51
|
Gore R, Esmail T, Pflepsen K, Marron Fernandez de Velasco E, Kitto KF, Riedl MS, Karlen A, McIvor RS, Honda CN, Fairbanks CA, Vulchanova L. AAV-mediated gene transfer to colon-innervating primary afferent neurons. FRONTIERS IN PAIN RESEARCH 2023; 4:1225246. [PMID: 37599864 PMCID: PMC10436501 DOI: 10.3389/fpain.2023.1225246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Investigation of neural circuits underlying visceral pain is hampered by the difficulty in achieving selective manipulations of individual circuit components. In this study, we adapted a dual AAV approach, used for projection-specific transgene expression in the CNS, to explore the potential for targeted delivery of transgenes to primary afferent neurons innervating visceral organs. Focusing on the extrinsic sensory innervation of the mouse colon, we first characterized the extent of dual transduction following intrathecal delivery of one AAV9 vector and intracolonic delivery of a second AAV9 vector. We found that if the two AAV9 vectors were delivered one week apart, dorsal root ganglion (DRG) neuron transduction by the second vector was greatly diminished. Following delivery of the two viruses on the same day, we observed colocalization of the transgenes in DRG neurons, indicating dual transduction. Next, we delivered intrathecally an AAV9 vector encoding the inhibitory chemogenetic actuator hM4D(Gi) in a Cre-recombinase dependent manner, and on the same day injected an AAV9 vector carrying Cre-recombinase in the colon. DRG expression of hM4D(Gi) was demonstrated at the mRNA and protein level. However, we were unable to demonstrate selective inhibition of visceral nociception following hM4D(Gi) activation. Taken together, these results establish a foundation for development of strategies for targeted transduction of primary afferent neurons for neuromodulation of peripheral neural circuits.
Collapse
Affiliation(s)
- Reshma Gore
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Tina Esmail
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | | | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Maureen S. Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Andrea Karlen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Christopher N. Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
52
|
Wiseman S. In conversation with Diego Bohórquez. Nat Neurosci 2023:10.1038/s41593-023-01373-w. [PMID: 37291339 DOI: 10.1038/s41593-023-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As Nature Neuroscience celebrates its 25th anniversary, we are having conversations with both established leaders in the field and those earlier in their careers to discuss how neuroscience has evolved, and where it is heading. This month, we are talking to Diego Bohórquez, an Associate Professor at Duke University School of Medicine. He is a self-described 'gut-brain neuroscientist' and spoke with me about his early life in the Ecuadorian Amazon and how his curiosity has led him to his current research topics.
Collapse
|
53
|
Girardi G, Zumpano D, Goshi N, Raybould H, Seker E. Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. BIOSENSORS 2023; 13:601. [PMID: 37366967 DOI: 10.3390/bios13060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
The gut-brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints.
Collapse
Affiliation(s)
- Gregory Girardi
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Danielle Zumpano
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Noah Goshi
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Helen Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
54
|
de Araujo AM, Braga I, Leme G, Singh A, McDougle M, Smith J, Vergara M, Yang M, Lin M, Khoshbouei H, Krause E, de Oliveira AG, de Lartigue G. Asymmetric control of food intake by left and right vagal sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539627. [PMID: 37214924 PMCID: PMC10197596 DOI: 10.1101/2023.05.08.539627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alan Moreira de Araujo
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Isadora Braga
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Gabriel Leme
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Arashdeep Singh
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Molly McDougle
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Justin Smith
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Macarena Vergara
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Mingxing Yang
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - M Lin
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - H Khoshbouei
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - Eric Krause
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Andre G de Oliveira
- Dept of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillaume de Lartigue
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| |
Collapse
|
55
|
Sclafani A, Castillo A, Carata I, Pines R, Berglas E, Joseph S, Sarker J, Nashed M, Roland M, Arzayus S, Williams N, Glendinning JI, Bodnar RJ. Conditioned preference and avoidance induced in mice by the rare sugars isomaltulose and allulose. Physiol Behav 2023; 267:114221. [PMID: 37146897 DOI: 10.1016/j.physbeh.2023.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 male were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.
Collapse
|
56
|
Song Z, Song R, Liu Y, Wu Z, Zhang X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res Int 2023; 167:112730. [PMID: 37087282 DOI: 10.1016/j.foodres.2023.112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The topic of gut microbiota and the microbiota-gut-brain (MGB) axis has become the forefront of research and reports in the past few years. The gut microbiota is a dynamic interface between the environment, food, and the host, reflecting the health status as well as maintaining normal physiological metabolism. Modern ultra-processed foods (UPF) contain large quantities of saturated and trans fat, added sugar, salt, and food additives that seriously affect the gut and physical health. In addition, these unhealthy components directly cause changes in gut microbiota functions and microbial metabolism, subsequently having the potential to impact the neural network. This paper reviews an overview of the link between UPF ingredients and the MGB axis. Considerable studies have examined that high intake of trans fat, added sugar and salt have deleterious effects on gut and brain functions, but relatively less focus has been placed on the impact of food additives on the MGB axis. Data from several studies suggest that food additives might be linked to metabolic diseases and inflammation. They may also alter the gut microbiota composition and microbial metabolites, which potentially affect cognition and behavior. Therefore, we emphasize that food additives including emulsifiers, artificial sweeteners, colorants, and preservatives interact with the gut microbiota and their possible effects on altering the brain and behavior based on the latest research. Future studies should further investigate whether gut dysbiosis mediates the effect of UPF on brain diseases and behavior. This thesis here sheds new light on future research pointing to the potentially detrimental effects of processed food consumption on brain health.
Collapse
|
57
|
Almiron-Roig E, Navas-Carretero S, Castelnuovo G, Kjølbæk L, Romo-Hualde A, Normand M, Maloney N, Hardman CA, Hodgkins CE, Moshoyiannis H, Finlayson G, Scott C, Raats MM, Harrold JA, Raben A, Halford JCG, Martínez JA. Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial. Appetite 2023; 184:106515. [PMID: 36849009 DOI: 10.1016/j.appet.2023.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4 h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p < 0.001 in mixed-effects models), while the stevia RebA and sucralose blends reduced the glucose iAUC (p < 0.05) compared with sucrose. Post-prandial levels of triglycerides plus hepatic transaminases did not differ across conditions (p > 0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24 h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose.
Collapse
Affiliation(s)
- Eva Almiron-Roig
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain; Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.
| | - Santiago Navas-Carretero
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain; Navarra Institute for Health Research (IdiSNa), Pamplona, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| | | | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Ana Romo-Hualde
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain.
| | - Mie Normand
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Niamh Maloney
- Department of Psychology, University of Liverpool, Liverpool, UK.
| | | | - Charo E Hodgkins
- Food Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK.
| | | | | | - Corey Scott
- Cargill R&D Centre Europe, Vilvoorde, Belgium.
| | - Monique M Raats
- Food Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK.
| | - Joanne A Harrold
- Department of Psychology, University of Liverpool, Liverpool, UK.
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
| | - Jason C G Halford
- Department of Psychology, University of Liverpool, Liverpool, UK; School of Psychology, University of Leeds, Leeds, UK.
| | - J Alfredo Martínez
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain.
| |
Collapse
|
58
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
59
|
Ross RC, He Y, Townsend RL, Schauer PR, Berthoud HR, Morrison CD, Albaugh VL. The Vagus Nerve Mediates Gut-Brain Response to Duodenal Nutrient Administration. Am Surg 2023:31348231161680. [PMID: 36867071 DOI: 10.1177/00031348231161680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Obesity contributes significant disease burden worldwide, including diabetes, cardiovascular disease, and cancer. While bariatric surgery is the most effective and durable obesity treatment, the mechanisms underlying its effects remain unknown. Although neuro-hormonal mechanisms have been suspected to mediate at least some of the gut-brain axis changes following bariatric surgery, studies examining the intestine and its regionally specific post-gastric alterations to these signals remain unclear. MATERIALS AND METHODS Vagus nerve recording was performed following the implantation of duodenal feeding tubes in mice. Testing conditions and measurements were made under anesthesia during baseline, nutrient or vehicle solution delivery, and post-delivery. Solutions tested included water, glucose, glucose with an inhibitor of glucose absorption (phlorizin), and a hydrolyzed protein solution. RESULTS Vagus nerve signaling was detectable from the duodenum and exhibited stable baseline activity without responding to osmotic pressure gradients. Duodenal-delivered glucose and protein robustly increased vagus nerve signaling, but increased signaling was abolished during the co-administration of glucose and phlorizin. DISCUSSION Gut-brain communication via the vagus nerve emanating from the duodenum is nutrient sensitive and easily measurable in mice. Examination of these signaling pathways may help elucidate how the nutrient signals from the intestine are altered when applied to obesity and bariatric surgery mouse models. Future studies will address quantifying the changes in neuroendocrine nutrient signals in health and obesity, with specific emphasis on identifying the changes associated with bariatric surgery and other gastrointestinal surgery.
Collapse
Affiliation(s)
- Robert C Ross
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Yanlin He
- Neurobiology of Nutrition & Metabolism Department, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - R Leigh Townsend
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Philip R Schauer
- Metamor Institute, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Hans-Rudolph Berthoud
- Neurobiology of Nutrition & Metabolism Department, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA.,Metamor Institute, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
60
|
Skurk T, Krämer T, Marcinek P, Malki A, Lang R, Dunkel A, Krautwurst T, Hofmann TF, Krautwurst D. Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients 2023; 15:nu15051260. [PMID: 36904259 PMCID: PMC10005247 DOI: 10.3390/nu15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.
Collapse
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, TUM School for Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Tamara Krämer
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Agne Malki
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tiffany Krautwurst
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
61
|
Albaugh VL, Axelrod C, Belmont KP, Kirwan JP. Physiology Reconfigured: How Does Bariatric Surgery Lead to Diabetes Remission? Endocrinol Metab Clin North Am 2023; 52:49-64. [PMID: 36754497 DOI: 10.1016/j.ecl.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bariatric surgery improves glucose homeostasis and glycemic control in patients with type 2 diabetes. Over the past 20 years, a breadth of studies has been conducted in humans and rodents aimed to identify the regulatory nodes responsible for surgical remission of type 2 diabetes. The review herein discusses central mechanisms of type 2 diabetes remission associated with weight loss and surgical modification of the gastrointestinal tract.
Collapse
Affiliation(s)
- Vance L Albaugh
- Metamor Institute, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA; Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Christopher Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Kathryn P Belmont
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
62
|
Liddle RA. Guanylyl cyclase C ameliorates visceral pain: an unsuspected link. J Clin Invest 2023; 133:166703. [PMID: 36787251 PMCID: PMC9927947 DOI: 10.1172/jci166703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Visceral pain associated with irritable bowel syndrome afflicts 15% of the US population. Although treatments are limited, guanylyl cyclase C (GUCY2C) agonists alleviate pain and constipation. Until now, it was assumed that the activation of GUCY2C and production of cGMP in enterocytes stimulated fluid secretion and reduced visceral sensation. The recent discovery that a subtype of enteroendocrine cells (EECs) known as neuropod cells synapse with submucosal neurons unveiled a pathway for communicating gut signals to the nervous system. In this issue of the JCI, Barton et al. report that GUCY2C is enriched in neuropod cells and is involved with sensory nerve firing. Selective deletion of GUCY2C in mouse models suggests that defective GUCY2C neuropod-cell signaling underlies visceral pain. These studies introduce possibilities for dissociating the secretory and analgesic effects of GUCY2C agonism. Although further work remains, unveiling the role of neuropod cells is a major step in understanding visceral pain.
Collapse
|
63
|
Kim J, Kim DG, Jung W, Suh GSB. Evaluation of mouse behavioral responses to nutritive versus nonnutritive sugar using a deep learning-based 3D real-time pose estimation system. J Neurogenet 2023:1-6. [PMID: 36790034 DOI: 10.1080/01677063.2023.2174982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Animals are able to detect the nutritional content of sugar independently of taste. When given a choice between nutritive sugar and nonnutritive sugar, animals develop a preference for nutritive sugar over nonnutritive sugar during a period of food deprivation (Buchanan et al., 2022; Dus et al., 2011; 2015; Tan et al., 2020; Tellez et al., 2016). To quantify behavioral features during an episode of licking nutritive versus nonnutritive sugar, we implemented a multi-vision, deep learning-based 3D pose estimation system, termed the AI Vision Analysis for Three-dimensional Action in Real-Time (AVATAR)(Kim et al., 2022). Using this method, we found that mice exhibit significantly different approach behavioral responses toward nutritive sugar versus nonnutritive sugar even before licking a sugar solution. Notably, the behavioral sequences during the approach toward nutritive versus nonnutritive sugar became significantly different over time. These results suggest that the nutritional value of sugar not only promotes its consumption but also elicits distinct repertoires of feeding behavior in deprived mice.
Collapse
Affiliation(s)
- Jineun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dae-Gun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wongyo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
64
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Bar-Ad S, Cheng L, Lepore AC, Snook AE, Covarrubias M, Waldman SA. Intestinal neuropod cell GUCY2C regulates visceral pain. J Clin Invest 2023; 133:e165578. [PMID: 36548082 PMCID: PMC9927949 DOI: 10.1172/jci165578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.
Collapse
Affiliation(s)
| | | | | | | | - Shely Bar-Ad
- Department of Pharmacology, Physiology, & Cancer Biology
| | | | | | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology
- Department of Microbiology & Immunology, and
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
65
|
Hao MM, Stamp LA. The many means of conversation between the brain and the gut. Nat Rev Gastroenterol Hepatol 2023; 20:73-74. [PMID: 36517617 DOI: 10.1038/s41575-022-00725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Physiology, the University of Melbourne, Parkville, Victoria, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Physiology, the University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
66
|
Hanßen R, Schiweck C, Aichholzer M, Reif A, Edwin Thanarajah S. Food reward and its aberrations in obesity. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
67
|
Abstract
When it comes to food, one tempting substance is sugar. Although sweetness is detected by the tongue, the desire to consume sugar arises from the gut. Even when sweet taste is impaired, animals can distinguish sugars from non-nutritive sweeteners guided by sensory cues arising from the gut epithelium. Here, we review the molecular receptors, cells, circuits and behavioural consequences associated with sugar sensing in the gut. Recent work demonstrates that some duodenal cells, termed neuropod cells, can detect glucose using sodium-glucose co-transporter 1 and release glutamate onto vagal afferent neurons. Based on these and other data, we propose a model in which specific populations of vagal neurons relay these sensory cues to distinct sets of neurons in the brain, including neurons in the caudal nucleus of the solitary tract, dopaminergic reward circuits in the basal ganglia and homeostatic feeding circuits in the hypothalamus, that alter current and future sugar consumption. This emerging model highlights the critical role of the gut in sensing the chemical properties of ingested nutrients to guide appetitive decisions.
Collapse
Affiliation(s)
- Winston W Liu
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
68
|
Teysseire F, Flad E, Bordier V, Budzinska A, Weltens N, Rehfeld JF, Beglinger C, Van Oudenhove L, Wölnerhanssen BK, Meyer-Gerspach AC. Oral Erythritol Reduces Energy Intake during a Subsequent ad libitum Test Meal: A Randomized, Controlled, Crossover Trial in Healthy Humans. Nutrients 2022; 14:nu14193918. [PMID: 36235571 PMCID: PMC9571225 DOI: 10.3390/nu14193918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of oral erythritol on subsequent energy intake is unknown. The aim was to assess the effect of oral erythritol compared to sucrose, sucralose, or tap water on energy intake during a subsequent ad libitum test meal and to examine the release of cholecystokinin (CCK) in response to these substances. In this randomized, crossover trial, 20 healthy volunteers received 50 g erythritol, 33.5 g sucrose, or 0.0558 g sucralose dissolved in tap water, or tap water as an oral preload in four different sessions. Fifteen minutes later, a test meal was served and energy intake was assessed. At set time points, blood samples were collected to quantify CCK concentrations. The energy intake (ad libitum test meal) was significantly lower after erythritol compared to sucrose, sucralose, or tap water (p < 0.05). Before the start of the ad libitum test meal, erythritol led to a significant increase in CCK compared to sucrose, sucralose, or tap water (p < 0.001). Oral erythritol given alone induced the release of CCK before the start of the ad libitum test meal and reduced subsequent energy intake compared to sucrose, sucralose, or tap water. These properties make erythritol a useful sugar alternative.
Collapse
Affiliation(s)
- Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Emilie Flad
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Aleksandra Budzinska
- Translational Research Center for Gastrointestinal Disorders, Laboratory for Brain-Gut Axis Studies, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Nathalie Weltens
- Translational Research Center for Gastrointestinal Disorders, Laboratory for Brain-Gut Axis Studies, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 1172 Copenhagen, Denmark
| | | | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, Laboratory for Brain-Gut Axis Studies, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, Catholic University of Leuven, 3000 Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-685-85
| |
Collapse
|
69
|
Glendinning JI, Williams N. Prolonged Consumption of glucose syrup enhances glucose tolerance in mice. Physiol Behav 2022; 256:113954. [PMID: 36055416 DOI: 10.1016/j.physbeh.2022.113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
There is debate about the metabolic impact of sugar-sweetened beverages. Here, we tested the hypothesis that ad lib consumption of glucose (Gluc) or high-fructose (HiFruc) syrups improves glucose tolerance in mice. We provided C57BL/6 mice with a control (chow and water) or experimental (chow, water and sugar solution) diet across two consecutive 28-day exposure periods, and monitored changes in body composition, glucose tolerance, cephalic-phase insulin release (CPIR) and insulin sensitivity. The sugar solutions contained 11% concentrations of Gluc or HiFruc syrup; these syrups were derived from either corn starch or cellulose. In Experiment 1, consumption of the Gluc diets reliably enhanced glucose tolerance, while consumption of the HiFruc diets did not. Mice on the Gluc diets exhibited higher CPIR (relative to baseline) by the end of exposure period 1, whereas mice on the control and HiFruc diets did not do so until the end of exposure period 2. Mice on the Gluc diets also exhibited higher insulin sensitivity than control mice at the end of exposure period 2, while mice on the HiFruc diets did not. In Experiment 2, we repeated the previous experiment, but limited testing to the corn-based Gluc and HiFruc syrups. We found, once again, that consumption of the Gluc (but not the HiFruc) diet enhanced glucose tolerance, in part by increasing CPIR and insulin sensitivity. These results show that mice can adapt metabolically to high glucose diets, and that this adaptation process involves upregulating at least two components of the insulin response system.
Collapse
Affiliation(s)
- John I Glendinning
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027.
| | - Niki Williams
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027
| |
Collapse
|
70
|
Ki SY, Jeong YT. Taste Receptors beyond Taste Buds. Int J Mol Sci 2022; 23:ijms23179677. [PMID: 36077074 PMCID: PMC9455917 DOI: 10.3390/ijms23179677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Taste receptors are responsible for detecting their ligands not only in taste receptor cells (TRCs) but also in non-gustatory organs. For several decades, many research groups have accumulated evidence for such “ectopic” expression of taste receptors. More recently, some of the physiologic functions (apart from taste) of these ectopic taste receptors have been identified. Here, we summarize our current understanding of these ectopic taste receptors across multiple organs. With a particular focus on the specialized epithelial cells called tuft cells, which are now considered siblings of type II TRCs, we divide the ectopic expression of taste receptors into two categories: taste receptors in TRC-like cells outside taste buds and taste receptors with surprising ectopic expression in completely different cell types.
Collapse
Affiliation(s)
- Su Young Ki
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1295
| |
Collapse
|
71
|
Bai L, Sivakumar N, Yu S, Mesgarzadeh S, Ding T, Ly T, Corpuz TV, Grove JCR, Jarvie BC, Knight ZA. Enteroendocrine cell types that drive food reward and aversion. eLife 2022; 11:74964. [PMID: 35913117 PMCID: PMC9363118 DOI: 10.7554/elife.74964] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here, we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.
Collapse
Affiliation(s)
- Ling Bai
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Shenliang Yu
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Sheyda Mesgarzadeh
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Tom Ding
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Truong Ly
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Timothy V Corpuz
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Brooke C Jarvie
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
72
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
73
|
hsa_circ_0000518 Facilitates Non-Small-Cell Lung Cancer Progression via Moderating miR-330-3p and Positively Regulating SLC1A5. J Immunol Res 2022; 2022:4996980. [PMID: 35874898 PMCID: PMC9307375 DOI: 10.1155/2022/4996980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background/Aim Non-small-cell lung cancer (NSCLC) is the principal agent of cancer deaths globally. The goal of this study was to determine how circular RNA_0000518 (circ_0000518) regulates tumor progression. Materials/Methods. circ_0000518 was selected as a study target involved in NSCLC from GEO (Gene Expression Omnibus) database. circ_0000518 level was gauged by qRT-PCR. It was confirmed as circRNA by actinomycin D inhibition and RNase R assay. Subcellular localization of circ_0000518 was identified by FISH. Cell function was determined by CCK-8, Transwell, and western blot. Glutamine metabolic factors were detected by ELISA. The target regulation relationship between genes was clarified by dual-luciferase reporter assay. In vivo models were established to evaluate the impact of circ_0000518 on tumor growth. Immunohistochemical staining for Ki67, vimentin, and E-cadherin was used to detect cell proliferation and metastasis, respectively. Results circ_0000518 expression was enhanced in NSCLC. si-circ_0000518 inhibited cell proliferation, invasion, and glutamine metabolism. circ_0000518 functioned as a molecular sponge for miR-330-3p, and inhibition of miR-330-3p in cells markedly reversed circ_0000518 interference-mediated antitumor effects. miR-330-3p interacted with 3′-UTR of SLC1A5. miR-330-3p inhibitor-mediated protumor effect was remarkably reversed in cells after the knockdown of SLC1A5. circ_0000518 knockdown reduced glutamine, glutamate, and α-KG by targeting miR-330-3p. Intertumoral injection of circ_0000518 shRNA adeno-associated virus effectively halted xenograft tumor growth. Conclusion The current study revealed that circ_0000518 may have a prooncogenic function in the formation and progression of NSCLC, which might be achieved through moderating the miR-330-3p/SLC1A5 axis.
Collapse
|
74
|
Moris JM, Heinold C, Blades A, Koh Y. Nutrient-Based Appetite Regulation. J Obes Metab Syndr 2022; 31:161-168. [PMID: 35718856 PMCID: PMC9284573 DOI: 10.7570/jomes22031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
Regulation of appetite is dependent on crosstalk between the gut and the brain, which is a pathway described as the gut-brain axis (GBA). Three primary appetite-regulating hormones that are secreted in the gut as a response to eating a meal are glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), and peptide YY (PYY). When these hormones are secreted, the GBA responds to reduce appetite. However, secretion of these hormones and the response of the GBA can vary depending on the types of nutrients consumed. This narrative review describes how the gut secretes GLP-1, CCK, and PYY in response to proteins, carbohydrates, and fats. In addition, the GBA response based on the quality of the meal is described in the context of which meal types produce greater appetite suppression. Last, the beneficiary role of exercise as a mediator of appetite regulation is highlighted.
Collapse
Affiliation(s)
- Jose M. Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Corrinn Heinold
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Alexandra Blades
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| |
Collapse
|
75
|
Gonzales J, Gulbransen BD. Purines help determine the gut's sweet tooth. Purinergic Signal 2022; 18:245-247. [PMID: 35639305 DOI: 10.1007/s11302-022-09871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jacques Gonzales
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| | - Brian D Gulbransen
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
76
|
Chen W, Li C, Liang W, Li Y, Zou Z, Xie Y, Liao Y, Yu L, Lin Q, Huang M, Li Z, Zhu X. The Roles of Optogenetics and Technology in Neurobiology: A Review. Front Aging Neurosci 2022; 14:867863. [PMID: 35517048 PMCID: PMC9063564 DOI: 10.3389/fnagi.2022.867863] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Optogenetic is a technique that combines optics and genetics to control specific neurons. This technique usually uses adenoviruses that encode photosensitive protein. The adenovirus may concentrate in a specific neural region. By shining light on the target nerve region, the photosensitive protein encoded by the adenovirus is controlled. Photosensitive proteins controlled by light can selectively allow ions inside and outside the cell membrane to pass through, resulting in inhibition or activation effects. Due to the high precision and minimally invasive, optogenetics has achieved good results in many fields, especially in the field of neuron functions and neural circuits. Significant advances have also been made in the study of many clinical diseases. This review focuses on the research of optogenetics in the field of neurobiology. These include how to use optogenetics to control nerve cells, study neural circuits, and treat diseases by changing the state of neurons. We hoped that this review will give a comprehensive understanding of the progress of optogenetics in the field of neurobiology.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Wanmin Liang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunqi Li
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zhuoheng Zou
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunxuan Xie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yangzeng Liao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Lin Yu
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Meiying Huang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
77
|
Luquet S, Gangarossa G. Dopamine drives food craving during pregnancy. Nat Metab 2022; 4:410-411. [PMID: 35379971 DOI: 10.1038/s42255-022-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serge Luquet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| | - Giuseppe Gangarossa
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
78
|
Yoshioka Y, Tachibana Y, Uesaka T, Hioki H, Sato Y, Fukumoto T, Enomoto H. Uts2b is a microbiota-regulated gene expressed in vagal afferent neurons connected to enteroendocrine cells producing cholecystokinin. Biochem Biophys Res Commun 2022; 608:66-72. [PMID: 35390674 DOI: 10.1016/j.bbrc.2022.03.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Enteroendocrine cells (EECs) are the primary sensory cells that sense the gut luminal environment and secret hormones to regulate organ function. Recent studies revealed that vagal afferent neurons are connected to EECs and relay sensory information from EECs to the brain stem. To date, however, the identity of vagal afferent neurons connected to a given EEC subtype and the mode of their gene responses to its intestinal hormone have remained unknown. Hypothesizing that EEC-associated vagal afferent neurons change their gene expression in response to the microbiota-related extracellular stimuli, we conducted comparative gene expression analyses of the nodose-petrosal ganglion complex (NPG) using specific pathogen-free (SPF) and germ-free (GF) mice. We report here that the Uts2b gene, which encodes a functionally unknown neuropeptide, urotensin 2B (UTS2B), is expressed in a microbiota-dependent manner in NPG neurons. In cultured NPG neurons, expression of Uts2b was induced by AR420626, the selective agonist for FFAR3. Moreover, distinct gastrointestinal hormones exerted differential effects on Uts2b expression in NPG neurons, where cholecystokinin (CCK) significantly increased its expression. The majority of Uts2b-expressing NPG neurons expressed CCK-A, the receptor for CCK, which comprised approximately 25% of all CCK-A-expressing NPG neurons. Selective fluorescent labeling of Uts2b-expressing NPG neurons revealed a direct contact of their nerve fibers to CCK-expressing EECs. This study identifies the Uts2b as a microbiota-regulated gene, demonstrates that Uts2b-expressing vagal afferent neurons transduce sensory information from CCK-expressing EECs to the brain, and suggests potential involvement of UTS2B in a modality of CCK actions.
Collapse
Affiliation(s)
- Yuta Yoshioka
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihisa Tachibana
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihiro Uesaka
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Yuya Sato
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Gastroenterological Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Enomoto
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
79
|
Neuropod cells - sensing a sweet spot in the gut. Nat Rev Gastroenterol Hepatol 2022; 19:147. [PMID: 35064255 DOI: 10.1038/s41575-022-00582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
80
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
81
|
Sweet selection in the gut. Nat Rev Neurosci 2022; 23:132-133. [DOI: 10.1038/s41583-022-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Silencing gut CCK cells alters gut reaction to sugar. Nat Neurosci 2022; 25:136-138. [PMID: 35027762 DOI: 10.1038/s41593-021-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|