51
|
Abstract
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
Collapse
|
52
|
Cojocaru AE, Corna A, Reh M, Zeck G. High spatial resolution artificial vision inferred from the spiking output of retinal ganglion cells stimulated by optogenetic and electrical means. Front Cell Neurosci 2022; 16:1033738. [PMID: 36568888 PMCID: PMC9780279 DOI: 10.3389/fncel.2022.1033738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
With vision impairment affecting millions of people world-wide, various strategies aiming at vision restoration are being undertaken. Thanks to decades of extensive research, electrical stimulation approaches to vision restoration began to undergo clinical trials. Quite recently, another technique employing optogenetic therapy emerged as a possible alternative. Both artificial vision restoration strategies reported poor spatial resolution so far. In this article, we compared the spatial resolution inferred ex vivo under ideal conditions using a computational model analysis of the retinal ganglion cell (RGC) spiking activity. The RGC spiking was stimulated in epiretinal configuration by either optogenetic or electrical means. RGCs activity was recorded from the ex vivo retina of transgenic late-stage photoreceptor-degenerated mice (rd10) using a high-density Complementary Metal Oxide Semiconductor (CMOS) based microelectrode array. The majority of retinal samples were stimulated by both, optogenetic and electrical stimuli using a spatial grating stimulus. A population-level analysis of the spiking activity of identified RGCs was performed and the spatial resolution achieved through electrical and optogenetic photo-stimulation was inferred using a support vector machine classifier. The best f1 score of the classifier for the electrical stimulation in epiretinal configuration was 86% for 32 micron wide gratings and increased to 100% for 128 microns. For optogenetically activated cells, we obtained high f1 scores of 82% for 10 microns grid width for a photo-stimulation frequency of 2.5 Hz and 73% for a photo-stimulation frequency of 10 Hz. A subsequent analysis, considering only the RGCs modulated in both electrical and optogenetic stimulation protocols revealed no significant difference in the prediction accuracy between the two stimulation modalities. The results presented here indicate that a high spatial resolution can be achieved for electrical or optogenetic artificial stimulation using the activated retinal ganglion cell output.
Collapse
Affiliation(s)
| | - Andrea Corna
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Miriam Reh
- Institute for Ophthalmic Research at the University of Tübingen, Tübingen, Germany
| | - Günther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| |
Collapse
|
53
|
Chiappalone M, Cota VR, Carè M, Di Florio M, Beaubois R, Buccelli S, Barban F, Brofiga M, Averna A, Bonacini F, Guggenmos DJ, Bornat Y, Massobrio P, Bonifazi P, Levi T. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sci 2022; 12:1578. [PMID: 36421904 PMCID: PMC9688667 DOI: 10.3390/brainsci12111578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.
Collapse
Affiliation(s)
- Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Vinicius R. Cota
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marta Carè
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mattia Di Florio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Romain Beaubois
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Barban
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Francesco Bonacini
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Yannick Bornat
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- National Institute for Nuclear Physics (INFN), 16146 Genova, Italy
| | - Paolo Bonifazi
- IKERBASQUE, The Basque Fundation, 48009 Bilbao, Spain
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Timothée Levi
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| |
Collapse
|
54
|
Bi X, Beck C, Gong Y. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity. Biophys J 2022; 121:4166-4178. [PMID: 36151721 PMCID: PMC9675021 DOI: 10.1016/j.bpj.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Channelrhodopsins are a promising toolset for noninvasive optical manipulation of genetically identifiable neuron populations. Existing channelrhodopsins have generally suffered from a trade-off between two desired properties: fast channel kinetics and large photocurrent. Such a trade-off hinders spatiotemporally precise optogenetic activation during both one-photon and two-photon photostimulation. Furthermore, the simultaneous use of spectrally separated genetically encoded indicators and channelrhodopsins has generally suffered from non-negligible crosstalk in photocurrent or fluorescence. These limitations have hindered crosstalk-free dual-channel experiments needed to establish relationships between multiple neural populations. Recent large-scale transcriptome sequencing revealed one potent optogenetic actuator, the channelrhodopsin from species Chloromonas oogama (CoChR), which possessed high cyan light-driven photocurrent but slow channel kinetics. We rationally designed and engineered a kinetic-optimized CoChR variant that was faster than native CoChR while maintaining large photocurrent amplitude. When expressed in cultured hippocampal pyramidal neurons, our CoChR variant improved high-frequency spiking fidelity under one-photon illumination. Our CoChR variant's blue-shifted excitation spectrum enabled simultaneous cyan photostimulation and red calcium imaging with negligible photocurrent crosstalk.
Collapse
Affiliation(s)
- Xiaoke Bi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Connor Beck
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
55
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
56
|
Sukman LJ, Stark E. Cortical Pyramidal and Parvalbumin Cells Exhibit Distinct Spatiotemporal Extracellular Electric Potentials. eNeuro 2022; 9:ENEURO.0265-22.2022. [PMID: 36414411 PMCID: PMC9744183 DOI: 10.1523/eneuro.0265-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Brain circuits are composed of diverse cell types with distinct morphologies, connections, and distributions of ion channels. Modeling suggests that the spatial distribution of the extracellular voltage during a spike depends on cellular morphology, connectivity, and identity. However, experimental evidence from the intact brain is lacking. Here, we combined high-density recordings from hippocampal region CA1 and neocortex of freely moving mice with optogenetic tagging of parvalbumin-immunoreactive (PV) cells. We used ground truth tagging of the recorded pyramidal cells (PYR) and PV cells to construct binary classification models. Features derived from single-channel waveforms or from spike timing alone allowed near-perfect classification of PYR and PV cells. To determine whether there is unique information in the spatial distribution of the extracellular potentials, we removed all single-channel waveform information from the multichannel waveforms using an event-based delta-transformation. We found that spatiotemporal features derived from the transformed waveforms yield accurate classification. The extracellular analog of the spatial distribution of the initial depolarization phase provided the highest contribution to the spatially based prediction. Compared with PV cell spikes, PYR spikes exhibited higher spatial synchrony at the beginning of the extracellular spike and lower synchrony at the trough. The successful classification of PYR and PV cells based on purely spatial features provides direct experimental evidence that spikes of distinct cell types are associated with distinct spatial distributions of extracellular potentials.
Collapse
Affiliation(s)
- Lior J Sukman
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
57
|
Sadeghi A, Afshari E, Hashemi M, Kaplan D, Mozafari M. Brainy Biomaterials: Latest Advances in Smart Biomaterials to Develop the Next Generation of Neural Interfaces. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Linders LE, Supiot LF, Du W, D’Angelo R, Adan RAH, Riga D, Meye FJ. Studying Synaptic Connectivity and Strength with Optogenetics and Patch-Clamp Electrophysiology. Int J Mol Sci 2022; 23:ijms231911612. [PMID: 36232917 PMCID: PMC9570045 DOI: 10.3390/ijms231911612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the last two decades the combination of brain slice patch clamp electrophysiology with optogenetic stimulation has proven to be a powerful approach to analyze the architecture of neural circuits and (experience-dependent) synaptic plasticity in such networks. Using this combination of methods, originally termed channelrhodopsin-assisted circuit mapping (CRACM), a multitude of measures of synaptic functioning can be taken. The current review discusses their rationale, current applications in the field, and their associated caveats. Specifically, the review addresses: (1) How to assess the presence of synaptic connections, both in terms of ionotropic versus metabotropic receptor signaling, and in terms of mono- versus polysynaptic connectivity. (2) How to acquire and interpret measures for synaptic strength and function, like AMPAR/NMDAR, AMPAR rectification, paired-pulse ratio (PPR), coefficient of variance and input-specific quantal sizes. We also address how synaptic modulation by G protein-coupled receptors can be studied with pharmacological approaches and advanced technology. (3) Finally, we elaborate on advances on the use of dual color optogenetics in concurrent investigation of multiple synaptic pathways. Overall, with this review we seek to provide practical insights into the methods used to study neural circuits and synapses, by combining optogenetics and patch-clamp electrophysiology.
Collapse
|
59
|
Yang J, Gu Y, Zhang C, Zhang Y, Liang W, Hao L, Zhao Y, Liu L, Wang W. Label-free purification and characterization of optogenetically engineered cells using optically-induced dielectrophoresis. LAB ON A CHIP 2022; 22:3687-3698. [PMID: 35903981 DOI: 10.1039/d2lc00512c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optogenetically engineered cell population obtained by heterogeneous gene expression plays a vital role in life science, medicine, and biohybrid robotics, and purification and characterization are essential to enhance its application performance. However, the existing cell purification methods suffer from complex sample preparation or inevitable damage and pollution. The efficient and nondestructive label-free purification and characterization of the optogenetically engineered cells, HEK293-ChR2 cells, is provided here using an optically-induced dielectrophoresis (ODEP)-based approach. The distinctive crossover frequencies of the engineered cells and the unmodified cells enable effective separation due to the opposite DEP forces on them. The ODEP-based approach can greatly improve the purity of the separated cell population and especially, the ratio of the engineered cells in the separated cell population can be enhanced by 275% at a low transfection rate. The size and the membrane capacitance of the separated cell population decreases and increases, respectively, as the ratio of the engineered cells grows in the cell population, indicating that successful expression of ChR2 in a single HEK293 cell makes its size and membrane capacitance smaller and larger, respectively. The results of biohybrid imaging with the optogenetically engineered cells demonstrated that cell purification can improve the imaging quality. This work proves that the separation and purification of engineered cells are of great significance for their application in practice.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Gu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Yuzhao Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Lina Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Ying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| |
Collapse
|
60
|
O'Herron PJ, Hartmann DA, Xie K, Kara P, Shih AY. 3D optogenetic control of arteriole diameter in vivo. eLife 2022; 11:e72802. [PMID: 36107146 PMCID: PMC9481242 DOI: 10.7554/elife.72802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
Modulation of brain arteriole diameter is critical for maintaining cerebral blood pressure and controlling regional hyperemia during neural activity. However, studies of hemodynamic function in health and disease have lacked a method to control arteriole diameter independently with high spatiotemporal resolution. Here, we describe an all-optical approach to manipulate and monitor brain arteriole contractility in mice in three dimensions using combined in vivo two-photon optogenetics and imaging. The expression of the red-shifted excitatory opsin, ReaChR, in vascular smooth muscle cells enabled rapid and repeated vasoconstriction controlled by brief light pulses. Two-photon activation of ReaChR using a spatial light modulator produced highly localized constrictions when targeted to individual arterioles within the neocortex. We demonstrate the utility of this method for examining arteriole contractile dynamics and creating transient focal blood flow reductions. Additionally, we show that optogenetic constriction can be used to reshape vasodilatory responses to sensory stimulation, providing a valuable tool to dissociate blood flow changes from neural activity.
Collapse
Affiliation(s)
- Philip J O'Herron
- Department of Physiology, Augusta UniversityAugustaUnited States
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - David A Hartmann
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Neurology & Neurological Sciences, Stanford UniversityStanfordUnited States
| | - Kun Xie
- Department of Physiology, Augusta UniversityAugustaUnited States
| | - Prakash Kara
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
- Center for Magnetic Resonance Research, University of MinnesotaMinneapolisUnited States
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research InstituteSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| |
Collapse
|
61
|
Huang Y, Cui Y, Deng H, Wang J, Hong R, Hu S, Hou H, Dong Y, Wang H, Chen J, Li L, Xie Y, Sun P, Fu X, Yin L, Xiong W, Shi SH, Luo M, Wang S, Li X, Sheng X. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat Biomed Eng 2022; 7:486-498. [PMID: 36065014 DOI: 10.1038/s41551-022-00931-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Neural activities can be modulated by leveraging light-responsive nanomaterials as interfaces for exerting photothermal, photoelectrochemical or photocapacitive effects on neurons or neural tissues. Here we show that bioresorbable thin-film monocrystalline silicon pn diodes can be used to optoelectronically excite or inhibit neural activities by establishing polarity-dependent positive or negative photovoltages at the semiconductor/solution interface. Under laser illumination, the silicon-diode optoelectronic interfaces allowed for the deterministic depolarization or hyperpolarization of cultured neurons as well as the upregulated or downregulated intracellular calcium dynamics. The optoelectronic interfaces can also be mounted on nerve tissue to activate or silence neural activities in peripheral and central nervous tissues, as we show in mice with exposed sciatic nerves and somatosensory cortices. Bioresorbable silicon-based optoelectronic thin films that selectively excite or inhibit neural tissue may find advantageous biomedical applicability.
Collapse
Affiliation(s)
- Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yuting Cui
- Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Hanjie Deng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jingjing Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Rongqi Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuhan Hu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hanqing Hou
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanrui Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Xin Fu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
| | - Xiaojian Li
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
62
|
Spampinato GLB, Ronzitti E, Zampini V, Ferrari U, Trapani F, Khabou H, Agraval A, Dalkara D, Picaud S, Papagiakoumou E, Marre O, Emiliani V. All-optical inter-layers functional connectivity investigation in the mouse retina. CELL REPORTS METHODS 2022; 2:100268. [PMID: 36046629 PMCID: PMC9421538 DOI: 10.1016/j.crmeth.2022.100268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.
Collapse
Affiliation(s)
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Hanen Khabou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
63
|
A one-photon endoscope for simultaneous patterned optogenetic stimulation and calcium imaging in freely behaving mice. Nat Biomed Eng 2022; 7:499-510. [PMID: 35970930 DOI: 10.1038/s41551-022-00920-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/04/2022] [Indexed: 11/08/2022]
Abstract
Optogenetics and calcium imaging can be combined to simultaneously stimulate and record neural activity in vivo. However, this usually requires two-photon microscopes, which are not portable nor affordable. Here we report the design and implementation of a miniaturized one-photon endoscope for performing simultaneous optogenetic stimulation and calcium imaging. By integrating digital micromirrors, the endoscope makes it possible to activate any neuron of choice within the field of view, and to apply arbitrary spatiotemporal patterns of photostimulation while imaging calcium activity. We used the endoscope to image striatal neurons from either the direct pathway or the indirect pathway in freely moving mice while activating any chosen neuron in the field of view. The endoscope also allows for the selection of neurons based on their relationship with specific animal behaviour, and to recreate the behaviour by mimicking the natural neural activity with photostimulation. The miniaturized endoscope may facilitate the study of how neural activity gives rise to behaviour in freely moving animals.
Collapse
|
64
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
65
|
Russell LE, Dalgleish HWP, Nutbrown R, Gauld OM, Herrmann D, Fişek M, Packer AM, Häusser M. All-optical interrogation of neural circuits in behaving mice. Nat Protoc 2022; 17:1579-1620. [PMID: 35478249 PMCID: PMC7616378 DOI: 10.1038/s41596-022-00691-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
66
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
67
|
Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022; 16:884785. [PMID: 35615623 PMCID: PMC9124768 DOI: 10.3389/fncir.2022.884785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.
Collapse
Affiliation(s)
- Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Brian R. Noga Patrick J. Whelan
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Brian R. Noga Patrick J. Whelan
| |
Collapse
|
68
|
Schmieder F, Habibey R, Striebel J, Büttner L, Czarske J, Busskamp V. Tracking connectivity maps in human stem cell-derived neuronal networks by holographic optogenetics. Life Sci Alliance 2022; 5:5/7/e202101268. [PMID: 35418473 PMCID: PMC9008225 DOI: 10.26508/lsa.202101268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Holographic optogenetic stimulation of human iPSC–derived neuronal networks was exploited to map precise functional connectivity motifs and their long-term dynamics during network development. Neuronal networks derived from human induced pluripotent stem cells have been exploited widely for modeling neuronal circuits, neurological diseases, and drug screening. As these networks require extended culturing periods to functionally mature in vitro, most studies are based on immature networks. To obtain insights on long-term functional features, we improved a glia–neuron co-culture protocol within multi-electrode arrays, facilitating continuous assessment of electrical features in weekly intervals. By full-field optogenetic stimulation, we detected an earlier onset of neuronal firing and burst activity compared with spontaneous activity. Full-field stimulation enhanced the number of active neurons and their firing rates. Compared with full-field stimulation, which evoked synchronized activity across all neurons, holographic stimulation of individual neurons resulted in local activity. Single-cell holographic stimulation facilitated to trace propagating evoked activities of 400 individually stimulated neurons per multi-electrode array. Thereby, we revealed precise functional neuronal connectivity motifs. Holographic stimulation data over time showed increasing connection numbers and strength with culture age. This holographic stimulation setup has the potential to establish a profound functional testbed for in-depth analysis of human-induced pluripotent stem cell-derived neuronal networks.
Collapse
Affiliation(s)
- Felix Schmieder
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Rouhollah Habibey
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Johannes Striebel
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Lars Büttner
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.,Institute of Applied Physics, School of Science, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
69
|
Sridharan S, Gajowa MA, Ogando MB, Jagadisan UK, Abdeladim L, Sadahiro M, Bounds HA, Hendricks WD, Turney TS, Tayler I, Gopakumar K, Oldenburg IA, Brohawn SG, Adesnik H. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron 2022; 110:1139-1155.e6. [PMID: 35120626 PMCID: PMC8989680 DOI: 10.1016/j.neuron.2022.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
The biophysical properties of existing optogenetic tools constrain the scale, speed, and fidelity of precise optogenetic control. Here, we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity. We extensively benchmark these new opsins against existing optogenetic tools and provide a detailed biophysical characterization of a diverse family of opsins under two-photon illumination. This establishes a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for holographic photostimulation, we demonstrate the simultaneous coactivation of several hundred spatially defined neurons with a single hologram and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.
Collapse
Affiliation(s)
- Savitha Sridharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marta A Gajowa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mora B Ogando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Uday K Jagadisan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Masato Sadahiro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley A Bounds
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Toby S Turney
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Tayler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karthika Gopakumar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
70
|
Rajan G, Lafaye J, Faini G, Carbo-Tano M, Duroure K, Tanese D, Panier T, Candelier R, Henninger J, Britz R, Judkewitz B, Gebhardt C, Emiliani V, Debregeas G, Wyart C, Del Bene F. Evolutionary divergence of locomotion in two related vertebrate species. Cell Rep 2022; 38:110585. [PMID: 35354040 DOI: 10.1016/j.celrep.2022.110585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Locomotion exists in diverse forms in nature; however, little is known about how closely related species with similar neuronal circuitry can evolve different navigational strategies to explore their environments. Here, we investigate this question by comparing divergent swimming pattern in larval Danionella cerebrum (DC) and zebrafish (ZF). We show that DC displays long continuous swimming events when compared with the short burst-and-glide swimming in ZF. We reveal that mesencephalic locomotion maintenance neurons in the midbrain are sufficient to cause this increased swimming. Moreover, we propose that the availability of dissolved oxygen and timing of swim bladder inflation drive the observed differences in the swim pattern. Our findings uncover the neural substrate underlying the evolutionary divergence of locomotion and its adaptation to their environmental constraints.
Collapse
Affiliation(s)
- Gokul Rajan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Julie Lafaye
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Giulia Faini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), Sorbonne Universités, UPMC Univ Paris 06 CNRS UMR 7225, Inserm U1127, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Raphaël Candelier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Jörg Henninger
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Ralf Britz
- Senckenberg Naturhistorische Sammlungen Dresden, Museum für Zoologie, 01109 Dresden, Germany
| | - Benjamin Judkewitz
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Christoph Gebhardt
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Georges Debregeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau (ICM), Sorbonne Universités, UPMC Univ Paris 06 CNRS UMR 7225, Inserm U1127, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
| |
Collapse
|
71
|
Mirzayi P, Shobeiri P, Kalantari A, Perry G, Rezaei N. Optogenetics: implications for Alzheimer's disease research and therapy. Mol Brain 2022; 15:20. [PMID: 35197102 PMCID: PMC8867657 DOI: 10.1186/s13041-022-00905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), a critical neurodegenerative condition, has a wide range of effects on brain activity. Synaptic plasticity and neuronal circuits are the most vulnerable in Alzheimer’s disease, but the exact mechanism is unknown. Incorporating optogenetics into the study of AD has resulted in a significant leap in this field during the last decades, kicking off a revolution in our knowledge of the networks that underpin cognitive functions. In Alzheimer's disease, optogenetics can help to reduce and reverse neural circuit and memory impairments. Here we review how optogenetically driven methods have helped expand our knowledge of Alzheimer's disease, and how optogenetic interventions hint at a future translation into therapeutic possibilities for further utilization in clinical settings. In conclusion, neuroscience has witnessed one of its largest revolutions following the introduction of optogenetics into the field.
Collapse
Affiliation(s)
- Parsa Mirzayi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
72
|
Zhu D, Johnson HJ, Chen J, Schaffer DV. Optogenetic Application to Investigating Cell Behavior and Neurological Disease. Front Cell Neurosci 2022; 16:811493. [PMID: 35273478 PMCID: PMC8902366 DOI: 10.3389/fncel.2022.811493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cells reside in a dynamic microenvironment that presents them with regulatory signals that vary in time, space, and amplitude. The cell, in turn, interprets these signals and accordingly initiates downstream processes including cell proliferation, differentiation, migration, and self-organization. Conventional approaches to perturb and investigate signaling pathways (e.g., agonist/antagonist addition, overexpression, silencing, knockouts) are often binary perturbations that do not offer precise control over signaling levels, and/or provide limited spatial or temporal control. In contrast, optogenetics leverages light-sensitive proteins to control cellular signaling dynamics and target gene expression and, by virtue of precise hardware control over illumination, offers the capacity to interrogate how spatiotemporally varying signals modulate gene regulatory networks and cellular behaviors. Recent studies have employed various optogenetic systems in stem cell, embryonic, and somatic cell patterning studies, which have addressed fundamental questions of how cell-cell communication, subcellular protein localization, and signal integration affect cell fate. Other efforts have explored how alteration of signaling dynamics may contribute to neurological diseases and have in the process created physiologically relevant models that could inform new therapeutic strategies. In this review, we focus on emerging applications within the expanding field of optogenetics to study gene regulation, cell signaling, neurodevelopment, and neurological disorders, and we comment on current limitations and future directions for the growth of the field.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States
- Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Jun Chen
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - David V. Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: David V. Schaffer
| |
Collapse
|
73
|
Hage TA, Bosma-Moody A, Baker CA, Kratz MB, Campagnola L, Jarsky T, Zeng H, Murphy GJ. Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. eLife 2022; 11:71103. [PMID: 35060903 PMCID: PMC8824465 DOI: 10.7554/elife.71103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding cortical microcircuits requires thorough measurement of physiological properties of synaptic connections formed within and between diverse subclasses of neurons. Towards this goal, we combined spatially precise optogenetic stimulation with multicellular recording to deeply characterize intralaminar and translaminar monosynaptic connections to supragranular (L2/3) neurons in the mouse visual cortex. The reliability and specificity of multiphoton optogenetic stimulation were measured across multiple Cre lines, and measurements of connectivity were verified by comparison to paired recordings and targeted patching of optically identified presynaptic cells. With a focus on translaminar pathways, excitatory and inhibitory synaptic connections from genetically defined presynaptic populations were characterized by their relative abundance, spatial profiles, strength, and short-term dynamics. Consistent with the canonical cortical microcircuit, layer 4 excitatory neurons and interneurons within L2/3 represented the most common sources of input to L2/3 pyramidal cells. More surprisingly, we also observed strong excitatory connections from layer 5 intratelencephalic neurons and potent translaminar inhibition from multiple interneuron subclasses. The hybrid approach revealed convergence to and divergence from excitatory and inhibitory neurons within and across cortical layers. Divergent excitatory connections often spanned hundreds of microns of horizontal space. In contrast, divergent inhibitory connections were more frequently measured from postsynaptic targets near each other.
Collapse
Affiliation(s)
- Travis A Hage
- Electrophysiology, Allen Institute for Brain Science
| | | | | | - Megan B Kratz
- Electrophysiology, Allen Institute for Brain Science
| | | | - Tim Jarsky
- Synaptic Physiology, Allen Institute for Brain Science
| | - Hongkui Zeng
- Synaptic Physiology, Allen Institute for Brain Science
| | - Gabe J Murphy
- Synaptic Physiology, Allen Institute for Brain Science
| |
Collapse
|
74
|
Sánchez-Bellot C, AlSubaie R, Mishchanchuk K, Wee RWS, MacAskill AF. Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour. Nat Commun 2022; 13:339. [PMID: 35039510 PMCID: PMC8763938 DOI: 10.1038/s41467-022-27977-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
The decision to either approach or avoid a potentially threatening environment is thought to rely upon the coordinated activity of heterogeneous neural populations in the hippocampus and prefrontal cortex (PFC). However, how this circuitry is organized to flexibly promote both approach or avoidance at different times has remained elusive. Here, we show that the hippocampal projection to PFC is composed of two parallel circuits located in the superficial or deep pyramidal layers of the CA1/subiculum border. These circuits have unique upstream and downstream connectivity, and are differentially active during approach and avoidance behaviour. The superficial population is preferentially connected to widespread PFC inhibitory interneurons, and its activation promotes exploration; while the deep circuit is connected to PFC pyramidal neurons and fast spiking interneurons, and its activation promotes avoidance. Together this provides a mechanism for regulation of behaviour during approach avoidance conflict: through two specialized, parallel circuits that allow bidirectional hippocampal control of PFC.
Collapse
Affiliation(s)
- Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Ryan W S Wee
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK.
| |
Collapse
|
75
|
Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022; 185:9-41. [PMID: 34995519 PMCID: PMC8849612 DOI: 10.1016/j.cell.2021.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.
Collapse
Affiliation(s)
- Tony Hyun Kim
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
76
|
Dwijayanti A, Zhang C, Poh CL, Lautier T. Toward Multiplexed Optogenetic Circuits. Front Bioeng Biotechnol 2022; 9:804563. [PMID: 35071213 PMCID: PMC8766309 DOI: 10.3389/fbioe.2021.804563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
Collapse
Affiliation(s)
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Lautier
- CNRS@CREATE, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
77
|
Fenno LE, Levy R, Yizhar O. Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications. Methods Mol Biol 2022; 2501:289-310. [PMID: 35857234 DOI: 10.1007/978-1-0716-2329-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is no question that genetically encoded tools have revolutionized neuroscience. These include optically modulated tools for writing-in (optogenetics) and reading-out (calcium, voltage, and neurotransmitter indicators) neural activity as well as precision expression of these reagents using virally mediated delivery. With few exceptions, these powerful approaches are derived from naturally occurring molecules that are sourced from diverse organisms that span all kingdoms of life. Successful expression of genetic tools in standard neuroscience model organisms requires optimizing gene structure, taking into account differences in both protein translation and trafficking. Myriad approaches have resolved these two challenges, resulting in order-of-magnitude increases in functional expression. In this chapter, we focus on synthesizing prior experience in successfully enabling the transition of genes across kingdoms with a goal of facilitating the production of the next generation of molecular tools for neuroscience. We then provide a detailed protocol that allows expression and testing of novel genetically encoded tools in mammalian cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Lief E Fenno
- Departments of Psychiatry and Neuroscience, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
78
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
79
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
80
|
Linghu C, Chen IW, Tanese D, Zampini V, Shemesh OA. Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins. Methods Mol Biol 2022; 2501:229-257. [PMID: 35857231 DOI: 10.1007/978-1-0716-2329-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optogenetics allows control of neural activity in genetically targeted neuron populations by light. Optogenetic control of individual neurons in neural circuits would enable powerful, causal investigations of neural connectivity and function at single-cell level and provide insights into how neural circuits operate. Such single-cell resolution optogenetics in neuron populations requires precise sculpting of light and subcellular targeting of optogenetic molecules. Here we describe a group of methods for single-cell resolution optogenetics in neuron cultures, in mouse brain slices, and in mouse cortex in-vivo, via patterned light and soma-targeted optogenetic molecules.
Collapse
Affiliation(s)
| | - I-Wen Chen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Or A Shemesh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
81
|
Piñeiro M, Mena W, Ewer J, Orio P. Extracting temporal relationships between weakly coupled peptidergic and motoneuronal signaling: Application to Drosophila ecdysis behavior. PLoS Comput Biol 2021; 17:e1008933. [PMID: 34910730 PMCID: PMC8716061 DOI: 10.1371/journal.pcbi.1008933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/29/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.
Collapse
Affiliation(s)
- Miguel Piñeiro
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Wilson Mena
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Department of Neuroscience, Institut Pasteur, Paris, France
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail: (JE); (PO)
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail: (JE); (PO)
| |
Collapse
|
82
|
Development of an optogenetic gene sensitive to daylight and its implications in vision restoration. NPJ Regen Med 2021; 6:64. [PMID: 34650094 PMCID: PMC8516861 DOI: 10.1038/s41536-021-00177-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
Optogenetic gene-mediated therapy for restoring vision is thought to be a useful treatment for blind patients. However, light sensitivity achieved using this gene therapy is inferior to that of daylight vision. To increase light sensitivity, we designed three mutants using a bioinformatics approach. Nucleotide sequences encoding two sites in the extracellular loops (ex1, ex3) of mVChR1 close to simulated ion-conducting pathways were replaced by homologous amino acid-encoding sequences of ChR1 or ChR2. The light sensitivity of ex3mV1 was higher than that of mVChR1 at 405–617 nm. Visual responses were restored in Royal College of Surgeons rats with genetically degenerating photoreceptor cells transfected with ex3mV1Co, wherein transmembrane of sixth (TM6) in ex3mV1 was additionally replaced with the corresponding domain of CoChR; these rats responded to light in the order of μW/mm2. Thus, ex3mV1Co might be useful for the restoration of advanced visual function.
Collapse
|
83
|
Adesnik H, Abdeladim L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 2021; 24:1356-1366. [PMID: 34400843 PMCID: PMC9793863 DOI: 10.1038/s41593-021-00902-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics ushered in a revolution in how neuroscientists interrogate brain function. Because of technical limitations, the majority of optogenetic studies have used low spatial resolution activation schemes that limit the types of perturbations that can be made. However, neural activity manipulations at finer spatial scales are likely to be important to more fully understand neural computation. Spatially precise multiphoton holographic optogenetics promises to address this challenge and opens up many new classes of experiments that were not previously possible. More specifically, by offering the ability to recreate extremely specific neural activity patterns in both space and time in functionally defined ensembles of neurons, multiphoton holographic optogenetics could allow neuroscientists to reveal fundamental aspects of the neural codes for sensation, cognition and behavior that have been beyond reach. This Review summarizes recent advances in multiphoton holographic optogenetics that substantially expand its capabilities, highlights outstanding technical challenges and provides an overview of the classes of experiments it can execute to test and validate key theoretical models of brain function. Multiphoton holographic optogenetics could substantially accelerate the pace of neuroscience discovery by helping to close the loop between experimental and theoretical neuroscience, leading to fundamental new insights into nervous system function and disorder.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
84
|
Vierock J, Rodriguez-Rozada S, Dieter A, Pieper F, Sims R, Tenedini F, Bergs ACF, Bendifallah I, Zhou F, Zeitzschel N, Ahlbeck J, Augustin S, Sauter K, Papagiakoumou E, Gottschalk A, Soba P, Emiliani V, Engel AK, Hegemann P, Wiegert JS. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nat Commun 2021; 12:4527. [PMID: 34312384 PMCID: PMC8313717 DOI: 10.1038/s41467-021-24759-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Optogenetic manipulation of neuronal activity through excitatory and inhibitory opsins has become an indispensable experimental strategy in neuroscience research. For many applications bidirectional control of neuronal activity allowing both excitation and inhibition of the same neurons in a single experiment is desired. This requires low spectral overlap between the excitatory and inhibitory opsin, matched photocurrent amplitudes and a fixed expression ratio. Moreover, independent activation of two distinct neuronal populations with different optogenetic actuators is still challenging due to blue-light sensitivity of all opsins. Here we report BiPOLES, an optogenetic tool for potent neuronal excitation and inhibition with light of two different wavelengths. BiPOLES enables sensitive, reliable dual-color neuronal spiking and silencing with single- or two-photon excitation, optical tuning of the membrane voltage, and independent optogenetic control of two neuronal populations using a second, blue-light sensitive opsin. The utility of BiPOLES is demonstrated in worms, flies, mice and ferrets.
Collapse
Affiliation(s)
- Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, Berlin, Germany
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Sims
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amelie C F Bergs
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Imane Bendifallah
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Fangmin Zhou
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Zeitzschel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Joachim Ahlbeck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Augustin
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, Berlin, Germany
| | - Kathrin Sauter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- LIMES Institute, University of Bonn, Bonn, Germany
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
85
|
Lafferty CK, Christinck TD, Britt JP. All-optical approaches to studying psychiatric disease. Methods 2021; 203:46-55. [PMID: 34314828 DOI: 10.1016/j.ymeth.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Improvements in all-optical means of monitoring and manipulating neural activity have generated new ways of studying psychiatric disease. The combination of calcium imaging techniques with optogenetics to concurrently record and manipulate neural activity has been used to create new disease models that link distinct circuit abnormalities to specific disease dimensions. These approaches represent a new path towards the development of more effective treatments, as they allow researchers to identify circuit manipulations that normalize pathological network activity. In this review we highlight the utility of all-optical approaches to generate new psychiatric disease models where the specific circuit abnormalities associated with disease symptomology can be assessed in vivo and in response to manipulations designed to normalize disease states. We then outline the principles underlying all-optical interrogations of neural circuits and discuss practical considerations for experimental design.
Collapse
Affiliation(s)
- Christopher K Lafferty
- Department of Psychology, McGill University, Montreal, QC, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Thomas D Christinck
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
86
|
Shi L, Jiang Y, Fernandez FR, Chen G, Lan L, Man HY, White JA, Cheng JX, Yang C. Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. LIGHT, SCIENCE & APPLICATIONS 2021; 10:143. [PMID: 34257273 PMCID: PMC8277806 DOI: 10.1038/s41377-021-00580-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Abstract
Neuromodulation at high spatial resolution poses great significance in advancing fundamental knowledge in the field of neuroscience and offering novel clinical treatments. Here, we developed a tapered fiber optoacoustic emitter (TFOE) generating an ultrasound field with a high spatial precision of 39.6 µm, enabling optoacoustic activation of single neurons or subcellular structures, such as axons and dendrites. Temporally, a single acoustic pulse of sub-microsecond converted by the TFOE from a single laser pulse of 3 ns is shown as the shortest acoustic stimuli so far for successful neuron activation. The precise ultrasound generated by the TFOE enabled the integration of the optoacoustic stimulation with highly stable patch-clamp recording on single neurons. Direct measurements of the electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific responses of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of ultrasound neurostimulation.
Collapse
Affiliation(s)
- Linli Shi
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Ying Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Fernando R Fernandez
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA, 02215, USA
- Neurophotonics Center, Photonics Center, Boston University, 8 St. Mary's Street, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, 8 St. Mary's Street, Boston, MA, 02215, USA
| | - Lu Lan
- Department of Electrical and Computer Engineering, 8 St. Mary's Street, Boston, MA, 02215, USA
| | - Heng-Ye Man
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA, 02215, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - John A White
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA, 02215, USA
- Neurophotonics Center, Photonics Center, Boston University, 8 St. Mary's Street, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
- Department of Electrical and Computer Engineering, 8 St. Mary's Street, Boston, MA, 02215, USA.
| | - Chen Yang
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA, 02215, USA.
- Department of Electrical and Computer Engineering, 8 St. Mary's Street, Boston, MA, 02215, USA.
| |
Collapse
|
87
|
Idzhilova OS, Roshchin MV, Smirnova GR, Malyshev AY. Central Targeting of Channelrhodopsin2 by the Motif of Potassium Channel Kv2.1 Can be Altered Due to Overexpression of the Construct. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
88
|
Hagihara KM, Bukalo O, Zeller M, Aksoy-Aksel A, Karalis N, Limoges A, Rigg T, Campbell T, Mendez A, Weinholtz C, Mahn M, Zweifel LS, Palmiter RD, Ehrlich I, Lüthi A, Holmes A. Intercalated amygdala clusters orchestrate a switch in fear state. Nature 2021; 594:403-407. [PMID: 34040259 DOI: 10.1038/s41586-021-03593-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.
Collapse
Affiliation(s)
- Kenta M Hagihara
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Martin Zeller
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience, Tübingen, Germany
| | - Ayla Aksoy-Aksel
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience, Tübingen, Germany.,Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Tanner Rigg
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Tiffany Campbell
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Adriana Mendez
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Chase Weinholtz
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Mathias Mahn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience, Tübingen, Germany.,Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
89
|
Forli A, Pisoni M, Printz Y, Yizhar O, Fellin T. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins. eLife 2021; 10:63359. [PMID: 34032211 PMCID: PMC8177884 DOI: 10.7554/elife.63359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
All-optical methods for imaging and manipulating brain networks with high spatial resolution are fundamental to study how neuronal ensembles drive behavior. Stimulation of neuronal ensembles using two-photon holographic techniques requires high-sensitivity actuators to avoid photodamage and heating. Moreover, two-photon-excitable opsins should be insensitive to light at wavelengths used for imaging. To achieve this goal, we developed a novel soma-targeted variant of the large-conductance blue-light-sensitive opsin CoChR (stCoChR). In the mouse cortex in vivo, we combined holographic two-photon stimulation of stCoChR with an amplified laser tuned at the opsin absorption peak and two-photon imaging of the red-shifted indicator jRCaMP1a. Compared to previously characterized blue-light-sensitive soma-targeted opsins in vivo, stCoChR allowed neuronal stimulation with more than 10-fold lower average power and no spectral crosstalk. The combination of stCoChR, tuned amplified laser stimulation, and red-shifted functional indicators promises to be a powerful tool for large-scale interrogation of neural networks in the intact brain.
Collapse
Affiliation(s)
- Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Pisoni
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Università di Genova, Genova, Italy
| | - Yoav Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
90
|
Li X, Xiong H, Rommelfanger N, Xu X, Youn J, Slesinger PA, Hong G, Qin Z. Nanotransducers for Wireless Neuromodulation. MATTER 2021; 4:1484-1510. [PMID: 33997768 PMCID: PMC8117115 DOI: 10.1016/j.matt.2021.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nicholas Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jonghae Youn
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY,10029, USA
| | - Guosong Hong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Surgery, The University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
- The Center for Advanced Pain Studies, The University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
| |
Collapse
|
91
|
Lee JM, Lin D, Kim HR, Pyo YW, Hong G, Lieber CM, Park HG. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping. NANO LETTERS 2021; 21:3184-3190. [PMID: 33734716 DOI: 10.1021/acs.nanolett.1c00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of a multifunctional device that achieves optogenetic neuromodulation and extracellular neural mapping is crucial for understanding neural circuits and treating brain disorders. Although various devices have been explored for this purpose, it is challenging to develop biocompatible optogenetic devices that can seamlessly interface with the brain. Herein, we present a tissue-like optoelectronic mesh with a compact interface that enables not only high spatial and temporal resolutions of optical stimulation but also the sampling of optically evoked neural activities. An in vitro experiment in hydrogel showed efficient light propagation through a freestanding SU-8 waveguide that was integrated with flexible mesh electronics. Additionally, an in vivo implantation of the tissue-like optoelectronic mesh in the brain of a live transgenic mouse enabled the sampling of optically evoked neural signals. Therefore, this multifunctional device can aid the chronic modulation of neural circuits and behavior studies for developing biological and therapeutic applications.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | | | - Ha-Reem Kim
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Young-Woo Pyo
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
| |
Collapse
|
92
|
Tauffer L, Kumar A. Short-Term Synaptic Plasticity Makes Neurons Sensitive to the Distribution of Presynaptic Population Firing Rates. eNeuro 2021; 8:ENEURO.0297-20.2021. [PMID: 33579731 PMCID: PMC8035045 DOI: 10.1523/eneuro.0297-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to discriminate spikes that encode a particular stimulus from spikes produced by background activity is essential for reliable information processing in the brain. We describe how synaptic short-term plasticity (STP) modulates the output of presynaptic populations as a function of the distribution of the spiking activity and find a strong relationship between STP features and sparseness of the population code, which could solve this problem. Furthermore, we show that feedforward excitation followed by inhibition (FF-EI), combined with target-dependent STP, promote substantial increase in the signal gain even for considerable deviations from the optimal conditions, granting robustness to this mechanism. A simulated neuron driven by a spiking FF-EI network is reliably modulated as predicted by a rate analysis and inherits the ability to differentiate sparse signals from dense background activity changes of the same magnitude, even at very low signal-to-noise conditions. We propose that the STP-based distribution discrimination is likely a latent function in several regions such as the cerebellum and the hippocampus.
Collapse
Affiliation(s)
- Luiz Tauffer
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Arvind Kumar
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
93
|
Adam Y. All-optical electrophysiology in behaving animals. J Neurosci Methods 2021; 353:109101. [PMID: 33600851 DOI: 10.1016/j.jneumeth.2021.109101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Technology for simultaneous control and readout of the membrane potential of multiple neurons in behaving animals at high spatio-temporal resolution will have a high impact on neuroscience research. Significant progress in the development of Genetically Encoded Voltage Indicators (GEVIs) now enables to optically record subthreshold and spiking activity from ensembles of cells in behaving animals. In some cases, the GEVIs were also combined with optogenetic actuators to enable 'all-optical' control and readout of membrane potential at cellular resolution. Here I describe the recent progress in GEVI development and discuss the various aspects necessary to perform a successful 'all-optical' electrophysiology experiment in behaving, head-fixed animals. These aspects include the voltage indicators, the optogenetic actuators, strategies for protein expression, optical hardware, and image processing software. Furthermore, I discuss various applications of the technology, highlighting its advantages over classic electrode-based techniques. I argue that GEVIs now transformed from a 'promising' technology to a practical tool that can be used to tackle fundamental questions in neuroscience.
Collapse
Affiliation(s)
- Yoav Adam
- Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
94
|
Yang W, Yuste R. Holographic Imaging and Stimulation of Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:613-639. [PMID: 33398846 DOI: 10.1007/978-981-15-8763-4_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A critical neuroscience challenge is the need to optically image and manipulate neural activity with high spatiotemporal resolution over large brain volumes. The last three decades have seen the development of calcium imaging to record activity from neuronal populations, as well as optochemistry and optogenetics to optically manipulate neural activity. These methods are typically implemented with wide-field or laser-scanning microscopes. While the former approach has a good temporal resolution, it generally lacks spatial resolution or specificity, particularly in scattering tissues such as the nervous system; meanwhile, the latter approach, particularly when combined with two-photon excitation, has high spatial resolution and specificity but poor temporal resolution. As a new technique, holographic microscopy combines the advantages of both approaches. By projecting a holographic pattern on the brain through a spatial light modulator, the activity of specific groups of neurons in 3D brain volumes can be imaged or stimulated with high spatiotemporal resolution. In a combination of other techniques such as fast scanning or temporal focusing, this high spatiotemporal resolution can be further improved. Holographic microscopy enables all-optical interrogating of neural activity in 3D, a critical tool to dissect the function of neural circuits.
Collapse
Affiliation(s)
- Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, CA, USA.
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA
- Donostia International Physics Center, DIPC, San Sebastian, Spain
| |
Collapse
|
95
|
Gomila AMJ, Rustler K, Maleeva G, Nin-Hill A, Wutz D, Bautista-Barrufet A, Rovira X, Bosch M, Mukhametova E, Petukhova E, Ponomareva D, Mukhamedyarov M, Peiretti F, Alfonso-Prieto M, Rovira C, König B, Bregestovski P, Gorostiza P. Photocontrol of Endogenous Glycine Receptors In Vivo. Cell Chem Biol 2020; 27:1425-1433.e7. [PMID: 32846115 DOI: 10.1016/j.chembiol.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Glycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies.
Collapse
Affiliation(s)
- Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Karin Rustler
- University of Regensburg, Institute of Organic Chemistry, Regensburg 93053, Germany
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | - Alba Nin-Hill
- University of Barcelona, Department of Inorganic and Organic Chemistry, Institute of Theoretical Chemistry (IQTCUB), Barcelona 08028, Spain
| | - Daniel Wutz
- University of Regensburg, Institute of Organic Chemistry, Regensburg 93053, Germany
| | - Antoni Bautista-Barrufet
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Xavier Rovira
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Elvira Mukhametova
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France; Kazan Federal University, Open Lab of Motor Neurorehabilitation, Kazan, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Daria Ponomareva
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | | | - Franck Peiretti
- Aix Marseille Université, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Carme Rovira
- University of Barcelona, Department of Inorganic and Organic Chemistry, Institute of Theoretical Chemistry (IQTCUB), Barcelona 08028, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08003 Spain.
| | - Burkhard König
- University of Regensburg, Institute of Organic Chemistry, Regensburg 93053, Germany.
| | - Piotr Bregestovski
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France; Institute of Neurosciences, Kazan State Medical University, Kazan, Russia.
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08003 Spain; CIBER-BBN, Madrid 28001 Spain.
| |
Collapse
|
96
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
97
|
Bansal H, Gupta N, Roy S. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution. Neuroscience 2020; 449:165-188. [DOI: 10.1016/j.neuroscience.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
98
|
Dalgleish HWP, Russell LE, Packer AM, Roth A, Gauld OM, Greenstreet F, Thompson EJ, Häusser M. How many neurons are sufficient for perception of cortical activity? eLife 2020; 9:e58889. [PMID: 33103656 PMCID: PMC7695456 DOI: 10.7554/elife.58889] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/17/2020] [Indexed: 01/12/2023] Open
Abstract
Many theories of brain function propose that activity in sparse subsets of neurons underlies perception and action. To place a lower bound on the amount of neural activity that can be perceived, we used an all-optical approach to drive behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while simultaneously recording local network activity with two-photon calcium imaging. By precisely titrating the number of neurons stimulated, we demonstrate that the lower bound for perception of cortical activity is ~14 pyramidal neurons. We find a steep sigmoidal relationship between the number of activated neurons and behaviour, saturating at only ~37 neurons, and show this relationship can shift with learning. Furthermore, activation of ensembles is balanced by inhibition of neighbouring neurons. This surprising perceptual sensitivity in the face of potent network suppression supports the sparse coding hypothesis, and suggests that cortical perception balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.
Collapse
Affiliation(s)
- Henry WP Dalgleish
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Francesca Greenstreet
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Emmett J Thompson
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| |
Collapse
|
99
|
Gill JV, Lerman GM, Zhao H, Stetler BJ, Rinberg D, Shoham S. Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection. Neuron 2020; 108:382-393.e5. [PMID: 32841590 DOI: 10.1016/j.neuron.2020.07.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Sensory systems transform the external world into time-varying spike trains. What features of spiking activity are used to guide behavior? In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony) and the onset of inhalation (latency). To explore the relevance of each mode of information transmission, we probed the sensitivity of mice to perturbations across each stimulus dimension (i.e., rate, synchrony, and latency) using holographic two-photon optogenetic stimulation of olfactory bulb neurons with cellular and single-action-potential resolution. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, but not the latency relative to inhalation.
Collapse
Affiliation(s)
- Jonathan V Gill
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Gilad M Lerman
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Hetince Zhao
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin J Stetler
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Physics, New York University, New York, NY 10003, USA.
| | - Shy Shoham
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA; Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
100
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|