical networks specifically during various forms of motor processing, including the observations of actions and mental rehearsal of movements through motor imagery. This phenomenon of cognitive engagement of traditional motor networks raises the question of how these brain regions are involved in the initiation of movement without physical motor output. Here, we will review evidence for distributed brain network activation during motor execution, observation, and imagery in human neuroimaging studies as well as the potential for cerebellar involvement specifically in motor-related cognition. Converging evidence suggests that a common global brain network is involved in both movement execution and motor observation or imagery, with specific task-dependent shifts in these global activation patterns. We will further discuss underlying cross-species anatomical support for these cognitive motor-related functions as well as the role of cerebrocerebellar communication during action observation and motor imagery.
Collapse
Affiliation(s)
- Julia U. Henschke
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Janelle M. P. Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz, Magdeburg, Germany
| |
Collapse
|
88
|
Sun H, Wang G. Local Circuits in the Cerebellum Interact with Biochemical Events. Neurosci Bull 2023; 39:710-712. [PMID: 36350536 PMCID: PMC10073356 DOI: 10.1007/s12264-022-00979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
89
|
Yang T, Yu K, Zhang X, Xiao X, Chen X, Fu Y, Li B. Plastic and stimulus-specific coding of salient events in the central amygdala. Nature 2023; 616:510-519. [PMID: 37020025 PMCID: PMC10665639 DOI: 10.1038/s41586-023-05910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
The central amygdala (CeA) is implicated in a range of mental processes including attention, motivation, memory formation and extinction and in behaviours driven by either aversive or appetitive stimuli1-7. How it participates in these divergent functions remains elusive. Here we show that somatostatin-expressing (Sst+) CeA neurons, which mediate much of CeA functions3,6,8-10, generate experience-dependent and stimulus-specific evaluative signals essential for learning. The population responses of these neurons in mice encode the identities of a wide range of salient stimuli, with the responses of separate subpopulations selectively representing the stimuli that have contrasting valences, sensory modalities or physical properties (for example, shock and water reward). These signals scale with stimulus intensity, undergo pronounced amplification and transformation during learning, and are required for both reward and aversive learning. Notably, these signals contribute to the responses of dopamine neurons to reward and reward prediction error, but not to their responses to aversive stimuli. In line with this, Sst+ CeA neuron outputs to dopamine areas are required for reward learning, but are dispensable for aversive learning. Our results suggest that Sst+ CeA neurons selectively process information about differing salient events for evaluation during learning, supporting the diverse roles of the CeA. In particular, the information for dopamine neurons facilitates reward evaluation.
Collapse
Affiliation(s)
- Tao Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Kai Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yu Fu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
90
|
Abstract
The Entangled Brain (Pessoa, L., 2002. MIT Press) promotes the idea that we need to understand the brain as a complex, entangled system. Why does the complex systems perspective, one that entails emergent properties, matter for brain science? In fact, many neuroscientists consider these ideas a distraction. We discuss three principles of brain organization that inform the question of the interactional complexity of the brain: (1) massive combinatorial anatomical connectivity; (2) highly distributed functional coordination; and (3) networks/circuits as functional units. To motivate the challenges of mapping structure and function, we discuss neural circuits illustrating the high anatomical and functional interactional complexity typical in the brain. We discuss potential avenues for testing for network-level properties, including those relying on distributed computations across multiple regions. We discuss implications for brain science, including the need to characterize decentralized and heterarchical anatomical-functional organization. The view advocated has important implications for causation, too, because traditional accounts of causality provide poor candidates for explanation in interactionally complex systems like the brain given the distributed, mutual, and reciprocal nature of the interactions. Ultimately, to make progress understanding how the brain supports complex mental functions, we need to dissolve boundaries within the brain-those suggested to be associated with perception, cognition, action, emotion, motivation-as well as outside the brain, as we bring down the walls between biology, psychology, mathematics, computer science, philosophy, and so on.
Collapse
|
91
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
92
|
Mangin EN, Chen J, Lin J, Li N. Behavioral measurements of motor readiness in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527054. [PMID: 36778494 PMCID: PMC9915731 DOI: 10.1101/2023.02.03.527054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Motor planning facilitates rapid and precise execution of volitional movements. Although motor planning has been classically studied in humans and monkeys, the mouse has become an increasingly popular model system to study neural mechanisms of motor planning. It remains yet untested whether mice and primates share common behavioral features of motor planning. We combined videography and a delayed response task paradigm in an autonomous behavioral system to measure motor planning in non-body- restrained mice. Motor planning resulted in both reaction time savings and increased movement accuracy, replicating classic effects in primates. We found that motor planning was reflected in task-relevant body features. Both the specific actions prepared and the degree of motor readiness could be read out online during motor planning. The online readout further revealed behavioral evidence of simultaneous preparation for multiple actions under uncertain conditions. These results validate the mouse as a model to study motor planning, demonstrate body feature movements as a powerful real-time readout of motor readiness, and offer behavioral evidence that motor planning can be a parallel process that permits rapid selection of multiple prepared actions.
Collapse
Affiliation(s)
| | - Jian Chen
- Department of Neuroscience, Baylor College of Medicine
| | - Jing Lin
- Department of Neuroscience, Baylor College of Medicine
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine
| |
Collapse
|
93
|
The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement. Cell Rep 2023; 42:112000. [PMID: 36656714 DOI: 10.1016/j.celrep.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Cerebellar-thalamo-striatal synaptic communication has been implicated in a wide range of behaviors, including goal-directed actions, and is altered in cerebellar dystonia. However, its detailed connectivity through the thalamus and its contribution to the execution of forelimb movements is unclear. Here, we use trans-synaptic and retrograde tracing, ex vivo slice recordings, and optogenetic inhibitions during the execution of unidirectional or sequential joystick displacements to demonstrate that the deep cerebellar nuclei (DCN) influence the dorsal striatum with a very high probability. We show that this mainly occurs through the centrolateral (CL), parafascicular (PF), and ventrolateral (VL) nuclei of the thalamus, observing that the DCN→VL and DCN→CL pathways contribute to the execution of unidirectional forelimb displacements while the DCN→PF and DCN→thalamo→striatal pathways contribute to the appropriate execution of forelimb reaching and sequential displacements. These findings highlight specific contributions of the different cerebellar-thalamo-striatal paths to the control of skilled forelimb movement.
Collapse
|
94
|
Boven E, Pemberton J, Chadderton P, Apps R, Costa RP. Cerebro-cerebellar networks facilitate learning through feedback decoupling. Nat Commun 2023; 14:51. [PMID: 36599827 DOI: 10.1038/s41467-022-35658-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. Inspired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network, thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed functional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and cognitive tasks. Finally, the model makes several experimentally testable predictions regarding cerebro-cerebellar task-specific representations over learning, task-specific benefits of cerebellar predictions and the differential impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar networks as feedback decoupling machines.
Collapse
Affiliation(s)
- Ellen Boven
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Joseph Pemberton
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK.
| |
Collapse
|
95
|
Ren Q, Wan B, Luo X, Liu Q, Gong H, Li H, Luo M, Xu D, Liu P, Wang J, Yin Z, Li X. Glutamate alterations in the premature infant brain during different gestational ages with glutamate chemical exchange saturation transfer imaging: a pilot study. Eur Radiol 2023; 33:4214-4222. [PMID: 36600123 DOI: 10.1007/s00330-022-09374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To elucidate the change in glutamate levels in preterm infants at different gestational ages by glutamate chemical exchange saturated transfer (GluCEST) magnetic resonance imaging and to compare the difference in glutamate levels among different brain regions between very early preterm infants and middle and late preterm infants. METHODS Fifty-three preterm infants (59% males; median gestational age = 33.6 weeks) underwent MRI, including conventional MRI and GluCEST. The original data were postprocessed in MATLAB. Correlation analysis was used to determine the relationship between the MTRasym and gestational age. The differences in MTRasym signals among different ROIs were statistically analysed by one-way analysis of variance (ANOVA). The MTRasym difference of the bilateral hemispherical ROI was compared by a paired T test. RESULTS In all ROIs, glutamate concentration was positively correlated with gestational age. The glutamate concentration in the thalamus was higher than that in the frontal lobe in very early, middle and late preterm infants. A difference in glutamate concentration was not found in the bilateral ROIs. CONCLUSIONS The concentration of glutamate in the brains of preterm infants of different gestational ages increased with gestational age, which may be one of the factors contributing to the higher incidence of neurodevelopmental dysfunction in very early preterm infants compared to that in middle and late preterm infants. Meanwhile, the glutamate concentrations among different brain regions were also diverse. KEY POINTS • The glutamate concentration was positively correlated with gestational age in preterm infants of the brain. • Glutamate concentrations were dissimilar in different brain regions of preterm infants. • Glutamate concentration during the process of brain development in premature infants was not found to be asymmetric.
Collapse
Affiliation(s)
- Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Bin Wan
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Xunrong Luo
- Department of Radiology, Affiliated Cancer Hospital of Chongqing University, No. 181 Hanyu Road, Shapingba District, Chongqing, 400016, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Mingfang Luo
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Pan Liu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China.
| |
Collapse
|
96
|
Nguyen TM, Thomas LA, Rhoades JL, Ricchi I, Yuan XC, Sheridan A, Hildebrand DGC, Funke J, Regehr WG, Lee WCA. Structured cerebellar connectivity supports resilient pattern separation. Nature 2023; 613:543-549. [PMID: 36418404 PMCID: PMC10324966 DOI: 10.1038/s41586-022-05471-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
Abstract
The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.
Collapse
Affiliation(s)
- Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Logan A Thomas
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Ilaria Ricchi
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Xintong Cindy Yuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Arlo Sheridan
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David G C Hildebrand
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung Allen Lee
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
97
|
Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-subcortical interactions in goal-directed behavior. Physiol Rev 2023; 103:347-389. [PMID: 35771984 PMCID: PMC9576171 DOI: 10.1152/physrev.00048.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022] Open
Abstract
Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks. In this review, we discuss the field's evolving understanding of how cortical and subcortical regions in placental mammals interact cooperatively, not only via top-down cortical-subcortical inputs but through bottom-up interactions, especially via the thalamus. We describe our current understanding of the circuitry of both the cortex and two exemplar subcortical structures, the superior colliculus and striatum, to identify which information is prioritized by which regions. We then describe the functional circuits these regions form with one another, and the thalamus, to create parallel loops and complex networks for brainwide information flow. Finally, we challenge the classic view that functional modules are contained within specific brain regions; instead, we propose that certain regions prioritize specific types of information over others, but the subnetworks they form, defined by their anatomical connections and functional dynamics, are the basis of true specialization.
Collapse
Affiliation(s)
- K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi Ning Leow
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nhat Minh Le
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rafiq Huda
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
98
|
Yang E, Zwart MF, James B, Rubinov M, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB. A brainstem integrator for self-location memory and positional homeostasis in zebrafish. Cell 2022; 185:5011-5027.e20. [PMID: 36563666 PMCID: PMC11605990 DOI: 10.1016/j.cell.2022.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.
Collapse
Affiliation(s)
- En Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; School of Psychology and Neuroscience, Centre for Biophotonics, University of St Andrews, St. Andrews, UK
| | - Ben James
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mikail Rubinov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nikita Vladimirov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
99
|
Barri A, Wiechert MT, Jazayeri M, DiGregorio DA. Synaptic basis of a sub-second representation of time in a neural circuit model. Nat Commun 2022; 13:7902. [PMID: 36550115 PMCID: PMC9780315 DOI: 10.1038/s41467-022-35395-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Temporal sequences of neural activity are essential for driving well-timed behaviors, but the underlying cellular and circuit mechanisms remain elusive. We leveraged the well-defined architecture of the cerebellum, a brain region known to support temporally precise actions, to explore theoretically whether the experimentally observed diversity of short-term synaptic plasticity (STP) at the input layer could generate neural dynamics sufficient for sub-second temporal learning. A cerebellar circuit model equipped with dynamic synapses produced a diverse set of transient granule cell firing patterns that provided a temporal basis set for learning precisely timed pauses in Purkinje cell activity during simulated delay eyelid conditioning and Bayesian interval estimation. The learning performance across time intervals was influenced by the temporal bandwidth of the temporal basis, which was determined by the input layer synaptic properties. The ubiquity of STP throughout the brain positions it as a general, tunable cellular mechanism for sculpting neural dynamics and fine-tuning behavior.
Collapse
Affiliation(s)
- A. Barri
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| | - M. T. Wiechert
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| | - M. Jazayeri
- grid.116068.80000 0001 2341 2786McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| | - D. A. DiGregorio
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| |
Collapse
|
100
|
Ma L, Liu G, Zhang P, Wang J, Huang W, Jiang Y, Zheng Y, Han N, Zhang Z, Zhang J. Altered Cerebro-Cerebellar Effective Connectivity in New-Onset Juvenile Myoclonic Epilepsy. Brain Sci 2022; 12:brainsci12121658. [PMID: 36552118 PMCID: PMC9775154 DOI: 10.3390/brainsci12121658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Objective: Resting-state fMRI studies have indicated that juvenile myoclonic epilepsy (JME) could cause widespread functional connectivity disruptions between the cerebrum and cerebellum. However, the directed influences or effective connectivities (ECs) between these brain regions are poorly understood. In the current study, we aimed to evaluate the ECs between the cerebrum and cerebellum in patients with new-onset JME. (2) Methods: Thirty-four new-onset JME patients and thirty-four age-, sex-, and education-matched healthy controls (HCs) were included in this study. We compared the degree centrality (DC) between the two groups to identify intergroup differences in whole-brain functional connectivity. Then, we used a Granger causality analysis (GCA) to explore JME-caused changes in EC between cerebrum regions and cerebellum regions. Furthermore, we applied a correlation analysis to identify associations between aberrant EC and disease severity in patients with JME. (3) Results: Compared to HCs, patients with JME showed significantly increased DC in the left cerebellum posterior lobe (CePL.L), the right inferior temporal gyrus (ITG.R) and the right superior frontal gyrus (SFG.R), and decreased DC in the left inferior frontal gyrus (IFG.L) and the left superior temporal gyrus (STG.L). The patients also showed unidirectionally increased ECs from cerebellum regions to the cerebrum regions, including from the CePL.L to the right precuneus (PreCU.R), from the left cerebellum anterior lobe (CeAL.L) to the ITG.R, from the right cerebellum posterior lobe (CePL.R) to the IFG.L, and from the left inferior semi-lunar lobule of the cerebellum (CeISL.L) to the SFG.R. Additionally, the EC from the CeISL.L to the SFG.R was negatively correlated with the disease severity. (4) Conclusions: JME patients showed unidirectional EC disruptions from the cerebellum to the cerebrum, and the negative correlation between EC and disease severity provides a new perspective for understanding the cerebro-cerebellar neural circuit mechanisms in JME.
Collapse
Affiliation(s)
- Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| |
Collapse
|