51
|
Uygur E, Sezgin C, Parlak Y, Karatay KB, Arikbasi B, Avcibasi U, Toklu T, Barutca S, Harmansah C, Sozen TS, Maus S, Scher H, Aras O, Gumuser FG, Muftuler FZB. The Radiolabeling of [161Tb]-PSMA-617 by a Novel Radiolabeling Method and Preclinical Evaluation by In Vitro/In Vivo Methods. RESEARCH SQUARE 2023:rs.3.rs-3415703. [PMID: 37961521 PMCID: PMC10635383 DOI: 10.21203/rs.3.rs-3415703/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Prostate cancer (PC) is the most common type of cancer in elderly men, with a positive correlation with age. As resistance to treatment has developed, particularly in the progressive stage of the disease and in the presence of microfocal multiple bone metastases, new generation radionuclide therapies have emerged. Recently, [161Tb], a radiolanthanide introduced for treating micrometastatic foci, has shown great promise for treating prostate cancer. Results In this study, Terbium-161 [161Tb]Tb was radiolabeled with prostate-specific membrane antigen (PSMA)-617 ([161Tb]-PSMA-617) and the therapeutic efficacy of the radiolabeled compound investigated in vitro and in vivo. [161Tb]-PSMA-617 was found to have a radiochemical yield of 97.99 ± 2.01% and was hydrophilic. [161Tb]-PSMA-617 was also shown to have good stability, with a radiochemical yield of over 95% up to 72 hours. In vitro, [161Tb]-PSMA-617 showed a cytotoxic effect on LNCaP cells but not on PC-3 cells. In vivo, scintigraphy imaging visualized the accumulation of [161Tb]-PSMA-617 in the prostate, kidneys, and bladder. Conclusions The results suggest that [161Tb]-PSMA-617 can be an effective radiolabeled agent for the treatment of PSMA positive foci in prostate cancer.
Collapse
Affiliation(s)
- Emre Uygur
- Manisa Celal Bayar University: Manisa Celal Bayar Universitesi
| | | | - Yasemin Parlak
- Manisa Celal Bayar University: Manisa Celal Bayar Universitesi
| | - Kadriye Busra Karatay
- Ege University Institute of Nuclear Sciences: Ege Universitesi Nukleer Bilimler Enstitusu
| | | | - Ugur Avcibasi
- Manisa Celal Bayar Üniversitesi: Manisa Celal Bayar Universitesi
| | | | - Sabri Barutca
- Adnan Menderes Üniversitesi Tıp Fakültesi: Adnan Menderes Universitesi Tip Fakultesi
| | | | | | - Stephan Maus
- Saarland University Hospital and Saarland University Faculty of Medicine: Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes
| | - Howard Scher
- Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus: Memorial Sloan Kettering Cancer Center
| | - Omer Aras
- Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus: Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
52
|
Kostlan RJ, Phoenix JT, Budreika A, Ferrari MG, Khurana N, Cho JE, Juckette K, McCollum BL, Moskal R, Mannan R, Qiao Y, Griend DJV, Chinnaiyan AM, Kregel S. Clinically relevant humanized mouse models of metastatic prostate cancer to evaluate cancer therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562280. [PMID: 37904960 PMCID: PMC10614761 DOI: 10.1101/2023.10.13.562280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is tremendous need for improved prostate cancer (PCa) models. The mouse prostate does not spontaneously form tumors and is anatomically and developmentally different from the human prostate. Engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts represent an alternative but rely on an immunocompromised host. Accordingly, we generated PCa murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic PCa and the impact of hormonal and immunotherapies. These mice maintain multiple human cell lineages, including functional human T-cells and myeloid cells. In 22Rv1 xenografts, subcutaneous tumor size was not significantly altered across conditions; however, metastasis to secondary sites differed in castrate huNOG vs background-matched immunocompromised mice treated with enzalutamide (enza). VCaP xenograft tumors showed decreases in growth with enza and anti-Programed-Death-1 treatments in huNOG mice, and no effect was seen with treatment in NOG mice. Enza responses in huNOG and NOG mice were distinct and associated with increased T-cells within tumors of enza treated huNOG mice, and increased T-cell activation. In huNOG-EXL mice, which support human myeloid development, there was a strong population of immunosuppressive regulatory T-cells and Myeloid-Derived-Suppressor-Cells (MDSCs), and enza treatment showed no difference in metastasis. Results illustrate, to our knowledge, the first model of human PCa that metastasizes to clinically relevant locations, has an intact human immune system, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.
Collapse
Affiliation(s)
- Raymond J. Kostlan
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - John T. Phoenix
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Audris Budreika
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Neetika Khurana
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Jae Eun Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kristin Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Brooke L. McCollum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Russell Moskal
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Rahul Mannan
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
53
|
Hong YC, Hu TY, Hsu CS, Yeh WW, Wong WZ, Shen TW, Chang CH, Hua K, Tung CY, Peng YC, Huang WJ, Chang PC, Lin TP. Single-cell analysis of castration-resistant prostate cancers to identify potential biomarkers for diagnosis and prognosis of neuroendocrine prostate cancer. Am J Cancer Res 2023; 13:4560-4578. [PMID: 37970364 PMCID: PMC10636664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 11/17/2023] Open
Abstract
The high heterogeneity and low percentage of neuroendocrine cells in prostate cancer limit the utility of traditional bulk RNA sequencing and even single-cell RNA sequencing to find better biomarkers for early diagnosis and stratification. Re-clustering of specific cell-type holds great promise for identification of intra-cell-type heterogeneity. However, this has not yet been used in studying neuroendocrine prostate cancer heterogeneity. Neuroendocrine cluster(s) were individually identified in each castration-resistant prostate cancer specimen and combined for trajectory analysis. Three neuroendocrine states were identified. Neuroendocrine state 2 with the highest AR score was considered the initial starting state of neuroendocrine transdifferentiation. State 1 and state 3 with distinct high neuroendocrine scores and marker genes enriched in N-Myc and REST target genes, respectively, were considered as two different types of neuroendocrine differentiated cancer cells. These two states contained distinct groups of prostate cancer biomarkers and a strong distinguishing ability of normal versus cancerous prostate across different pathological grading was found in the N-Myc-associated state. Our data highlight the central role of N-Myc and REST in mediating lineage plasticity and classifying neuroendocrine phenotypes.
Collapse
Affiliation(s)
- Yung-Chih Hong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Tze-Yun Hu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Chih-Sin Hsu
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Wei-Ze Wong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Tsai-Wen Shen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Ching-Hsin Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Medical University HospitalTaipei 11031, Taiwan
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Yu-Ching Peng
- Department of Pathology and Laboratory Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - William J Huang
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Tzu-Ping Lin
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| |
Collapse
|
54
|
Yu W, Wang C, Shang Z, Tian J. Unveiling novel insights in prostate cancer through single-cell RNA sequencing. Front Oncol 2023; 13:1224913. [PMID: 37746302 PMCID: PMC10514910 DOI: 10.3389/fonc.2023.1224913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a cutting-edge technology that provides insights at the individual cell level. In contrast to traditional bulk RNA-seq, which captures gene expression at an average level and may overlook important details, scRNA-seq examines each individual cell as a fundamental unit and is particularly well-suited for identifying rare cell populations. Analogous to a microscope that distinguishes various cell types within a tissue sample, scRNA-seq unravels the heterogeneity and diversity within a single cell species, offering great potential as a leading sequencing method in the future. In the context of prostate cancer (PCa), a disease characterized by significant heterogeneity and multiple stages of progression, scRNA-seq emerges as a powerful tool for uncovering its intricate secrets.
Collapse
Affiliation(s)
| | | | - Zhiqun Shang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Tian
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
55
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
56
|
Phoenix JT, Budreika A, Kostlan RJ, Hwang JH, Fanning SW, Kregel S. Editorial: Hormone resistance in cancer. Front Endocrinol (Lausanne) 2023; 14:1272932. [PMID: 37693345 PMCID: PMC10484586 DOI: 10.3389/fendo.2023.1272932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- John T. Phoenix
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Audris Budreika
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Raymond J. Kostlan
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sean W. Fanning
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Steven Kregel
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
57
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
58
|
Zhang Y, Fan A, Li Y, Liu Z, Yu L, Guo J, Hou J, Li X, Chen W. Single-cell RNA sequencing reveals that HSD17B2 in cancer-associated fibroblasts promotes the development and progression of castration-resistant prostate cancer. Cancer Lett 2023; 566:216244. [PMID: 37244445 DOI: 10.1016/j.canlet.2023.216244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Castration-resistant prostate cancer (CRPC) responds poorly to existing therapy and appears as the lethal consequence of prostate cancer (PCa) progression. The tumour microenvironment (TME) has been thought to play a crucial role in CRPC progression. Here, we conducted single-cell RNA sequencing analysis on two CRPC and two hormone-sensitive prostate cancer (HSPC) samples to reveal potential leading roles in castration resistance. We described the single-cell transcriptional landscape of PCa. Higher cancer heterogeneity was explored in CRPC, with stronger cell cycling status and heavier copy number variant burden of luminal cells. Cancer-associated fibroblasts (CAFs), which are one of the most critical components of TME, demonstrated unique expression and cell-cell communication features in CRPC. A CAFs subtype with high expression of HSD17B2 in CRPC was identified with inflammatory features. HSD17B2 catalyses the conversion of testosterone and dihydrotestosterone to their less active forms, which was associated with steroid hormone metabolism in PCa tumour cells. However, the characteristics of HSD17B2 in PCa fibroblasts remained unknown. We found that HSD17B2 knockdown in CRPC-CAFs could inhibit migration, invasion, and castration resistance of PCa cells in vitro. Further study showed that HSD17B2 could regulate CAFs functions and promote PCa migration through the AR/ITGBL1 axis. Overall, our study revealed the important role of CAFs in the formation of CRPC. HSD17B2 in CAFs regulated AR activation and subsequent ITGBL1 secretion to promote the malignant behaviour of PCa cells. HSD17B2 in CAFs could serve as a promising therapeutic target for CRPC.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aoyu Fan
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunpeng Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuolin Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu Yu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Hou
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Li
- School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wei Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
59
|
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, Wang X, Gu Y, Zhang G, Lian Y, Zhang W, Zhang M, Li T, Zang Y, Tan M, Li Q, Wang X, Yu Z, Jiang J, Huang H, Qin J. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell 2023:S1535-6108(23)00183-6. [PMID: 37352863 DOI: 10.1016/j.ccell.2023.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Lineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1+ myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1+ myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type. Antiandrogen treatment unleashes TGF-β signaling, resulting in SOX4-SWI/SNF-dependent CAF phenotype switching. SPP1+ myCAFs in turn render PCa refractory to ADT via an SPP1-ERK paracrine mechanism. Importantly, these sub-myCAFs are associated with inferior therapeutic outcomes, providing the rationale for inhibiting polarization or paracrine mechanisms to circumvent castration resistance. Collectively, our results highlight that therapy-induced phenotypic switching of CAFs is coupled with disease progression and that targeting this stromal component may restrain CRPC.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Mingyu Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tianyi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Xiaoming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
60
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
61
|
Zeng J, Chen J, Li M, Zhong C, Liu Z, Wang Y, Li Y, Jiang F, Fang S, Zhong W. Integrated high-throughput analysis identifies super enhancers in metastatic castration-resistant prostate cancer. Front Pharmacol 2023; 14:1191129. [PMID: 37292153 PMCID: PMC10244677 DOI: 10.3389/fphar.2023.1191129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background: Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive stage of prostate cancer, and non-mutational epigenetic reprogramming plays a critical role in its progression. Super enhancers (SE), epigenetic elements, are involved in multiple tumor-promoting signaling pathways. However, the SE-mediated mechanism in mCRPC remains unclear. Methods: SE-associated genes and transcription factors were identified from a cell line (C4-2B) of mCRPC by the CUT&Tag assay. Differentially expressed genes (DEGs) between mCRPC and primary prostate cancer (PCa) samples in the GSE35988 dataset were identified. What's more, a recurrence risk prediction model was constructed based on the overlapping genes (termed SE-associated DEGs). To confirm the key SE-associated DEGs, BET inhibitor JQ1 was applied to cells to block SE-mediated transcription. Finally, single-cell analysis was performed to visualize cell subpopulations expressing the key SE-associated DEGs. Results: Nine human TFs, 867 SE-associated genes and 5417 DEGs were identified. 142 overlapping SE-associated DEGs showed excellent performance in recurrence prediction. Time-dependent receiver operating characteristic (ROC) curve analysis showed strong predictive power at 1 year (0.80), 3 years (0.85), and 5 years (0.88). The efficacy of his performance has also been validated in external datasets. In addition, FKBP5 activity was significantly inhibited by JQ1. Conclusion: We present a landscape of SE and their associated genes in mCPRC, and discuss the potential clinical implications of these findings in terms of their translation to the clinic.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Maozhang Li
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Chuanfan Zhong
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zezhen Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuejiao Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Funeng Jiang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shumin Fang
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
62
|
Li M, Liu M, Han W, Wang Z, Han D, Patalano S, Macoska JA, Balk SP, He HH, Corey E, Gao S, Cai C. LSD1 Inhibition Disrupts Super-Enhancer-Driven Oncogenic Transcriptional Programs in Castration-Resistant Prostate Cancer. Cancer Res 2023; 83:1684-1698. [PMID: 36877164 PMCID: PMC10192194 DOI: 10.1158/0008-5472.can-22-2433] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The lysine demethylase LSD1 (also called KDM1A) plays important roles in promoting multiple malignancies including both hematologic cancers and solid tumors. LSD1 targets histone and nonhistone proteins and can function as a transcriptional corepressor or coactivator. LSD1 has been reported to act as a coactivator of androgen receptor (AR) in prostate cancer and to regulate the AR cistrome via demethylation of its pioneer factor FOXA1. A deeper understanding of the key oncogenic programs targeted by LSD1 could help stratify prostate cancer patients for treatment with LSD1 inhibitors, which are currently under clinical investigation. In this study, we performed transcriptomic profiling in an array of castration-resistant prostate cancer (CRPC) xenograft models that are sensitive to LSD1 inhibitor treatment. Impaired tumor growth by LSD1 inhibition was attributed to significantly decreased MYC signaling, and MYC was found to be a consistent target of LSD1. Moreover, LSD1 formed a network with BRD4 and FOXA1 and was enriched at super-enhancer regions exhibiting liquid-liquid phase separation. Combining LSD1 inhibitors with BET inhibitors exhibited strong synergy in disrupting the activities of multiple drivers in CRPC, thereby inducing significant growth repression of tumors. Importantly, the combination treatment showed superior effects than either inhibitor alone in disrupting a subset of newly identified CRPC-specific super-enhancers. These results provide mechanistic and therapeutic insights for cotargeting two key epigenetic factors and could be rapidly translated in the clinic for CRPC patients. SIGNIFICANCE LSD1 drives prostate cancer progression by activating super-enhancer-mediated oncogenic programs, which can be targeted with the combination of LSD1 and BRD4 inhibitors to suppress the growth of CRPC.
Collapse
Affiliation(s)
- Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Washington 98109, USA
| | - Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Jill A. Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, M5G1L7, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington 98195, USA
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
63
|
Zhang L, Troccoli CI, Mateo-Victoriano B, Lincheta LM, Jackson E, Shu P, Plastini T, Tao W, Kwon D, Chen X, Sharma J, Jorda M, Gulley JL, Bilusic M, Lockhart AC, Beuve A, Rai P. The soluble guanylyl cyclase pathway is inhibited to evade androgen deprivation-induced senescence and enable progression to castration resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.537252. [PMID: 37205442 PMCID: PMC10187243 DOI: 10.1101/2023.05.03.537252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is fatal and therapeutically under-served. We describe a novel CRPC-restraining role for the vasodilatory soluble guanylyl cyclase (sGC) pathway. We discovered that sGC subunits are dysregulated during CRPC progression and its catalytic product, cyclic GMP (cGMP), is lowered in CRPC patients. Abrogating sGC heterodimer formation in castration-sensitive prostate cancer (CSPC) cells inhibited androgen deprivation (AD)-induced senescence, and promoted castration-resistant tumor growth. We found sGC is oxidatively inactivated in CRPC. Paradoxically, AD restored sGC activity in CRPC cells through redox-protective responses evoked to protect against AD-induced oxidative stress. sGC stimulation via its FDA-approved agonist, riociguat, inhibited castration-resistant growth, and the anti-tumor response correlated with elevated cGMP, indicating on-target sGC activity. Consistent with known sGC function, riociguat improved tumor oxygenation, decreasing the PC stem cell marker, CD44, and enhancing radiation-induced tumor suppression. Our studies thus provide the first evidence for therapeutically targeting sGC via riociguat to treat CRPC. Statement of significance Prostate cancer is the second highest cancer-related cause of death for American men. Once patients progress to castration-resistant prostate cancer, the incurable and fatal stage, there are few viable treatment options available. Here we identify and characterize a new and clinically actionable target, the soluble guanylyl cyclase complex, in castration-resistant prostate cancer. Notably we find that repurposing the FDA-approved and safely tolerated sGC agonist, riociguat, decreases castration-resistant tumor growth and re-sensitizes these tumors to radiation therapy. Thus our study provides both new biology regarding the origins of castration resistance as well as a new and viable treatment option.
Collapse
|
64
|
Bakht MK, Yamada Y, Ku SY, Venkadakrishnan VB, Korsen JA, Kalidindi TM, Mizuno K, Ahn SH, Seo JH, Garcia MM, Khani F, Elemento O, Long HW, Chaglassian A, Pillarsetty N, Lewis JS, Freedman M, Belanger AP, Nguyen QD, Beltran H. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. NATURE CANCER 2023; 4:699-715. [PMID: 37038004 PMCID: PMC10867901 DOI: 10.1038/s43018-023-00539-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shin Hye Ahn
- Harvard Medical School, Boston, MA, USA
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, USA
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Harvard Medical School, Boston, MA, USA
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
65
|
Bergom HE, Shabaneh A, Day A, Ali A, Boytim E, Tape S, Lozada JR, Shi X, Kerkvliet CP, McSweeney S, Pitzen SP, Ludwig M, Antonarakis ES, Drake JM, Dehm SM, Ryan CJ, Wang J, Hwang J. ALAN is a computational approach that interprets genomic findings in the context of tumor ecosystems. Commun Biol 2023; 6:417. [PMID: 37059746 PMCID: PMC10104859 DOI: 10.1038/s42003-023-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Gene behavior is governed by activity of other genes in an ecosystem as well as context-specific cues including cell type, microenvironment, and prior exposure to therapy. Here, we developed the Algorithm for Linking Activity Networks (ALAN) to compare gene behavior purely based on patient -omic data. The types of gene behaviors identifiable by ALAN include co-regulators of a signaling pathway, protein-protein interactions, or any set of genes that function similarly. ALAN identified direct protein-protein interactions in prostate cancer (AR, HOXB13, and FOXA1). We found differential and complex ALAN networks associated with the proto-oncogene MYC as prostate tumors develop and become metastatic, between different cancer types, and within cancer subtypes. We discovered that resistant genes in prostate cancer shared an ALAN ecosystem and activated similar oncogenic signaling pathways. Altogether, ALAN represents an informatics approach for developing gene signatures, identifying gene targets, and interpreting mechanisms of progression or therapy resistance.
Collapse
Affiliation(s)
- Hannah E Bergom
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Ashraf Shabaneh
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Abderrahman Day
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Atef Ali
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Ella Boytim
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Sydney Tape
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Xiaolei Shi
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Carlos Perez Kerkvliet
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Sean McSweeney
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Samuel P Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin M Drake
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Charles J Ryan
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Jinhua Wang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin Hwang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA.
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
66
|
Gogola S, Rejzer M, Bahmad HF, Abou-Kheir W, Omarzai Y, Poppiti R. Epithelial-to-Mesenchymal Transition-Related Markers in Prostate Cancer: From Bench to Bedside. Cancers (Basel) 2023; 15:cancers15082309. [PMID: 37190236 DOI: 10.3390/cancers15082309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide, with 288,300 new cases and 34,700 deaths estimated in the United States in 2023. Treatment options for early-stage disease include external beam radiation therapy, brachytherapy, radical prostatectomy, active surveillance, or a combination of these. In advanced cases, androgen-deprivation therapy (ADT) is considered the first-line therapy; however, PCa in most patients eventually progresses to castration-resistant prostate cancer (CRPC) despite ADT. Nonetheless, the transition from androgen-dependent to androgen-independent tumors is not yet fully understood. The physiological processes of epithelial-to-non-epithelial ("mesenchymal") transition (EMT) and mesenchymal-to-epithelial transition (MET) are essential for normal embryonic development; however, they have also been linked to higher tumor grade, metastatic progression, and treatment resistance. Due to this association, EMT and MET have been identified as important targets for novel cancer therapies, including CRPC. Here, we discuss the transcriptional factors and signaling pathways involved in EMT, in addition to the diagnostic and prognostic biomarkers that have been identified in these processes. We also tackle the various studies that have been conducted from bench to bedside and the current landscape of EMT-targeted therapies.
Collapse
Affiliation(s)
- Samantha Gogola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Yumna Omarzai
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
67
|
Li XF, Selli C, Zhou HL, Cao J, Wu S, Ma RY, Lu Y, Zhang CB, Xun B, Lam AD, Pang XC, Fernando A, Zhang Z, Unciti-Broceta A, Carragher NO, Ramachandran P, Henderson NC, Sun LL, Hu HY, Li GB, Sawyers C, Qian BZ. Macrophages promote anti-androgen resistance in prostate cancer bone disease. J Exp Med 2023; 220:213858. [PMID: 36749798 PMCID: PMC9948761 DOI: 10.1084/jem.20221007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/14/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.
Collapse
Affiliation(s)
- Xue-Feng Li
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cigdem Selli
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Han-Lin Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medicine School, Central South University, Changsha, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruo-Yu Ma
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ye Lu
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Cheng-Bin Zhang
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Bijie Xun
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Alyson D. Lam
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Anu Fernando
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C. Henderson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ling-Ling Sun
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Yan Hu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Gui-Bo Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Charles Sawyers:
| | - Bin-Zhi Qian
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Correspondence to Bin-Zhi Qian:
| |
Collapse
|
68
|
Zheng Z, Chen J, Chen X, Huang L, Xie W, Lin Q, Li X, Wong K. Enabling Single-Cell Drug Response Annotations from Bulk RNA-Seq Using SCAD. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204113. [PMID: 36762572 PMCID: PMC10104628 DOI: 10.1002/advs.202204113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Indexed: 06/18/2023]
Abstract
The single-cell RNA sequencing (scRNA-seq) quantifies the gene expression of individual cells, while the bulk RNA sequencing (bulk RNA-seq) characterizes the mixed transcriptome of cells. The inference of drug sensitivities for individual cells can provide new insights to understand the mechanism of anti-cancer response heterogeneity and drug resistance at the cellular resolution. However, pharmacogenomic information related to their corresponding scRNA-Seq is often limited. Therefore, a transfer learning model is proposed to infer the drug sensitivities at single-cell level. This framework learns bulk transcriptome profiles and pharmacogenomics information from population cell lines in a large public dataset and transfers the knowledge to infer drug efficacy of individual cells. The results suggest that it is suitable to learn knowledge from pre-clinical cell lines to infer pre-existing cell subpopulations with different drug sensitivities prior to drug exposure. In addition, the model offers a new perspective on drug combinations. It is observed that drug-resistant subpopulation can be sensitive to other drugs (e.g., a subset of JHU006 is Vorinostat-resistant while Gefitinib-sensitive); such finding corroborates the previously reported drug combination (Gefitinib + Vorinostat) strategy in several cancer types. The identified drug sensitivity biomarkers reveal insights into the tumor heterogeneity and treatment at cellular resolution.
Collapse
Affiliation(s)
- Zetian Zheng
- Department of Computer ScienceCity University of Hong KongKowloonHong Kong
| | - Junyi Chen
- The Laboratory of Data Discovery for Health (D²4H), Hong Kong Science ParkNew TerritoriesHong Kong
| | - Xingjian Chen
- Department of Computer ScienceCity University of Hong KongKowloonHong Kong
| | - Lei Huang
- Department of Computer ScienceCity University of Hong KongKowloonHong Kong
| | - Weidun Xie
- Department of Computer ScienceCity University of Hong KongKowloonHong Kong
| | - Qiuzhen Lin
- College of Computer Science and Software Engineering, Shenzhen UniversityShenzhenChina
| | - Xiangtao Li
- School of Artificial IntelligenceJilin UniversityJilinChina
| | - Ka‐Chun Wong
- Department of Computer ScienceCity University of Hong KongKowloonHong Kong
- Shenzhen Research InstituteCity University of Hong KongShenzhenChina
- Hong Kong Institute for Data ScienceCity University of Hong KongKowloonHong Kong
| |
Collapse
|
69
|
Adorno Febles VR, Hao Y, Ahsan A, Wu J, Qian Y, Zhong H, Loeb S, Makarov DV, Lepor H, Wysock J, Taneja SS, Huang WC, Becker DJ, Balar AV, Melamed J, Deng FM, Ren Q, Kufe D, Wong KK, Adeegbe DO, Deng J, Wise DR. Single-cell analysis of localized prostate cancer patients links high Gleason score with an immunosuppressive profile. Prostate 2023; 83:840-849. [PMID: 36988342 DOI: 10.1002/pros.24524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Evading immune surveillance is a hallmark for the development of multiple cancer types. Whether immune evasion contributes to the pathogenesis of high-grade prostate cancer (HGPCa) remains an area of active inquiry. METHODS Through single-cell RNA sequencing and multicolor flow cytometry of freshly isolated prostatectomy specimens and matched peripheral blood, we aimed to characterize the tumor immune microenvironment (TME) of localized prostate cancer (PCa), including HGPCa and low-grade prostate cancer (LGPCa). RESULTS HGPCa are highly infiltrated by exhausted CD8+ T cells, myeloid cells, and regulatory T cells (TRegs). These HGPCa-infiltrating CD8+ T cells expressed high levels of exhaustion markers including TIM3, TOX, TCF7, PD-1, CTLA4, TIGIT, and CXCL13. By contrast, a high ratio of activated CD8+ effector T cells relative to TRegs and myeloid cells infiltrate the TME of LGPCa. HGPCa CD8+ tumor-infiltrating lymphocytes (TILs) expressed more androgen receptor and prostate-specific membran antigen yet less prostate-specific antigen than the LGPCa CD8+ TILs. The PCa TME was infiltrated by macrophages but these did not clearly cluster by M1 and M2 markers. CONCLUSIONS Our study reveals a suppressive TME with high levels of CD8+ T cell exhaustion in localized PCa, a finding enriched in HGPCa relative to LGPCa. These studies suggest a possible link between the clinical-pathologic risk of PCa and the associated TME. Our results have implications for our understanding of the immunologic mechanisms of PCa pathogenesis and the implementation of immunotherapy for localized PCa.
Collapse
Affiliation(s)
- Victor R Adorno Febles
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Medicine, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, New York University Langone Health, New York, New York, USA
| | - Aarif Ahsan
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jiansheng Wu
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Yingzhi Qian
- Department of Population Health, NYU Langone Health, New York, New York, USA
| | - Hua Zhong
- Department of Population Health, NYU Langone Health, New York, New York, USA
| | - Stacy Loeb
- Department of Urology, New York University School of Medicine, New York, New York, USA
- Department of Urology, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Danil V Makarov
- Department of Urology, New York University School of Medicine, New York, New York, USA
- Department of Urology, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - James Wysock
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - Samir S Taneja
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - William C Huang
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - Daniel J Becker
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Medicine, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Arjun V Balar
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Donald Kufe
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Dennis O Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jiehui Deng
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
70
|
Isebia KT, Lolkema MP, Jenster G, de Wit R, Martens JWM, van Riet J. A Compendium of AR Splice Variants in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24066009. [PMID: 36983083 PMCID: PMC10053078 DOI: 10.3390/ijms24066009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Treatment-induced AR alterations, including AR alternative splice variants (AR-Vs), have been extensively linked to harboring roles in primary and acquired resistance to conventional and next-generation hormonal therapies in prostate cancer and therefore have gained momentum. Our aim was to uniformly determine recurrent AR-Vs in metastatic castration-resistant prostate cancer (mCRPC) using whole transcriptome sequencing in order to assess which AR-Vs might hold potential diagnostic or prognostic relevance in future research. This study reports that in addition to the promising AR-V7 as a biomarker, AR45 and AR-V3 were also seen as recurrent AR-Vs and that the presence of any AR-V could be associated with higher AR expression. With future research, these AR-Vs may therefore harbor similar or complementary roles to AR-V7 as predictive and prognostic biomarkers in mCRPC or as proxies for abundant AR expression.
Collapse
Affiliation(s)
- Khrystany T Isebia
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Job van Riet
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
- Division of AI in Oncology, German Cancer Research Centre DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
71
|
Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, Carreira S, Rekowski J, Buroni L, Welti J, Bogdan D, Gallagher L, Sharp A, Fenor de la Maza MD, Rescigno P, Westaby D, Chandran K, Riisnaes R, Ferreira A, Miranda S, Calì B, Alimonti A, Bressan S, Nguyen AHT, Shen MM, Hawley JE, Obradovic A, Drake CG, Bertan C, Baker C, Tunariu N, Yuan W, de Bono JS. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. Eur Urol 2023; 83:224-238. [PMID: 36114082 DOI: 10.1016/j.eururo.2022.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND B7-H3 is a cell surface immunomodulatory glycoprotein overexpressed in prostate cancers (PCs). Understanding its longitudinal expression at emergence of castration resistance and association with tumour genomics are critical to the development of and patient selection for B7-H3 targeted therapies. OBJECTIVE To characterise B7-H3 expression in same-patient hormone-sensitive (HSPC) and castration-resistant (CRPC) PC biopsies, associating this with PC genomics, and to evaluate the antitumour activity of an anti-B7-H3 antibody-drug conjugate (ADC) in human CRPC in vitro and in vivo. DESIGN, SETTING, AND PARTICIPANTS We performed immunohistochemistry and next-generation sequencing on a cohort of 98 clinically annotated CRPC biopsies, including 72 patients who also had HSPC biopsies for analyses. We analysed two CRPC transcriptome and exome datasets, and PC scRNASeq datasets. PC organoids (patient-derived xenograft [PDX]-derived organoids [PDX-Os]) were derived from PDXs generated from human CRPC biopsies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We evaluated B7-H3 mRNA expression in relation to a panel of 770 immune-related genes, compared B7-H3 protein expression between same-patient HSPC and CRPC biopsies, determined associations with PC genomic alterations, and evaluated the antitumour activity of DS-7300a, a topoisomerase-1 inhibitor payload anti-B7-H3 ADC, in human PC cell lines, organoids (PDX-Os), and xenografts (PDXs) of different histologies, B7-H3 expressions, and genomics. RESULTS AND LIMITATIONS B7-H3 was among the most highly expressed immunomodulatory genes in CRPCs. Most CRPCs (93%) expressed B7-H3, and in patients who developed CRPC, B7-H3 expression was frequently expressed at the time of HSPC diagnosis (97%). Conversion from B7-H3 positive to negative, or vice versa, during progression from HSPC to CRPC was uncommon. CRPC with neuroendocrine features were more likely to be B7-H3 negative (28%) than adenocarcinomas. B7-H3 is overexpressed in tumours with defective DNA repair gene (ATM and BRCA2) alterations and is associated with ERG expression, androgen receptor (AR) expression, and AR activity signature. DS7300a had antitumour activity against B7-H3 expressing human PC models including cell lines, PDX-Os, and PDXs of adenocarcinoma and neuroendocrine histology. CONCLUSIONS The frequent overexpression of B7-H3 in CRPC compared with normal tissue and other B7 family members implicates it as a highly relevant therapeutic target in these diseases. Mechanisms driving differences in B7-H3 expression across genomic subsets warrant investigation for understanding the role of B7-H3 in cancer growth and for the clinical development of B7-H3 targeted therapies. PATIENT SUMMARY B7-H3, a protein expressed on the surface of the most lethal prostate cancers, in particular those with specific mutations, can be targeted using drugs that bind B7-H3. These findings are relevant for the development of such drugs and for deciding which patients to treat with these new drugs.
Collapse
Affiliation(s)
- Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | | | | | - Jon Welti
- The Institute of Cancer Research, London, UK
| | | | | | - Adam Sharp
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Maria D Fenor de la Maza
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Daniel Westaby
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Khobe Chandran
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | | | | | - Bianca Calì
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Alimonti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Silvia Bressan
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Michael M Shen
- Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica E Hawley
- Columbia University Irving Medical Center, New York, NY, USA; University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Charles G Drake
- Columbia University Irving Medical Center, New York, NY, USA; Janssen Research, Spring House, PA, USA
| | | | - Chloe Baker
- The Institute of Cancer Research, London, UK
| | - Nina Tunariu
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK.
| |
Collapse
|
72
|
Zhao S, Liao J, Zhang S, Shen M, Li X, Zhou L. The positive relationship between androgen receptor splice variant-7 expression and the risk of castration-resistant prostate cancer: A cumulative analysis. Front Oncol 2023; 13:1053111. [PMID: 36865799 PMCID: PMC9972874 DOI: 10.3389/fonc.2023.1053111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Background At present, androgen deprivation therapy (ADT) is still the standard regimen for patients with metastatic and locally advanced prostate cancer (PCa). The level of androgen receptor splice variant-7 (AR-V7) in men with castration-resistant prostate cancer (CRPC) has been reported to be elevated compared with that in patients diagnosed with hormone-sensitive prostate cancer (HSPC). Aim Herein, we performed a systematic review and cumulative analysis to evaluate whether the expression of AR-V7 was significantly higher in patients with CRPC than in HSPC patients. Methods The commonly used databases were searched to identify the potential studies reporting the level of AR-V7 in CRPC and HSPC patients. The association between CRPC and the positive expression of AR-V7 was pooled by using the relative risk (RR) with the corresponding 95% confidence intervals (CIs) under a random-effects model. For detecting the potential bias and the heterogeneity of the included studies, sensitivity analysis and subgroup analysis were performed. Publication bias was assessed Egger's and Begg's tests. This study was registered on PROSPERO (ID: CRD42022297014). Results This cumulative analysis included 672 participants from seven clinical trials. The study group contained 354 CRPC patients, while the other group contained 318 HSPC patients. Pooled results from the seven eligible studies showed that the expression of positive AR-V7 was significantly higher in men with CRPC compared to those with HSPC (RR = 7.55, 95% CI: 4.61-12.35, p < 0.001). In the sensitivity analysis, the combined RRs did not change substantially, ranging from 6.85 (95% CI: 4.16-11.27, p < 0.001) to 9.84 (95% CI: 5.13-18.87, p < 0.001). In the subgroup analysis, a stronger association was detected in RNA in situ hybridization (RISH) measurement in American patients, and those studies were published before 2011 (all p < 0.001). There was no significant publication bias identified in our study. Conclusion Evidence from the seven eligible studies demonstrated that patients with CRPC had a significantly elevated positive expression of AR-V7. More investigations are still warranted to clarify the association between CRPC and AR-V7 testing. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022297014.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Libo Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Libo Zhou,
| |
Collapse
|
73
|
Zhou H, Zhang T, Chen L, Cui F, Xu C, Peng J, Ma W, Huang J, Sheng X, Liu M, Zhao F. The functional implication of ATF6α in castration-resistant prostate cancer cells. FASEB J 2023; 37:e22758. [PMID: 36607288 DOI: 10.1096/fj.202201347r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Stress in the endoplasmic reticulum (ER) may perturb proteostasis and activates the unfolded protein response (UPR). UPR activation is frequently observed in cancer cells and is believed to fuel cancer progression. Here, we report that one of the three UPR sensors, ATF6α, was associated with prostate cancer (PCa) development, while both genetic and pharmacological inhibition of ATF6α impaired the survival of castration-resistance PCa (CRPC) cells. Transcriptomic analyses identified the molecular pathways deregulated upon ATF6α depletion, and also discovered considerable disparity in global gene expression between ATF6α knockdown and Ceapin-A7 treatment. In addition, combined analyses of human CRPC bulk RNA-seq and single-cell RNA-seq (scRNA-seq) public datasets confirmed that CRPC tumors with higher ATF6α activity displayed higher androgen receptor (AR) activity, proliferative and neuroendocrine (NE) like phenotypes, as well as immunosuppressive features. Lastly, we identified a 14-gene set as ATF6α NE gene signature with encouraging prognostic power. In conclusion, our results indicate that ATF6α is correlated with PCa progression and is functionally relevant to CRPC cell survival. Both specificity and efficacy of ATF6α inhibitors require further refinement and evaluation.
Collapse
Affiliation(s)
- Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tingting Zhang
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengzhen Cui
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Jiaxi Peng
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Weixiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jirong Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Sheng
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
74
|
Zhang B, Wang S, Fu Z, Gao Q, Yang L, Lei Z, Shi Y, Le K, Xiong J, Liu S, Zhang J, Su J, Chen J, Liu M, Niu B. Single-cell RNA sequencing reveals intratumoral heterogeneity and potential mechanisms of malignant progression in prostate cancer with perineural invasion. Front Genet 2023; 13:1073232. [PMID: 36712886 PMCID: PMC9875799 DOI: 10.3389/fgene.2022.1073232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men worldwide. Perineural invasion (PNI) was a prominent characteristic of PCa, which was recognized as a key factor in promoting PCa progression. As a complex and heterogeneous disease, its true condition is difficult to explain thoroughly with conventional bulk RNA sequencing. Thus, an improved understanding of PNI-PCa progression at the single-cell level is needed. Methods: In this study, we performed scRNAseq on tumor tissues of three PNI-PCa patients. Principal component analysis (PCA) and Uniform manifold approximation and projection (UMAP) were used to reduce dimensionality and visualize the cellular composition of tumor tissues. The differently expressed genes among each cluster were identified by EdgeR. GO enrichment analysis was used to understand the roles of genes within the clusters. Pseudotime cell trajectory was used to reveal the molecular pathways underlying cell fate decisions and identify genes whose expression changed as the cells underwent transition. We applied CellPhoneDB to identify cell-cell interactions among the epithelial and neural cells in PNI-PCa. Results: Analysis of the ∼17,000 single-cell transcriptomes in three PNI prostate cancer tissues, we identified 12 major cell clusters, including neural cells and two epithelial subtypes with different expression profiles. We found that basal/intermediate epithelial cell subtypes highly expressed PCa progression-related genes, including PIGR, MMP7, and AGR2. Pseudotime trajectory analysis showed that luminal epithelial cells could be the initiating cells and transition to based/intermediate cells. Gene ontology (GO) enrichment analysis showed that pathways related to cancer progressions, such as lipid catabolic and fatty acid metabolic processes, were significantly enriched in basal/intermediate cells. Our analysis also suggested that basal/intermediate cells communicate closely with neural cells played a potential role in PNI-PCa progression. Conclusion: These results provide our understanding of PNI-PCa cellular heterogeneity and characterize the potential role of basal/intermediate cells in the PNI-PCa progression.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Urology, Aerospace Center Hospital, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| | - Shenghan Wang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhichao Fu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Qiang Gao
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Lin Yang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhentao Lei
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Yuqiang Shi
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Kai Le
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Jie Xiong
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Siyao Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jiali Zhang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Junyan Su
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jing Chen
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Mengyuan Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Beifang Niu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| |
Collapse
|
75
|
ACAP1 Deficiency Predicts Inferior Immunotherapy Response in Solid Tumors. Cancers (Basel) 2022; 14:cancers14235951. [PMID: 36497434 PMCID: PMC9740925 DOI: 10.3390/cancers14235951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND ACAP1 plays a key role in endocytic recycling, which is essential for the normal function of lymphocytes. However, the expression and function of ACAP1 in lymphocytes have rarely been studied. METHODS Large-scale genomic data, including multiple bulk RNA-sequencing datasets, single-cell sequencing datasets, and immunotherapy cohorts, were exploited to comprehensively characterize ACAP1 expression, regulation, and function. Gene set enrichment analysis (GSEA) was used to uncover the pathways associated with ACAP1 expression. Eight algorithms, including TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, xCELL, MCPCOUNTER, EPIC, and TIDE, were applied to estimate the infiltrating level of immune cells. Western blotting, qPCR, and ChIP-PCR were used to validate the findings from bioinformatic analyses. A T-cell co-culture killing assay was used to investigate the function of ACAP1 in lymphocytes. RESULTS ACAP1 was highly expressed in immune-related tissues and cells and minimally in other tissues. Moreover, single-cell sequencing analysis in tumor samples revealed that ACAP1 is expressed primarily in tumor-infiltrating lymphocytes (TILs), including T, B, and NK cells. ACAP1 expression is negatively regulated by promoter DNA methylation, with its promoter hypo-methylated in immune cells but hyper-methylated in other cells. Furthermore, SPI1 binds to the ACAP1 promoter and positively regulates its expression in immune cells. ACAP1 levels positively correlate with the infiltrating levels of TILs, especially CD8+ T cells, across a broad range of solid cancer types. ACAP1 deficiency is associated with poor prognosis and immunotherapeutic response in multiple cancer types treated with checkpoint blockade therapy (ICT). Functionally, the depletion of ACAP1 by RNA interference significantly impairs the T cell-mediated killing of tumor cells. CONCLUSIONS Our study demonstrates that ACAP1 is essential for the normal function of TILs, and its deficiency indicates an immunologically "cold" status of tumors that are resistant to ICT.
Collapse
|
76
|
Van Hemelryk A, Tomljanovic I, de Ridder CMA, Stuurman DC, Teubel WJ, Erkens-Schulze S, Verhoef EI, Remmers S, Mahes AJ, van Leenders GJLH, van Royen ME, van de Werken HJG, Grudniewska M, Jenster GW, van Weerden WM. Patient-Derived Xenografts and Organoids Recapitulate Castration-Resistant Prostate Cancer with Sustained Androgen Receptor Signaling. Cells 2022; 11:cells11223632. [PMID: 36429059 PMCID: PMC9688335 DOI: 10.3390/cells11223632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains an incurable and lethal malignancy. The development of new CRPC treatment strategies is strongly impeded by the scarcity of representative, scalable and transferable preclinical models of advanced, androgen receptor (AR)-driven CRPC. Here, we present contemporary patient-derived xenografts (PDXs) and matching PDX-derived organoids (PDXOs) from CRPC patients who had undergone multiple lines of treatment. These models were comprehensively profiled at the morphologic, genomic (n = 8) and transcriptomic levels (n = 81). All are high-grade adenocarcinomas that exhibit copy number alterations and transcriptomic features representative of CRPC patient cohorts. We identified losses of PTEN and RB1, MYC amplifications, as well as genomic alterations in TP53 and in members of clinically actionable pathways such as AR, PI3K and DNA repair pathways. Importantly, the clinically observed continued reliance of CRPC tumors on AR signaling is preserved across the entire set of models, with AR amplification identified in four PDXs. We demonstrate that PDXs and PDXOs faithfully reflect donor tumors and mimic matching patient drug responses. In particular, our models predicted patient responses to subsequent treatments and captured sensitivities to previously received therapies. Collectively, these PDX-PDXO pairs constitute a reliable new resource for in-depth studies of treatment-induced, AR-driven resistance mechanisms. Moreover, PDXOs can be leveraged for large-scale tumor-specific drug response profiling critical for accelerating therapeutic advances in CRPC.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ingrid Tomljanovic
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Corrina M. A. de Ridder
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Debra C. Stuurman
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wilma J. Teubel
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Esther I. Verhoef
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan Remmers
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Amrish J. Mahes
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Geert J. L. H. van Leenders
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Harmen J. G. van de Werken
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | | | - Guido W. Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-107-043-674
| |
Collapse
|
77
|
Shi X, Day A, Bergom HE, Tape S, Baca SC, Sychev ZE, Larson G, Bozicevich A, Drake JM, Zorko N, Wang J, Ryan CJ, Antonarakis ES, Hwang J. Integrative molecular analyses define correlates of high B7-H3 expression in metastatic castrate-resistant prostate cancer. NPJ Precis Oncol 2022; 6:80. [PMID: 36323882 PMCID: PMC9630314 DOI: 10.1038/s41698-022-00323-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
B7-H3 (CD276) is an immune checkpoint overexpressed in prostate cancer with minimal expression in normal tissues and associated with poor prognosis, making it an excellent therapy target. We interrogated B7-H3 expression and its regulation in metastatic castration-resistant prostate cancer (mCRPC). We found greater expression of B7-H3 transcript relative to other immunotherapy targets (CTLA-4, PD-L1/2), including in tumors that lacked expression of prostate-specific membrane antigen (PSMA). Enzalutamide-resistant mCRPC cells demonstrated increased amounts of B7-H3, and this was associated with resistance signaling pathways. Using a machine-learning algorithm, the gene network of B7-H3 was strongly correlated with androgen receptor (AR) and AR co-factor (HOXB13, FOXA1) networks. In mCRPC samples, the B7-H3 promoter and distal enhancer regions exhibited enhanced transcriptional activity and were directly bound by AR and its co-factors. Altogether, our study characterizes molecular profiles and epigenetic regulation of B7-H3-expressing mCRPC tumors, which informs optimal precision-oncology approaches for mCRPC patients.
Collapse
Affiliation(s)
- Xiaolei Shi
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Abderrahman Day
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Hannah E. Bergom
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Sydney Tape
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Sylvan C. Baca
- grid.38142.3c000000041936754XDana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Zoi E. Sychev
- grid.17635.360000000419368657Department of Pharmacology, University of Minnesota, Minneapolis, MN USA
| | - Gabrianne Larson
- grid.17635.360000000419368657Department of Pharmacology, University of Minnesota, Minneapolis, MN USA
| | - Asha Bozicevich
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Justin M. Drake
- grid.17635.360000000419368657Department of Pharmacology, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Department of Urology, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Nicholas Zorko
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Jinhua Wang
- grid.17635.360000000419368657Institute for Health Informatics, University of Minnesota, Minneapolis, MN USA
| | - Charles J. Ryan
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.453146.10000 0000 9487 9191Prostate Cancer Foundation, Santa Monica, CA USA
| | - Emmanuel S. Antonarakis
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Justin Hwang
- grid.17635.360000000419368657Department of Medicine, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
78
|
Miyahira AK, Soule HR. The 28th Annual Prostate Cancer Foundation Scientific Retreat report. Prostate 2022; 82:1346-1377. [PMID: 35852016 DOI: 10.1002/pros.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The 28th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held virtually over 4 days, on October 28-29 and November 4-5, 2021. METHODS The Annual PCF Scientific Retreat is a leading global scientific conference that focuses on first-in-field, unpublished, and high-impact basic, translational, and clinical prostate cancer research, as well as research from other fields with high probability for impacting prostate cancer research and patient care. RESULTS Primary areas of research discussed at the 2021 PCF Retreat included: (i) prostate cancer disparities; (ii) prostate cancer survivorship; (iii) next-generation precision medicine; (iv) PSMA theranostics; (v) prostate cancer lineage plasticity; (vi) tumor metabolism as a cancer driver and treatment target; (vii) prostate cancer genetics and polygenic risk scores; (viii) glucocorticoid receptor biology in castration-resistant prostate cancer (CRPC); (ix) therapeutic degraders; (x) new approaches for immunotherapy in prostate cancer; (xi) novel technologies to overcome the suppressive tumor microenvironment; and (xii) real-world evidence and synthetic/virtual control arms. CONCLUSIONS This article provides a summary of the presentations from the 2021 PCF Scientific Retreat. We hope that sharing this knowledge will help to improve the understanding of the current state of research and direct new advances in prostate cancer research and care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
79
|
Westbrook TC, Guan X, Rodansky E, Flores D, Liu CJ, Udager AM, Patel RA, Haffner MC, Hu YM, Sun D, Beer TM, Foye A, Aggarwal R, Quigley DA, Youngren JF, Ryan CJ, Gleave M, Wang Y, Huang J, Coleman I, Morrissey C, Nelson PS, Evans CP, Lara P, Reiter RE, Witte O, Rettig M, Wong CK, Weinstein AS, Uzunangelov V, Stuart JM, Thomas GV, Feng FY, Small EJ, Yates JA, Xia Z, Alumkal JJ. Transcriptional profiling of matched patient biopsies clarifies molecular determinants of enzalutamide-induced lineage plasticity. Nat Commun 2022; 13:5345. [PMID: 36109521 PMCID: PMC9477876 DOI: 10.1038/s41467-022-32701-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
The androgen receptor (AR) signaling inhibitor enzalutamide (enza) is one of the principal treatments for metastatic castration-resistant prostate cancer (CRPC). Several emergent enza clinical resistance mechanisms have been described, including lineage plasticity in which the tumors manifest reduced dependency on the AR. To improve our understanding of enza resistance, herein we analyze the transcriptomes of matched biopsies from men with metastatic CRPC obtained prior to treatment and at progression (n = 21). RNA-sequencing analysis demonstrates that enza does not induce marked, sustained changes in the tumor transcriptome in most patients. However, three patients' progression biopsies show evidence of lineage plasticity. The transcription factor E2F1 and pathways linked to tumor stemness are highly activated in baseline biopsies from patients whose tumors undergo lineage plasticity. We find a gene signature enriched in these baseline biopsies that is strongly associated with poor survival in independent patient cohorts and with risk of castration-induced lineage plasticity in patient-derived xenograft models, suggesting that tumors harboring this gene expression program may be at particular risk for resistance mediated by lineage plasticity and poor outcomes.
Collapse
Affiliation(s)
- Thomas C Westbrook
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Xiangnan Guan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Eva Rodansky
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Diana Flores
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chia Jen Liu
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Radhika A Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ya-Mei Hu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Duanchen Sun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jack F Youngren
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Martin Gleave
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Primo Lara
- University of California Davis, Davis, CA, USA
| | | | - Owen Witte
- Department of Microbiology, Immunology, and Molecular Genetics at the David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Matthew Rettig
- University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Christopher K Wong
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alana S Weinstein
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Vlado Uzunangelov
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Josh M Stuart
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - George V Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joel A Yates
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Xia
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Joshi J Alumkal
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
80
|
Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, Wadosky KM, Gopalan A, Choo ZN, Persad S, Choi J, LaClair J, Lawrence KE, Chaudhary O, Xu T, Masilionis I, Linkov I, Wang S, Lee C, Barlas A, Morris MJ, Mazutis L, Chaligne R, Chen Y, Goodrich DW, Karthaus WR, Pe’er D, Sawyers CL. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science 2022; 377:1180-1191. [PMID: 35981096 PMCID: PMC9653178 DOI: 10.1126/science.abn0478] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.
Collapse
Affiliation(s)
- Joseph M. Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jillian R. Love
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland
| | - Jimmy L. Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Basic sciences division and translational data science IRC, Fred Hutchinson Cancer research center
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zi-Ning Choo
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sitara Persad
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Justin LaClair
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Linkov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael J. Morris
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Ronan Chaligne
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
81
|
ATAXIC: An Algorithm to Quantify Transcriptomic Perturbation Heterogeneity in Single Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:4106736. [PMID: 36090907 PMCID: PMC9452944 DOI: 10.1155/2022/4106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022]
Abstract
The single-cell RNA sequencing (scRNA-seq) has recently been widely utilized to quantify transcriptomic profiles in single cells of bulk tumors. The transcriptomic profiles in single cells facilitate the investigation of intratumor heterogeneity that is unlikely confounded by the nontumor components. We proposed an algorithm (ATAXIC) to quantify the heterogeneity of transcriptomic perturbations (TPs) in single cancer cells. ATAXIC calculated the TP heterogeneity level of a single cell based on the standard deviations of the absolute z-scored gene expression values for tens of thousands of genes, reflecting the asynchronous degree of transcriptomic alterations relative to the central (mean) tendency. By analyzing scRNA-seq datasets for eight cancer types, we revealed that ATAXIC scores were likely to correlate positively with the enrichment scores of various proliferation and oncogenic signatures, DNA damage repair, treatment resistance, and unfavorable phenotypes and outcomes in cancer. The ATAXIC scores varied among different cancer types, with lung cancer and melanoma having the lowest average scores and clear cell renal cell carcinoma having the highest average scores. The low TP heterogeneity in lung cancer and melanoma could bestow relatively higher response rates to immune checkpoint inhibitors on both cancer types. In conclusion, ATAXIC is a useful algorithm to quantify the TP heterogeneity in single cancer cells, as well as providing new insights into tumor biology.
Collapse
|
82
|
Sowalsky AG, Figueiredo I, Lis RT, Coleman I, Gurel B, Bogdan D, Yuan W, Russo JW, Bright JR, Whitlock NC, Trostel SY, Ku AT, Patel RA, True LD, Welti J, Jimenez-Vacas JM, Rodrigues DN, Riisnaes R, Neeb A, Sprenger CT, Swain A, Wilkinson S, Karzai F, Dahut WL, Balk SP, Corey E, Nelson PS, Haffner MC, Plymate SR, de Bono JS, Sharp A. Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clin Cancer Res 2022; 28:3509-3525. [PMID: 35695870 PMCID: PMC9378683 DOI: 10.1158/1078-0432.ccr-22-0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.
Collapse
Affiliation(s)
| | | | - Rosina T. Lis
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bora Gurel
- Institute of Cancer Research, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | | | - John R. Bright
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | | | - Anson T. Ku
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | - Antje Neeb
- Institute of Cancer Research, London, UK
| | | | | | | | - Fatima Karzai
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Steven P. Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Eva Corey
- University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Stephen R. Plymate
- University of Washington, Seattle, Washington
- Geriatrics Research, Education and Clinical Center, VAPSHCS, Seattle, Washington
| | - Johann S. de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
83
|
Schiantarelli J, Pappa T, Conway J, Crowdis J, Reardon B, Dietlein F, Huang J, Stanizzi D, Carey E, Bosma-Moody A, Imamovic A, Han S, Camp S, Kofman E, Shannon E, Barletta JA, He MX, Liu D, Park J, Lorch JH, Van Allen EM. Mutational Footprint of Platinum Chemotherapy in a Secondary Thyroid Cancer. JCO Precis Oncol 2022; 6:e2200183. [PMID: 36075011 PMCID: PMC9489159 DOI: 10.1200/po.22.00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Julia Schiantarelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Theodora Pappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Jake Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Darren Stanizzi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Evan Carey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alice Bosma-Moody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Alma Imamovic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Seunghun Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
| | - Sabrina Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Harvard Graduate Program in Biophysics, Boston, MA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jochen H. Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
84
|
Mizuno K, Beltran H. Future directions for precision oncology in prostate cancer. Prostate 2022; 82 Suppl 1:S86-S96. [PMID: 35657153 PMCID: PMC9942493 DOI: 10.1002/pros.24354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Clinical genomic testing is becoming routine in prostate cancer, as biomarker-driven therapies such as poly-ADP ribose polymerase (PARP) inhibitors and anti-PD1 immunotherapy are now approved for select men with castration-resistant prostate cancer harboring alterations in DNA repair genes. Challenges for precision medicine in prostate cancer include an overall low prevalence of actionable genomic alterations and a still limited understanding of the impact of tumor heterogeneity and co-occurring alterations on treatment response and outcomes across diverse patient populations. Expanded tissue-based technologies such as whole-genome sequencing, transcriptome analysis, epigenetic analysis, and single-cell RNA sequencing have not yet entered the clinical realm and could potentially improve upon our understanding of how molecular features of tumors, intratumoral heterogeneity, and the tumor microenvironment impact therapy response and resistance. Blood-based technologies including cell-free DNA, circulating tumor cells (CTCs), and extracellular vesicles (EVs) are less invasive molecular profiling resources that could also help capture intraindividual tumor heterogeneity and track dynamic changes that occur in the context of specific therapies. Furthermore, molecular imaging is an important biomarker tool within the framework of prostate cancer precision medicine with a capability to detect heterogeneity across metastases and potential therapeutic targets less invasively. Here, we review recent technological advances that may help promote the future implementation and value of precision oncology testing for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Medical Oncology, Dana Farber Cancer Institute
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute
| |
Collapse
|
85
|
Cotter K, Rubin MA. The evolving landscape of prostate cancer somatic mutations. Prostate 2022; 82 Suppl 1:S13-S24. [PMID: 35657155 PMCID: PMC9328313 DOI: 10.1002/pros.24353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The landscape of somatic mutations in prostate cancer (PCa) has quickly evolved over the past years. RESULTS This evolution was in part due to the improved quality and lower cost of genomic sequencing platforms available to an ever-larger group of clinicians and researchers. The result of these efforts is a better understanding of early and late mutations that are enriched or nearly exclusive to treated PCa. There are, however, some important limitations to the current knowledge. The expanding variety of next-generation sequencing (NGS) assays either capture a wide spectrum of mutations but at low coverage or are focused panels that cover a select number of genes, most often cancer-related, at a deep coverage. Both of these approaches have their advantages, but ultimately miss low-frequency mutations or fail to cover the spectrum of potential mutations. Additionally, some alterations, such as the common ETS gene fusions, require a mixture of DNA and RNA analysis to capture the true frequency. Finally, almost all studies rely on bulk PCa tumor samples, which fail to consider tumor heterogeneity. Given all these caveats, the true picture of the somatic landscape of PCa continues to develop. SUMMARY In this review, the focus will be on how the landscape of mutations evolves during disease progression considering therapy. It will focus on a select group of early and late mutations and utilize SPOP mutations to illustrate recurrent alterations that may have clinical implications.
Collapse
Affiliation(s)
- Kellie Cotter
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Mark A. Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Bern Center for Precision MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
86
|
Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis 2022; 13:624. [PMID: 35853880 PMCID: PMC9296670 DOI: 10.1038/s41419-022-05086-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is a malignant tumor that seriously threatens men's health worldwide. Recently, stromal cells in the tumor microenvironment (TME) have been reported to contribute to the progression of PCa. However, the role and mechanism of how PCa cells interact with stromal cells to reshape the TME remain largely unknown. Here, using a spontaneous prostate adenocarcinoma (PRAD) model driven by the loss of Pten and Hic1, we found that M2 macrophages markedly infiltrated the stroma of Pten and Hic1 double conditional knockout (dCKO) mice compared with those in control (Ctrl) mice due to higher TGF-β levels secreted by HIC1-deleted PCa cells. Mechanistically, TGF-β in TME promoted the polarization of macrophages into "M2" status by activating the STAT3 pathway and modulating c-Myc to upregulate CXCR4 expression. Meanwhile, TGF-β activated the fibroblasts to form cancer-associated fibroblasts (CAFs) that secrete higher CXCL12 levels, which bound to its cognate receptor CXCR4 on M2 macrophages. Upon interaction with CAFs, M2 macrophages secreted more CXCL5, which promoted the epithelial-mesenchymal transition (EMT) of PCa via CXCR2. Moreover, using the TGF-β receptor I antagonist, galunisertib, significantly inhibited the tumor growth and progression of the TRAMP-C1 cell line-derived subcutaneous tumor model. Finally, we confirmed that the stromal microenvironment was shaped by TGF-β in HIC1-deficient PCa and was associated with the progression of PCa.
Collapse
|
87
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
88
|
Rodriguez Y, Unno K, Truica M, Chalmers ZR, Yoo YA, Vatapalli R, Sagar V, Yu J, Lysy B, Hussain M, Han H, Abdulkadir SA. A Genome-Wide CRISPR Activation Screen Identifies PRRX2 as a Regulator of Enzalutamide Resistance in Prostate Cancer. Cancer Res 2022; 82:2110-2123. [PMID: 35405009 PMCID: PMC9177667 DOI: 10.1158/0008-5472.can-21-3565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Androgen receptor (AR) pathway inhibitors are the mainstay treatment for advanced prostate cancer, but resistance to therapy is common. Here, we used a CRISPR activation screen in metastatic castration-sensitive prostate cancer cells to identify genes that promote resistance to AR inhibitors. Activation of the TGFβ target gene paired-related homeobox2 (PRRX2) promoted enzalutamide resistance. PRRX2 expression was the highest in double-negative prostate cancer (DNPC), which lack AR signaling and neuroendocrine differentiation, and a PRRX2-related gene signature identified a subset of patients with DNPC with reduced overall survival. PRRX2-expressing cells showed alterations in the CDK4/6/Rb/E2F and BCL2 pathways. Accordingly, treatment with CDK4/6 and BCL2 inhibitors sensitized PRRX2-expressing, castration-resistant tumors to enzalutamide. Overall, PRRX2 was identified as a driver of enzalutamide resistance. The PRRX2 signature merits investigation as a biomarker of enzalutamide resistance in prostate cancer that could be reversed with CDK4/6 and BCL2 inhibitors. SIGNIFICANCE PRRX2 mediates enzalutamide resistance via activation of the E2F and BCL2 pathways, which can be targeted with CDK4/6 and BCL2 inhibitors to reverse resistance.
Collapse
Affiliation(s)
- Yara Rodriguez
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kenji Unno
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mihai Truica
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zachary R. Chalmers
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Young A Yoo
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rajita Vatapalli
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinay Sagar
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jindan Yu
- Department of Medicine, Division of Hematology/Oncology, Department of Biochemistry and Molecular Genetics, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Barbara Lysy
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maha Hussain
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huiying Han
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarki A. Abdulkadir
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
89
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
90
|
Guan X, Polesso F, Wang C, Sehrawat A, Hawkins RM, Murray SE, Thomas GV, Caruso B, Thompson RF, Wood MA, Hipfinger C, Hammond SA, Graff JN, Xia Z, Moran AE. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 2022; 606:791-796. [PMID: 35322234 PMCID: PMC10294141 DOI: 10.1038/s41586-022-04522-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Immune checkpoint blockade has revolutionized the field of oncology, inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer, immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth, and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFNγ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together, our findings establish that T cell intrinsic AR activity represses IFNγ expression and represents a novel mechanism of immunotherapy resistance.
Collapse
Affiliation(s)
- Xiangnan Guan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Fanny Polesso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Chaojie Wang
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Archana Sehrawat
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Reed M Hawkins
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Susan E Murray
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
- Department of Biology, University of Portland, Portland, OR, USA
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Breanna Caruso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Reid F Thompson
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Mary A Wood
- VA Portland Health Care System, Portland, OR, USA
| | - Christina Hipfinger
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Scott A Hammond
- Clinical IO Discovery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Julie N Graff
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Amy E Moran
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
91
|
Hwang JH, Arafeh R, Seo JH, Baca SC, Ludwig M, Arnoff TE, Sawyer L, Richter C, Tape S, Bergom HE, McSweeney S, Rennhack JP, Klingenberg SA, Cheung ATM, Kwon J, So J, Kregel S, Van Allen EM, Drake JM, Freedman ML, Hahn WC. CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor targeting therapies. eLife 2022; 11:73223. [PMID: 35550030 PMCID: PMC9135408 DOI: 10.7554/elife.73223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.
Collapse
Affiliation(s)
- Justin H Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Rand Arafeh
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | | | - Lydia Sawyer
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Camden Richter
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sydney Tape
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Hannah E Bergom
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Sean McSweeney
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Jonathan P Rennhack
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | | | | | - Jason Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Jonathan So
- 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Justin M Drake
- Department of Pharmacology and Urology, University of Minnesota, Minneapolis, United States
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
92
|
Ge G, Han Y, Zhang J, Li X, Liu X, Gong Y, Lei Z, Wang J, Zhu W, Xu Y, Peng Y, Deng J, Zhang B, Li X, Zhou L, He H, Ci W. Single-Cell RNA-seq Reveals a Developmental Hierarchy Super-Imposed Over Subclonal Evolution in the Cellular Ecosystem of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105530. [PMID: 35322584 PMCID: PMC9131431 DOI: 10.1002/advs.202105530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Indexed: 05/07/2023]
Abstract
Prostate cancer (PCa) is a complex disease. An ongoing accumulation of mutations results in increased genetic diversity, with the tumor acquiring distinct subclones. However, non-genetic intra-tumoral heterogeneity, the cellular differentiation state and the interplay between subclonal evolution and transcriptional heterogeneity are poorly understood. Here, the authors perform single-cell RNA sequencing from 14 untreated PCa patients. They create an extensive cell atlas of the PCa patients and mapped developmental states onto tumor subclonal evolution. They identify distinct subclones across PCa patients and then stratify tumor cells into four transcriptional subtypes, EMT-like (subtype 0), luminal A-like (subtype 1), luminal B/C-like (subtype 2), and basal-like (subtype 3). These subtypes are hierarchically organized into stem cell-like and differentiated status. Strikingly, multiple subclones within a single primary tumor present with distinct combinations of preferential subtypes. In addition, subclones show different communication strengths with other cell types within the tumor ecosystem, which may modulate the distinct transcriptional subtypes of the subclones. Notably, by integrating TCGA data, they discover that both tumor cell transcriptional heterogeneity and cellular ecosystem diversity correlate with features of a poor prognosis. Collectively, their study provides the analysis of subclonal and transcriptional heterogeneity and its implication for patient prognosis.
Collapse
Affiliation(s)
- Guangzhe Ge
- Key Laboratory of Genomics and Precision MedicineBeijing Institute of GenomicsChina National Center for BioinformationChinese Academy of SciencesBeijing100101China
| | - Yang Han
- Key Laboratory of Genomics and Precision MedicineBeijing Institute of GenomicsChina National Center for BioinformationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianye Zhang
- Key Laboratory of Genomics and Precision MedicineBeijing Institute of GenomicsChina National Center for BioinformationChinese Academy of SciencesBeijing100101China
- Department of UrologyPeking University First HospitalBeijing100034China
| | - Xinxin Li
- Key Laboratory of Genomics and Precision MedicineBeijing Institute of GenomicsChina National Center for BioinformationChinese Academy of SciencesBeijing100101China
| | - Xiaodan Liu
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijing100191China
| | - Yanqing Gong
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Zhentao Lei
- Department of UrologyBeijing Aerospace Center HospitalBeijing100049China
| | - Jie Wang
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Weijie Zhu
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Yangyang Xu
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Yiji Peng
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Jianhua Deng
- Department of UrologyPeking Union Medical College HospitalBeijing100730China
| | - Bao Zhang
- Department of UrologyBeijing Aerospace Center HospitalBeijing100049China
| | - Xuesong Li
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Liqun Zhou
- Department of UrologyPeking University First HospitalBeijing100034China
- Institute of UrologyPeking UniversityBeijing100034China
- National Urological Cancer CenterBeijing100034China
| | - Huiying He
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijing100191China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision MedicineBeijing Institute of GenomicsChina National Center for BioinformationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Institute for Stem cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
93
|
Ma F, Arai S, Wang K, Calagua C, Yuan AR, Poluben L, Gu Z, Russo JW, Einstein DJ, Ye H, He MX, Liu Y, Van Allen E, Sowalsky AG, Bhasin MK, Yuan X, Balk SP. Autocrine Canonical Wnt Signaling Primes Noncanonical Signaling through ROR1 in Metastatic Castration-Resistant Prostate Cancer. Cancer Res 2022; 82:1518-1533. [PMID: 35131873 PMCID: PMC9018564 DOI: 10.1158/0008-5472.can-21-1807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling driven by genomic alterations in genes including APC and CTNNB, which encodes β-catenin, have been implicated in prostate cancer development and progression to metastatic castration-resistant prostate cancer (mCRPC). However, nongenomic drivers and downstream effectors of Wnt signaling in prostate cancer and the therapeutic potential of targeting this pathway in prostate cancer have not been fully established. Here we analyzed Wnt/β-catenin signaling in prostate cancer and identified effectors distinct from those found in other tissues, including aryl hydrocarbon receptor and RUNX1, which are linked to stem cell maintenance, and ROR1, a noncanonical Wnt5a coreceptor. Wnt/β-catenin signaling-mediated increases in ROR1 enhanced noncanonical responses to Wnt5a. Regarding upstream drivers, APC genomic loss, but not its epigenetic downregulation commonly observed in prostate cancer, was strongly associated with Wnt/β-catenin pathway activation in clinical samples. Tumor cell upregulation of the Wnt transporter Wntless (WLS) was strongly associated with Wnt/β-catenin pathway activity in primary prostate cancer but also associated with both canonical and noncanonical Wnt signaling in mCRPC. IHC confirmed tumor cell WLS expression in primary prostate cancer and mCRPC, and patient-derived prostate cancer xenografts expressing WLS were responsive to treatment with Wnt synthesis inhibitor ETC-1922159. These findings reveal that Wnt/β-catenin signaling in prostate cancer drives stem cell maintenance and invasion and primes for noncanonical Wnt signaling through ROR1. They further show that autocrine Wnt production is a nongenomic driver of canonical and noncanonical Wnt signaling in prostate cancer, which can be targeted with Wnt synthesis inhibitors to suppress tumor growth. SIGNIFICANCE This work provides fundamental insights into Wnt signaling and prostate cancer cell biology and indicates that a subset of prostate cancer driven by autocrine Wnt signaling is sensitive to Wnt synthesis inhibitors.
Collapse
Affiliation(s)
- Fen Ma
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Urology, Gunma University Hospital; Maebashi, Gunma, Japan
| | - Keshan Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei 430022, P.R. China
| | - Carla Calagua
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Amanda R. Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Zhongkai Gu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Joshua W. Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - David J. Einstein
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Pathology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Meng Xiao He
- Harvard Graduate Program in Biophysics, Harvard Medical School; Boston, MA 02115, USA
- Department of Medical Oncology, Dana Farber Cancer Institute; Boston, MA 02115
- Broad Institute of Harvard and MIT; Cambridge, MA 02142, USA
| | - Yu Liu
- Program in System Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School; Worcester, MA 01605, USA
| | - Eliezer Van Allen
- Department of Medical Oncology, Dana Farber Cancer Institute; Boston, MA 02115
- Broad Institute of Harvard and MIT; Cambridge, MA 02142, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Manoj K. Bhasin
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Departments of Pediatrics and Biomedical Informatics, Emory School of Medicine; Atlanta, GA 30322, USA
| | - Xin Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Steven P. Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| |
Collapse
|
94
|
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN, Karkampouna S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett 2022; 530:156-169. [PMID: 35051532 DOI: 10.1016/j.canlet.2022.01.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
During disease progression from primary towards metastatic prostate cancer (PCa), and in particular bone metastases, the tumor microenvironment (TME) evolves in parallel with the cancer clones, altering extracellular matrix composition (ECM), vasculature architecture, and recruiting specialized tumor-supporting cells that favor tumor spread and colonization at distant sites. We introduce the clinical profile of advanced metastatic PCa in terms of common genetic alterations. Findings from recently developed models of PCa metastatic spread are discussed, focusing mainly on the role of the TME (mainly matrix and fibroblast cell types), at distinct stages: premetastatic niche orchestrated by the primary tumor towards the metastatic site and bone metastasis. We report evidence of premetastatic niche formation, such as the mechanisms of distant site conditioning by extracellular vesicles, chemokines and other tumor-derived mechanisms, including altered cancer cell-ECM interactions. Furthermore, evidence supporting the similarities of stroma alterations among the primary PCa and bone metastasis, and contribution of TME to androgen deprivation therapy resistance are also discussed. We summarize the available bone metastasis transgenic mouse models of PCa from a perspective of pro-metastatic TME alterations during disease progression and give an update on the current diagnostic and therapeutic radiological strategies for bone metastasis clinical management.
Collapse
Affiliation(s)
- Juening Kang
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ian L Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.
| |
Collapse
|
95
|
Cambuli F, Foletto V, Alaimo A, De Felice D, Gandolfi F, Palumbieri MD, Zaffagni M, Genovesi S, Lorenzoni M, Celotti M, Bertossio E, Mazzero G, Bertossi A, Bisio A, Berardinelli F, Antoccia A, Gaspari M, Barbareschi M, Fiorentino M, Shen MM, Loda M, Romanel A, Lunardi A. Intra-epithelial non-canonical Activin A signaling safeguards prostate progenitor quiescence. EMBO Rep 2022; 23:e54049. [PMID: 35253958 PMCID: PMC9066067 DOI: 10.15252/embr.202154049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
The healthy prostate is a relatively quiescent tissue. Yet, prostate epithelium overgrowth is a common condition during aging, associated with urinary dysfunction and tumorigenesis. For over thirty years, TGF-β ligands have been known to induce cytostasis in a variety of epithelia, but the intracellular pathway mediating this signal in the prostate, and its relevance for quiescence, have remained elusive. Here, using mouse prostate organoids to model epithelial progenitors, we find that intra-epithelial non-canonical Activin A signaling inhibits cell proliferation in a Smad-independent manner. Mechanistically, Activin A triggers Tak1 and p38 ΜAPK activity, leading to p16 and p21 nuclear import. Spontaneous evasion from this quiescent state occurs upon prolonged culture, due to reduced Activin A secretion, a condition associated with DNA replication stress and aneuploidy. Organoids capable to escape quiescence in vitro are also able to implant with increased frequency into immunocompetent mice. This study demonstrates that non-canonical Activin A signaling safeguards epithelial quiescence in the healthy prostate, with potential implications for the understanding of cancer initiation, and the development of therapies targeting quiescent tumor progenitors.
Collapse
Affiliation(s)
- Francesco Cambuli
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly,Department of Medicine, Genetics and DevelopmentUrologySystems BiologyHerbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA,Present address:
Molecular Pharmacology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Veronica Foletto
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandro Alaimo
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Dario De Felice
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Francesco Gandolfi
- Laboratory of Bioinformatics and Computational GenomicsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Maria Dilia Palumbieri
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Zaffagni
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Sacha Genovesi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Marco Lorenzoni
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Martina Celotti
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Emiliana Bertossio
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | | | - Arianna Bertossi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandra Bisio
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Francesco Berardinelli
- Department of ScienceUniversity of Roma TreRomaItaly,Laboratory of Neurodevelopment, Neurogenetics and Molecular Neurobiology UnitIRCCS Santa Lucia FoundationRomaItaly
| | | | - Marco Gaspari
- Department of Experimental and Clinical MedicineUniversity of CatanzaroCatanzaroItaly
| | | | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Michael M Shen
- Department of Medicine, Genetics and DevelopmentUrologySystems BiologyHerbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Massimo Loda
- Department of Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew YorkNYUSA
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational GenomicsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Andrea Lunardi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
96
|
Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers (Basel) 2022; 14:cancers14051245. [PMID: 35267553 PMCID: PMC8909751 DOI: 10.3390/cancers14051245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment landscape of advanced prostate cancer (PCa) is constantly improving with the approval of many new therapeutic options. Immunotherapy in PCa has been investigated with disappointing results. This review aims to evaluate the potential role of immunotherapy in both castration-sensitive and castration-resistant PCa, discussing the immunobiology of PCa, the results of the current literature, and the ongoing clinical trials. Potential prognostic and/or predictive factors and future perspectives are also discussed. Abstract In the last 10 years, many new therapeutic options have been approved in advanced prostate cancer (PCa) patients, granting a more prolonged survival in patients with metastatic disease, which, nevertheless, remains incurable. The emphasis on immune checkpoint inhibitors (ICIs) has led to many trials in this setting, with disappointing results until now. Therefore, we discuss the immunobiology of PCa, presenting ongoing trials and the available clinical data, to understand if immunotherapy could represent a valid option in this disease, and which subset of patients may be more likely to benefit. Current evidence suggests that the tumor microenvironment needs a qualitative rather than quantitative evaluation, along with the genomic determinants of prostate tumor cells. The prognostic or predictive value of immunotherapy biomarkers, such as PD-L1, TMB, or dMMR/MSI-high, needs further evaluation in PCa. Monotherapy with immune checkpoint inhibitors (ICIs) has been modestly effective. In contrast, combined strategies with other standard treatments (hormonal agents, chemotherapy, PARP inhibitors, radium-223, and TKIs) have shown some results. Immunotherapy should be better investigated in biomarker-selected patients, particularly with specific pathway aberrations (e.g., AR-V7 variant, HRD, CDK12 inactivated tumors, MSI-high tumors). Lastly, we present new possible targets in PCa that could potentially modulate the tumor microenvironment and improve antitumor activity with ICIs.
Collapse
|
97
|
Jin Z, Huang W, Shen N, Li J, Wang X, Dong J, Park PJ, Xi R. Single-cell gene fusion detection by scFusion. Nat Commun 2022; 13:1084. [PMID: 35228538 PMCID: PMC8885711 DOI: 10.1038/s41467-022-28661-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Gene fusions can play important roles in tumor initiation and progression. While fusion detection so far has been from bulk samples, full-length single-cell RNA sequencing (scRNA-seq) offers the possibility of detecting gene fusions at the single-cell level. However, scRNA-seq data have a high noise level and contain various technical artifacts that can lead to spurious fusion discoveries. Here, we present a computational tool, scFusion, for gene fusion detection based on scRNA-seq. We evaluate the performance of scFusion using simulated and five real scRNA-seq datasets and find that scFusion can efficiently and sensitively detect fusions with a low false discovery rate. In a T cell dataset, scFusion detects the invariant TCR gene recombinations in mucosal-associated invariant T cells that many methods developed for bulk data fail to detect; in a multiple myeloma dataset, scFusion detects the known recurrent fusion IgH-WHSC1, which is associated with overexpression of the WHSC1 oncogene. Our results demonstrate that scFusion can be used to investigate cellular heterogeneity of gene fusions and their transcriptional impact at the single-cell level.
Collapse
Affiliation(s)
- Zijie Jin
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Wenjian Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ning Shen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Juan Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaochen Wang
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Jiqiao Dong
- GeneX Health Co. Ltd, Beijing, 100195, China
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Ruibin Xi
- School of Mathematical Sciences, Peking University, Beijing, 100871, China.
- Center for Statistical Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
98
|
Noureen N, Ye Z, Chen Y, Wang X, Zheng S. Signature-scoring methods developed for bulk samples are not adequate for cancer single-cell RNA sequencing data. eLife 2022; 11:71994. [PMID: 35212622 PMCID: PMC8916770 DOI: 10.7554/elife.71994] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Quantifying the activity of gene expression signatures is common in analyses of single-cell RNA sequencing data. Methods originally developed for bulk samples are often used for this purpose without accounting for contextual differences between bulk and single-cell data. More broadly, these methods have not been benchmarked. Here we benchmark five such methods, including single sample gene set enrichment analysis (ssGSEA), Gene Set Variation Analysis (GSVA), AUCell, Single Cell Signature Explorer (SCSE), and a new method we developed, Jointly Assessing Signature Mean and Inferring Enrichment (JASMINE). Using cancer as an example, we show cancer cells consistently express more genes than normal cells. This imbalance leads to bias in performance by bulk-sample-based ssGSEA in gold standard tests and down sampling experiments. In contrast, single-cell-based methods are less susceptible. Our results suggest caution should be exercised when using bulk-sample-based methods in single-cell data analyses, and cellular contexts should be taken into consideration when designing benchmarking strategies.
Collapse
Affiliation(s)
- Nighat Noureen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Zhenqing Ye
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| |
Collapse
|
99
|
Miyahira AK, Zarif JC, Coombs CC, Flavell RR, Russo JW, Zaidi S, Zhao D, Zhao SG, Pienta KJ, Soule HR. Prostate cancer research in the 21st century; report from the 2021 Coffey-Holden prostate cancer academy meeting. Prostate 2022; 82:169-181. [PMID: 34734426 PMCID: PMC8688282 DOI: 10.1002/pros.24262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The 2021 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research in the 21st Century," was held virtually, from June 24-25, 2021. METHODS The CHPCA Meeting is organized by the Prostate Cancer Foundation as a unique discussion-oriented meeting focusing on critical topics in prostate cancer research envisioned to bridge the next major advances in prostate cancer biology and treatment. The 2021 CHPCA Meeting was virtually attended by 89 investigators and included 31 talks over nine sessions. RESULTS Major topic areas discussed at the meeting included: cancer genomics and sequencing, functional genomic approaches to studying mediators of plasticity, emerging signaling pathways in metastatic castration resistant prostate cancer, Wnt signaling biology and the challenges of targeted therapy, clonal hematopoiesis, neuroendocrine cell plasticity and antitumor immunity, cancer immunotherapy and its synergizers, and imaging the tumor microenvironment and metabolism. DISCUSSION This meeting report summarizes the research presented at the 2021 CHPCA Meeting. We hope that publication of this knowledge will accelerate new understandings and the development of new biomarkers and treatments for prostate cancer.
Collapse
Affiliation(s)
| | - Jelani C. Zarif
- Department of Oncology, Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine C. Coombs
- Department of Medicine, Division of Hematology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Joshua W. Russo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Di Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Shuang G. Zhao
- Department of Human Oncology, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
100
|
Hagiwara M, Fushimi A, Bhattacharya A, Yamashita N, Morimoto Y, Oya M, Withers HG, Hu Q, Liu T, Liu S, Wong KK, Long MD, Kufe D. MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer. Oncoimmunology 2022; 11:2029298. [PMID: 35127252 PMCID: PMC8812775 DOI: 10.1080/2162402x.2022.2029298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.
Collapse
Affiliation(s)
- Masayuki Hagiwara
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Atsushi Fushimi
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nami Yamashita
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Henry G. Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kwok K. Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|