51
|
Nordblom N, Büttner M, Schwendicke F. Artificial Intelligence in Orthodontics: Critical Review. J Dent Res 2024; 103:577-584. [PMID: 38682436 PMCID: PMC11118788 DOI: 10.1177/00220345241235606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
With increasing digitalization in orthodontics, certain orthodontic manufacturing processes such as the fabrication of indirect bonding trays, aligner production, or wire bending can be automated. However, orthodontic treatment planning and evaluation remains a specialist's task and responsibility. As the prediction of growth in orthodontic patients and response to orthodontic treatment is inherently complex and individual, orthodontists make use of features gathered from longitudinal, multimodal, and standardized orthodontic data sets. Currently, these data sets are used by the orthodontist to make informed, rule-based treatment decisions. In research, artificial intelligence (AI) has been successfully applied to assist orthodontists with the extraction of relevant data from such data sets. Here, AI has been applied for the analysis of clinical imagery, such as automated landmark detection in lateral cephalograms but also for evaluation of intraoral scans or photographic data. Furthermore, AI is applied to help orthodontists with decision support for treatment decisions such as the need for orthognathic surgery or for orthodontic tooth extractions. One major challenge in current AI research in orthodontics is the limited generalizability, as most studies use unicentric data with high risks of bias. Moreover, comparing AI across different studies and tasks is virtually impossible as both outcomes and outcome metrics vary widely, and underlying data sets are not standardized. Notably, only few AI applications in orthodontics have reached full clinical maturity and regulatory approval, and researchers in the field are tasked with tackling real-world evaluation and implementation of AI into the orthodontic workflow.
Collapse
Affiliation(s)
- N.F. Nordblom
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - M. Büttner
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - F. Schwendicke
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
52
|
Regulski PA. Editorial for "Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging". J Magn Reson Imaging 2024. [PMID: 38804734 DOI: 10.1002/jmri.29457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Piotr A Regulski
- Laboratory of Digital Imaging and Virtual Reality, Department of Dental and Maxillofacial Radiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
53
|
Kapitany V, Fatima A, Zickus V, Whitelaw J, McGhee E, Insall R, Machesky L, Faccio D. Single-sample image-fusion upsampling of fluorescence lifetime images. SCIENCE ADVANCES 2024; 10:eadn0139. [PMID: 38781345 PMCID: PMC11114222 DOI: 10.1126/sciadv.adn0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global correlations between the two "single-sample" measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared, for example, to standard bilinear interpolation. The general approach laid out by single-sample image-fusion upsampling can be applied to other image super-resolution problems where two different datasets are available.
Collapse
Affiliation(s)
- Valentin Kapitany
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Areeba Fatima
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | | | - Ewan McGhee
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | | | - Daniele Faccio
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
54
|
Călburean PA, Pannone L, Monaco C, Rocca DD, Sorgente A, Almorad A, Bala G, Aglietti F, Ramak R, Overeinder I, Ströker E, Pappaert G, Măru'teri M, Harpa M, La Meir M, Brugada P, Sieira J, Sarkozy A, Chierchia GB, de Asmundis C. Predicting and Recognizing Drug-Induced Type I Brugada Pattern Using ECG-Based Deep Learning. J Am Heart Assoc 2024; 13:e033148. [PMID: 38726893 PMCID: PMC11179812 DOI: 10.1161/jaha.123.033148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/28/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Brugada syndrome (BrS) has been associated with sudden cardiac death in otherwise healthy subjects, and drug-induced BrS accounts for 55% to 70% of all patients with BrS. This study aims to develop a deep convolutional neural network and evaluate its performance in recognizing and predicting BrS diagnosis. METHODS AND RESULTS Consecutive patients who underwent ajmaline testing for BrS following a standardized protocol were included. ECG tracings from baseline and during ajmaline were transformed using wavelet analysis and a deep convolutional neural network was separately trained to (1) recognize and (2) predict BrS type I pattern. The resultant networks are referred to as BrS-Net. A total of 1188 patients were included, of which 361 (30.3%) patients developed BrS type I pattern during ajmaline infusion. When trained and evaluated on ECG tracings during ajmaline, BrS-Net recognized a BrS type I pattern with an AUC-ROC of 0.945 (0.921-0.969) and an AUC-PR of 0.892 (0.815-0.939). When trained and evaluated on ECG tracings at baseline, BrS-Net predicted a BrS type I pattern during ajmaline with an AUC-ROC of 0.805 (0.845-0.736) and an AUC-PR of 0.605 (0.460-0.664). CONCLUSIONS BrS-Net, a deep convolutional neural network, can identify BrS type I pattern with high performance. BrS-Net can predict from baseline ECG the development of a BrS type I pattern after ajmaline with good performance in an unselected population.
Collapse
Affiliation(s)
- Paul-Adrian Călburean
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
- University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu Mureş Târgu Mureş Romania
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Domenico Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Filippo Aglietti
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Robbert Ramak
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Gudrun Pappaert
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Marius Măru'teri
- University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu Mureş Târgu Mureş Romania
| | - Marius Harpa
- University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu Mureş Târgu Mureş Romania
| | - Mark La Meir
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Andrea Sarkozy
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, European Reference Networks Guard-Heart Brussels Belgium
| |
Collapse
|
55
|
Baheti B, Innani S, Nasrallah M, Bakas S. Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding. Front Neurosci 2024; 18:1304191. [PMID: 38831756 PMCID: PMC11146603 DOI: 10.3389/fnins.2024.1304191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Glioblastoma (GBM) is a highly aggressive malignant tumor of the central nervous system that displays varying molecular and morphological profiles, leading to challenging prognostic assessments. Stratifying GBM patients according to overall survival (OS) from H&E-stained whole slide images (WSI) using advanced computational methods is challenging, but with direct clinical implications. Methods This work is focusing on GBM (IDH-wildtype, CNS WHO Gr.4) cases, identified from the TCGA-GBM and TCGA-LGG collections after considering the 2021 WHO classification criteria. The proposed approach starts with patch extraction in each WSI, followed by comprehensive patch-level curation to discard artifactual content, i.e., glass reflections, pen markings, dust on the slide, and tissue tearing. Each patch is then computationally described as a feature vector defined by a pre-trained VGG16 convolutional neural network. Principal component analysis provides a feature representation of reduced dimensionality, further facilitating identification of distinct groups of morphology patterns, via unsupervised k-means clustering. Results The optimal number of clusters, according to cluster reproducibility and separability, is automatically determined based on the rand index and silhouette coefficient, respectively. Our proposed approach achieved prognostic stratification accuracy of 83.33% on a multi-institutional independent unseen hold-out test set with sensitivity and specificity of 83.33%. Discussion We hypothesize that the quantification of these clusters of morphology patterns, reflect the tumor's spatial heterogeneity and yield prognostic relevant information to distinguish between short and long survivors using a decision tree classifier. The interpretability analysis of the obtained results can contribute to furthering and quantifying our understanding of GBM and potentially improving our diagnostic and prognostic predictions.
Collapse
Affiliation(s)
- Bhakti Baheti
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shubham Innani
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - MacLean Nasrallah
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
56
|
Rubegni G, Cartocci A, Tognetti L, Tosi G, Salfi M, Caruso A, Castellino N, Orione M, Cappellani F, Fallico M, D'Esposito F, Russo A, Gagliano C, Avitabile T. Design of a new 3D printed all-in-one magnetic smartphone adapter for fundus and anterior segment imaging. Eur J Ophthalmol 2024:11206721241246187. [PMID: 38644806 DOI: 10.1177/11206721241246187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
PURPOSE To describe and validate a 3D-printed adapter tool which could be used with either a slit lamp or a condensing lens, interchangeable between devices through magnetic fastening, in order to provide physicians a quick, easy and effective method of obtaining clinical photos. MATERIALS AND METHODS Three specialists, with at least 4-year experience in ophthalmology, gave a rate of image quality obtained by our device and the diagnostic confidence grade. The 3 specialists conducted each 13 or 14 examinations with the smartphone and magnetic adapter. At the end of evaluation, they rated with the Likert scale the ease of use of the device in obtaining clinical images of the anterior segment and ocular fundus respectively. RESULTS Data of quality perception and confidence demonstrated high values not dissimilar to the "de visu" eye examination. Moreover the instrument we designed turned out to be very user friendly. CONCLUSION Our adapter coupled with a modern smartphone was able to obtain 4k images and videos of anterior segment, central and peripheral fundus, in an easy and inexpensive way.
Collapse
Affiliation(s)
- Giovanni Rubegni
- Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Cartocci
- Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Siena, Italy
| | - Linda Tognetti
- Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Siena, Italy
| | - Gianmarco Tosi
- Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Massimiliano Salfi
- Department of mathematics and informatics, University of Catania, Catania, Italy
| | - Andrea Caruso
- Department of mathematics and informatics, University of Catania, Catania, Italy
| | | | - Matteo Orione
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Fabiana D'Esposito
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Napoli, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | | |
Collapse
|
57
|
Li T, Guo Y, Zhao Z, Chen M, Lin Q, Hu X, Yao Z, Hu B. Automated Diagnosis of Major Depressive Disorder With Multi-Modal MRIs Based on Contrastive Learning: A Few-Shot Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1566-1576. [PMID: 38512734 DOI: 10.1109/tnsre.2024.3380357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Depression ranks among the most prevalent mood-related psychiatric disorders. Existing clinical diagnostic approaches relying on scale interviews are susceptible to individual and environmental variations. In contrast, the integration of neuroimaging techniques and computer science has provided compelling evidence for the quantitative assessment of major depressive disorder (MDD). However, one of the major challenges in computer-aided diagnosis of MDD is to automatically and effectively mine the complementary cross-modal information from limited datasets. In this study, we proposed a few-shot learning framework that integrates multi-modal MRI data based on contrastive learning. In the upstream task, it is designed to extract knowledge from heterogeneous data. Subsequently, the downstream task is dedicated to transferring the acquired knowledge to the target dataset, where a hierarchical fusion paradigm is also designed to integrate features across inter- and intra-modalities. Lastly, the proposed model was evaluated on a set of multi-modal clinical data, achieving average scores of 73.52% and 73.09% for accuracy and AUC, respectively. Our findings also reveal that the brain regions within the default mode network and cerebellum play a crucial role in the diagnosis, which provides further direction in exploring reproducible biomarkers for MDD diagnosis.
Collapse
|
58
|
Machado Reyes D, Chao H, Hahn J, Shen L, Yan P. Identifying Progression-Specific Alzheimer's Subtypes Using Multimodal Transformer. J Pers Med 2024; 14:421. [PMID: 38673048 PMCID: PMC11051083 DOI: 10.3390/jpm14040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet its current treatments are limited to stopping disease progression. Moreover, the effectiveness of these treatments remains uncertain due to the heterogeneity of the disease. Therefore, it is essential to identify disease subtypes at a very early stage. Current data-driven approaches can be used to classify subtypes during later stages of AD or related disorders, but making predictions in the asymptomatic or prodromal stage is challenging. Furthermore, the classifications of most existing models lack explainability, and these models rely solely on a single modality for assessment, limiting the scope of their analysis. Thus, we propose a multimodal framework that utilizes early-stage indicators, including imaging, genetics, and clinical assessments, to classify AD patients into progression-specific subtypes at an early stage. In our framework, we introduce a tri-modal co-attention mechanism (Tri-COAT) to explicitly capture cross-modal feature associations. Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (slow progressing = 177, intermediate = 302, and fast = 15) were used to train and evaluate Tri-COAT using a 10-fold stratified cross-testing approach. Our proposed model outperforms baseline models and sheds light on essential associations across multimodal features supported by known biological mechanisms. The multimodal design behind Tri-COAT allows it to achieve the highest classification area under the receiver operating characteristic curve while simultaneously providing interpretability to the model predictions through the co-attention mechanism.
Collapse
Affiliation(s)
- Diego Machado Reyes
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (D.M.R.); (H.C.); (J.H.)
| | - Hanqing Chao
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (D.M.R.); (H.C.); (J.H.)
| | - Juergen Hahn
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (D.M.R.); (H.C.); (J.H.)
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Pingkun Yan
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (D.M.R.); (H.C.); (J.H.)
| | | |
Collapse
|
59
|
Jones CH, Dolsten M. Healthcare on the brink: navigating the challenges of an aging society in the United States. NPJ AGING 2024; 10:22. [PMID: 38582901 PMCID: PMC10998868 DOI: 10.1038/s41514-024-00148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
The US healthcare system is at a crossroads. With an aging population requiring more care and a strained system facing workforce shortages, capacity issues, and fragmentation, innovative solutions and policy reforms are needed. This paper aims to spark dialogue and collaboration among healthcare stakeholders and inspire action to meet the needs of the aging population. Through a comprehensive analysis of the impact of an aging society, this work highlights the urgency of addressing this issue and the importance of restructuring the healthcare system to be more efficient, equitable, and responsive.
Collapse
Affiliation(s)
- Charles H Jones
- Pfizer, 66 Hudson Boulevard, New York, New York, 10018, USA.
| | - Mikael Dolsten
- Pfizer, 66 Hudson Boulevard, New York, New York, 10018, USA.
| |
Collapse
|
60
|
Muse ED, Topol EJ. Transforming the cardiometabolic disease landscape: Multimodal AI-powered approaches in prevention and management. Cell Metab 2024; 36:670-683. [PMID: 38428435 PMCID: PMC10990799 DOI: 10.1016/j.cmet.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
The rise of artificial intelligence (AI) has revolutionized various scientific fields, particularly in medicine, where it has enabled the modeling of complex relationships from massive datasets. Initially, AI algorithms focused on improved interpretation of diagnostic studies such as chest X-rays and electrocardiograms in addition to predicting patient outcomes and future disease onset. However, AI has evolved with the introduction of transformer models, allowing analysis of the diverse, multimodal data sources existing in medicine today. Multimodal AI holds great promise in more accurate disease risk assessment and stratification as well as optimizing the key driving factors in cardiometabolic disease: blood pressure, sleep, stress, glucose control, weight, nutrition, and physical activity. In this article we outline the current state of medical AI in cardiometabolic disease, highlighting the potential of multimodal AI to augment personalized prevention and treatment strategies in cardiometabolic disease.
Collapse
Affiliation(s)
- Evan D Muse
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA 92037, USA; Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA 92037, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA 92037, USA; Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA 92037, USA.
| |
Collapse
|
61
|
Ferreira A, Li J, Pomykala KL, Kleesiek J, Alves V, Egger J. GAN-based generation of realistic 3D volumetric data: A systematic review and taxonomy. Med Image Anal 2024; 93:103100. [PMID: 38340545 DOI: 10.1016/j.media.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
With the massive proliferation of data-driven algorithms, such as deep learning-based approaches, the availability of high-quality data is of great interest. Volumetric data is very important in medicine, as it ranges from disease diagnoses to therapy monitoring. When the dataset is sufficient, models can be trained to help doctors with these tasks. Unfortunately, there are scenarios where large amounts of data is unavailable. For example, rare diseases and privacy issues can lead to restricted data availability. In non-medical fields, the high cost of obtaining enough high-quality data can also be a concern. A solution to these problems can be the generation of realistic synthetic data using Generative Adversarial Networks (GANs). The existence of these mechanisms is a good asset, especially in healthcare, as the data must be of good quality, realistic, and without privacy issues. Therefore, most of the publications on volumetric GANs are within the medical domain. In this review, we provide a summary of works that generate realistic volumetric synthetic data using GANs. We therefore outline GAN-based methods in these areas with common architectures, loss functions and evaluation metrics, including their advantages and disadvantages. We present a novel taxonomy, evaluations, challenges, and research opportunities to provide a holistic overview of the current state of volumetric GANs.
Collapse
Affiliation(s)
- André Ferreira
- Center Algoritmi/LASI, University of Minho, Braga, 4710-057, Portugal; Computer Algorithms for Medicine Laboratory, Graz, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany; Institute of Medical Informatics, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| | - Jianning Li
- Computer Algorithms for Medicine Laboratory, Graz, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany.
| | - Kelsey L Pomykala
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany.
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, Essen, 45147, Germany; TU Dortmund University, Department of Physics, Otto-Hahn-Straße 4, 44227 Dortmund, Germany.
| | - Victor Alves
- Center Algoritmi/LASI, University of Minho, Braga, 4710-057, Portugal.
| | - Jan Egger
- Computer Algorithms for Medicine Laboratory, Graz, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany; Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, Graz, 801, Austria.
| |
Collapse
|
62
|
Coroller T, Sahiner B, Amatya A, Gossmann A, Karagiannis K, Moloney C, Samala RK, Santana-Quintero L, Solovieff N, Wang C, Amiri-Kordestani L, Cao Q, Cha KH, Charlab R, Cross FH, Hu T, Huang R, Kraft J, Krusche P, Li Y, Li Z, Mazo I, Paul R, Schnakenberg S, Serra P, Smith S, Song C, Su F, Tiwari M, Vechery C, Xiong X, Zarate JP, Zhu H, Chakravartty A, Liu Q, Ohlssen D, Petrick N, Schneider JA, Walderhaug M, Zuber E. Methodology for Good Machine Learning with Multi-Omics Data. Clin Pharmacol Ther 2024; 115:745-757. [PMID: 37965805 DOI: 10.1002/cpt.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
In 2020, Novartis Pharmaceuticals Corporation and the U.S. Food and Drug Administration (FDA) started a 4-year scientific collaboration to approach complex new data modalities and advanced analytics. The scientific question was to find novel radio-genomics-based prognostic and predictive factors for HR+/HER- metastatic breast cancer under a Research Collaboration Agreement. This collaboration has been providing valuable insights to help successfully implement future scientific projects, particularly using artificial intelligence and machine learning. This tutorial aims to provide tangible guidelines for a multi-omics project that includes multidisciplinary expert teams, spanning across different institutions. We cover key ideas, such as "maintaining effective communication" and "following good data science practices," followed by the four steps of exploratory projects, namely (1) plan, (2) design, (3) develop, and (4) disseminate. We break each step into smaller concepts with strategies for implementation and provide illustrations from our collaboration to further give the readers actionable guidance.
Collapse
Affiliation(s)
| | - Berkman Sahiner
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anup Amatya
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Alexej Gossmann
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Konstantinos Karagiannis
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Ravi K Samala
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Luis Santana-Quintero
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nadia Solovieff
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Craig Wang
- Novartis Pharma AG, Rotkreuz, Switzerland
| | - Laleh Amiri-Kordestani
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Qian Cao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kenny H Cha
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rosane Charlab
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Frank H Cross
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tingting Hu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ruihao Huang
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jeffrey Kraft
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Yutong Li
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Zheng Li
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Ilya Mazo
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rahul Paul
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Paolo Serra
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Sean Smith
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chi Song
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Fei Su
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Mohit Tiwari
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Colin Vechery
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Xin Xiong
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Hao Zhu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Qi Liu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - David Ohlssen
- Novartis Pharmaceutical Company, East Hanover, New Jersey, USA
| | - Nicholas Petrick
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Julie A Schneider
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mark Walderhaug
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | |
Collapse
|
63
|
Park WY, Jeon K, Schmidt TS, Kondylakis H, Alkasab T, Dewey BE, You SC, Nagy P. Development of Medical Imaging Data Standardization for Imaging-Based Observational Research: OMOP Common Data Model Extension. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:899-908. [PMID: 38315345 PMCID: PMC11031512 DOI: 10.1007/s10278-024-00982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024]
Abstract
The rapid growth of artificial intelligence (AI) and deep learning techniques require access to large inter-institutional cohorts of data to enable the development of robust models, e.g., targeting the identification of disease biomarkers and quantifying disease progression and treatment efficacy. The Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) has been designed to accommodate a harmonized representation of observational healthcare data. This study proposes the Medical Imaging CDM (MI-CDM) extension, adding two new tables and two vocabularies to the OMOP CDM to address the structural and semantic requirements to support imaging research. The tables provide the capabilities of linking DICOM data sources as well as tracking the provenance of imaging features derived from those images. The implementation of the extension enables phenotype definitions using imaging features and expanding standardized computable imaging biomarkers. This proposal offers a comprehensive and unified approach for conducting imaging research and outcome studies utilizing imaging features.
Collapse
Affiliation(s)
- Woo Yeon Park
- Biomedical Informatics and Data Science, Johns Hopkins University, 855 N Wolfe St, Rangos 616, Baltimore, MD, USA.
| | - Kyulee Jeon
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea
| | - Teri Sippel Schmidt
- Biomedical Informatics and Data Science, Johns Hopkins University, 855 N Wolfe St, Rangos 616, Baltimore, MD, USA
| | - Haridimos Kondylakis
- Institute of Computer Science, Foundation of Research & Technology-Hellas (FORTH), Heraklion, Greece
| | - Tarik Alkasab
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Blake E Dewey
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Seng Chan You
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea
| | - Paul Nagy
- Biomedical Informatics and Data Science, Johns Hopkins University, 855 N Wolfe St, Rangos 616, Baltimore, MD, USA
| |
Collapse
|
64
|
Yin M, Lin J, Wang Y, Liu Y, Zhang R, Duan W, Zhou Z, Zhu S, Gao J, Liu L, Liu X, Gu C, Huang Z, Xu X, Xu C, Zhu J. Development and validation of a multimodal model in predicting severe acute pancreatitis based on radiomics and deep learning. Int J Med Inform 2024; 184:105341. [PMID: 38290243 DOI: 10.1016/j.ijmedinf.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Aim to establish a multimodal model for predicting severe acute pancreatitis (SAP) using machine learning (ML) and deep learning (DL). METHODS In this multicentre retrospective study, patients diagnosed with acute pancreatitis at admission were enrolled from January 2017 to December 2021. Clinical information within 24 h and CT scans within 72 h of admission were collected. First, we trained Model α based on clinical features selected by least absolute shrinkage and selection operator analysis. Second, radiomics features were extracted from 3D-CT scans and Model β was developed on the features after dimensionality reduction using principal component analysis. Third, Model γ was trained on 2D-CT images. Lastly, a multimodal model, namely PrismSAP, was constructed based on aforementioned features in the training set. The predictive accuracy of PrismSAP was verified in the validation and internal test sets and further validated in the external test set. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, recall, precision and F1-score. RESULTS A total of 1,221 eligible patients were randomly split into a training set (n = 864), a validation set (n = 209) and an internal test set (n = 148). Data of 266 patients were for external testing. In the external test set, PrismSAP performed best with the highest AUC of 0.916 (0.873-0.960) among all models [Model α: 0.709 (0.618-0.800); Model β: 0.749 (0.675-0.824); Model γ: 0.687 (0.592-0.782); MCTSI: 0.778 (0.698-0.857); RANSON: 0.642 (0.559-0.725); BISAP: 0.751 (0.668-0.833); SABP: 0.710 (0.621-0.798)]. CONCLUSION The proposed multimodal model outperformed any single-modality models and traditional scoring systems.
Collapse
Affiliation(s)
- Minyue Yin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jiaxi Lin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213299, China
| | - Yuanjun Liu
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Rufa Zhang
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, the People's Hospital of Hunan Province, Changsha, Hunan 410002, China
| | - Zhirun Zhou
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shiqi Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jingwen Gao
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Lu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Xiaolin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Chenqi Gu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhou Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodan Xu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China.
| | - Chunfang Xu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China.
| | - Jinzhou Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
65
|
Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel) 2024; 11:337. [PMID: 38671759 PMCID: PMC11047988 DOI: 10.3390/bioengineering11040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
As healthcare systems around the world face challenges such as escalating costs, limited access, and growing demand for personalized care, artificial intelligence (AI) is emerging as a key force for transformation. This review is motivated by the urgent need to harness AI's potential to mitigate these issues and aims to critically assess AI's integration in different healthcare domains. We explore how AI empowers clinical decision-making, optimizes hospital operation and management, refines medical image analysis, and revolutionizes patient care and monitoring through AI-powered wearables. Through several case studies, we review how AI has transformed specific healthcare domains and discuss the remaining challenges and possible solutions. Additionally, we will discuss methodologies for assessing AI healthcare solutions, ethical challenges of AI deployment, and the importance of data privacy and bias mitigation for responsible technology use. By presenting a critical assessment of AI's transformative potential, this review equips researchers with a deeper understanding of AI's current and future impact on healthcare. It encourages an interdisciplinary dialogue between researchers, clinicians, and technologists to navigate the complexities of AI implementation, fostering the development of AI-driven solutions that prioritize ethical standards, equity, and a patient-centered approach.
Collapse
Affiliation(s)
| | - Mohamad Forouzanfar
- Département de Génie des Systèmes, École de Technologie Supérieure (ÉTS), Université du Québec, Montréal, QC H3C 1K3, Canada
- Centre de Recherche de L’institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC H3W 1W5, Canada
| |
Collapse
|
66
|
Zheng H, Hung ALY, Miao Q, Song W, Scalzo F, Raman SS, Zhao K, Sung K. AtPCa-Net: anatomical-aware prostate cancer detection network on multi-parametric MRI. Sci Rep 2024; 14:5740. [PMID: 38459100 PMCID: PMC10923873 DOI: 10.1038/s41598-024-56405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
Multi-parametric MRI (mpMRI) is widely used for prostate cancer (PCa) diagnosis. Deep learning models show good performance in detecting PCa on mpMRI, but domain-specific PCa-related anatomical information is sometimes overlooked and not fully explored even by state-of-the-art deep learning models, causing potential suboptimal performances in PCa detection. Symmetric-related anatomical information is commonly used when distinguishing PCa lesions from other visually similar but benign prostate tissue. In addition, different combinations of mpMRI findings are used for evaluating the aggressiveness of PCa for abnormal findings allocated in different prostate zones. In this study, we investigate these domain-specific anatomical properties in PCa diagnosis and how we can adopt them into the deep learning framework to improve the model's detection performance. We propose an anatomical-aware PCa detection Network (AtPCa-Net) for PCa detection on mpMRI. Experiments show that the AtPCa-Net can better utilize the anatomical-related information, and the proposed anatomical-aware designs help improve the overall model performance on both PCa detection and patient-level classification.
Collapse
Affiliation(s)
- Haoxin Zheng
- Radiological Sciences, University of California, Los Angeles, Los Angeles, 90095, USA.
- Computer Science, University of California, Los Angeles, Los Angeles, 90095, USA.
| | - Alex Ling Yu Hung
- Radiological Sciences, University of California, Los Angeles, Los Angeles, 90095, USA
- Computer Science, University of California, Los Angeles, Los Angeles, 90095, USA
| | - Qi Miao
- Radiological Sciences, University of California, Los Angeles, Los Angeles, 90095, USA
| | - Weinan Song
- Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, 90095, USA
| | - Fabien Scalzo
- Computer Science, University of California, Los Angeles, Los Angeles, 90095, USA
- The Seaver College, Pepperdine University, Los Angeles, 90363, USA
| | - Steven S Raman
- Radiological Sciences, University of California, Los Angeles, Los Angeles, 90095, USA
| | - Kai Zhao
- Radiological Sciences, University of California, Los Angeles, Los Angeles, 90095, USA
| | - Kyunghyun Sung
- Radiological Sciences, University of California, Los Angeles, Los Angeles, 90095, USA
| |
Collapse
|
67
|
Chen J, Wen Y, Pokojovy M, Tseng TLB, McCaffrey P, Vo A, Walser E, Moen S. Multi-modal learning for inpatient length of stay prediction. Comput Biol Med 2024; 171:108121. [PMID: 38382388 DOI: 10.1016/j.compbiomed.2024.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Predicting inpatient length of stay (LoS) is important for hospitals aiming to improve service efficiency and enhance management capabilities. Patient medical records are strongly associated with LoS. However, due to diverse modalities, heterogeneity, and complexity of data, it becomes challenging to effectively leverage these heterogeneous data to put forth a predictive model that can accurately predict LoS. To address the challenge, this study aims to establish a novel data-fusion model, termed as DF-Mdl, to integrate heterogeneous clinical data for predicting the LoS of inpatients between hospital discharge and admission. Multi-modal data such as demographic data, clinical notes, laboratory test results, and medical images are utilized in our proposed methodology with individual "basic" sub-models separately applied to each different data modality. Specifically, a convolutional neural network (CNN) model, which we termed CRXMDL, is designed for chest X-ray (CXR) image data, two long short-term memory networks are used to extract features from long text data, and a novel attention-embedded 1D convolutional neural network is developed to extract useful information from numerical data. Finally, these basic models are integrated to form a new data-fusion model (DF-Mdl) for inpatient LoS prediction. The proposed method attains the best R2 and EVAR values of 0.6039 and 0.6042 among competitors for the LoS prediction on the Medical Information Mart for Intensive Care (MIMIC)-IV test dataset. Empirical evidence suggests better performance compared with other state-of-the-art (SOTA) methods, which demonstrates the effectiveness and feasibility of the proposed approach.
Collapse
Affiliation(s)
- Junde Chen
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA, 92866, USA
| | - Yuxin Wen
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA, 92866, USA.
| | - Michael Pokojovy
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, 23529, USA
| | - Tzu-Liang Bill Tseng
- Department of Industrial, Manufacturing and Systems Engineering, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Peter McCaffrey
- University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Alexander Vo
- University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Eric Walser
- University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Scott Moen
- University of Texas Medical Branch, Galveston, TX, 77550, USA
| |
Collapse
|
68
|
Wang Z, Zheng C, Han X, Chen W, Lu L. An Innovative and Efficient Diagnostic Prediction Flow for Head and Neck Cancer: A Deep Learning Approach for Multi-Modal Survival Analysis Prediction Based on Text and Multi-Center PET/CT Images. Diagnostics (Basel) 2024; 14:448. [PMID: 38396486 PMCID: PMC10888043 DOI: 10.3390/diagnostics14040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Objective: To comprehensively capture intra-tumor heterogeneity in head and neck cancer (HNC) and maximize the use of valid information collected in the clinical field, we propose a novel multi-modal image-text fusion strategy aimed at improving prognosis. Method: We have developed a tailored diagnostic algorithm for HNC, leveraging a deep learning-based model that integrates both image and clinical text information. For the image fusion part, we used the cross-attention mechanism to fuse the image information between PET and CT, and for the fusion of text and image, we used the Q-former architecture to fuse the text and image information. We also improved the traditional prognostic model by introducing time as a variable in the construction of the model, and finally obtained the corresponding prognostic results. Result: We assessed the efficacy of our methodology through the compilation of a multicenter dataset, achieving commendable outcomes in multicenter validations. Notably, our results for metastasis-free survival (MFS), recurrence-free survival (RFS), overall survival (OS), and progression-free survival (PFS) were as follows: 0.796, 0.626, 0.641, and 0.691. Our results demonstrate a notable superiority over the utilization of CT and PET independently, and exceed the result derived without the clinical textual information. Conclusions: Our model not only validates the effectiveness of multi-modal fusion in aiding diagnosis, but also provides insights for optimizing survival analysis. The study underscores the potential of our approach in enhancing prognosis and contributing to the advancement of personalized medicine in HNC.
Collapse
Affiliation(s)
- Zhaonian Wang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
| | - Chundan Zheng
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Pazhou Lab, Guangzhou 510330, China
| | - Xu Han
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Pazhou Lab, Guangzhou 510330, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China
- Pazhou Lab, Guangzhou 510330, China
| |
Collapse
|
69
|
van de Beld JJ, Crull D, Mikhal J, Geerdink J, Veldhuis A, Poel M, Kouwenhoven EA. Complication Prediction after Esophagectomy with Machine Learning. Diagnostics (Basel) 2024; 14:439. [PMID: 38396478 PMCID: PMC10888312 DOI: 10.3390/diagnostics14040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Esophageal cancer can be treated effectively with esophagectomy; however, the postoperative complication rate is high. In this paper, we study to what extent machine learning methods can predict anastomotic leakage and pneumonia up to two days in advance. We use a dataset with 417 patients who underwent esophagectomy between 2011 and 2021. The dataset contains multimodal temporal information, specifically, laboratory results, vital signs, thorax images, and preoperative patient characteristics. The best models scored mean test set AUROCs of 0.87 and 0.82 for leakage 1 and 2 days ahead, respectively. For pneumonia, this was 0.74 and 0.61 for 1 and 2 days ahead, respectively. We conclude that machine learning models can effectively predict anastomotic leakage and pneumonia after esophagectomy.
Collapse
Affiliation(s)
- Jorn-Jan van de Beld
- Faculty of EEMCS, University of Twente, 7500 AE Enschede, The Netherlands
- Hospital Group Twente (ZGT), 7609 PP Almelo, The Netherlands
| | - David Crull
- Hospital Group Twente (ZGT), 7609 PP Almelo, The Netherlands
| | - Julia Mikhal
- Hospital Group Twente (ZGT), 7609 PP Almelo, The Netherlands
- Faculty of BMS, University of Twente, 7500 AE Enschede, The Netherlands
| | - Jeroen Geerdink
- Hospital Group Twente (ZGT), 7609 PP Almelo, The Netherlands
| | - Anouk Veldhuis
- Hospital Group Twente (ZGT), 7609 PP Almelo, The Netherlands
| | - Mannes Poel
- Faculty of EEMCS, University of Twente, 7500 AE Enschede, The Netherlands
| | | |
Collapse
|
70
|
Wenk J, Voigt I, Inojosa H, Schlieter H, Ziemssen T. Building digital patient pathways for the management and treatment of multiple sclerosis. Front Immunol 2024; 15:1356436. [PMID: 38433832 PMCID: PMC10906094 DOI: 10.3389/fimmu.2024.1356436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Recent advances in the field of artificial intelligence (AI) could yield new insights into the potential causes of multiple sclerosis (MS) and factors influencing its course as the use of AI opens new possibilities regarding the interpretation and use of big data from not only a cross-sectional, but also a longitudinal perspective. For each patient with MS, there is a vast amount of multimodal data being accumulated over time. But for the application of AI and related technologies, these data need to be available in a machine-readable format and need to be collected in a standardized and structured manner. Through the use of mobile electronic devices and the internet it has also become possible to provide healthcare services from remote and collect information on a patient's state of health outside of regular check-ups on site. Against this background, we argue that the concept of pathways in healthcare now could be applied to structure the collection of information across multiple devices and stakeholders in the virtual sphere, enabling us to exploit the full potential of AI technology by e.g., building digital twins. By going digital and using pathways, we can virtually link patients and their caregivers. Stakeholders then could rely on digital pathways for evidence-based guidance in the sequence of procedures and selection of therapy options based on advanced analytics supported by AI as well as for communication and education purposes. As far as we aware of, however, pathway modelling with respect to MS management and treatment has not been thoroughly investigated yet and still needs to be discussed. In this paper, we thus present our ideas for a modular-integrative framework for the development of digital patient pathways for MS treatment.
Collapse
Affiliation(s)
- Judith Wenk
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Isabel Voigt
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hernan Inojosa
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hannes Schlieter
- Research Group Digital Health, Faculty of Business and Economics, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
71
|
Trinh M, Shahbaba R, Stark C, Ren Y. Alzheimer's disease detection using data fusion with a deep supervised encoder. FRONTIERS IN DEMENTIA 2024; 3:1332928. [PMID: 39055313 PMCID: PMC11271260 DOI: 10.3389/frdem.2024.1332928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/11/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease (AD) is affecting a growing number of individuals. As a result, there is a pressing need for accurate and early diagnosis methods. This study aims to achieve this goal by developing an optimal data analysis strategy to enhance computational diagnosis. Although various modalities of AD diagnostic data are collected, past research on computational methods of AD diagnosis has mainly focused on using single-modal inputs. We hypothesize that integrating, or "fusing," various data modalities as inputs to prediction models could enhance diagnostic accuracy by offering a more comprehensive view of an individual's health profile. However, a potential challenge arises as this fusion of multiple modalities may result in significantly higher dimensional data. We hypothesize that employing suitable dimensionality reduction methods across heterogeneous modalities would not only help diagnosis models extract latent information but also enhance accuracy. Therefore, it is imperative to identify optimal strategies for both data fusion and dimensionality reduction. In this paper, we have conducted a comprehensive comparison of over 80 statistical machine learning methods, considering various classifiers, dimensionality reduction techniques, and data fusion strategies to assess our hypotheses. Specifically, we have explored three primary strategies: (1) Simple data fusion, which involves straightforward concatenation (fusion) of datasets before inputting them into a classifier; (2) Early data fusion, in which datasets are concatenated first, and then a dimensionality reduction technique is applied before feeding the resulting data into a classifier; and (3) Intermediate data fusion, in which dimensionality reduction methods are applied individually to each dataset before concatenating them to construct a classifier. For dimensionality reduction, we have explored several commonly-used techniques such as principal component analysis (PCA), autoencoder (AE), and LASSO. Additionally, we have implemented a new dimensionality-reduction method called the supervised encoder (SE), which involves slight modifications to standard deep neural networks. Our results show that SE substantially improves prediction accuracy compared to PCA, AE, and LASSO, especially in combination with intermediate fusion for multiclass diagnosis prediction.
Collapse
Affiliation(s)
- Minh Trinh
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
| | - Yueqi Ren
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
72
|
Maki S, Furuya T, Inoue M, Shiga Y, Inage K, Eguchi Y, Orita S, Ohtori S. Machine Learning and Deep Learning in Spinal Injury: A Narrative Review of Algorithms in Diagnosis and Prognosis. J Clin Med 2024; 13:705. [PMID: 38337399 PMCID: PMC10856760 DOI: 10.3390/jcm13030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Spinal injuries, including cervical and thoracolumbar fractures, continue to be a major public health concern. Recent advancements in machine learning and deep learning technologies offer exciting prospects for improving both diagnostic and prognostic approaches in spinal injury care. This narrative review systematically explores the practical utility of these computational methods, with a focus on their application in imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI), as well as in structured clinical data. Of the 39 studies included, 34 were focused on diagnostic applications, chiefly using deep learning to carry out tasks like vertebral fracture identification, differentiation between benign and malignant fractures, and AO fracture classification. The remaining five were prognostic, using machine learning to analyze parameters for predicting outcomes such as vertebral collapse and future fracture risk. This review highlights the potential benefit of machine learning and deep learning in spinal injury care, especially their roles in enhancing diagnostic capabilities, detailed fracture characterization, risk assessments, and individualized treatment planning.
Collapse
Affiliation(s)
- Satoshi Maki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
73
|
Jeong J, Chao CJ, Arsanjani R, Ayoub C, Lester SJ, Pereyra M, Said EF, Roarke M, Tagle-Cornell C, Koepke LM, Tsai YL, Jung-Hsuan C, Chang CC, Farina JM, Trivedi H, Patel BN, Banerjee I. Opportunistic screening for coronary artery calcium deposition using chest radiographs - a multi-objective models with multi-modal data fusion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.23299699. [PMID: 38260571 PMCID: PMC10802643 DOI: 10.1101/2024.01.10.23299699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background To create an opportunistic screening strategy by multitask deep learning methods to stratify prediction for coronary artery calcium (CAC) and associated cardiovascular risk with frontal chest x-rays (CXR) and minimal data from electronic health records (EHR). Methods In this retrospective study, 2,121 patients with available computed tomography (CT) scans and corresponding CXR images were collected internally (Mayo Enterprise) with calculated CAC scores binned into 3 categories (0, 1-99, and 100+) as ground truths for model training. Results from the internal training were tested on multiple external datasets (domestic (EUH) and foreign (VGHTPE)) with significant racial and ethnic differences and classification performance was compared. Findings Classification performance between 0, 1-99, and 100+ CAC scores performed moderately on both the internal test and external datasets, reaching average f1-score of 0.66 for Mayo, 0.62 for EUH and 0.61 for VGHTPE. For the clinically relevant binary task of 0 vs 400+ CAC classification, the performance of our model on the internal test and external datasets reached an average AUCROC of 0.84. Interpretation The fusion model trained on CXR performed better (0.84 average AUROC on internal and external dataset) than existing state-of-the-art models on predicting CAC scores only on internal (0.73 AUROC), with robust performance on external datasets. Thus, our proposed model may be used as a robust, first-pass opportunistic screening method for cardiovascular risk from regular chest radiographs. For community use, trained model and the inference code can be downloaded with an academic open-source license from https://github.com/jeong-jasonji/MTL_CAC_classification . Funding The study was partially supported by National Institute of Health 1R01HL155410-01A1 award.
Collapse
|
74
|
Saponaro S, Lizzi F, Serra G, Mainas F, Oliva P, Giuliano A, Calderoni S, Retico A. Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders. Brain Inform 2024; 11:2. [PMID: 38194126 PMCID: PMC10776521 DOI: 10.1186/s40708-023-00217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD). MATERIAL AND METHODS We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework. RESULTS The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain. CONCLUSIONS Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.
Collapse
Affiliation(s)
- Sara Saponaro
- Medical Physics School, University of Pisa, Pisa, Italy.
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.
| | - Francesca Lizzi
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Giacomo Serra
- Department of Physics, University of Cagliari, Cagliari, Italy
- INFN, Cagliari Division, Cagliari, Italy
| | - Francesca Mainas
- INFN, Cagliari Division, Cagliari, Italy
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Piernicola Oliva
- INFN, Cagliari Division, Cagliari, Italy
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Alessia Giuliano
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Sara Calderoni
- Developmental Psychiatry Unit - IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
75
|
Lin AC, Liu Z, Lee J, Ranvier GF, Taye A, Owen R, Matteson DS, Lee D. Generating a multimodal artificial intelligence model to differentiate benign and malignant follicular neoplasms of the thyroid: A proof-of-concept study. Surgery 2024; 175:121-127. [PMID: 37925261 DOI: 10.1016/j.surg.2023.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Machine learning has been increasingly used to develop algorithms that can improve medical diagnostics and prognostication and has shown promise in improving the classification of thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning model to classify follicular carcinoma from adenoma. METHODS This is a retrospective study of patients with follicular adenoma or carcinoma at a single institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected. The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging features and clinical variables were then used to create a random forest classifier to predict malignancy. Leave-one-out cross-validation was conducted to evaluate classifier performance using the area under the receiver operating characteristic curve. RESULTS Patients with follicular adenomas (n = 7) and carcinomas (n = 11) with complete imaging and perioperative data were included. A total of 910 features were extracted from each image. The t-distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented components. The random forest classifier achieved an area under the receiver operating characteristic curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data). CONCLUSION Our multimodal machine learning model demonstrates promising results in classifying follicular carcinoma from adenoma. This approach can potentially be applied in future studies to generate models for preoperative differentiation of follicular thyroid neoplasms.
Collapse
Affiliation(s)
- Ann C Lin
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Zelong Liu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Justine Lee
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, NY
| | | | - Aida Taye
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Randall Owen
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - David S Matteson
- Department of Statistics and Data Science, Cornell University, Ithaca, NY
| | - Denise Lee
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY.
| |
Collapse
|
76
|
Bai L, Wu Y, Li G, Zhang W, Zhang H, Su J. AI-enabled organoids: Construction, analysis, and application. Bioact Mater 2024; 31:525-548. [PMID: 37746662 PMCID: PMC10511344 DOI: 10.1016/j.bioactmat.2023.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
Organoids, miniature and simplified in vitro model systems that mimic the structure and function of organs, have attracted considerable interest due to their promising applications in disease modeling, drug screening, personalized medicine, and tissue engineering. Despite the substantial success in cultivating physiologically relevant organoids, challenges remain concerning the complexities of their assembly and the difficulties associated with data analysis. The advent of AI-Enabled Organoids, which interfaces with artificial intelligence (AI), holds the potential to revolutionize the field by offering novel insights and methodologies that can expedite the development and clinical application of organoids. This review succinctly delineates the fundamental concepts and mechanisms underlying AI-Enabled Organoids, summarizing the prospective applications on rapid screening of construction strategies, cost-effective extraction of multiscale image features, streamlined analysis of multi-omics data, and precise preclinical evaluation and application. We also explore the challenges and limitations of interfacing organoids with AI, and discuss the future direction of the field. Taken together, the AI-Enabled Organoids hold significant promise for advancing our understanding of organ development and disease progression, ultimately laying the groundwork for clinical application.
Collapse
Affiliation(s)
- Long Bai
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Yan Wu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Wencai Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
77
|
Qiu S, Malhotra AK, Quon JL. Comprehensive Overview of Computational Modeling and Artificial Intelligence in Pediatric Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:487-498. [PMID: 39523285 DOI: 10.1007/978-3-031-64892-2_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this chapter, we give an overview of artificial intelligence tools and their use thus far in pediatric neurosurgery. We discuss different machine learning algorithms from a data-driven approach in order to guide clinicians and scientists as they apply them to real-world datasets. We provide examples of their successful application as well as evaluate limitations and pitfalls specific to clinical use. Finally, we explore future directions and exciting new opportunities to take advantage of these tools as they continue to advance and evolve.
Collapse
Affiliation(s)
- Steven Qiu
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Jennifer L Quon
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
78
|
Luo Y, Chen W, Zhan L, Qiu J, Jia T. Multi-feature concatenation and multi-classifier stacking: An interpretable and generalizable machine learning method for MDD discrimination with rsfMRI. Neuroimage 2024; 285:120497. [PMID: 38142755 DOI: 10.1016/j.neuroimage.2023.120497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Major depressive disorder (MDD) is a serious and heterogeneous psychiatric disorder that needs accurate diagnosis. Resting-state functional MRI (rsfMRI), which captures multiple perspectives on brain structure, function, and connectivity, is increasingly applied in the diagnosis and pathological research of MDD. Different machine learning algorithms are then developed to exploit the rich information in rsfMRI and discriminate MDD patients from normal controls. Despite recent advances reported, the MDD discrimination accuracy has room for further improvement. The generalizability and interpretability of the discrimination method are not sufficiently addressed either. Here, we propose a machine learning method (MFMC) for MDD discrimination by concatenating multiple features and stacking multiple classifiers. MFMC is tested on the REST-meta-MDD data set that contains 2428 subjects collected from 25 different sites. MFMC yields 96.9% MDD discrimination accuracy, demonstrating a significant improvement over existing methods. In addition, the generalizability of MFMC is validated by the good performance when the training and testing subjects are from independent sites. The use of XGBoost as the meta classifier allows us to probe the decision process of MFMC. We identify 13 feature values related to 9 brain regions including the posterior cingulate gyrus, superior frontal gyrus orbital part, and angular gyrus, which contribute most to the classification and also demonstrate significant differences at the group level. The use of these 13 feature values alone can reach 87% of MFMC's full performance when taking all feature values. These features may serve as clinically useful diagnostic and prognostic biomarkers for MDD in the future.
Collapse
Affiliation(s)
- Yunsong Luo
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| | - Wenyu Chen
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| | - Ling Zhan
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, PR China; School of Psychology, Southwest University (SWU), Chongqing, 400715, PR China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, PR China.
| | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
79
|
Schilcher J, Nilsson A, Andlid O, Eklund A. Fusion of electronic health records and radiographic images for a multimodal deep learning prediction model of atypical femur fractures. Comput Biol Med 2024; 168:107704. [PMID: 37980797 DOI: 10.1016/j.compbiomed.2023.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Atypical femur fractures (AFF) represent a very rare type of fracture that can be difficult to discriminate radiologically from normal femur fractures (NFF). AFFs are associated with drugs that are administered to prevent osteoporosis-related fragility fractures, which are highly prevalent in the elderly population. Given that these fractures are rare and the radiologic changes are subtle currently only 7% of AFFs are correctly identified, which hinders adequate treatment for most patients with AFF. Deep learning models could be trained to classify automatically a fracture as AFF or NFF, thereby assisting radiologists in detecting these rare fractures. Historically, for this classification task, only imaging data have been used, using convolutional neural networks (CNN) or vision transformers applied to radiographs. However, to mimic situations in which all available data are used to arrive at a diagnosis, we adopted an approach of deep learning that is based on the integration of image data and tabular data (from electronic health records) for 159 patients with AFF and 914 patients with NFF. We hypothesized that the combinatorial data, compiled from all the radiology departments of 72 hospitals in Sweden and the Swedish National Patient Register, would improve classification accuracy, as compared to using only one modality. At the patient level, the area under the ROC curve (AUC) increased from 0.966 to 0.987 when using the integrated set of imaging data and seven pre-selected variables, as compared to only using imaging data. More importantly, the sensitivity increased from 0.796 to 0.903. We found a greater impact of data fusion when only a randomly selected subset of available images was used to make the image and tabular data more balanced for each patient. The AUC then increased from 0.949 to 0.984, and the sensitivity increased from 0.727 to 0.849. These AUC improvements are not large, mainly because of the already excellent performance of the CNN (AUC of 0.966) when only images are used. However, the improvement is clinically highly relevant considering the importance of accuracy in medical diagnostics. We expect an even greater effect when imaging data from a clinical workflow, comprising a more diverse set of diagnostic images, are used.
Collapse
Affiliation(s)
- Jörg Schilcher
- Department of Orthopedics and Experimental and Clinical Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Alva Nilsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Oliver Andlid
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| |
Collapse
|
80
|
Xie J, Zhong W, Yang R, Wang L, Zhen X. Discriminative fusion of moments-aligned latent representation of multimodality medical data. Phys Med Biol 2023; 69:015015. [PMID: 38052076 DOI: 10.1088/1361-6560/ad1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Fusion of multimodal medical data provides multifaceted, disease-relevant information for diagnosis or prognosis prediction modeling. Traditional fusion strategies such as feature concatenation often fail to learn hidden complementary and discriminative manifestations from high-dimensional multimodal data. To this end, we proposed a methodology for the integration of multimodality medical data by matching their moments in a latent space, where the hidden, shared information of multimodal data is gradually learned by optimization with multiple feature collinearity and correlation constrains. We first obtained the multimodal hidden representations by learning mappings between the original domain and shared latent space. Within this shared space, we utilized several relational regularizations, including data attribute preservation, feature collinearity and feature-task correlation, to encourage learning of the underlying associations inherent in multimodal data. The fused multimodal latent features were finally fed to a logistic regression classifier for diagnostic prediction. Extensive evaluations on three independent clinical datasets have demonstrated the effectiveness of the proposed method in fusing multimodal data for medical prediction modeling.
Collapse
Affiliation(s)
- Jincheng Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Weixiong Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Linjing Wang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, People's Republic of China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
81
|
Saikia MJ, Kuanar S, Mahapatra D, Faghani S. Multi-Modal Ensemble Deep Learning in Head and Neck Cancer HPV Sub-Typing. Bioengineering (Basel) 2023; 11:13. [PMID: 38247890 PMCID: PMC11154466 DOI: 10.3390/bioengineering11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Oropharyngeal Squamous Cell Carcinoma (OPSCC) is one of the common forms of heterogeneity in head and neck cancer. Infection with human papillomavirus (HPV) has been identified as a major risk factor for OPSCC. Therefore, differentiating the HPV-positive and negative cases in OPSCC patients is an essential diagnostic factor influencing future treatment decisions. In this study, we investigated the accuracy of a deep learning-based method for image interpretation and automatically detected the HPV status of OPSCC in routinely acquired Computed Tomography (CT) and Positron Emission Tomography (PET) images. We introduce a 3D CNN-based multi-modal feature fusion architecture for HPV status prediction in primary tumor lesions. The architecture is composed of an ensemble of CNN networks and merges image features in a softmax classification layer. The pipeline separately learns the intensity, contrast variation, shape, texture heterogeneity, and metabolic assessment from CT and PET tumor volume regions and fuses those multi-modal features for final HPV status classification. The precision, recall, and AUC scores of the proposed method are computed, and the results are compared with other existing models. The experimental results demonstrate that the multi-modal ensemble model with soft voting outperformed single-modality PET/CT, with an AUC of 0.76 and F1 score of 0.746 on publicly available TCGA and MAASTRO datasets. In the MAASTRO dataset, our model achieved an AUC score of 0.74 over primary tumor volumes of interest (VOIs). In the future, more extensive cohort validation may suffice for better diagnostic accuracy and provide preliminary assessment before the biopsy.
Collapse
Affiliation(s)
- Manob Jyoti Saikia
- Electrical Engineering, University of North Florida, Jacksonville, FL 32224, USA
| | - Shiba Kuanar
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.K.); (S.F.)
| | - Dwarikanath Mahapatra
- Inception Institute of Artificial Intelligence, Abu Dhabi 127788, United Arab Emirates;
| | - Shahriar Faghani
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.K.); (S.F.)
| |
Collapse
|
82
|
van Assen M, Tariq A, Razavi AC, Yang C, Banerjee I, De Cecco CN. Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care. Circ Cardiovasc Imaging 2023; 16:e014533. [PMID: 38073535 PMCID: PMC10754220 DOI: 10.1161/circimaging.122.014533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In addition to the traditional clinical risk factors, an increasing amount of imaging biomarkers have shown value for cardiovascular risk prediction. Clinical and imaging data are captured from a variety of data sources during multiple patient encounters and are often analyzed independently. Initial studies showed that fusion of both clinical and imaging features results in superior prognostic performance compared with traditional scores. There are different approaches to fusion modeling, combining multiple data resources to optimize predictions, each with its own advantages and disadvantages. However, manual extraction of clinical and imaging data is time and labor intensive and often not feasible in clinical practice. An automated approach for clinical and imaging data extraction is highly desirable. Convolutional neural networks and natural language processing can be utilized for the extraction of electronic medical record data, imaging studies, and free-text data. This review outlines the current status of cardiovascular risk prediction and fusion modeling; and in addition gives an overview of different artificial intelligence approaches to automatically extract data from images and electronic medical records for this purpose.
Collapse
Affiliation(s)
- Marly van Assen
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Amara Tariq
- Machine Intelligence in Medicine and Imaging (MI-2) Lab, Mayo Clinic, AZ, USA
| | - Alexander C. Razavi
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
- Emory Clinical Cardiovascular Research Institute, Emory University, Atlanta, GA, USA
| | - Carl Yang
- Computer Science, Emory University, Atlanta, GA, USA
| | - Imon Banerjee
- Machine Intelligence in Medicine and Imaging (MI-2) Lab, Mayo Clinic, AZ, USA
| | - Carlo N. De Cecco
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
83
|
Gorade V, Mittal S, Singhal R. PaCL: Patient-aware contrastive learning through metadata refinement for generalized early disease diagnosis. Comput Biol Med 2023; 167:107569. [PMID: 37865984 DOI: 10.1016/j.compbiomed.2023.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Early diagnosis plays a pivotal role in effectively treating numerous diseases, especially in healthcare scenarios where prompt and accurate diagnoses are essential. Contrastive learning (CL) has emerged as a promising approach for medical tasks, offering advantages over traditional supervised learning methods. However, in healthcare, patient metadata contains valuable clinical information that can enhance representations, yet existing CL methods often overlook this data. In this study, we propose an novel approach that leverages both clinical information and imaging data in contrastive learning to enhance model generalization and interpretability. Furthermore, existing contrastive methods may be prone to sampling bias, which can lead to the model capturing spurious relationships and exhibiting unequal performance across protected subgroups frequently encountered in medical settings. To address these limitations, we introduce Patient-aware Contrastive Learning (PaCL), featuring an inter-class separability objective (IeSO) and an intra-class diversity objective (IaDO). IeSO harnesses rich clinical information to refine samples, while IaDO ensures the necessary diversity among samples to prevent class collapse. We demonstrate the effectiveness of PaCL both theoretically through causal refinements and empirically across six real-world medical imaging tasks spanning three imaging modalities: ophthalmology, radiology, and dermatology. Notably, PaCL outperforms previous techniques across all six tasks.
Collapse
|
84
|
Karway GK, Koyner JL, Caskey J, Spicer AB, Carey KA, Gilbert ER, Dligach D, Mayampurath A, Afshar M, Churpek MM. Development and external validation of multimodal postoperative acute kidney injury risk machine learning models. JAMIA Open 2023; 6:ooad109. [PMID: 38144168 PMCID: PMC10746378 DOI: 10.1093/jamiaopen/ooad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Objectives To develop and externally validate machine learning models using structured and unstructured electronic health record data to predict postoperative acute kidney injury (AKI) across inpatient settings. Materials and Methods Data for adult postoperative admissions to the Loyola University Medical Center (2009-2017) were used for model development and admissions to the University of Wisconsin-Madison (2009-2020) were used for validation. Structured features included demographics, vital signs, laboratory results, and nurse-documented scores. Unstructured text from clinical notes were converted into concept unique identifiers (CUIs) using the clinical Text Analysis and Knowledge Extraction System. The primary outcome was the development of Kidney Disease Improvement Global Outcomes stage 2 AKI within 7 days after leaving the operating room. We derived unimodal extreme gradient boosting machines (XGBoost) and elastic net logistic regression (GLMNET) models using structured-only data and multimodal models combining structured data with CUI features. Model comparison was performed using the receiver operating characteristic curve (AUROC), with Delong's test for statistical differences. Results The study cohort included 138 389 adult patient admissions (mean [SD] age 58 [16] years; 11 506 [8%] African-American; and 70 826 [51%] female) across the 2 sites. Of those, 2959 (2.1%) developed stage 2 AKI or higher. Across all data types, XGBoost outperformed GLMNET (mean AUROC 0.81 [95% confidence interval (CI), 0.80-0.82] vs 0.78 [95% CI, 0.77-0.79]). The multimodal XGBoost model incorporating CUIs parameterized as term frequency-inverse document frequency (TF-IDF) showed the highest discrimination performance (AUROC 0.82 [95% CI, 0.81-0.83]) over unimodal models (AUROC 0.79 [95% CI, 0.78-0.80]). Discussion A multimodality approach with structured data and TF-IDF weighting of CUIs increased model performance over structured data-only models. Conclusion These findings highlight the predictive power of CUIs when merged with structured data for clinical prediction models, which may improve the detection of postoperative AKI.
Collapse
Affiliation(s)
- George K Karway
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - John Caskey
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Alexandra B Spicer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Kyle A Carey
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Emily R Gilbert
- Department of Medicine, Loyola University Chicago, Chicago, IL 60153, United States
| | - Dmitriy Dligach
- Department of Computer Science, Loyola University Chicago, Chicago, IL 60626, United States
| | - Anoop Mayampurath
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Majid Afshar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| |
Collapse
|
85
|
Tehrani SSM, Zarvani M, Amiri P, Ghods Z, Raoufi M, Safavi-Naini SAA, Soheili A, Gharib M, Abbasi H. Visual transformer and deep CNN prediction of high-risk COVID-19 infected patients using fusion of CT images and clinical data. BMC Med Inform Decis Mak 2023; 23:265. [PMID: 37978393 PMCID: PMC10656999 DOI: 10.1186/s12911-023-02344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Despite the globally reducing hospitalization rates and the much lower risks of Covid-19 mortality, accurate diagnosis of the infection stage and prediction of outcomes are clinically of interest. Advanced current technology can facilitate automating the process and help identifying those who are at higher risks of developing severe illness. This work explores and represents deep-learning-based schemes for predicting clinical outcomes in Covid-19 infected patients, using Visual Transformer and Convolutional Neural Networks (CNNs), fed with 3D data fusion of CT scan images and patients' clinical data. METHODS We report on the efficiency of Video Swin Transformers and several CNN models fed with fusion datasets and CT scans only vs. a set of conventional classifiers fed with patients' clinical data only. A relatively large clinical dataset from 380 Covid-19 diagnosed patients was used to train/test the models. RESULTS Results show that the 3D Video Swin Transformers fed with the fusion datasets of 64 sectional CT scans + 67 clinical labels outperformed all other approaches for predicting outcomes in Covid-19-infected patients amongst all techniques (i.e., TPR = 0.95, FPR = 0.40, F0.5 score = 0.82, AUC = 0.77, Kappa = 0.6). CONCLUSIONS We demonstrate how the utility of our proposed novel 3D data fusion approach through concatenating CT scan images with patients' clinical data can remarkably improve the performance of the models in predicting Covid-19 infection outcomes. SIGNIFICANCE Findings indicate possibilities of predicting the severity of outcome using patients' CT images and clinical data collected at the time of admission to hospital.
Collapse
Affiliation(s)
| | - Maral Zarvani
- Faculty of Engineering, Alzahra University, Tehran, Iran
| | - Paria Amiri
- University of Erlangen-Nuremberg, Bavaria, Germany
| | - Zahra Ghods
- Faculty of Engineering, Alzahra University, Tehran, Iran
| | - Masoomeh Raoufi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Ahmad Safavi-Naini
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Soheili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Abbasi
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
86
|
Zheng G, Zheng W, Zhang Y, Wang J, Chen M, Wang Y, Cai T, Yao Z, Hu B. An attention-based multi-modal MRI fusion model for major depressive disorder diagnosis. J Neural Eng 2023; 20:066005. [PMID: 37844568 DOI: 10.1088/1741-2552/ad038c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Objective.Major depressive disorder (MDD) is one of the biggest threats to human mental health. MDD is characterized by aberrant changes in both structure and function of the brain. Although recent studies have developed some deep learning models based on multi-modal magnetic resonance imaging (MRI) for MDD diagnosis, the latent associations between deep features derived from different modalities were largely unexplored by previous studies, which we hypothesized may have potential benefits in improving the diagnostic accuracy of MDD.Approach.In this study, we proposed a novel deep learning model that fused both structural MRI (sMRI) and resting-state MRI (rs-fMRI) data to enhance the diagnosis of MDD by capturing the interactions between deep features extracted from different modalities. Specifically, we first employed a brain function encoder (BFE) and a brain structure encoder (BSE) to extract the deep features from fMRI and sMRI, respectively. Then, we designed a function and structure co-attention fusion (FSCF) module that captured inter-modal interactions and adaptively fused multi-modal deep features for MDD diagnosis.Main results.This model was evaluated on a large cohort and achieved a high classification accuracy of 75.2% for MDD diagnosis. Moreover, the attention distribution of the FSCF module assigned higher attention weights to structural features than functional features for diagnosing MDD.Significance.The high classification accuracy highlights the effectiveness and potential clinical of the proposed model.
Collapse
Affiliation(s)
- Guowei Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Yu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Junyu Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Yin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Tianhong Cai
- Institute of Computer Software and Theory, School of information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
87
|
Keicher M, Burwinkel H, Bani-Harouni D, Paschali M, Czempiel T, Burian E, Makowski MR, Braren R, Navab N, Wendler T. Multimodal graph attention network for COVID-19 outcome prediction. Sci Rep 2023; 13:19539. [PMID: 37945590 PMCID: PMC10636061 DOI: 10.1038/s41598-023-46625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
When dealing with a newly emerging disease such as COVID-19, the impact of patient- and disease-specific factors (e.g., body weight or known co-morbidities) on the immediate course of the disease is largely unknown. An accurate prediction of the most likely individual disease progression can improve the planning of limited resources and finding the optimal treatment for patients. In the case of COVID-19, the need for intensive care unit (ICU) admission of pneumonia patients can often only be determined on short notice by acute indicators such as vital signs (e.g., breathing rate, blood oxygen levels), whereas statistical analysis and decision support systems that integrate all of the available data could enable an earlier prognosis. To this end, we propose a holistic, multimodal graph-based approach combining imaging and non-imaging information. Specifically, we introduce a multimodal similarity metric to build a population graph that shows a clustering of patients. For each patient in the graph, we extract radiomic features from a segmentation network that also serves as a latent image feature encoder. Together with clinical patient data like vital signs, demographics, and lab results, these modalities are combined into a multimodal representation of each patient. This feature extraction is trained end-to-end with an image-based Graph Attention Network to process the population graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation, and mortality. To combine multiple modalities, radiomic features are extracted from chest CTs using a segmentation neural network. Results on a dataset collected in Klinikum rechts der Isar in Munich, Germany and the publicly available iCTCF dataset show that our approach outperforms single modality and non-graph baselines. Moreover, our clustering and graph attention increases understanding of the patient relationships within the population graph and provides insight into the network's decision-making process.
Collapse
Affiliation(s)
- Matthias Keicher
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany.
| | - Hendrik Burwinkel
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany
| | - David Bani-Harouni
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany
| | - Magdalini Paschali
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Tobias Czempiel
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rickmer Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Nassir Navab
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany
| | - Thomas Wendler
- Computer Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Clinical Computational Medical Imaging Research, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| |
Collapse
|
88
|
Abuali KM, Nissirat L, Al-Samawi A. Advancing Network Security with AI: SVM-Based Deep Learning for Intrusion Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:8959. [PMID: 37960661 PMCID: PMC10649123 DOI: 10.3390/s23218959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
With the rapid growth of social media networks and internet accessibility, most businesses are becoming vulnerable to a wide range of threats and attacks. Thus, intrusion detection systems (IDSs) are considered one of the most essential components for securing organizational networks. They are the first line of defense against online threats and are responsible for quickly identifying potential network intrusions. Mainly, IDSs analyze the network traffic to detect any malicious activities in the network. Today, networks are expanding tremendously as the demand for network services is expanding. This expansion leads to diverse data types and complexities in the network, which may limit the applicability of the developed algorithms. Moreover, viruses and malicious attacks are changing in their quantity and quality. Therefore, recently, several security researchers have developed IDSs using several innovative techniques, including artificial intelligence methods. This work aims to propose a support vector machine (SVM)-based deep learning system that will classify the data extracted from servers to determine the intrusion incidents on social media. To implement deep learning-based IDSs for multiclass classification, the CSE-CIC-IDS 2018 dataset has been used for system evaluation. The CSE-CIC-IDS 2018 dataset was subjected to several preprocessing techniques to prepare it for the training phase. The proposed model has been implemented in 100,000 instances of a sample dataset. This study demonstrated that the accuracy, true-positive recall, precision, specificity, false-positive recall, and F-score of the proposed model were 100%, 100%, 100%, 100%, 0%, and 100%, respectively.
Collapse
Affiliation(s)
| | | | - Aida Al-Samawi
- Department of Computer Networks, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.M.A.); (L.N.)
| |
Collapse
|
89
|
Wang Z, Liu J, Tian Y, Zhou T, Liu Q, Qiu Y, Li J. Integrating Medical Domain Knowledge for Early Diagnosis of Fever of Unknown Origin: An Interpretable Hierarchical Multimodal Neural Network Approach. IEEE J Biomed Health Inform 2023; 27:5237-5248. [PMID: 37590111 DOI: 10.1109/jbhi.2023.3306041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Accurate and interpretable differential diagnostic technologies are crucial for supporting clinicians in decision-making and treatment-planning for patients with fever of unknown origin (FUO). Existing solutions commonly address the diagnosis of FUO by transforming it into a multi-classification task. However, after the emergence of COVID-19 pandemic, clinicians have recognized the heightened significance of early diagnosis in patients with FUO, particularly for practical needs such as early triage. This has resulted in increased demands for identifying a wider range of etiologies, shorter observation windows, and better model interpretability. In this article, we propose an interpretable hierarchical multimodal neural network framework (iHMNNF) to facilitate early diagnosis of FUO by incorporating medical domain knowledge and leveraging multimodal clinical data. The iHMNNF comprises a top-down hierarchical reasoning framework (Td-HRF) built on the class hierarchy of FUO etiologies, five local attention-based multimodal neural networks (La-MNNs) trained for each parent node of the class hierarchy, and an interpretable module based on layer-wise relevance propagation (LRP) and attention mechanism. Experimental datasets were collected from electronic health records (EHRs) at a large-scale tertiary grade-A hospital in China, comprising 34,051 hospital admissions of 30,794 FUO patients from January 2011 to October 2020. Our proposed La-MNNs achieved area under the receiver operating characteristic curve (AUROC) values ranging from 0.7809 to 0.9035 across all five decomposed tasks, surpassing competing machine learning (ML) and single-modality deep learning (DL) methods while also providing enhanced interpretability. Furthermore, we explored the feasibility of identifying FUO etiologies using only the first N-hour time series data obtained after admission.
Collapse
|
90
|
Hong GS, Jang M, Kyung S, Cho K, Jeong J, Lee GY, Shin K, Kim KD, Ryu SM, Seo JB, Lee SM, Kim N. Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning. Korean J Radiol 2023; 24:1061-1080. [PMID: 37724586 PMCID: PMC10613849 DOI: 10.3348/kjr.2023.0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
Collapse
Affiliation(s)
- Gil-Sun Hong
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Miso Jang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sunggu Kyung
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyungjin Cho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiheon Jeong
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Grace Yoojin Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Keewon Shin
- Laboratory for Biosignal Analysis and Perioperative Outcome Research, Biomedical Engineering Center, Asan Institute of Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Ki Duk Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Ryu
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
91
|
Maniar KM, Lassarén P, Rana A, Yao Y, Tewarie IA, Gerstl JVE, Recio Blanco CM, Power LH, Mammi M, Mattie H, Smith TR, Mekary RA. Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis. World Neurosurg 2023; 179:e119-e134. [PMID: 37574189 DOI: 10.1016/j.wneu.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Meningiomas are common intracranial tumors. Machine learning (ML) algorithms are emerging to improve accuracy in 4 primary domains: classification, grading, outcome prediction, and segmentation. Such algorithms include both traditional approaches that rely on hand-crafted features and deep learning (DL) techniques that utilize automatic feature extraction. The aim of this study was to evaluate the performance of published traditional ML versus DL algorithms in classification, grading, outcome prediction, and segmentation of meningiomas. METHODS A systematic review and meta-analysis were conducted. Major databases were searched through September 2021 for publications evaluating traditional ML versus DL models on meningioma management. Performance measures including pooled sensitivity, specificity, F1-score, area under the receiver-operating characteristic curve, positive and negative likelihood ratios (LR+, LR-) along with their respective 95% confidence intervals (95% CIs) were derived using random-effects models. RESULTS Five hundred thirty-four records were screened, and 43 articles were included, regarding classification (3 articles), grading (29), outcome prediction (7), and segmentation (6) of meningiomas. Of the 29 studies that reported on grading, 10 could be meta-analyzed with 2 DL models (sensitivity 0.89, 95% CI: 0.74-0.96; specificity 0.91, 95% CI: 0.45-0.99; LR+ 10.1, 95% CI: 1.33-137; LR- 0.12, 95% CI: 0.04-0.59) and 8 traditional ML (sensitivity 0.74, 95% CI: 0.62-0.83; specificity 0.93, 95% CI: 0.79-0.98; LR+ 10.5, 95% CI: 2.91-39.5; and LR- 0.28, 95% CI: 0.17-0.49). The insufficient performance metrics reported precluded further statistical analysis of other performance metrics. CONCLUSIONS ML on meningiomas is mostly carried out with traditional methods. For meningioma grading, traditional ML methods generally had a higher LR+, while DL models a lower LR-.
Collapse
Affiliation(s)
- Krish M Maniar
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Philipp Lassarén
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aakanksha Rana
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, Massachusetts, United States
| | - Yuxin Yao
- Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Massachusetts, United States
| | - Ishaan A Tewarie
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; Faculty of Medicine, Erasmus University Rotterdam/Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jakob V E Gerstl
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Camila M Recio Blanco
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Northeast National University, Corrientes, Argentina; Prisma Salud, Puerto San Julian, Santa Cruz, Argentina
| | - Liam H Power
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Marco Mammi
- Neurosurgery Unit, S. Croce e Carle Hospital, Cuneo, Italy
| | - Heather Mattie
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, United States
| | - Rania A Mekary
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Massachusetts, United States.
| |
Collapse
|
92
|
Nguyen KAN, Tandon P, Ghanavati S, Cheetirala SN, Timsina P, Freeman R, Reich D, Levin MA, Mazumdar M, Fayad ZA, Kia A. A Hybrid Decision Tree and Deep Learning Approach Combining Medical Imaging and Electronic Medical Records to Predict Intubation Among Hospitalized Patients With COVID-19: Algorithm Development and Validation. JMIR Form Res 2023; 7:e46905. [PMID: 37883177 PMCID: PMC10636624 DOI: 10.2196/46905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Early prediction of the need for invasive mechanical ventilation (IMV) in patients hospitalized with COVID-19 symptoms can help in the allocation of resources appropriately and improve patient outcomes by appropriately monitoring and treating patients at the greatest risk of respiratory failure. To help with the complexity of deciding whether a patient needs IMV, machine learning algorithms may help bring more prognostic value in a timely and systematic manner. Chest radiographs (CXRs) and electronic medical records (EMRs), typically obtained early in patients admitted with COVID-19, are the keys to deciding whether they need IMV. OBJECTIVE We aimed to evaluate the use of a machine learning model to predict the need for intubation within 24 hours by using a combination of CXR and EMR data in an end-to-end automated pipeline. We included historical data from 2481 hospitalizations at The Mount Sinai Hospital in New York City. METHODS CXRs were first resized, rescaled, and normalized. Then lungs were segmented from the CXRs by using a U-Net algorithm. After splitting them into a training and a test set, the training set images were augmented. The augmented images were used to train an image classifier to predict the probability of intubation with a prediction window of 24 hours by retraining a pretrained DenseNet model by using transfer learning, 10-fold cross-validation, and grid search. Then, in the final fusion model, we trained a random forest algorithm via 10-fold cross-validation by combining the probability score from the image classifier with 41 longitudinal variables in the EMR. Variables in the EMR included clinical and laboratory data routinely collected in the inpatient setting. The final fusion model gave a prediction likelihood for the need of intubation within 24 hours as well. RESULTS At a prediction probability threshold of 0.5, the fusion model provided 78.9% (95% CI 59%-96%) sensitivity, 83% (95% CI 76%-89%) specificity, 0.509 (95% CI 0.34-0.67) F1-score, 0.874 (95% CI 0.80-0.94) area under the receiver operating characteristic curve (AUROC), and 0.497 (95% CI 0.32-0.65) area under the precision recall curve (AUPRC) on the holdout set. Compared to the image classifier alone, which had an AUROC of 0.577 (95% CI 0.44-0.73) and an AUPRC of 0.206 (95% CI 0.08-0.38), the fusion model showed significant improvement (P<.001). The most important predictor variables were respiratory rate, C-reactive protein, oxygen saturation, and lactate dehydrogenase. The imaging probability score ranked 15th in overall feature importance. CONCLUSIONS We show that, when linked with EMR data, an automated deep learning image classifier improved performance in identifying hospitalized patients with severe COVID-19 at risk for intubation. With additional prospective and external validation, such a model may assist risk assessment and optimize clinical decision-making in choosing the best care plan during the critical stages of COVID-19.
Collapse
Affiliation(s)
- Kim-Anh-Nhi Nguyen
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pranai Tandon
- Department of Medicine Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sahar Ghanavati
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Satya Narayana Cheetirala
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prem Timsina
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Freeman
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Hospital Administration, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Reich
- Hospital Administration, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew A Levin
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Windreich Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madhu Mazumdar
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arash Kia
- Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
93
|
Mohsen F, Al-Absi HRH, Yousri NA, El Hajj N, Shah Z. A scoping review of artificial intelligence-based methods for diabetes risk prediction. NPJ Digit Med 2023; 6:197. [PMID: 37880301 PMCID: PMC10600138 DOI: 10.1038/s41746-023-00933-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) and its associated health complications highlight the need to develop predictive models for early diagnosis and intervention. While many artificial intelligence (AI) models for T2DM risk prediction have emerged, a comprehensive review of their advancements and challenges is currently lacking. This scoping review maps out the existing literature on AI-based models for T2DM prediction, adhering to the PRISMA extension for Scoping Reviews guidelines. A systematic search of longitudinal studies was conducted across four databases, including PubMed, Scopus, IEEE-Xplore, and Google Scholar. Forty studies that met our inclusion criteria were reviewed. Classical machine learning (ML) models dominated these studies, with electronic health records (EHR) being the predominant data modality, followed by multi-omics, while medical imaging was the least utilized. Most studies employed unimodal AI models, with only ten adopting multimodal approaches. Both unimodal and multimodal models showed promising results, with the latter being superior. Almost all studies performed internal validation, but only five conducted external validation. Most studies utilized the area under the curve (AUC) for discrimination measures. Notably, only five studies provided insights into the calibration of their models. Half of the studies used interpretability methods to identify key risk predictors revealed by their models. Although a minority highlighted novel risk predictors, the majority reported commonly known ones. Our review provides valuable insights into the current state and limitations of AI-based models for T2DM prediction and highlights the challenges associated with their development and clinical integration.
Collapse
Affiliation(s)
- Farida Mohsen
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Hamada R H Al-Absi
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Noha A Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
- Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Nady El Hajj
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| |
Collapse
|
94
|
Akkaya UM, Kalkan H. A New Approach for Multimodal Usage of Gene Expression and Its Image Representation for the Detection of Alzheimer's Disease. Biomolecules 2023; 13:1563. [PMID: 38002245 PMCID: PMC10669658 DOI: 10.3390/biom13111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the multifaceted nature of it requires innovative approaches that integrate various data modalities to enhance its detection. However, due to the cost of collecting multimodal data, multimodal datasets suffer from an insufficient number of samples. To mitigate the impact of a limited sample size on classification, we introduce a novel deep learning method (One2MFusion) which combines gene expression data with their corresponding 2D representation as a new modality. The gene vectors were first mapped to a discriminative 2D image for training a convolutional neural network (CNN). In parallel, the gene sequences were used to train a feed forward neural network (FNN) and the outputs of the FNN and CNN were merged, and a joint deep network was trained for the binary classification of AD, normal control (NC), and mild cognitive impairment (MCI) samples. The fusion of the gene expression data and gene-originated 2D image increased the accuracy (area under the curve) from 0.86 (obtained using a 2D image) to 0.91 for AD vs. NC and from 0.76 (obtained using a 2D image) to 0.88 for MCI vs. NC. The results show that representing gene expression data in another discriminative form increases the classification accuracy when fused with base data.
Collapse
Affiliation(s)
| | - Habil Kalkan
- Department of Computer Engineering, Gebze Technical University, 41400 Gebze, Turkey;
| |
Collapse
|
95
|
Khader F, Müller-Franzes G, Wang T, Han T, Tayebi Arasteh S, Haarburger C, Stegmaier J, Bressem K, Kuhl C, Nebelung S, Kather JN, Truhn D. Multimodal Deep Learning for Integrating Chest Radiographs and Clinical Parameters: A Case for Transformers. Radiology 2023; 309:e230806. [PMID: 37787671 DOI: 10.1148/radiol.230806] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Clinicians consider both imaging and nonimaging data when diagnosing diseases; however, current machine learning approaches primarily consider data from a single modality. Purpose To develop a neural network architecture capable of integrating multimodal patient data and compare its performance to models incorporating a single modality for diagnosing up to 25 pathologic conditions. Materials and Methods In this retrospective study, imaging and nonimaging patient data were extracted from the Medical Information Mart for Intensive Care (MIMIC) database and an internal database comprised of chest radiographs and clinical parameters inpatients in the intensive care unit (ICU) (January 2008 to December 2020). The MIMIC and internal data sets were each split into training (n = 33 893, n = 28 809), validation (n = 740, n = 7203), and test (n = 1909, n = 9004) sets. A novel transformer-based neural network architecture was trained to diagnose up to 25 conditions using nonimaging data alone, imaging data alone, or multimodal data. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results The MIMIC and internal data sets included 36 542 patients (mean age, 63 years ± 17 [SD]; 20 567 male patients) and 45 016 patients (mean age, 66 years ± 16; 27 577 male patients), respectively. The multimodal model showed improved diagnostic performance for all pathologic conditions. For the MIMIC data set, the mean AUC was 0.77 (95% CI: 0.77, 0.78) when both chest radiographs and clinical parameters were used, compared with 0.70 (95% CI: 0.69, 0.71; P < .001) for only chest radiographs and 0.72 (95% CI: 0.72, 0.73; P < .001) for only clinical parameters. These findings were confirmed on the internal data set. Conclusion A model trained on imaging and nonimaging data outperformed models trained on only one type of data for diagnosing multiple diseases in patients in an ICU setting. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kitamura and Topol in this issue.
Collapse
Affiliation(s)
- Firas Khader
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Gustav Müller-Franzes
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Tianci Wang
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Tianyu Han
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Soroosh Tayebi Arasteh
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Christoph Haarburger
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Johannes Stegmaier
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Keno Bressem
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Christiane Kuhl
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Sven Nebelung
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Jakob Nikolas Kather
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Daniel Truhn
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| |
Collapse
|
96
|
Sun Z, Lin M, Zhu Q, Xie Q, Wang F, Lu Z, Peng Y. A scoping review on multimodal deep learning in biomedical images and texts. J Biomed Inform 2023; 146:104482. [PMID: 37652343 PMCID: PMC10591890 DOI: 10.1016/j.jbi.2023.104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Computer-assisted diagnostic and prognostic systems of the future should be capable of simultaneously processing multimodal data. Multimodal deep learning (MDL), which involves the integration of multiple sources of data, such as images and text, has the potential to revolutionize the analysis and interpretation of biomedical data. However, it only caught researchers' attention recently. To this end, there is a critical need to conduct a systematic review on this topic, identify the limitations of current work, and explore future directions. METHODS In this scoping review, we aim to provide a comprehensive overview of the current state of the field and identify key concepts, types of studies, and research gaps with a focus on biomedical images and texts joint learning, mainly because these two were the most commonly available data types in MDL research. RESULT This study reviewed the current uses of multimodal deep learning on five tasks: (1) Report generation, (2) Visual question answering, (3) Cross-modal retrieval, (4) Computer-aided diagnosis, and (5) Semantic segmentation. CONCLUSION Our results highlight the diverse applications and potential of MDL and suggest directions for future research in the field. We hope our review will facilitate the collaboration of natural language processing (NLP) and medical imaging communities and support the next generation of decision-making and computer-assisted diagnostic system development.
Collapse
Affiliation(s)
- Zhaoyi Sun
- Population Health Sciences, Weill Cornell Medicine, New York, NY 10016, USA.
| | - Mingquan Lin
- Population Health Sciences, Weill Cornell Medicine, New York, NY 10016, USA.
| | - Qingqing Zhu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA.
| | - Qianqian Xie
- Population Health Sciences, Weill Cornell Medicine, New York, NY 10016, USA.
| | - Fei Wang
- Population Health Sciences, Weill Cornell Medicine, New York, NY 10016, USA.
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA.
| | - Yifan Peng
- Population Health Sciences, Weill Cornell Medicine, New York, NY 10016, USA.
| |
Collapse
|
97
|
Gichoya JW, Thomas K, Celi LA, Safdar N, Banerjee I, Banja JD, Seyyed-Kalantari L, Trivedi H, Purkayastha S. AI pitfalls and what not to do: mitigating bias in AI. Br J Radiol 2023; 96:20230023. [PMID: 37698583 PMCID: PMC10546443 DOI: 10.1259/bjr.20230023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Various forms of artificial intelligence (AI) applications are being deployed and used in many healthcare systems. As the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias. With these new lessons, we need to prioritize bias evaluation and mitigation for radiology applications; all the while not ignoring the impact of changes in the larger enterprise AI deployment which may have downstream impact on performance of AI models. In this paper, we provide an updated review of known pitfalls causing AI bias and discuss strategies for mitigating these biases within the context of AI deployment in the larger healthcare enterprise. We describe these pitfalls by framing them in the larger AI lifecycle from problem definition, data set selection and curation, model training and deployment emphasizing that bias exists across a spectrum and is a sequela of a combination of both human and machine factors.
Collapse
Affiliation(s)
| | - Kaesha Thomas
- Department of Radiology, Emory University, Atlanta, United States
| | | | - Nabile Safdar
- Department of Radiology, Emory University, Atlanta, United States
| | - Imon Banerjee
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, United States
| | - John D Banja
- Emory University Center for Ethics, Emory University, Atlanta, United States
| | - Laleh Seyyed-Kalantari
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, North York, United States
| | - Hari Trivedi
- Department of Radiology, Emory University, Atlanta, United States
| | - Saptarshi Purkayastha
- School of Informatics and Computing, Indiana University Purdue University, Indianapolis, United States
| |
Collapse
|
98
|
Wang R, Chen LC, Moukheiber L, Seastedt KP, Moukheiber M, Moukheiber D, Zaiman Z, Moukheiber S, Litchman T, Trivedi H, Steinberg R, Gichoya JW, Kuo PC, Celi LA. Enabling chronic obstructive pulmonary disease diagnosis through chest X-rays: A multi-site and multi-modality study. Int J Med Inform 2023; 178:105211. [PMID: 37690225 DOI: 10.1016/j.ijmedinf.2023.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is one of the most common chronic illnesses in the world. Unfortunately, COPD is often difficult to diagnose early when interventions can alter the disease course, and it is underdiagnosed or only diagnosed too late for effective treatment. Currently, spirometry is the gold standard for diagnosing COPD but it can be challenging to obtain, especially in resource-poor countries. Chest X-rays (CXRs), however, are readily available and may have the potential as a screening tool to identify patients with COPD who should undergo further testing or intervention. In this study, we used three CXR datasets alongside their respective electronic health records (EHR) to develop and externally validate our models. METHOD To leverage the performance of convolutional neural network models, we proposed two fusion schemes: (1) model-level fusion, using Bootstrap aggregating to aggregate predictions from two models, (2) data-level fusion, using CXR image data from different institutions or multi-modal data, CXR image data, and EHR data for model training. Fairness analysis was then performed to evaluate the models across different demographic groups. RESULTS Our results demonstrate that DL models can detect COPD using CXRs with an area under the curve of over 0.75, which could facilitate patient screening for COPD, especially in low-resource regions where CXRs are more accessible than spirometry. CONCLUSIONS By using a ubiquitous test, future research could build on this work to detect COPD in patients early who would not otherwise have been diagnosed or treated, altering the course of this highly morbid disease.
Collapse
Affiliation(s)
- Ryan Wang
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Ching Chen
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lama Moukheiber
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenneth P Seastedt
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mira Moukheiber
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dana Moukheiber
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary Zaiman
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Sulaiman Moukheiber
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Tess Litchman
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hari Trivedi
- Department of Radiology, Emory University, Atlanta, GA, USA
| | | | - Judy W Gichoya
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Po-Chih Kuo
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Leo A Celi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Division of Pulmonary Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
99
|
Bhattarai K, Rajaganapathy S, Das T, Kim Y, Chen Y, Dai Q, Li X, Jiang X, Zong N. Using artificial intelligence to learn optimal regimen plan for Alzheimer's disease. J Am Med Inform Assoc 2023; 30:1645-1656. [PMID: 37463858 PMCID: PMC10531148 DOI: 10.1093/jamia/ocad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population. OBJECTIVE Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians' decisions for AD patients based on the longitude data from electronic health records. METHODS In this study, we selected 1736 patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We focused on the two most frequent concomitant diseases-depression, and hypertension, thus creating 5 data cohorts (ie, Whole Data, AD, AD-Hypertension, AD-Depression, and AD-Depression-Hypertension). We modeled the treatment learning into an RL problem by defining states, actions, and rewards. We built a regression model and decision tree to generate multiple states, used six combinations of medications (ie, cholinesterase inhibitors, memantine, memantine-cholinesterase inhibitors, hypertension drugs, supplements, or no drugs) as actions, and Mini-Mental State Exam (MMSE) scores as rewards. RESULTS Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician's treatment regimen. Optimal policies (ie, policy iteration and Q-learning) had lower rewards than the clinician's policy (mean -3.03 and -2.93 vs. -2.93, respectively) for smaller datasets but had higher rewards for larger datasets (mean -4.68 and -2.82 vs. -4.57, respectively). CONCLUSIONS Our results highlight the potential of using RL to generate the optimal treatment based on the patients' longitude records. Our work can lead the path towards developing RL-based decision support systems that could help manage AD with comorbidities.
Collapse
Affiliation(s)
| | | | - Trisha Das
- University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Yejin Kim
- University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | - Xiaoqian Jiang
- University of Texas Health Science Center, Houston, Texas, USA
| | | |
Collapse
|
100
|
Ellen JG, Jacob E, Nikolaou N, Markuzon N. Autoencoder-based multimodal prediction of non-small cell lung cancer survival. Sci Rep 2023; 13:15761. [PMID: 37737469 PMCID: PMC10517020 DOI: 10.1038/s41598-023-42365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
The ability to accurately predict non-small cell lung cancer (NSCLC) patient survival is crucial for informing physician decision-making, and the increasing availability of multi-omics data offers the promise of enhancing prognosis predictions. We present a multimodal integration approach that leverages microRNA, mRNA, DNA methylation, long non-coding RNA (lncRNA) and clinical data to predict NSCLC survival and identify patient subtypes, utilizing denoising autoencoders for data compression and integration. Survival performance for patients with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) was compared across modality combinations and data integration methods. Using The Cancer Genome Atlas data, our results demonstrate that survival prediction models combining multiple modalities outperform single modality models. The highest performance was achieved with a combination of only two modalities, lncRNA and clinical, at concordance indices (C-indices) of 0.69 ± 0.03 for LUAD and 0.62 ± 0.03 for LUSC. Models utilizing all five modalities achieved mean C-indices of 0.67 ± 0.04 and 0.63 ± 0.02 for LUAD and LUSC, respectively, while the best individual modality performance reached C-indices of 0.64 ± 0.03 for LUAD and 0.59 ± 0.03 for LUSC. Analysis of biological differences revealed two distinct survival subtypes with over 900 differentially expressed transcripts.
Collapse
Affiliation(s)
- Jacob G Ellen
- Institute of Health Informatics, University College London, London, UK.
| | - Etai Jacob
- AstraZeneca, Oncology Data Science, Waltham, MA, USA
| | | | | |
Collapse
|