51
|
Modhiran N, Lauer SM, Amarilla AA, Hewins P, Lopes van den Broek SI, Low YS, Thakur N, Liang B, Nieto GV, Jung J, Paramitha D, Isaacs A, Sng JD, Song D, Jørgensen JT, Cheuquemilla Y, Bürger J, Andersen IV, Himelreichs J, Jara R, MacLoughlin R, Miranda-Chacon Z, Chana-Cuevas P, Kramer V, Spahn C, Mielke T, Khromykh AA, Munro T, Jones ML, Young PR, Chappell K, Bailey D, Kjaer A, Herth MM, Jurado KA, Schwefel D, Rojas-Fernandez A, Watterson D. A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. iScience 2023; 26:107085. [PMID: 37361875 PMCID: PMC10251734 DOI: 10.1016/j.isci.2023.107085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation. Here, we characterize the receptor binding domain (RBD)-specific nanobody W25 and show superior neutralization activity toward Omicron sub-lineages in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse W25 for further clinical development.
Collapse
Affiliation(s)
- Naphak Modhiran
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Simon Malte Lauer
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Irene Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Yu Shang Low
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Guildford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - James Jung
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Julian D.J. Sng
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - David Song
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
| | | | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science Universidad de Santiago de Chile, Chile
| | - Vasko Kramer
- PositronPharma SA, Rancagua 878, 7500921 Providencia, Santiago, Chile
| | - Christian Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Guildford, UK
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
52
|
Feng X, Wang H. Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus. ACS Pharmacol Transl Sci 2023; 6:925-942. [PMID: 37470012 PMCID: PMC10275483 DOI: 10.1021/acsptsci.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 07/21/2023]
Abstract
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) has significantly altered people's way of life. Despite widespread knowledge of vaccination, mask use, and avoidance of close contact, COVID-19 is still spreading around the world. Numerous research teams are examining the SARS-CoV-2 infection process to discover strategies to identify, prevent, and treat COVID-19 to limit the spread of this chronic coronavirus illness and restore lives to normalcy. Nanobodies have advantages over polyclonal and monoclonal antibodies (Ab) and Ab fragments, including reduced size, high stability, simplicity in manufacture, compatibility with genetic engineering methods, and lack of solubility and aggregation issues. Recent studies have shown that nanobodies that target the SARS-CoV-2 receptor-binding domain and disrupt ACE2 interactions are helpful in the prevention and treatment of SARS-CoV-2-infected animal models, despite the lack of evidence in human patients. The creation and evaluation of nanobodies, as well as their diagnostic and therapeutic applications against COVID-19, are discussed in this paper.
Collapse
Affiliation(s)
- Xuemei Feng
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, United States
| |
Collapse
|
53
|
Thijssen V, Hurdiss DL, Debski-Antoniak OJ, Spence MA, Franck C, Norman A, Aggarwal A, Mokiem NJ, van Dongen DAA, Vermeir SW, Liu M, Li W, Chatziandreou M, Donselaar T, Du W, Drulyte I, Bosch BJ, Snijder J, Turville SG, Payne RJ, Jackson CJ, van Kuppeveld FJM, Jongkees SAK. A broad-spectrum macrocyclic peptide inhibitor of the SARS-CoV-2 spike protein. Proc Natl Acad Sci U S A 2023; 120:e2303292120. [PMID: 37339194 PMCID: PMC10293842 DOI: 10.1073/pnas.2303292120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.
Collapse
Affiliation(s)
- Vito Thijssen
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Daniel L. Hurdiss
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Oliver J. Debski-Antoniak
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Matthew A. Spence
- Research School of Chemistry, Australian National University, CanberraACT2601, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, SydneyNSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, SydneyNSW2006, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, SydneyNSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, SydneyNSW2006, Australia
| | | | - Nadia J. Mokiem
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CH, the Netherlands
| | - David A. A. van Dongen
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Stein W. Vermeir
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Minglong Liu
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Wentao Li
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Marianthi Chatziandreou
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Tim Donselaar
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Ieva Drulyte
- Thermo Fisher Scientific, Materials and Structural Analysis, Eindhoven5651GG, the Netherlands
| | - Berend-Jan Bosch
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CH, the Netherlands
| | | | - Richard J. Payne
- School of Chemistry, The University of Sydney, SydneyNSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, SydneyNSW2006, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, CanberraACT2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, CanberraACT2601, Australia
- Australian Research Council Centre of Excellence for Synthetic Biology, Australian National University, CanberraACT2601, Australia
| | - Frank J. M. van Kuppeveld
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Seino A. K. Jongkees
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| |
Collapse
|
54
|
Radion EI, Mukhin VE, Kholodova AV, Vladimirov IS, Alsaeva DY, Zhdanova AS, Ulasova NY, Bulanova NV, Makarov VV, Keskinov AA, Yudin SM. Functional Characteristics of Serum Anti-SARS-CoV-2 Antibodies against Delta and Omicron Variants after Vaccination with Sputnik V. Viruses 2023; 15:1349. [PMID: 37376648 DOI: 10.3390/v15061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Anti-SARS-CoV-2 vaccination leads to the production of neutralizing as well as non-neutralizing antibodies. In the current study, we investigated the temporal dynamics of both sides of immunity after vaccination with two doses of Sputnik V against SARS-CoV-2 variants Wuhan-Hu-1 SARS-CoV-2 G614-variant (D614G), B.1.617.2 (Delta), and BA.1 (Omicron). First, we constructed a SARS-CoV-2 pseudovirus assay to assess the neutralization activity of vaccine sera. We show that serum neutralization activity against BA.1 compared to D614G is decreased by 8.16-, 11.05-, and 11.16- fold in 1, 4, and 6 months after vaccination, respectively. Moreover, previous vaccination did not increase serum neutralization activity against BA.1 in recovered patients. Next, we used the ADMP assay to evaluate the Fc-mediated function of vaccine-induced serum antibodies. Our results show that the antibody-dependent phagocytosis triggered by S-proteins of the D614G, B.1.617.2 and BA.1 variants did not differ significantly in vaccinated individuals. Moreover, the ADMP efficacy was retained over up to 6 months in vaccine sera. Our results demonstrate differences in the temporal dynamics of neutralizing and non-neutralizing antibody functions after vaccination with Sputnik V.
Collapse
Affiliation(s)
- Elizaveta I Radion
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Vladimir E Mukhin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Alyona V Kholodova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Ivan S Vladimirov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Darya Y Alsaeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Anastasia S Zhdanova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Natalya Y Ulasova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Natalya V Bulanova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Valentin V Makarov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Anton A Keskinov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| | - Sergey M Yudin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
| |
Collapse
|
55
|
Gonzalez-Hernandez M, Kaiser FK, Steffen I, Ciurkiewicz M, van Amerongen G, Tchelet R, Emalfarb M, Saloheimo M, Wiebe MG, Vitikainen M, Albulescu IC, Bosch BJ, Baumgärtner W, Haagmans BL, Osterhaus ADME. Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1. Front Immunol 2023; 14:1204834. [PMID: 37359531 PMCID: PMC10289020 DOI: 10.3389/fimmu.2023.1204834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.
Collapse
Affiliation(s)
- Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franziska Karola Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Ronen Tchelet
- Dyadic International, Inc., Jupiter, FL, United States
| | - Mark Emalfarb
- Dyadic International, Inc., Jupiter, FL, United States
| | | | | | | | - Irina C. Albulescu
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
56
|
Chen C, Liang J, Hu H, Li X, Wang L, Wang Z. Research progress in methods for detecting neutralizing antibodies against SARS-CoV-2. Anal Biochem 2023:115199. [PMID: 37257735 DOI: 10.1016/j.ab.2023.115199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
The emergence of SARS-CoV-2 has seriously affected the lives of people worldwide. Clarifying the attenuation rule of SARS-CoV-2 neutralizing antibody (NAb) in vivo is the key to prevent reinfection and recurrence of virus. Currently, the commonly used methods for detecting NAb include virus neutralization tests, pseudovirus neutralization assays, lateral flow immunochromatography and enzyme-linked immunosorbent assays. The detection of NAb not only can be used to evaluate the level of immunity after vaccination or infection but also can provide important theoretical support for virus reinfection, recurrence and vaccine iteration. In this research, the related technologies of SARS-CoV-2 NAb detection were reviewed, aiming to provide better research ideas for SARS-CoV-2 epidemic prevention and control.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Jiahui Liang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Hangzhan Hu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China; Heze Municipal Hospital, Heze, 274000, China
| | - Xiaoquan Li
- Heze Municipal Hospital, Heze, 274000, China
| | - Li Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China.
| | - Zhizeng Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China; Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
57
|
Bugatti K, Sartori A, Battistini L, Coppa C, Vanhulle E, Noppen S, Provinciael B, Naesens L, Stevaert A, Contini A, Vermeire K, Zanardi F. Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface. Int J Mol Sci 2023; 24:8765. [PMID: 37240111 PMCID: PMC10218303 DOI: 10.3390/ijms24108765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 μM to 2.78 μM for dimers and 8.56 μM to 10.12 μM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| |
Collapse
|
58
|
Kim WS, Chae HD, Jung I, Lee WK, Lee WJ, Lee J, Gong Y, Lee D, Kim BW, Kim JK, Hwang J, Kweon DH, Jung ST, Na JH. Isolation and characterization of single domain antibodies from banded houndshark (Triakis scyllium) targeting SARS-CoV-2 spike RBD protein. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108807. [PMID: 37169112 PMCID: PMC10167778 DOI: 10.1016/j.fsi.2023.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified new variable antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS-CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the development of VNAR-based therapeutics or diagnostics against future pandemics.
Collapse
Affiliation(s)
- Woo Sung Kim
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Hee Do Chae
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Inji Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation (Kbiohealth), Chungbuk, 28160, Republic of Korea
| | - Woo Jun Lee
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jisun Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yejin Gong
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dohyun Lee
- New Drug Development Center, Osong Medical Innovation Foundation (Kbiohealth), Chungbuk, 28160, Republic of Korea
| | - Byeong-Won Kim
- New Drug Development Center, Osong Medical Innovation Foundation (Kbiohealth), Chungbuk, 28160, Republic of Korea
| | - Jin-Koo Kim
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Jung-Hyun Na
- Department of Pharmaceutical Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
59
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|
60
|
Rosace A, Bennett A, Oeller M, Mortensen MM, Sakhnini L, Lorenzen N, Poulsen C, Sormanni P. Automated optimisation of solubility and conformational stability of antibodies and proteins. Nat Commun 2023; 14:1937. [PMID: 37024501 PMCID: PMC10079162 DOI: 10.1038/s41467-023-37668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Biologics, such as antibodies and enzymes, are crucial in research, biotechnology, diagnostics, and therapeutics. Often, biologics with suitable functionality are discovered, but their development is impeded by developability issues. Stability and solubility are key biophysical traits underpinning developability potential, as they determine aggregation, correlate with production yield and poly-specificity, and are essential to access parenteral and oral delivery. While advances for the optimisation of individual traits have been made, the co-optimization of multiple traits remains highly problematic and time-consuming, as mutations that improve one property often negatively impact others. In this work, we introduce a fully automated computational strategy for the simultaneous optimisation of conformational stability and solubility, which we experimentally validate on six antibodies, including two approved therapeutics. Our results on 42 designs demonstrate that the computational procedure is highly effective at improving developability potential, while not affecting antigen-binding. We make the method available as a webserver at www-cohsoftware.ch.cam.ac.uk.
Collapse
Affiliation(s)
- Angelo Rosace
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Master in Bioinformatics for Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Anja Bennett
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Mammalian Expression, Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
- BRIC, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marc Oeller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
| | - Mie M Mortensen
- Department of Purification Technologies, Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
- Faculty of Engineering and Science, Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Laila Sakhnini
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Nikolai Lorenzen
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Christian Poulsen
- Department of Mammalian Expression, Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
61
|
Nagy-Fazekas D, Stráner P, Ecsédi P, Taricska N, Borbély A, Nyitray L, Perczel A. A Novel Fusion Protein System for the Production of Nanobodies and the SARS-CoV-2 Spike RBD in a Bacterial System. Bioengineering (Basel) 2023; 10:bioengineering10030389. [PMID: 36978780 PMCID: PMC10045489 DOI: 10.3390/bioengineering10030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Antibodies are key proteins of the immune system, and they are widely used for both research and theragnostic applications. Among them, camelid immunoglobulins (IgG) differ from the canonical human IgG molecules, as their light chains are completely missing; thus, they have only variable domains on their heavy chains (VHHs). A single VHH domain, often called a nanobody, has favorable structural, biophysical, and functional features compared to canonical antibodies. Therefore, robust and efficient production protocols relying on recombinant technologies are in high demand. Here, by utilizing ecotin, an Escherichia coli protein, as a fusion partner, we present a bacterial expression system that allows an easy, fast, and cost-effective way to prepare nanobodies. Ecotin was used here as a periplasmic translocator and a passive refolding chaperone, which allowed us to reach high-yield production of nanobodies. We also present a new, easily applicable prokaryotic expression and purification method of the receptor-binding domain (RBD) of the SARS-CoV-2 S protein for interaction assays. We demonstrate using ECD spectroscopy that the bacterially produced RBD is well-folded. The bacterially produced nanobody was shown to bind strongly to the recombinant RBD, with a Kd of 10 nM. The simple methods presented here could facilitate rapid interaction measurements in the event of the appearance of additional SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Dóra Nagy-Fazekas
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Pál Stráner
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
62
|
Jin BK, Odongo S, Radwanska M, Magez S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:5994. [PMID: 36983063 PMCID: PMC10057852 DOI: 10.3390/ijms24065994] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
NANOBODY® (a registered trademark of Ablynx N.V) molecules (Nbs), also referred to as single domain-based VHHs, are antibody fragments derived from heavy-chain only IgG antibodies found in the Camelidae family. Due to their small size, simple structure, high antigen binding affinity, and remarkable stability in extreme conditions, nanobodies possess the potential to overcome several of the limitations of conventional monoclonal antibodies. For many years, nanobodies have been of great interest in a wide variety of research fields, particularly in the diagnosis and treatment of diseases. This culminated in the approval of the world's first nanobody based drug (Caplacizumab) in 2018 with others following soon thereafter. This review will provide an overview, with examples, of (i) the structure and advantages of nanobodies compared to conventional monoclonal antibodies, (ii) methods used to generate and produce antigen-specific nanobodies, (iii) applications for diagnostics, and (iv) ongoing clinical trials for nanobody therapeutics as well as promising candidates for clinical development.
Collapse
Affiliation(s)
- Bo-kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Steven Odongo
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Center for Biosecurity and Global Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
63
|
Philipp M, Müller L, Andrée M, Hussnaetter KP, Schaal H, Feldbrügge M, Schipper K. Efficient virus detection utilizing chitin-immobilized nanobodies synthesized in Ustilago maydis. J Biotechnol 2023; 366:72-84. [PMID: 36948402 PMCID: PMC10028217 DOI: 10.1016/j.jbiotec.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
The COVID-19 pandemic has greatly impacted the global economy and health care systems, illustrating the urgent need for timely and inexpensive responses to pandemic threats in the form of vaccines and antigen tests. Currently, antigen testing is mostly conducted by qualitative flow chromatography or via quantitative ELISA-type assays. The latter mostly utilize materials like protein-adhesive polymers and gold or latex particles. Here we present an alternative ELISA approach using inexpensive, biogenic materials and permitting quick detection based on components produced in the microbial model Ustilago maydis. In this fungus, heterologous proteins like biopharmaceuticals can be exported by fusion to unconventionally secreted chitinase Cts1. As a unique feature, the carrier chitinase binds to chitin allowing its additional use as a purification or immobilization tag. Recent work has demonstrated that nanobodies are suitable target proteins. These proteins represent a very versatile alternative antibody format and can quickly be adapted to detect novel antigens by camelidae immunization or synthetic libraries. In this study, we exemplarily produced different mono- and bivalent SARS-CoV-2 nanobodies directed against the spike protein receptor binding domain (RBD) as Cts1 fusions and screened their antigen binding affinity in vitro and in vivo. Functional nanobody-Cts1 fusions were immobilized on chitin forming an RBD tethering surface. This provides a solid base for future development of inexpensive antigen tests utilizing unconventionally secreted nanobodies as antigen trap and a matching ubiquitous and biogenic surface for immobilization.
Collapse
Affiliation(s)
- Magnus Philipp
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marcel Andrée
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai P Hussnaetter
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
64
|
Tian S, Zhang J, Yuan S, Wang Q, Lv C, Wang J, Fang J, Fu L, Yang J, Zu X, Zhao J, Zhang W. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief Bioinform 2023; 24:7017365. [PMID: 36719094 DOI: 10.1093/bib/bbad027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, 300110, China
| | - Shunling Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxing Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
65
|
Pavan MF, Bok M, Juan RBS, Malito JP, Marcoppido GA, Franco DR, Militello DA, Schammas JM, Bari S, Stone WB, López K, Porier DL, Muller J, Auguste AJ, Yuan L, Wigdorovitz A, Parreño V, Ibañez LI. Nanobodies against SARS-CoV-2 reduced virus load in the brain of challenged mice and neutralized Wuhan, Delta and Omicron Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532528. [PMID: 36993215 PMCID: PMC10054972 DOI: 10.1101/2023.03.14.532528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama (lama glama) with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction. Three Nbs recognized the N-terminal domain (NTD) of the S-2P protein as measured by competition with biliverdin, while some non-neutralizing Nbs recognize epitopes in the S2 domain. One Nb from the BCoV immune library was directed to RBD but was non-neutralizing. Intranasal administration of Nbs induced protection ranging from 40% to 80% against COVID-19 death in k18-hACE2 mice challenged with the WT strain. Interestingly, protection was not only associated with a significant reduction of virus replication in nasal turbinates and lungs, but also with a reduction of virus load in the brain. Employing pseudovirus neutralization assays, we were able to identify Nbs with neutralizing capacity against the Alpha, Beta, Delta and Omicron variants. Furthermore, cocktails of different Nbs performed better than individual Nbs to neutralize two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest these Nbs can potentially be used as a cocktail for intranasal treatment to prevent or treat COVID-19 encephalitis, or modified for prophylactic administration to fight this disease.
Collapse
Affiliation(s)
- María Florencia Pavan
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Rafael Betanzos San Juan
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Gisela Ariana Marcoppido
- Instituto de Investigación Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Daniela Ayelen Militello
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Sara Bari
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - John Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Lorena Itatí Ibañez
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| |
Collapse
|
66
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
67
|
Shukla AK, Misra S. Bispecific antibodies and its applications: a novel approach for targeting SARS-Cov-2. J Basic Clin Physiol Pharmacol 2023; 34:161-168. [PMID: 36607905 DOI: 10.1515/jbcpp-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic remains a severe global threat, with the world engulfed in the struggle against the disease's second or third waves, which are approaching frightening proportions in terms of cases and mortality in many nations. Despite the critical need for effective therapy, there is still uncertainty about the optimal practices for treating COVID-19 with various pharmaceutical approaches. This being third year, global immunity and eradication of SARS-CoV-2 is currently seems to be out of reach. Efforts to produce safe and effective vaccinations have shown promise, and progress is being made. Additional therapeutic modalities, as well as vaccine testing in children, are required for prophylaxis and treatment of high-risk individuals. As a result, neutralising antibodies and other comparable therapeutic options offer a lot of promise as immediate and direct antiviral medications. Bispecific antibodies offer a lot of potential in COVID-19 treatment because of their qualities including stability, small size and ease of manufacture. These can be used to control the virus's infection of the lungs because they are available in an inhalational form. To combat the COVID-19 pandemic, innovative approaches with effective nanobodies, high-expression yield and acceptable costs may be required.
Collapse
Affiliation(s)
- Ajay Kumar Shukla
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Bhopal, Bhopal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
68
|
Bhattacharya M, Chatterjee S, Lee SS, Chakraborty C. Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: Current update. Int J Biol Macromol 2023; 229:70-80. [PMID: 36586649 PMCID: PMC9797221 DOI: 10.1016/j.ijbiomac.2022.12.284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
In the last two years, the world encountered the SARS-CoV-2 virus, which is still dominating the population due to the absence of a viable treatment. To eradicate the global pandemic, scientists, doctors, and researchers took an exceptionally significant initiative towards the development of effective therapeutics to save many lifes. This review discusses about the single-domain antibodies (sdAbs), also called nanobodies, their structure, and their types against the infections of dreadful SARS-CoV-2 virus. A precise description highlights the nanobodies and their therapeutic application against the other selected viruses. It aims to focus on the extraordinary features of these antibodies compared to the conventional therapeutics like mAbs, convalescent plasma therapy, and vaccines. The stable structure of these nanobodies along with the suitable mechanism of action also confers greater resistance to the evolving variants with numerous mutations. The nanobodies developed against SARS-CoV-2 and its mutant variants have shown the greater neutralization potential than the primitive ones. Engineering of these specialized antibodies by modern biotechnological approaches will surely be more beneficial in treating this COVID-19 pandemic along with certain other viral infections.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
69
|
General Trends of the Camelidae Antibody V HHs Domain Dynamics. Int J Mol Sci 2023; 24:ijms24054511. [PMID: 36901942 PMCID: PMC10003728 DOI: 10.3390/ijms24054511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Conformational flexibility plays an essential role in antibodies' functional and structural stability. They facilitate and determine the strength of antigen-antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.
Collapse
|
70
|
Hirunpattarasilp C, James G, Kwanthongdee J, Freitas F, Huo J, Sethi H, Kittler JT, Owens RJ, McCoy LE, Attwell D. SARS-CoV-2 triggers pericyte-mediated cerebral capillary constriction. Brain 2023; 146:727-738. [PMID: 35867861 PMCID: PMC9384509 DOI: 10.1093/brain/awac272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
The SARS-CoV-2 receptor, ACE2, is found on pericytes, contractile cells enwrapping capillaries that regulate brain, heart and kidney blood flow. ACE2 converts vasoconstricting angiotensin II into vasodilating angiotensin-(1-7). In brain slices from hamster, which has an ACE2 sequence similar to human ACE2, angiotensin II evoked a small pericyte-mediated capillary constriction via AT1 receptors, but evoked a large constriction when the SARS-CoV-2 receptor binding domain (RBD, original Wuhan variant) was present. A mutated non-binding RBD did not potentiate constriction. A similar RBD-potentiated capillary constriction occurred in human cortical slices, and was evoked in hamster brain slices by pseudotyped virions expressing SARS-CoV-2 spike protein. This constriction reflects an RBD-induced decrease in the conversion of angiotensin II to angiotensin-(1-7) mediated by removal of ACE2 from the cell surface membrane and was mimicked by blocking ACE2. The clinically used drug losartan inhibited the RBD-potentiated constriction. Thus, AT1 receptor blockers could be protective in COVID-19 by preventing pericyte-mediated blood flow reductions in the brain, and perhaps the heart and kidney.
Collapse
Affiliation(s)
- Chanawee Hirunpattarasilp
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
| | - Greg James
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Jaturon Kwanthongdee
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
| | - Felipe Freitas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Jiandong Huo
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Protein Production UK, The Research Complex at Harwell, and Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0GD, UK
| | - Huma Sethi
- Division of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Raymond J Owens
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Protein Production UK, The Research Complex at Harwell, and Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0GD, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
71
|
Sharfin Rahman M, De Alwis Watuthanthrige N, Chandrarathne BM, Page RC, Konkolewicz D. Polymer modification of SARS-CoV-2 spike protein impacts its ability to bind key receptor. Eur Polym J 2023; 184:111767. [PMID: 36531158 PMCID: PMC9749382 DOI: 10.1016/j.eurpolymj.2022.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The global spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has caused the loss of many human lives and severe economic losses. SARS-CoV-2 mediates its infection in humans via the spike glycoprotein. The receptor binding domain of the SARS-CoV-2 spike protein binds to its cognate receptor, angiotensin converting enzyme-2 (ACE2) to initiate viral entry. In this study, we examine how polymer modification of the spike protein receptor binding domain impacts binding to ACE2. The horseradish peroxidase conjugated receptor binding domain was modified with a range of polymers including hydrophilic N,N-dimethylacrylamide, hydrophobic N-isopropylacrylamide, cationic 3-(N,N-dimethylamino)propylacrylamide, and anionic 2-acrylamido-2-methylpropane sulfonic acid polymers. The effect of polymer chain length was observed using N,N-dimethylacrylamide polymers with degrees of polymerization of 5, 10 and 25. Polymer conjugation of the receptor binding domain significantly reduced the interaction with ACE2 protein, as determined by an enzyme-linked immunosorbent assay. Stability analysis showed that these conjugates remained highly stable even after seven days incubation at physiological temperature. Hence, this study provides a detailed view of the effect specific type of modification using a library of polymers with different functionalities in interrupting RBD-ACE2 interaction.
Collapse
Affiliation(s)
- Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | | | - Bhagya M Chandrarathne
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| |
Collapse
|
72
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
73
|
Huo J, Dijokaite-Guraliuc A, Liu C, Zhou D, Ginn HM, Das R, Supasa P, Selvaraj M, Nutalai R, Tuekprakhon A, Duyvesteyn HME, Mentzer AJ, Skelly D, Ritter TG, Amini A, Bibi S, Adele S, Johnson SA, Paterson NG, Williams MA, Hall DR, Plowright M, Newman TAH, Hornsby H, de Silva TI, Temperton N, Klenerman P, Barnes E, Dunachie SJ, Pollard AJ, Lambe T, Goulder P, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. A delicate balance between antibody evasion and ACE2 affinity for Omicron BA.2.75. Cell Rep 2023; 42:111903. [PMID: 36586406 PMCID: PMC9747698 DOI: 10.1016/j.celrep.2022.111903] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.
Collapse
Affiliation(s)
- Jiandong Huo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK; Guangzhou Laboratory, Bio-island, Guangzhou 510320, China.
| | - Aiste Dijokaite-Guraliuc
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Daming Zhou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Ginn
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Raksha Das
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rungtiwa Nutalai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ali Amini
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sandra Adele
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Neil G Paterson
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Megan Plowright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas A H Newman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent ME4 4TB, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Eleanor Barnes
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Teresa Lambe
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
74
|
Cross FR, Fridy PC, Ketaren NE, Mast FD, Li S, Olivier JP, Pecani K, Chait BT, Aitchison JD, Rout MP. Expanding and improving nanobody repertoires using a yeast display method: Targeting SARS-CoV-2. J Biol Chem 2023; 299:102954. [PMID: 36720309 PMCID: PMC9884143 DOI: 10.1016/j.jbc.2023.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
COVID-19, caused by the coronavirus SARS-CoV-2, represents a serious worldwide health issue, with continually emerging new variants challenging current therapeutics. One promising alternate therapeutic avenue is represented by nanobodies, small single-chain antibodies derived from camelids with numerous advantageous properties and the potential to neutralize the virus. For identification and characterization of a broad spectrum of anti-SARS-CoV-2 Spike nanobodies, we further optimized a yeast display method, leveraging a previously published mass spectrometry-based method, using B-cell complementary DNA from the same immunized animals as a source of VHH sequences. Yeast display captured many of the sequences identified by the previous approach, as well as many additional sequences that proved to encode a large new repertoire of nanobodies with high affinities and neutralization activities against different SARS-CoV-2 variants. We evaluated DNA shuffling applied to the three complementarity-determining regions of antiviral nanobodies. The results suggested a surprising degree of modularity to complementarity-determining region function. Importantly, the yeast display approach applied to nanobody libraries from immunized animals allows parallel interrogation of a vast number of nanobodies. For example, we employed a modified yeast display to carry out massively parallel epitope binning. The current yeast display approach proved comparable in efficiency and specificity to the mass spectrometry-based approach, while requiring none of the infrastructure and expertise required for that approach, making these highly complementary approaches that together appear to comprehensively explore the paratope space. The larger repertoires produced maximize the likelihood of discovering broadly specific reagents and those that powerfully synergize in mixtures.
Collapse
Affiliation(s)
- Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York, USA.
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Song Li
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - J Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
75
|
Lu Y, Li Q, Fan H, Liao C, Zhang J, Hu H, Yi H, Peng Y, Lu J, Chen Z. A Multivalent and Thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int J Nanomedicine 2023; 18:353-367. [PMID: 36700149 PMCID: PMC9869787 DOI: 10.2147/ijn.s387160] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have risen to dominance, which contains far more mutations in the spike protein in comparison to previously reported variants, compromising the efficacy of most existing vaccines or therapeutic monoclonal antibodies. Nanobody screened from high-throughput naïve libraries is a potential candidate for developing preventive and therapeutic antibodies. Methods Four nanobodies specific to the SARS-CoV-2 wild-type receptor-binding domain (RBD) were screened from a naïve phage display library. Their affinity and neutralizing activity were evaluated by surface plasmon resonance assays, surrogate virus neutralization tests, and pseudovirus neutralization assays. Preliminary identification of the binding epitopes of nanobodies by peptide-based ELISA and competition assay. Then four multivalent nanobodies were engineered by attaching the monovalent nanobodies to an antibody-binding nanoplatform constructed based on the lumazine synthase protein cage nanoparticles isolated from the Aquifex aeolicus (AaLS). Finally, the differences in potency between the monovalent and multivalent nanobodies were compared using the same methods. Results Three of the four specific nanobodies could maintain substantial inhibitory activity against the Omicron (B.1.1.529), of them, B-B2 had the best neutralizing activity against the Omicron (B.1.1.529) pseudovirus (IC50 = 1.658 μg/mL). The antiviral ability of multivalent nanobody LS-B-B2 was improved in the Omicron (B.1.1.529) pseudovirus assays (IC50 = 0.653 μg/mL). The results of peptide-based ELISA indicated that LS-B-B2 might react with the linear epitopes in the SARS-CoV-2 RBD conserved regions, which would clarify the mechanisms for the maintenance of potent neutralization of Omicron (B.1.1.529) preliminary. Conclusion Our study indicated that the AaLS could be used as an antibody-binding nanoplatform to present nanobodies on its surface and improve the potency of nanobodies. The multivalent nanobody LS-B-B2 may serve as a potential agent for the neutralization of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Qianlin Li
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Conghui Liao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Jingsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Huan Hu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Huaimin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, People’s Republic of China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, People’s Republic of China,Correspondence: Jiahai Lu; Zeliang Chen, One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China, Email ;
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, People’s Republic of China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, People’s Republic of China,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| |
Collapse
|
76
|
Zhang F, Wang X, Zhang T, Zhang Z, Gao X, Li Y. Rapid Detection of SARS-CoV-2 Spike RBD Protein in Body Fluid: Based on Special Calcium Ion-Mediated Gold Nanoparticles Modified by Bromide Ions. J Phys Chem Lett 2023; 14:88-94. [PMID: 36573843 PMCID: PMC9843627 DOI: 10.1021/acs.jpclett.2c03069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The receptor-binding domain of the SARS-CoV-2 spike mediates the key to binding the virus to the host receptor, but capturing the molecular signal of this spike RBD remains a formidable challenge. Here, we report a new surface-enhanced Raman spectroscopy (SERS) approach, which used gold nanoparticles prepared by low-speed constant-temperature centrifugation by bromine and calcium ions in two cleaning steps as the enhanced substrate to rapidly and accurately detect spike RBD large protein molecules in body fluids. The detection signal was extremely stable, and the orientation of the spike RBD on the enhanced substrate surface was also determined. This approach was specific in distinguishing different SARS-CoV-2 variants of spike RBD, including Delta, Beta, Gamma, and Omicron. Additionally, the enhanced substrate can identify biologically active or inactive spike RBD. This two-step cleaning enhanced substrate opens up opportunities not only for early diagnostics of SARS-CoV-2 virus but also for developing targeted drugs against viruses.
Collapse
Affiliation(s)
- Fenghai Zhang
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Xiaotong Wang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Ting Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Zhe Zhang
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| | - Xin Gao
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
| | - Yang Li
- Institute
of Physics, Guizhou University, No. 2708, South Section of Huaxi
Avenue, Guiyang City, 550025Guizhou Province, China
- College
of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, 150081Heilongjiang Province, China
| |
Collapse
|
77
|
Kim JW, Min SW, Lee J, Shin HG, Choi HL, Yang HR, Lee JH, Cho YB, Shim H, Lee S. Development and Characterization of Phage-Display-Derived Novel Human Monoclonal Antibodies against the Receptor Binding Domain of SARS-CoV-2. Biomedicines 2022; 10:biomedicines10123274. [PMID: 36552031 PMCID: PMC9775448 DOI: 10.3390/biomedicines10123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in an ongoing global pandemic crisis, caused by the life-threatening illness coronavirus disease 2019 (COVID-19). Thus, the rapid development of monoclonal antibodies (mAbs) to cope with COVID-19 is urgently necessary. In this study, we used phage display to develop four human mAbs specific to the receptor-binding domain (RBD) of SARS-CoV-2. Our intensive in vitro functional analyses demonstrated that K102.1, an anti-SARS-CoV-2 RBD-specific mAb, exerted potent neutralizing activity against pseudoviral and live viral infection and the interaction between SARS-CoV-2 RBD and human angiotensin-converting enzyme 2. Monotherapy with K102.1 also revealed the therapeutic potential against SARS-CoV-2 infection in vivo. Further, this study developed a sandwich enzyme-linked immunosorbent assay with a non-competing mAb pair, K102.1 and K102.2, that accurately detected the RBDs of SARS-CoV-2 wild-type and variants with high sensitivity in the picomolar range. These findings suggest that the phage-display-based mAb selection from an established antibody library may be an effective strategy for the rapid development of mAbs against the constantly evolving SARS-CoV-2.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sung Won Min
- Research Center, SG Medical, Seoul 05548, Republic of Korea
| | - Jichul Lee
- Research Center, SG Medical, Seoul 05548, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyunbo Shim
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
- Correspondence:
| |
Collapse
|
78
|
Golcuk M, Yildiz A, Gur M. Omicron BA.1 and BA.2 variants increase the interactions of SARS-CoV-2 spike glycoprotein with ACE2. J Mol Graph Model 2022; 117:108286. [PMID: 35964366 PMCID: PMC9352197 DOI: 10.1016/j.jmgm.2022.108286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 infection is initiated by binding of the receptor-binding domain (RBD) of its spike glycoprotein to the peptidase domain (PD) of angiotensin-converting enzyme 2 (ACE2) receptors in host cells. Recently detected Omicron variant of SARS-CoV-2 (B.1.1.529) is heavily mutated on RBD. First the BA.1 and later the BA.2 variant became the most dominant strains of the Omicron variant. To investigate how the mutations of these strains affect RBD-PD interactions, we performed all-atom molecular dynamics simulations of the BA.1 and BA.2 RBD-PD in the presence of full-length glycans, explicit water, and ions. Simulations revealed that RBDs of BA.1 and BA.2 variants exhibit a more dispersed interaction network and make an increased number of salt bridges and hydrophobic interactions with PD compared to wild-type RBD. Although BA.1 and BA.2 differ in two residues at the RBD-ACE2 interface, no major difference in RBD-PD interactions and binding strengths were observed between these variants. Using the conformations sampled in each trajectory, the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method estimated ∼34% and ∼51% stronger binding free energies to PD for BA.1 and BA.2 RBD, respectively, than wild-type RBD, which may result in higher binding efficiency of the Omicron variant to infect host cells.
Collapse
Affiliation(s)
- Mert Golcuk
- Department of Mechanical Engineering, Istanbul Technical University (ITU), 34437, Istanbul, Turkey
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University (ITU), 34437, Istanbul, Turkey,Corresponding author
| |
Collapse
|
79
|
Lim HT, Kok BH, Lim CP, Abdul Majeed AB, Leow CY, Leow CH. Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. BIOMEDICAL ENGINEERING ADVANCES 2022; 4:100054. [PMID: 36158162 PMCID: PMC9482557 DOI: 10.1016/j.bea.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.
Collapse
Key Words
-
γ
, Gamma
-
δ
, Delta
- ACE2, Angiotensin-converting enzyme 2
- ADCC, Antibody-dependent cell-mediated cytotoxicity
- ADCP, Antibody-dependent cellular phagocytosis
- ADE, Antibody-dependent enhancement
- Alb, Albumin
- Bat-SL-CoV, Bat SARS-like coronavirus
- Broad neutralization
- CDC, Complement-dependent cytotoxicity
- CDR, Complementarity-determining region
- CH, Constant domain of antibody heavy chain
- CHO, Chinese hamster ovary
- CL, Constant domain of antibody light chain
- CNAR, Constant domain of immunoglobulin new antigen receptor
- COVID-19
- COVID-19, Coronavirus disease 2019
- Cryo-EM, Cryogenic electron microscopy
- Cu, Copper
- DNA, Deoxyribonucleic acid
- DPP4, Dipeptidyl peptidase 4
- E, Envelope
- EC50, Half-maximal effective concentration
- FDA, The United States Food and Drug Administration
- Fab, Antigen-binding fragment
- Fc, Crystallisable fragment
- FcR, Crystallisable fragment receptor
- Fig., Figure
- HCoV, Human coronavirus
- HIV, Human immunodeficiency virus
- HR, Heptad repeat
- HRP, Horseradish peroxidase
- HV, Hypervariable region
- IC50, Half-maximal inhibitory concentration
- Ig, Immunoglobulin
- IgNAR, Immunoglobulin new antigen receptor
- KD, Equilibrium dissociation constant
- L, Litre
- LRT, Lower respiratory tract
- M, Membrane
- MERS, Middle East respiratory syndrome
- MERS-CoV, Middle East respiratory syndrome coronavirus
- N, Nucleocapsid
- ND50, 50% neutralizing dose
- NTD, N-terminal domain
- Nb, Nanobody
- PCR, Polymerase chain reaction
- PEG, Polyethylene glycol
- RBD, Receptor-binding domain
- RBM, Receptor-binding motif
- RNA, Ribonucleic acid
- S, Spike
- SARS, Severe acute respiratory syndrome
- SARS-CoV, Severe acute respiratory syndrome coronavirus
- SARS-CoV-2 mutation
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SPAAC, Strain-promoted azide-alkyne cycloaddition
- Single-domain antibody
- Spike protein
- TMPRSS2, Transmembrane serine protease 2
- Therapeutic
- URT, Upper respiratory tract
- VH, Variable domain of antibody heavy chain
- VHH, Variable domain of camelid heavy-chain only antibody
- VL, Variable domain of antibody light chain
- VNAR, Variable domain of immunoglobulin new antigen receptor
- WHO, World Health Organization
- cDNA, Complementary deoxyribonucleic acid
- dpi, Days' post infection
- g, Gram
- kDa, Kilodalton
- koff, Dissociation rate constant
- mAb, Monoclonal antibody
- mRNA, Messenger ribonucleic acid
- nM, Nanomolar
- pM, Picomolar
- scFv, Single-chain variable fragment
- sdAb, Single-domain antibody
- ß, Beta
- α, Alpha
Collapse
Affiliation(s)
- H T Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - B H Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C P Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - A B Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - C Y Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C H Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
80
|
Hricovíni M, Owens RJ, Bak A, Kozik V, Musiał W, Pierattelli R, Májeková M, Rodríguez Y, Musioł R, Slodek A, Štarha P, Piętak K, Słota D, Florkiewicz W, Sobczak-Kupiec A, Jampílek J. Chemistry towards Biology-Instruct: Snapshot. Int J Mol Sci 2022; 23:14815. [PMID: 36499140 PMCID: PMC9739621 DOI: 10.3390/ijms232314815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.
Collapse
Affiliation(s)
- Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Raymond J. Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, UK, University of Oxford, Oxford OX11 0QS, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211A, 50 556 Wrocław, Poland
| | - Roberta Pierattelli
- Magnetic Resonance Center and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Magdaléna Májeková
- Center of Experimental Medicine SAS and Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Yoel Rodríguez
- Department of Natural Sciences, Eugenio María de Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Robert Musioł
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Aneta Slodek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
81
|
Szent-Gyorgyi C, Perkins LA, Schmidt BF, Liu Z, Bruchez MP, van de Weerd R. Bottom-Up Design: A Modular Golden Gate Assembly Platform of Yeast Plasmids for Simultaneous Secretion and Surface Display of Distinct FAP Fusion Proteins. ACS Synth Biol 2022; 11:3681-3698. [PMID: 36260923 DOI: 10.1021/acssynbio.2c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A need in synthetic biology is the ability to precisely and efficiently make flexible fully designed vectors that addresses challenging cloning strategies of single plasmids that rely on combinatorial co-expression of a multitude of target and bait fusion reporters useful in projects like library screens. For these strategies, the regulatory elements and functional components need to correspond perfectly to project specific sequence elements that facilitate easy exchange of these elements. This requires systematic implementation and building on recent improvements in Golden Gate (GG) that ensures high cloning efficiency for such complex vectors. Currently, this is not addressed in the variety of molecular GG cloning techniques in synthetic biology. Here, we present the bottom-up design and plasmid synthesis to prepare 10 kb functional yeast secrete and display plasmids that uses an optimized version of GG in combination with fluorogen-activating protein reporter technology. This allowed us to demonstrate nanobody/target protein interactions in a single cell, as detected by cell surface retention of secreted target proteins by cognate nanobodies. This validates the GG constructional approach and suggests a new approach for discovering protein interactions. Our GG assembly platform paves the way for vector-based library screening and can be used for other recombinant GG platforms.
Collapse
Affiliation(s)
- Christopher Szent-Gyorgyi
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lydia A Perkins
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F Schmidt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhen Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P Bruchez
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert van de Weerd
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
82
|
Aguilar Rangel M, Bedwell A, Costanzi E, Taylor RJ, Russo R, Bernardes GJL, Ricagno S, Frydman J, Vendruscolo M, Sormanni P. Fragment-based computational design of antibodies targeting structured epitopes. SCIENCE ADVANCES 2022; 8:eabp9540. [PMID: 36367941 PMCID: PMC9651861 DOI: 10.1126/sciadv.abp9540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
De novo design methods hold the promise of reducing the time and cost of antibody discovery while enabling the facile and precise targeting of predetermined epitopes. Here, we describe a fragment-based method for the combinatorial design of antibody binding loops and their grafting onto antibody scaffolds. We designed and tested six single-domain antibodies targeting different epitopes on three antigens, including the receptor-binding domain of the SARS-CoV-2 spike protein. Biophysical characterization showed that all designs are stable and bind their intended targets with affinities in the nanomolar range without in vitro affinity maturation. We further discuss how a high-resolution input antigen structure is not required, as similar predictions are obtained when the input is a crystal structure or a computer-generated model. This computational procedure, which readily runs on a laptop, provides a starting point for the rapid generation of lead antibodies binding to preselected epitopes.
Collapse
Affiliation(s)
- Mauricio Aguilar Rangel
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alice Bedwell
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Elisa Costanzi
- Department of Bioscience, Università degli Studi di Milano, Milano 20133, Italy
| | - Ross J. Taylor
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Rosaria Russo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy
| | - Gonçalo J. L. Bernardes
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Stefano Ricagno
- Department of Bioscience, Università degli Studi di Milano, Milano 20133, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan 20097, Italy
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
83
|
Birnbaum DP, Vilardi KJ, Anderson CL, Pinto AJ, Joshi NS. Simple Affinity-Based Method for Concentrating Viruses from Wastewater Using Engineered Curli Fibers. ACS ES&T WATER 2022; 2:1836-1843. [PMID: 36778666 PMCID: PMC9916486 DOI: 10.1021/acsestwater.1c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.
Collapse
Affiliation(s)
- Daniel P Birnbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher L Anderson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
84
|
A Review of Potential Therapeutic Strategies for COVID-19. Viruses 2022; 14:v14112346. [PMID: 36366444 PMCID: PMC9696587 DOI: 10.3390/v14112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 02/01/2023] Open
Abstract
Coronavirus disease 2019 is a rather heterogeneous disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing pandemic is a global threat with increasing death tolls worldwide. SARS-CoV-2 belongs to lineage B β-CoV, a subgroup of Sarbecovirus. These enveloped, large, positive-sense single-stranded RNA viruses are easily spread among individuals, mainly via the respiratory system and droplets. Although the disease has been gradually controlled in many countries, once social restrictions are relaxed the virus may rebound, leading to a more severe and uncontrollable situation again, as occurred in Shanghai, China, in 2022. The current global health threat calls for the urgent development of effective therapeutic options for the treatment and prevention of SARS-CoV-2 infection. This systematic overview of possible SARS-CoV-2 therapeutic strategies from 2019 to 2022 indicates three potential targets: virus entry, virus replication, and the immune system. The information provided in this review will aid the development of more potent and specific antiviral compounds.
Collapse
|
85
|
Hampton JT, Lalonde TJ, Tharp JM, Kurra Y, Alugubelli YR, Roundy CM, Hamer GL, Xu S, Liu WR. Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2. ACS Chem Biol 2022; 17:2911-2922. [PMID: 36174018 PMCID: PMC9528030 DOI: 10.1021/acschembio.2c00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 01/20/2023]
Abstract
Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 μM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 μM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tyler J. Lalonde
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jeffery M. Tharp
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yadagiri Kurra
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yugendar R. Alugubelli
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
86
|
Yu B, Li S, Tabata T, Wang N, Cao L, Kumar GR, Sun W, Liu J, Ott M, Wang L. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 2022; 8:2766-2783. [PMID: 35874165 PMCID: PMC9288967 DOI: 10.1016/j.chempr.2022.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022]
Abstract
The long-lasting COVID-19 pandemic and increasing SARS-CoV-2 variants demand effective drugs for prophylactics and treatment. Protein-based biologics offer high specificity, yet their noncovalent interactions often lead to drug dissociation and incomplete inhibition. Here, we have developed covalent nanobodies capable of binding with SARS-CoV-2 irreversibly via a proximity-enabled reactive therapeutic (PERx) mechanism. A latent bioreactive amino acid (FFY) was designed and genetically encoded into nanobodies to accelerate the PERx reaction rate. Compared with the noncovalent wild-type nanobody, the FFY-incorporated covalent nanobodies neutralized both wild-type SARS-CoV-2 and its Alpha, Delta, Epsilon, Lambda, and Omicron variants with drastically higher potency. This PERx-enabled covalent-nanobody strategy and the related insights into increased potency can be valuable to developing effective therapeutics for various viral infections.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Nanxi Wang
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Li Cao
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Wei Sun
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jun Liu
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
87
|
Coderc de Lacam EG, Blazhynska M, Chen H, Gumbart JC, Chipot C. When the Dust Has Settled: Calculation of Binding Affinities from First Principles for SARS-CoV-2 Variants with Quantitative Accuracy. J Chem Theory Comput 2022; 18:5890-5900. [PMID: 36108303 PMCID: PMC9518821 DOI: 10.1021/acs.jctc.2c00604] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Accurate determination of binding free energy is pivotal for the study of many biological processes and has been applied in a number of theoretical investigations to compare the affinity of severe acute respiratory syndrome coronavirus 2 variants toward the host cell. Diversity of these variants challenges the development of effective general therapies, their transmissibility relying either on an increased affinity toward their dedicated human receptor, the angiotensin-converting enzyme 2 (ACE2), or on escaping the immune response. Now that robust structural data are available, we have determined with utmost accuracy the standard binding free energy of the receptor-binding domain to the most widespread variants, namely, Alpha, Beta, Delta, and Omicron BA.2, as well as the wild type (WT) in complex either with ACE2 or with antibodies, namely, S2E12 and H11-D4, using a rigorous theoretical framework that combines molecular dynamics and potential-of-mean-force calculations. Our results show that an appropriate starting structure is crucial to ensure appropriate reproduction of the binding affinity, allowing the variants to be compared. They also emphasize the necessity to apply the relevant methodology, bereft of any shortcut, to account for all the contributions to the standard binding free energy. Our estimates of the binding affinities support the view that while the Alpha and Beta variants lean on an increased affinity toward the host cell, the Delta and Omicron BA.2 variants choose immune escape. Moreover, the S2E12 antibody, already known to be active against the WT (Starr et al., 2021; Mlcochova et al., 2021), proved to be equally effective against the Delta variant. In stark contrast, H11-D4 retains a low affinity toward the WT compared to that of ACE2 for the latter. Assuming robust structural information, the methodology employed herein successfully addresses the challenging protein-protein binding problem in the context of coronavirus disease 2019 while offering promising perspectives for predictive studies of ever-emerging variants.
Collapse
Affiliation(s)
- Emma Goulard Coderc de Lacam
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
| | - Marharyta Blazhynska
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
| | - Haochuan Chen
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
| | - James C. Gumbart
- School of Physics, Georgia Institute of
Technology, Atlanta, Georgia30332, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
- Theoretical and Computational Biophysics Group, Beckman
Institute, and Department of Physics, University of Illinois at
Urbana-Champaign, UrbanaIllinois61802, United
States
- Department of Biochemistry and Molecular Biology,
The University of Chicago, 929 E. 57th Street W225, Chicago,
Illinois60637, United States
| |
Collapse
|
88
|
Pymm P, Redmond SJ, Dolezal O, Mordant F, Lopez E, Cooney JP, Davidson KC, Haycroft ER, Tan CW, Seneviratna R, Grimley SL, Purcell DF, Kent SJ, Wheatley AK, Wang LF, Leis A, Glukhova A, Pellegrini M, Chung AW, Subbarao K, Uldrich AP, Tham WH, Godfrey DI, Gherardin NA. Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2. iScience 2022; 25:105259. [PMID: 36213007 PMCID: PMC9529347 DOI: 10.1016/j.isci.2022.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
Collapse
Affiliation(s)
- Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samuel J. Redmond
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Olan Dolezal
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Program, Clayton, VIC 3168, Australia
| | - Francesca Mordant
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Ester Lopez
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - James P. Cooney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathryn C. Davidson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ebene R. Haycroft
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke NUS Medical School, Singapore 169857, Singapore
| | - Rebecca Seneviratna
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Samantha L. Grimley
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Damian F.J. Purcell
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Stephen J. Kent
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne VIC 3010, Australia
| | - Adam K. Wheatley
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Programme in Emerging Infectious Diseases, Duke NUS Medical School, Singapore 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke NUS Medical School, Singapore 169857, Singapore
| | - Andrew Leis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Alisa Glukhova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia,Drug Discovery Biology, Monash Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville 3052 VIC, Australia,WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy W. Chung
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Adam P. Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Corresponding author
| | - Nicholas A. Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia,Corresponding author
| |
Collapse
|
89
|
Li H, Zhu B, Li B, Chen L, Ning X, Dong H, Liang J, Yang X, Dong J, Ueda H. Isolation of a human SARS-CoV-2 neutralizing antibody from a synthetic phage library and its conversion to fluorescent biosensors. Sci Rep 2022; 12:15496. [PMID: 36109569 PMCID: PMC9476436 DOI: 10.1038/s41598-022-19699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.
Collapse
Affiliation(s)
- Haimei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Baowei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Limei Chen
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xuerao Ning
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hang Dong
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingru Liang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xueying Yang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinhua Dong
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
90
|
Zhao D, Liu L, Liu X, Zhang J, Yin Y, Luan L, Jiang D, Yang X, Li L, Xiong H, Xing D, Zheng Q, Xia N, Tao Y, Li S, Huang H. A potent synthetic nanobody with broad-spectrum activity neutralizes SARS-CoV-2 virus and the Omicron variant BA.1 through a unique binding mode. J Nanobiotechnology 2022; 20:411. [PMID: 36109732 PMCID: PMC9479348 DOI: 10.1186/s12951-022-01619-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 12/23/2022] Open
Abstract
The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.
Collapse
|
91
|
Rossotti MA, van Faassen H, Tran AT, Sheff J, Sandhu JK, Duque D, Hewitt M, Wen X, Bavananthasivam J, Beitari S, Matte K, Laroche G, Giguère PM, Gervais C, Stuible M, Guimond J, Perret S, Hussack G, Langlois MA, Durocher Y, Tanha J. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Commun Biol 2022; 5:933. [PMID: 36085335 PMCID: PMC9461429 DOI: 10.1038/s42003-022-03866-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Anh T Tran
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Xiaoxue Wen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Saina Beitari
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christian Gervais
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
92
|
Meyer-Arndt L, Braun J, Fauchere F, Vanshylla K, Loyal L, Henze L, Kruse B, Dingeldey M, Jürchott K, Mangold M, Maraj A, Braginets A, Böttcher C, Nitsche A, de la Rosa K, Ratswohl C, Sawitzki B, Holenya P, Reimer U, Sander LE, Klein F, Paul F, Bellmann-Strobl J, Thiel A, Giesecke-Thiel C. SARS-CoV-2 mRNA vaccinations fail to elicit humoral and cellular immune responses in patients with multiple sclerosis receiving fingolimod. J Neurol Neurosurg Psychiatry 2022; 93:960-971. [PMID: 35835468 PMCID: PMC9380499 DOI: 10.1136/jnnp-2022-329395] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-β, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florent Fauchere
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lucie Loyal
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Beate Kruse
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuela Dingeldey
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karsten Jürchott
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ardit Maraj
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andre Braginets
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christoph Ratswohl
- Department of Cancer and Immunology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
93
|
Ligiero CBP, Fernandes TS, D'Amato DL, Gaspar FV, Duarte PS, Strauch MA, Fonseca JG, Meirelles LGR, Bento da Silva P, Azevedo RB, Aparecida de Souza Martins G, Archanjo BS, Buarque CD, Machado G, Percebom AM, Ronconi CM. Influence of particle size on the SARS-CoV-2 spike protein detection using IgG-capped gold nanoparticles and dynamic light scattering. MATERIALS TODAY. CHEMISTRY 2022; 25:100924. [PMID: 35475288 PMCID: PMC9023328 DOI: 10.1016/j.mtchem.2022.100924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔDH) by dynamic light scattering measurements in the antigen-antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔDH in the presence of spike protein. From adsorption isotherm, the calculated binding constant (K D ) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.
Collapse
Affiliation(s)
- C B P Ligiero
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - T S Fernandes
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - D L D'Amato
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - F V Gaspar
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - P S Duarte
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - M A Strauch
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - J G Fonseca
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - L G R Meirelles
- Fazenda Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - P Bento da Silva
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - R B Azevedo
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - G Aparecida de Souza Martins
- Programa de Pós-graduação Em Ciência e Tecnologia de Alimentos, Universidade Federal Do Tocantins, 77001-090, Brazil
| | - B S Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ, 25250-020, Brazil
| | - C D Buarque
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - G Machado
- Centro de Tecnologias Estratégicas Do Nordeste, Av. Prof. Luiz Freire 01, Recife, Pernambuco, 50740-540, Brazil
| | - A M Percebom
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - C M Ronconi
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| |
Collapse
|
94
|
Thébault S, Lejal N, Dogliani A, Donchet A, Urvoas A, Valerio-Lepiniec M, Lavie M, Baronti C, Touret F, Da Costa B, Bourgon C, Fraysse A, Saint-Albin-Deliot A, Morel J, Klonjkowski B, de Lamballerie X, Dubuisson J, Roussel A, Minard P, Le Poder S, Meunier N, Delmas B. Biosynthetic proteins targeting the SARS-CoV-2 spike as anti-virals. PLoS Pathog 2022; 18:e1010799. [PMID: 36067253 PMCID: PMC9481167 DOI: 10.1371/journal.ppat.1010799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022] Open
Abstract
The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Lejal
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexis Dogliani
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR, Marseille, France
| | - Amélie Donchet
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Agathe Urvoas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Marie Valerio-Lepiniec
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Muriel Lavie
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Cécile Baronti
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey Fraysse
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey Saint-Albin-Deliot
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jessica Morel
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Klonjkowski
- UMR Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Jean Dubuisson
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Alain Roussel
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR, Marseille, France
| | - Philippe Minard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Sophie Le Poder
- UMR Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
95
|
Kumar S, Dutta D, Ravichandiran V, Sukla S. Monoclonal antibodies: a remedial approach to prevent SARS-CoV-2 infection. 3 Biotech 2022; 12:227. [PMID: 35982759 PMCID: PMC9383686 DOI: 10.1007/s13205-022-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
SARS-CoV-2, the newly emerged virus of the Coronaviridae family is causing havoc worldwide. The novel coronavirus 2019 was first reported in Wuhan, China marked as the third highly infectious pathogenic virus of the twenty-first century. The typical manifestations of COVID-19 include cough, sore throat, fever, fatigue, loss of sense of taste and difficulties in breathing. Large numbers of SARS-CoV-2 infected patients have mild to moderate symptoms, however severe and life-threatening cases occur in about 5-10% of infections with an approximately 2% mortality rate. For the treatment of SARS-CoV-2, the use of neutralizing monoclonal antibodies (mAbs) could be one approach. The receptor binding domain (RBD) and N-terminal domain (NTD) situated on the peak of the spike protein (S-Protein) of SARS-CoV-2 are immunogenic in nature, therefore, can be targeted by neutralizing monoclonal antibodies. Several bioinformatics approaches highlight the identification of novel SARS-CoV-2 epitopes which can be targeted for the development of COVID-19 therapeutics. Here we present a summary of neutralizing mAbs isolated from COVID-19 infected patients which are anticipated to be a better therapeutic alternative against SARS-CoV-2. However, provided the vast escalation of the disease worldwide affecting people from all strata, affording expensive mAb therapy will not be feasible. Hence other strategies are also being employed to find suitable vaccine candidates and antivirals against SARS-CoV-2 that can be made easily available to the population.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Debrupa Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Soumi Sukla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| |
Collapse
|
96
|
Qiao S, Zhang S, Ge J, Wang X. The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. FEBS Open Bio 2022; 12:1602-1622. [PMID: 35689514 PMCID: PMC9433818 DOI: 10.1002/2211-5463.13454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Highly pathogenic human coronaviruses (CoV) including SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged over the past two decades, resulting in infectious disease outbreaks that have greatly affected public health. The CoV surface spike (S) glycoprotein mediates receptor binding and membrane fusion for cell entry, playing critical roles in CoV infection and evolution. The S glycoprotein is also the major target molecule for prophylactic and therapeutic interventions, including neutralizing antibodies and vaccines. In this review, we summarize key studies that have revealed the structural basis of S-mediated cell entry of SARS-CoV, MERS-CoV and SARS-CoV-2. Additionally, we discuss the evolution of the S glycoprotein to realize cross-species transmission from the viewpoint of structural biology. Lastly, we describe the recent progress in developing antibodies, nanobodies and peptide inhibitors that target the SARS-CoV-2 S glycoprotein for therapeutic purposes.
Collapse
Affiliation(s)
- Shuyuan Qiao
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
97
|
Wu J, Zhang J, Zhang HX. Computational Design of Miniprotein Inhibitors Targeting SARS-CoV-2 Spike Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10690-10703. [PMID: 35984970 PMCID: PMC9437664 DOI: 10.1021/acs.langmuir.2c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Indexed: 05/16/2023]
Abstract
The ongoing pandemic of COVID-19 caused by SARS-CoV-2 has become a global health problem. There is an urgent need to develop therapeutic drugs, effective therapies, and vaccines to prevent the spread of the virus. The virus first enters the host cell through the interaction between the receptor binding domain (RBD) of spike protein and the peptidase domain (PD) of the angiotensin-converting enzyme 2 (ACE2). Therefore, blocking the binding of RBD and ACE2 is a promising strategy to inhibit the invasion and infection of the virus in the host cell. In the study, we designed several miniprotein inhibitors against SARS-CoV-2 by single/double/triple-point mutant, based on the initial inhibitor LCB3. Molecular dynamics (MD) simulations and trajectory analysis were performed for an in-depth analysis of the structural stability, essential protein motions, and per-residue energy decomposition involved in the interaction of inhibitors with the RBD. The results showed that the inhibitors have adapted the protein RBD in the binding interface, thereby forming stable complexes. These inhibitors display low binding free energy in the MM/PBSA calculations, substantiating their strong interaction with RBD. Moreover, the binding affinity of the best miniprotein inhibitor, H6Y-M7L-L17F mutant, to RBD was ∼45 980 times (ΔG = RT ln Ki) higher than that of the initial inhibitor LCB3. Following H6Y-M7L-L17F mutant, the inhibitors with strong binding activity are successively H6Y-L17F, L17F, H6Y, and F30Y mutants. Our research proves that the miniprotein inhibitors can maintain their secondary structure and have a highly stable blocking (binding) effect on SARS-CoV-2. This study proposes novel miniprotein mutant inhibitors with enhanced binding to spike protein and provides potential guidance for the rational design of new SARS-CoV-2 spike protein inhibitors.
Collapse
Affiliation(s)
- Jianhua Wu
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People’s Republic of China
| | - Jilong Zhang
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People’s Republic of China
| | - Hong-Xing Zhang
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People’s Republic of China
| |
Collapse
|
98
|
Cao X, Zai J, Zhao Q, Xie L, Li Y. Intranasal immunization with recombinant Vaccinia virus encoding trimeric SARS-CoV-2 spike receptor-binding domain induces neutralizing antibody. Vaccine 2022; 40:5757-5763. [PMID: 36055873 PMCID: PMC9420698 DOI: 10.1016/j.vaccine.2022.08.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
Respiratory transmission of SARS-CoV-2 is considered to be the major dissemination route for COVID-19, therefore, mucosal immune responses have great importance in preventing SARS-CoV-2 from infection. In this study, we constructed a recombinant Vaccinia virus (VV) harboring trimeric receptor-binding domain (RBD) of SARS-CoV-2 spike protein (VV-tRBD), and evaluated the immune responses towards RBD following intranasal immunization against mice and rabbits. In BALB/c mice, intranasal immunization with VV-tRBD elicited robust humoral and cellular immune responses, with high-level of both neutralizing IgG and IgA in sera against SARS-CoV-2 psudoviruses, and a number of RBD-specific IFN-γ-secreting lymphocytes. Sera from immunized rabbits also exhibited neutralization effects. Notably, RBD-specific secretory IgA (sIgA) in both nasal washes and bronchoalveolar lavage fluids (BALs) were detectable and showed substantial neutralization activities. Collectively, a recombinant VV expressing trimeric RBD confers robust systemic immune response and mucosal neutralizing antibodies, thus warranting further exploration as a mucosal vaccine.
Collapse
Affiliation(s)
- Xiaoling Cao
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Junjie Zai
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, China.
| | - Qingzhen Zhao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China.
| | - Lilan Xie
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China; Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China.
| | - Yaoming Li
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China; Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China.
| |
Collapse
|
99
|
Abstract
Despite effective spike-based vaccines and monoclonal antibodies, the SARS-CoV-2 pandemic continues more than two and a half years post-onset. Relentless investigation has outlined a causative dynamic between host-derived antibodies and reciprocal viral subversion. Integration of this paradigm into the architecture of next generation antiviral strategies, predicated on a foundational understanding of the virology and immunology of SARS-CoV-2, will be critical for success. This review aims to serve as a primer on the immunity endowed by antibodies targeting SARS-CoV-2 spike protein through a structural perspective. We begin by introducing the structure and function of spike, polyclonal immunity to SARS-CoV-2 spike, and the emergence of major SARS-CoV-2 variants that evade immunity. The remainder of the article comprises an in-depth dissection of all major epitopes on SARS-CoV-2 spike in molecular detail, with emphasis on the origins, neutralizing potency, mechanisms of action, cross-reactivity, and variant resistance of representative monoclonal antibodies to each epitope.
Collapse
Affiliation(s)
- John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, United States; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
100
|
O'Shea JM, Goutou A, Brydon J, Sethna CR, Wood CW, Greiss S. Generation of Photocaged Nanobodies for Intracellular Applications in an Animal Using Genetic Code Expansion and Computationally Guided Protein Engineering. Chembiochem 2022; 23:e202200321. [PMID: 35731601 PMCID: PMC9542635 DOI: 10.1002/cbic.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/12/2022]
Abstract
Nanobodies are becoming increasingly popular as tools for manipulating and visualising proteins in vivo. The ability to control nanobody/antigen interactions using light could provide precise spatiotemporal control over protein function. We develop a general approach to engineer photo-activatable nanobodies using photocaged amino acids that are introduced into the target binding interface by genetic code expansion. Guided by computational alanine scanning and molecular dynamics simulations, we tune nanobody/target binding affinity to eliminate binding before uncaging. Upon photo-activation using 365 nm light, binding is restored. We use this approach to generate improved photocaged variants of two anti-GFP nanobodies that function robustly when directly expressed in a complex intracellular environment together with their antigen. We apply them to control subcellular protein localisation in the nematode worm Caenorhabditis elegans. Our approach applies predictions derived from computational modelling directly in a living animal and demonstrates the importance of accounting for in vivo effects on protein-protein interactions.
Collapse
Affiliation(s)
- Jack M O'Shea
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK
| | - Angeliki Goutou
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK
| | - Jack Brydon
- MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Cyrus R Sethna
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK
| | - Christopher W Wood
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Roger Land Building King's Buildings, Edinburgh, EH9 3JQ, UK
| | - Sebastian Greiss
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|