51
|
Wnt signaling in intestinal inflammation. Differentiation 2019; 108:24-32. [DOI: 10.1016/j.diff.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
|
52
|
Nakayama Y, Iijima T, Wakaume R, Takahashi K, Matsumoto H, Nakano D, Miyaki M, Yamaguchi T. Microsatellite instability is inversely associated with type 2 diabetes mellitus in colorectal cancer. PLoS One 2019; 14:e0215513. [PMID: 31002690 PMCID: PMC6474599 DOI: 10.1371/journal.pone.0215513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background Microsatellite instability (MSI) is a clonal change in the number of repeated DNA nucleotide units in microsatellites. High-frequency MSI (MSI-H) colorectal cancers (CRCs) are known to have different clinicopathological features compared with microsatellite stable (MSS) CRCs. In addition, previous studies have shown that type2 diabetes mellitus (T2DM) is a risk factor for malignant tumors including CRCs. The aim of this study was to investigate the relationship between T2DM and MSI-H colorectal cancer. Methods The study design is a single center, cross-sectional study. Data from a series of 936 patients with CRCs were collected and MSI status was assessed. Results In total, 29 (3.1%) and 907 (96.9%) tumors were classified as having MSI-H and low-frequency microsatellite instability or being MSS (MSS), respectively. Of the 936 patients, 275 (29.6%) were associated with T2DM. One (3.4%) of the 29 MSI-H patients and 274 (30.2%) of the 907 MSS patients had T2DM. Thus, the incidence of T2DM was significantly less frequent in MSI-H compared with MSS patients (Fisher’s exact test: p = 0.0007). Conclusions We conclude that MSS tumors are significantly more common than MSI-H tumors among individuals with T2DM.
Collapse
Affiliation(s)
- Yujiro Nakayama
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
- Department of Surgery, Southern Tohoku General Hospital, Fukushima, Japan
| | - Takeru Iijima
- Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Rika Wakaume
- Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Keiichi Takahashi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Hiroshi Matsumoto
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Daisuke Nakano
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Michiko Miyaki
- Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- * E-mail:
| |
Collapse
|
53
|
Pal I, Rajesh Y, Banik P, Dey G, Dey KK, Bharti R, Naskar D, Chakraborty S, Ghosh SK, Das SK, Emdad L, Kundu SC, Fisher PB, Mandal M. Prevention of epithelial to mesenchymal transition in colorectal carcinoma by regulation of the E-cadherin-β-catenin-vinculin axis. Cancer Lett 2019; 452:254-263. [PMID: 30904616 DOI: 10.1016/j.canlet.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 01/21/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is compulsory for metastatic dissemination and is stimulated by TGF-β. Although targeting EMT has significant therapeutic potential, very few pharmacological agents have been shown to exert anti-metastatic effects. BI-69A11, a competitive Akt inhibitor, displays anti-tumor activity toward melanoma and colon carcinoma. This study provides molecular and biochemical insights into the effects of BI-69A11 on EMT in colon carcinoma cells in vitro and in vivo. BI-69A11 inhibited metastasis-associated cellular migration, invasion and adhesion by inhibiting the Akt-β-catenin pathway. The underlying mechanism of BI-69A11-mediated inhibition of EMT included suppression of nuclear transport of β-catenin and diminished phosphorylation of β-catenin, which was accompanied by enhanced E-cadherin-β-catenin complex formation at the plasma membrane. Additionally, BI-69A11 caused increased accumulation of vinculin in the plasma membrane, which fortified focal adhesion junctions leading to inhibition of metastasis. BI-69A11 downregulated activation of the TGF-β-induced non-canonical Akt/NF-κB pathway and blocked TGF-β-induced enhanced expression of Snail causing restoration of E-cadherin. Overall, this study enhances our understanding of the molecular mechanism of BI-69A11-induced reversal of EMT in colorectal carcinoma cells in vitro, in vivo and in TGF-β-induced model systems.
Collapse
Affiliation(s)
- Ipsita Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Y Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Payel Banik
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | - Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | - Sudip K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Subhas Chandra Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark - 4805-017 Barco, Guimaraes, Portugal
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
54
|
Liu XL, Meng J, Zhang XT, Liang XH, Zhang F, Zhao GR, Zhang T. ING5 inhibits lung cancer invasion and epithelial-mesenchymal transition by inhibiting the WNT/β-catenin pathway. Thorac Cancer 2019; 10:848-855. [PMID: 30810286 PMCID: PMC6449261 DOI: 10.1111/1759-7714.13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background ING5 is the last member of the Inhibitor of Growth (ING) candidate tumor suppressor family that has been implicated in multiple cellular functions, including cell cycle regulation, apoptosis, and chromatin remodeling. Our previous study showed that ING5 overexpression inhibits lung cancer aggressiveness and epithelial–mesenchymal transition (EMT), with unknown mechanisms. Methods Western blotting was used to detect total and phosphorylated levels of β‐catenin and EMT‐related proteins. Immunofluorescent staining was used to observe E‐cadherin expression. Proliferation and colony formation, wound healing, and Transwell migration and invasion assays were performed to study the proliferative and invasive abilities of cancer cells. Results ING5 overexpression promotes phosphorylation of β‐catenin at Ser33/37, leading to a decreased β‐catenin protein level. Small hairpin RNA‐mediated ING5 knockdown significantly increased the β‐catenin level and inhibited phosphorylation of β‐catenin S33/37. Treatment with the WNT/β‐catenin inhibitor XAV939 inhibited ING5‐knockdown promoted proliferation, colony formation, migration, and invasion of lung cancer A549 cells, with increased phosphorylation of β‐catenin S33/37 and a decreased β‐catenin level. XAV939 also impaired ING5‐knockdown‐induced EMT, as indicated by upregulated expression of the EMT marker E‐cadherin, an epithelial marker; and decreased expression of N‐cadherin, a mesenchymal marker, and EMT‐related transcription factors, including Snail, Slug, Twist, and Smad3. Furthermore, XAV939 could inhibit the activation of both IL‐6/STAT3 and PI3K/Akt signaling pathways. Conclusion ING5 inhibits lung cancer invasion and EMT by inhibiting the WNT/β‐catenin pathway.
Collapse
Affiliation(s)
- Xin-Li Liu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin Meng
- Department of Pharmacology, School of Pharmacy Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, PLA No. 309 Hospital, Beijing, China
| | - Xu-Tao Zhang
- Department of Pharmacology, School of Pharmacy Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hua Liang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| | - Guan-Ren Zhao
- Department of Pharmacy, PLA No. 309 Hospital, Beijing, China
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
55
|
Appel S, Grothe J, Storck S, Janoschek R, Bae-Gartz I, Wohlfarth M, Handwerk M, Hucklenbruch-Rother E, Gellhaus A, Dötsch J. A Potential Role for GSK3β in Glucose-Driven Intrauterine Catch-Up Growth in Maternal Obesity. Endocrinology 2019; 160:377-386. [PMID: 30535296 DOI: 10.1210/en.2018-00899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Obesity and unhealthy nutrition are increasing and affect women of childbearing age and hence during pregnancy. Despite normal or even high birth weight, the offspring suffers from long-term metabolic risks. We hypothesized that fetal growth is disturbed during different intrauterine phases. Underlying molecular events remain elusive. Female mice were fed either a standard diet (SD) or a high-fat diet (HFD) after weaning until mating and during pregnancy. Pregnant mice were euthanized at gestational day (G)15.5 and G18.5, and fetuses and placentas were removed for analysis. HFD fetuses displayed intrauterine growth restriction (IUGR) at G15.5, which disappeared until G18.5, indicating intrauterine catch-up growth during that time period. Main placental findings indicate decreased canonical Wnt-GSK3β signaling and lower proliferation rates at G18.5, which goes along with a smaller placental transfer zone. On the other hand, glucose depots (glycogen cluster) in HFD placentas decreased more strongly between G15.5 and G18.5 compared with placentas from SD mothers, and the glucose transporter protein GLUT-1 was increased at G18.5 in the HFD group. Maternal diet-induced obesity causes an IUGR phenotype at the beginning of the third week (G15.5) in our mouse model. This phenotype is reversed by the end of the third week (G18.5) despite a smaller placental transfer zone, probably based on GSK3β-mediated increased glucose mobilization in the placenta and hence an increased glucose supply to the fetus.
Collapse
Affiliation(s)
- Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jon Grothe
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sarah Storck
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marion Handwerk
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
56
|
Yan L, Chen J, Zhu X, Sun J, Wu X, Shen W, Zhang W, Tao Q, Meng A. Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates. Science 2018; 362:362/6417/eaat1045. [DOI: 10.1126/science.aat1045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
The vertebrate body is formed by cell movements and shape change during embryogenesis. It remains undetermined which maternal signals govern the formation of the dorsal organizer and the body axis. We found that maternal depletion of huluwa, a previously unnamed gene, causes loss of the dorsal organizer, the head, and the body axis in zebrafish and Xenopus embryos. Huluwa protein is found on the plasma membrane of blastomeres in the future dorsal region in early zebrafish blastulas. Huluwa has strong dorsalizing and secondary axis–inducing activities, which require β-catenin but can function independent of Wnt ligand/receptor signaling. Mechanistically, Huluwa binds to and promotes the tankyrase-mediated degradation of Axin. Therefore, maternal Huluwa is an essential determinant of the dorsal organizer and body axis in vertebrate embryos.
Collapse
|
57
|
Labrador-Rached CJ, Browning RT, Braydich-Stolle LK, Comfort KK. Toxicological Implications of Platinum Nanoparticle Exposure: Stimulation of Intracellular Stress, Inflammatory Response, and Akt Signaling In Vitro. J Toxicol 2018; 2018:1367801. [PMID: 30364051 PMCID: PMC6188585 DOI: 10.1155/2018/1367801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Due to their distinctive physicochemical properties, platinum nanoparticles (PtNPs) have emerged as a material of interest for a number of biomedical therapeutics. However, in some instances NP exposure has been correlated to health and safety concerns, including cytotoxicity, activation of cellular stress, and modification to normal cell functionality. As PtNPs have induced differential cellular responses in vitro, the goal of this study was to further characterize the behavior and toxicological potential of PtNPs within a HepG2 liver model. This study identified that a high PtNP dosage induced HepG2 cytotoxicity. However, lower, subtoxic PtNP concentrations were able to elicit multiple stress responses, secretion of proinflammatory cytokines, and modulation of insulin-like growth factor-1 dependent signal transduction. Taken together, this work suggests that PtNPs would not be overtly toxic for acute exposures, but sustained cellular interactions might produce long term health consequences.
Collapse
Affiliation(s)
| | - Rebecca T. Browning
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Laura K. Braydich-Stolle
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
58
|
Kasuya A, Ito T, Tokura Y. M2 macrophages promote wound-induced hair neogenesis. J Dermatol Sci 2018; 91:250-255. [DOI: 10.1016/j.jdermsci.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 01/29/2023]
|
59
|
Safian D, Bogerd J, Schulz RW. Igf3 activates β-catenin signaling to stimulate spermatogonial differentiation in zebrafish. J Endocrinol 2018; 238:245-257. [PMID: 29941503 DOI: 10.1530/joe-18-0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Follicle-stimulating hormone (Fsh) is a major regulator of spermatogenesis, targeting somatic cell functions in the testes. We reported previously that zebrafish Fsh promoted the differentiation of type A undifferentiated spermatogonia (Aund) by stimulating the production of factors that advance germ cell differentiation, such as androgens, insulin-like peptide 3 (Insl3) and insulin-like growth factor 3 (Igf3). In addition, Fsh also modulated the transcript levels of several other genes, including some belonging to the Wnt signaling pathway. Here, we evaluated if and how Fsh utilizes part of the canonical Wnt pathway to regulate the development of spermatogonia. We quantified the proliferation activity and relative section areas occupied by Aund and type A differentiating (Adiff) spermatogonia and we analyzed the expression of selected genes in response to recombinant proteins and pharmacological inhibitors. We found that from the three downstream mediators of Fsh activity we examined, Igf3, but not 11-ketotestosterone or Insl3, modulated the transcript levels of two β-catenin sensitive genes (cyclinD1 and axin2). Using a zebrafish β-catenin signaling reporter line, we showed that Igf3 activated β-catenin signaling in type A spermatogonia and that this activation did not depend on the release of Wnt ligands. Pharmacological inhibition of the β-catenin or of the phosphoinositide 3-kinase (PI3K) pathways revealed that Igf3 activated β-catenin signaling in a manner involving PI3K to promote the differentiation of Aund to Adiff spermatogonia. This mechanism represents an intriguing example for a pituitary hormone like Fsh using Igf signaling to recruit the evolutionary conserved, local β-catenin signaling pathway to regulate spermatogenesis.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology GroupDivision Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology GroupDivision Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology GroupDivision Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
- Reproduction and Developmental Biology GroupInstitute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
60
|
Li F, Cain JD, Tombran-Tink J, Niyibizi C. Pigment epithelium derived factor regulates human Sost/Sclerostin and other osteocyte gene expression via the receptor and induction of Erk/GSK-3beta/beta-catenin signaling. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3449-3458. [PMID: 30076958 DOI: 10.1016/j.bbadis.2018.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Mutations in Serpinf1 gene which encodes pigment epithelium derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective mineralization. We reported that PEDF suppressed expression of Sost/Sclerostin and other osteocyte related genes in mineralizing osteoblast cultures and suggested that this could be part of the mechanisms by which PEDF regulates matrix mineralization (Li et al. J Cellular Phys. 2014). We have used a long-term differentiated mineralizing osteoblast culture (LTD) to define mechanisms by which PEDF regulates osteocyte gene expression. LTD cultures were established by culturing human osteoblasts in an osteogenic medium for 4 months followed by analysis of osteocytes related genes and encoded proteins. LTD cells synthesized Sclerostin, matrix extracellular phosphoglycoprotein (MEPE) and dentin matrix protein (DMP-1) and their synthesis was reduced by treatment with PEDF. Treatment of the cultures with PEDF induced phosphorylation of Erk and glycogen synthase kinase 3-beta (GSK-3β), and accumulation of nonphosphorylated β-catenin. Inhibition of Erk activation and neutralizing antibodies to the pigment epithelium derived receptor (PEDF-R) suppressed GSK-3β phosphorylation and accumulation of nonphosphorylated β-catenin in presence of PEDF. Topflash assays demonstrated that PEDF activated luciferase reporter activity and this activity was inhibited by treatment with Erk inhibitor or neutralizing antibodies to PEDF-R. Dickkopf-related protein 1 treatment of the cells in presence of PEDF had minimal effect suggesting that GSK-3β phosphorylation and accumulation of nonphosphorylayted β-catenin may not involve LRP5/6 in osteocytes. Taken together, the data demonstrate that PEDF regulates osteocyte gene expression through its receptor and possible involvement of Erk/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Li
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA
| | - Jarret D Cain
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA
| | - Joyce Tombran-Tink
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher Niyibizi
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State college of Medicine, Hershey, PA, USA.
| |
Collapse
|
61
|
Orhan A, Gögenur I, Kissow H. The Intestinotrophic Effects of Glucagon-Like Peptide-2 in Relation to Intestinal Neoplasia. J Clin Endocrinol Metab 2018; 103:2827-2837. [PMID: 29741675 DOI: 10.1210/jc.2018-00655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone with intestinotrophic and antiapoptotic effects. The hormone's therapeutic potential in intestinal diseases and relation to intestinal neoplasia has raised great interest among researchers. This article reviews and discusses published experimental and clinical studies concerning the growth-stimulating and antiapoptotic effects of GLP-2 in relation to intestinal neoplasia. EVIDENCE ACQUISITION The data used in this narrative review were collected through literature research in PubMed using English keywords. All studies to date examining GLP-2's relation to intestinal neoplasms have been reviewed in this article, as the studies on the matter are sparse. EVIDENCE SYNTHESIS GLP-2 has been found to stimulate intestinal growth through secondary mediators and through the involvement of Akt phosphorylation. Studies on rodents have shown that exogenously administered GLP-2 increases the growth and incidence of adenomas in the colon, suggesting that GLP-2 may play an important role in the progression of intestinal tumors. Clinical studies have found that exogenous GLP-2 treatment is well tolerated for up to 30 months, but the tolerability for even longer periods of treatment has not been examined. CONCLUSION Exogenous GLP-2 is currently available as teduglutide for the treatment of short bowel syndrome. However, the association between exogenous GLP-2 treatment and intestinal neoplasia in humans has not been fully identified. This leads to a cause for concern regarding the later risk of the development or progression of intestinal tumors with long-term GLP-2 treatment. Therefore, further research regarding GLP-2's potential relation to intestinal cancers is needed.
Collapse
Affiliation(s)
- Adile Orhan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- NNF Center of Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
62
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
63
|
Liu Y, Li M, Bo X, Li T, Ma L, Zhai T, Huang T. Systematic Analysis of Long Non-Coding RNAs and mRNAs in the Ovaries of Duroc Pigs During Different Follicular Stages Using RNA Sequencing. Int J Mol Sci 2018; 19:ijms19061722. [PMID: 29891752 PMCID: PMC6032137 DOI: 10.3390/ijms19061722] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/22/2023] Open
Abstract
The dynamic process involving the selection and maturation of follicles is regulated and controlled by a highly synchronized and exquisitely timed cascade of gene expression. Studies have shown that long non-coding RNA (lncRNA) is essential for the normal maintenance of animal reproductive function and has an important regulatory function in ovarian development and hormone secretion. In this study, a total of 2076 lncRNAs (1362 known lncRNAs and 714 new lncRNAs) and 25,491 mRNAs were identified in libraries constructed from Duroc ovaries on days 0, 2 and 4 of follicle development. lncRNAs were shorter, had fewer exons, exhibited a shorter ORF (Open Reading Frame) length and lower expression levels, and were less conserved than mRNAs. Furthermore, 1694 transcripts (140 lncRNAs and 1554 mRNAs) were found to be differentially expressed in pairwise comparisons. A total of 6945 co-localized mRNAs were detected in cis in 2076 lncRNAs. The most enriched GO (Gene Ontology) terms were related to developmental processes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the differentially expressed lncRNAs targeted mRNAs, and the differentially expressed mRNAs were related to the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Retinol metabolic pathway and the Wnt signaling pathway. This study deepened our understanding of the genetic basis and molecular mechanisms of follicular development in pigs.
Collapse
Affiliation(s)
- Yi Liu
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, 221 Wu Yi Road, Shihezi 832000, China.
| | - Mengxun Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, 221 Wu Yi Road, Shihezi 832000, China.
| | - Tao Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Tenjiao Zhai
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000, China.
| |
Collapse
|
64
|
Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP, Dar MJ. Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:920-931. [PMID: 29621572 DOI: 10.1016/j.bbamcr.2018.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/β-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated β-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R.
Collapse
Affiliation(s)
- Gayatri Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Gurjinder Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Mohd Saleem Dar
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Paramjeet Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Nasima Bano
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Sajad Hussain Syed
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Padmani Sandhu
- School of Life Sciences, Central University of Himachal Pradesh, Kangra-176206, Himachal Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India.
| |
Collapse
|
65
|
Li J, Jiang S, Chen Y, Ma R, Chen J, Qian S, Shi Y, Han Y, Zhang S, Yu K. Benzene metabolite hydroquinone induces apoptosis of bone marrow mononuclear cells through inhibition of β-catenin signaling. Toxicol In Vitro 2018; 46:361-369. [DOI: 10.1016/j.tiv.2017.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/27/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
|
66
|
Abstract
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
Collapse
|
67
|
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 2017; 114:E8372-E8381. [PMID: 28916735 DOI: 10.1073/pnas.1707316114] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Collapse
|
68
|
Haro Durand LA, Vargas GE, Vera-Mesones R, Baldi A, Zago MP, Fanovich MA, Boccaccini AR, Gorustovich A. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E740. [PMID: 28773103 PMCID: PMC5551783 DOI: 10.3390/ma10070740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
Since lithium (Li⁺) plays roles in angiogenesis, the localized and controlled release of Li⁺ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO₂, 24.5% Na₂O, 24.5% CaO, and 6% P₂O₅, in which Na₂O was partially substituted by 5% Li₂O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - Gabriela E Vargas
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Rosa Vera-Mesones
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Alberto Baldi
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - María P Zago
- Institute of Experimental Pathology, IPE-CONICET, A4408FVY Salta, Argentina.
| | - María A Fanovich
- Research Institute for Materials Science and Technology, INTEMA-CONICET, B7608FDQ Mar del Plata, Argentina.
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina.
| |
Collapse
|
69
|
Papadima EM, Niola P, Melis C, Pisanu C, Congiu D, Cruceanu C, Lopez JP, Turecki G, Ardau R, Severino G, Chillotti C, Del Zompo M, Squassina A. Evidence towards RNA Binding Motif (RNP1, RRM) Protein 3 (RBM3) as a Potential Biomarker of Lithium Response in Bipolar Disorder Patients. J Mol Neurosci 2017; 62:304-308. [PMID: 28616776 DOI: 10.1007/s12031-017-0938-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023]
Abstract
Lithium has been used for more than six decades for the management of bipolar disorder (BD). In a previous transcriptomic study, we showed that patients affected by either BD or cluster headache, both disorders characterized by circadian disturbances and response to lithium in a subgroup of patients, have higher expression of the RNA binding motif (RNP1, RRM) protein 3 (RBM3) gene compared to controls. To investigate whether RBM3 could represent a biomarker of lithium response, we screened raw microarray expression data from lymphoblastoid cell lines (LCLs) derived from 20 BD patients, responders or non-responders to lithium. RBM3 was the most significantly differentially expressed gene in the list, being overexpressed in responders compared to non-responders (fold change = 2.0; p = 1.5 × 10-16). We therefore sought to validate the microarray finding by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and explore whether RBM3 expression was modulated by lithium treatment in vitro in LCLs as well as in human-derived neural progenitor cells (NPCs). Our findings confirmed the higher expression of RBM3 in responders compared to non-responders (fold change = 3.78; p = 0.0002). Lithium did not change RBM3 expression in LCLs in any of the groups, but it increased its expression in NPCs. While preliminary, our data suggest that higher levels of RBM3 might be required for better lithium response and that the expression of this gene could be modulated by lithium in a tissue-specific manner.
Collapse
Affiliation(s)
- Eleni Merkouri Papadima
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Paola Niola
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Carla Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Cristiana Cruceanu
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Juan Pablo Lopez
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Raffaella Ardau
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy.,Unit of Clinical Pharmacology of the University Hospital of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, School of Medicine, University of Cagliari, sp 6, 09042, Cagliari, Italy.
| |
Collapse
|
70
|
Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, Beltrao-Braga P, Trujillo CA, Mendes AP, Padmanabhan K, Nunez Y, Ou J, Ghosh H, Wright R, Brennand K, Pierce K, Eichenfield L, Pramparo T, Eyler L, Barnes CC, Courchesne E, Geschwind DH, Gage FH, Wynshaw-Boris A, Muotri AR. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry 2017; 22:820-835. [PMID: 27378147 PMCID: PMC5215991 DOI: 10.1038/mp.2016.95] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.
Collapse
Affiliation(s)
| | - Haim Belinson
- University of California San Francisco, Department of Pediatrics, Institute for Human Genetics, CA 94143, USA
| | - Yuan Tian
- University of California Los Angeles, Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, Los Angeles, CA 90402, USA
| | - Beatriz C. Freitas
- University of California San Diego, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093-0695, USA
| | - Chen Fu
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, OH 44106, USA
| | | | - Patricia Beltrao-Braga
- University of California San Diego, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093-0695, USA
- University of São Paulo, Department of Obstetrics, Department of Surgery, Center for Cellular and Molecular Therapy, São Paulo, Brazil
| | - Cleber A. Trujillo
- University of California San Diego, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093-0695, USA
| | - Ana P.D. Mendes
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Krishnan Padmanabhan
- University of Rochester School of Medicine and Dentistry, Department of Neuroscience, 601 Elmwood Avenue, Box 603 Rochester, NY 14642
| | - Yanelli Nunez
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
- University of California San Diego, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093-0695, USA
| | - Jing Ou
- University of California Los Angeles, Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, Los Angeles, CA 90402, USA
| | - Himanish Ghosh
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Rebecca Wright
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Kristen Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Karen Pierce
- University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Lawrence Eichenfield
- University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Tiziano Pramparo
- University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Lisa Eyler
- University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Cynthia C. Barnes
- University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Eric Courchesne
- University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Daniel H. Geschwind
- University of California Los Angeles, Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, Los Angeles, CA 90402, USA
| | - Fred H. Gage
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Anthony Wynshaw-Boris
- University of California San Francisco, Department of Pediatrics, Institute for Human Genetics, CA 94143, USA
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, OH 44106, USA
| | - Alysson R. Muotri
- University of California San Diego, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093-0695, USA
| |
Collapse
|
71
|
Keum N, Yuan C, Nishihara R, Zoltick E, Hamada T, Martinez Fernandez A, Zhang X, Hanyuda A, Liu L, Kosumi K, Nowak JA, Jhun I, Soong TR, Morikawa T, Tabung FK, Qian ZR, Fuchs CS, Meyerhardt JA, Chan AT, Ng K, Ogino S, Giovannucci EL, Wu K. Dietary glycemic and insulin scores and colorectal cancer survival by tumor molecular biomarkers. Int J Cancer 2017; 140:2648-2656. [PMID: 28268248 DOI: 10.1002/ijc.30683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/12/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Accumulating evidence suggests that post-diagnostic insulin levels may influence colorectal cancer (CRC) survival. Yet, no previous study has examined CRC survival in relation to a post-diagnostic diet rich in foods that increase post-prandial insulin levels. We hypothesized that glycemic and insulin scores (index or load; derived from food frequency questionnaire data) may be associated with survival from specific CRC subtypes sensitive to the insulin signaling pathway. We prospectively followed 1,160 CRC patients from the Nurses' Health Study (1980-2012) and Health Professionals Follow-Up Study (1986-2012), resulting in 266 CRC deaths in 10,235 person-years. CRC subtypes were defined by seven tumor biomarkers (KRAS, BRAF, PIK3CA mutations, and IRS1, IRS2, FASN and CTNNB1 expression) implicated in the insulin signaling pathway. For overall CRC and each subtype, hazard ratio (HR) and 95% confidence interval (95% CI) for an increase of one standard deviation in each of glycemic and insulin scores were estimated using time-dependent Cox proportional hazards model. We found that insulin scores, but not glycemic scores, were positively associated with CRC mortality (HR = 1.19, 95% CI = 1.02-1.38 for index; HR = 1.23, 95% CI = 1.04-1.47 for load). The significant positive associations appeared more pronounced among PIK3CA wild-type cases and FASN-negative cases, with HR ranging from 1.36 to 1.60 across insulin scores. However, we did not observe statistically significant interactions of insulin scores with PIK3CA, FASN, or any other tumor marker (p interaction > 0.12). While additional studies are needed for definitive evidence, a high-insulinogenic diet after CRC diagnosis may contribute to worse CRC survival.
Collapse
Affiliation(s)
- NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Chen Yuan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatics, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Emilie Zoltick
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | | | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Akiko Hanyuda
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Li Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Department of Epidemiology and Biostatistics and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Iny Jhun
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - T Rinda Soong
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Charles S Fuchs
- Department of Medicine, Yale School of Medicine, New Haven, CT.,Department of Medicine, Yale School of Medicine, New Haven, CT.,Smilow Cancer Hospital, New Haven, CT
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
72
|
Yu EJ, Hooker E, Johnson DT, Kwak MK, Zou K, Luong R, He Y, Sun Z. LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis. PLoS One 2017; 12:e0174357. [PMID: 28323888 PMCID: PMC5360334 DOI: 10.1371/journal.pone.0174357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer. LZTS2 is a ß-catenin-binding protein and a negative regulator of Wnt signaling. Overexpression of PTEN in prostate cancer cell lines reduces ß-catenin-mediated transcriptional activity. In this study, we examined the collaborative effect of PTEN and LZTS2 using multiple in vitro and in vivo approaches. Co-expression of PTEN and LZTS2 in prostate cancer cells shows stronger repressive effect on ß-catenin mediated transcription. Using a newly generated mouse model, we further assessed the effect of simultaneous deletion of Pten and Lzts2 in the murine prostate. We observed that mice with both Lzts2 and Pten deletion have an earlier onset of prostate carcinomas as well as an accelerated tumor progression compared to mice with Pten or Lzts2 deletion alone. Immunohistochemical analyses show that atypical and tumor cells from compound mice with both Pten and Lzts2 deletion are mainly composed of prostate luminal epithelial cells and possess higher levels of cytoplasmic and nuclear β-catenin. These cells also exhibit a higher proliferative capacity than cells isolated from single deletion mice. These data demonstrate the significance of simultaneous Pten and Lzts2 deletion in oncogenic transformation in prostate cells and implicates a new mechanism for the dysregulation of Wnt/β-catenin signaling in prostate tumorigenesis.
Collapse
Affiliation(s)
- Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel T. Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mi Kyung Kwak
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kang Zou
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
73
|
Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer 2017; 16:6. [PMID: 28137302 PMCID: PMC5282886 DOI: 10.1186/s12943-016-0576-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT progression that may be potential predictive biomarkers in targeted therapy.
Collapse
Affiliation(s)
- Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Izhar Singh Batth
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
74
|
Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis. Front Endocrinol (Lausanne) 2017; 8:31. [PMID: 28275367 PMCID: PMC5319972 DOI: 10.3389/fendo.2017.00031] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments.
Collapse
Affiliation(s)
- Veronica Vella
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Giuliano
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Bellomo
- Scienze delle Attività Motorie e Sportive, University Kore, Enna, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonino Belfiore,
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
75
|
De Ita-Pérez DL, Díaz-Muñoz M. Synchronization by Daytime Restricted Food Access Modulates the Presence and Subcellular Distribution of β-Catenin and Its Phosphorylated Forms in the Rat Liver. Front Endocrinol (Lausanne) 2017; 8:14. [PMID: 28220106 PMCID: PMC5292920 DOI: 10.3389/fendo.2017.00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
β-catenin, the principal effector of the Wnt pathway, is also one of the cadherin cell adhesion molecules; therefore, it fulfills signaling and structural roles in most of the tissues and organs. It has been reported that β-catenin in the liver regulates metabolic responses such as gluconeogenesis and histological changes in response to obesity-promoting diets. The function and cellular location of β-catenin is finely modulated by coordinated sequences of phosphorylation-dephosphorylation events. In this article, we evaluated the levels and cellular localization of liver β-catenin variants, more specifically β-catenin phosphorylated in serine 33 (this phosphorylation provides recognizing sites for β-TrCP, which results in ubiquitination and posterior proteasomal degradation of β-catenin) and β-catenin phosphorylated in serine 675 (phosphorylation that enhances signaling and transcriptional activity of β-catenin through recruitment of different transcriptional coactivators). β-catenin phosphorylated in serine 33 in the nucleus shows day-night fluctuations in their expression level in the Ad Libitum group. In addition, we used a daytime restricted feeding (DRF) protocol to show that the above effects are sensitive to food access-dependent circadian synchronization. We found through western blot and immunohistochemical analyses that DRF protocol promoted (1) higher total β-catenins levels mainly associated with the plasma membrane, (2) reduced the presence of cytoplasmic β-catenin phosphorylated in serine 33, (3) an increase in nuclear β-catenin phosphorylated in serine 675, (4) differential co-localization of total β-catenins/β-catenin phosphorylated in serine 33 and total β-catenins/β-catenin phosphorylated in serine 675 at different temporal points along day and in fasting and refeeding conditions, and (5) differential liver zonation of β-catenin variants studied along hepatic acinus. In conclusion, the present data comprehensively characterize the effect food synchronization has on the presence, subcellular distribution, and liver zonation of β-catenin variants. These results are relevant to understand the set of metabolic and structural liver adaptations that are associated with the expression of the food entrained oscillator (FEO).
Collapse
Affiliation(s)
- Dalia Luz De Ita-Pérez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
- *Correspondence: Mauricio Díaz-Muñoz,
| |
Collapse
|
76
|
Maoa R, Zou F, Yang L, Lin S, Li Y, Ma M, Yin P, Liang X, Liu J. The loss of MiR-139-5p promotes colitis-associated tumorigenesis by mediating PI3K/AKT/Wnt signaling. Int J Biochem Cell Biol 2016; 69:153-61. [PMID: 27022656 DOI: 10.1016/j.biocel.2015.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
MiR-139-5p down-regulation has frequently been implicated in colorectal carcinoma. However, there is little known about its biological function between inflammation and cancer in vivo. Here, a transgenic murine model of colorectal carcinoma was used to investigate pathogenetic role of miR-139-5p in colitis and colitis-associated tumorigenesis. We showed that miR-139-5p knockout mice were higher sensitive to DSS-induced colitis and enhanced formation of intestinal neoplasia was observed when mice were exposed to AOM/DSS treatment. MiR-139-5p knockout mice exhibited an increased expression of genes involved in Wnt pathway. Such genes are closely associated with cell proliferation and differentiation, promoting the β-catenin nuclear accumulation. Furthermore, biochemical studies in HCT-116 cells revealed that the over-expression of miR-139-5p inhibited the crosstalk between PI3K/AKT and Wnt pathway mediated by IGF-1R. Collectively, these findings indicate that miR-139-5p plays a crucial role in the development and progression of colitis-associated tumorigenesis and suggest that miR-139-5p may serve as a potential therapeutic target for the treatment of colitis-associated cancer in the future.
Collapse
|
77
|
Liu LJ, Xie SX, Chen YT, Xue JL, Zhang CJ, Zhu F. Aberrant regulation of Wnt signaling in hepatocellular carcinoma. World J Gastroenterol 2016; 22:7486-7499. [PMID: 27672271 PMCID: PMC5011664 DOI: 10.3748/wjg.v22.i33.7486] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/07/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.
Collapse
|
78
|
Lu WJ, Chua MS, Wei W, So SK. NDRG1 promotes growth of hepatocellular carcinoma cells by directly interacting with GSK-3β and Nur77 to prevent β-catenin degradation. Oncotarget 2016; 6:29847-59. [PMID: 26359353 PMCID: PMC4745767 DOI: 10.18632/oncotarget.4913] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/07/2015] [Indexed: 02/01/2023] Open
Abstract
The N-myc downstream regulated gene 1 (NDRG1) is significantly associated with advanced tumor stages and poor survival of hepatocellular carcinoma (HCC), thereby implicating it as a potential target for HCC treatment. We aim to further understand its biological roles in hepatocarcinogenesis, as a means to exploit it for therapeutic purposes. By screening using the ProtoArray® Human Protein Microarrays, we identified glycogen synthase kinase 3β (GSK-3β) and the orphan nuclear receptor (Nur77) as potential interaction partners of NDRG1. These interactions were confirmed in HCC cell lines in vitro by co-immunoprecipitation; and co-localizations of NDRG1 with GSK-3β and Nur77 were observed by immunofluorescence staining. Additionally, high levels of NDRG1 competitively bind to GSK-3β and Nur77 to allow β-catenin to escape degradation, with consequent elevated levels of downstream oncogenic genes. In vivo, we consistently observed that NDRG1 suppression in HCC xenografts decreased β-catenin levels and its downstream target Cyclin D1, with concomitant tumor growth inhibition. Clinically, the over-expression of NDRG1 in HCC patient samples is positively correlated with GSK-3β-9ser (| R | = 0.28, p = 0.01), Nur77 (| R | = 0.42, p < 0.001), and β-catenin (| R |= 0.32, p = 0.003) expressions. In conclusion, we identified GSK-3β and Nur77 as novel interaction partners of NDRG1. These protein-protein interactions regulate the turnover of β-catenin and subsequent downstream signaling mediated by β-catenin in HCC cells, and provides potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Jing Lu
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei Wei
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel K So
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
79
|
A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib. EBioMedicine 2016; 8:132-149. [PMID: 27428425 PMCID: PMC4919613 DOI: 10.1016/j.ebiom.2016.04.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Acquired resistance to second generation BRAF inhibitors (BRAFis), like vemurafenib is limiting the benefits of long term targeted therapy for patients with malignant melanomas that harbor BRAF V600 mutations. Since many resistance mechanisms have been described, most of them causing a hyperactivation of the MAPK- or PI3K/AKT signaling pathways, one potential strategy to overcome BRAFi resistance in melanoma cells would be to target important common signaling nodes. Known factors that cause secondary resistance include the overexpression of receptor tyrosine kinases (RTKs), alternative splicing of BRAF or the occurrence of novel mutations in MEK1 or NRAS. In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi.
Collapse
|
80
|
Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, Bi Y, He TC. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. J Transl Med 2016; 96:116-36. [PMID: 26618721 PMCID: PMC4731283 DOI: 10.1038/labinvest.2015.144] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying the development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin-mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the 'destruction complex', consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of cross-talk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway.
Collapse
Affiliation(s)
- Ke Yang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xin Wang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Department of Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Zhongliang Wang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guoxin Nan
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yasha Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fugui Zhang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Maryam K. Mohammed
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Corresponding authors T.-C. He, MD, PhD, Molecular Oncology Laboratory, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA, Tel. (773) 702-7169; Fax (773) 834-4598, , Yang Bi, MD, PhD, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University, Chongqing 400046, China, Tel. 011-86-23-63633113; Fax: 011-86-236362690,
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China, Corresponding authors T.-C. He, MD, PhD, Molecular Oncology Laboratory, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA, Tel. (773) 702-7169; Fax (773) 834-4598, , Yang Bi, MD, PhD, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University, Chongqing 400046, China, Tel. 011-86-23-63633113; Fax: 011-86-236362690,
| |
Collapse
|
81
|
Kim DH, Moon EY, Yi JH, Lee HE, Park SJ, Ryu YK, Kim HC, Lee S, Ryu JH. Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience 2015; 310:51-62. [PMID: 26363149 DOI: 10.1016/j.neuroscience.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
Abstract
Although several studies have suggested the neuroprotective effect of thymosin β4 (TB4), a major actin-sequestering protein, on the central nervous system, little is understood regarding the action of N-acetyl-serylaspartyl-lysyl-proline (Ac-SDKP), a peptide fragment of TB4 on brain function. Here, we examined neurogenesis-stimulative effect of Ac-SDKP. Intrahippocampal infusion of Ac-SDKP facilitated the generation of new neurons in the hippocampus. Ac-SDKP-treated mouse hippocampus showed an increase in β-catenin stability with reduction of glycogen synthase kinase-3β (GSK-3β) activity. Moreover, inhibition of vascular endothelial growth factor (VEGF) signaling blocked Ac-SDKP-facilitated neural proliferation. Subchronic intrahippocampal infusion of Ac-SDKP also increased spatial memory. Taken together, these data demonstrate that Ac-SDKP functions as a regulator of neural proliferation and indicate that Ac-SDKP may be a therapeutic candidate for diseases characterized by neuronal loss.
Collapse
Affiliation(s)
- D H Kim
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea; Dong-A Anti-Aging Research Center, Dong-A University, Busan 604-714, Republic of Korea
| | - E-Y Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea.
| | - J H Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - H E Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - S J Park
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Y-K Ryu
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - H-C Kim
- Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Taejeon 305-806, Republic of Korea
| | - S Lee
- Faculty of Marine Biomedical Science, Cheju National University, Jeju 690-756, Republic of Korea
| | - J H Ryu
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
82
|
Li Q, Li Y, Gu B, Fang L, Zhou P, Bao S, Huang L, Dai X. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation. J Biol Chem 2015; 290:21553-67. [PMID: 26170450 DOI: 10.1074/jbc.m115.639419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 01/16/2023] Open
Abstract
Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression.
Collapse
Affiliation(s)
- Qiuling Li
- From the Department of Biological Chemistry, the State Key Laboratory of Molecular and Developmental Biology, Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yuewei Li
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Bingnan Gu
- From the Department of Biological Chemistry
| | - Lei Fang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697
| | - Pengbo Zhou
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Shilai Bao
- the State Key Laboratory of Molecular and Developmental Biology, Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697,
| | - Xing Dai
- From the Department of Biological Chemistry,
| |
Collapse
|
83
|
Song L, Li Y, He B, Gong Y. Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clin Colorectal Cancer 2015; 14:133-45. [PMID: 25799881 DOI: 10.1016/j.clcc.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) was ranked third in morbidity and mortality in the United States in 2013. Although substantial progress has been made in surgical techniques and postoperative chemotherapy in recent years, the prognosis for colon cancer is still not satisfactory, mainly because of cancer recurrence and metastasis. The latest studies have shown that cancer stem cells (CSCs) play important roles in cancer recurrence and metastasis. Drugs that target CSCs might therefore have great therapeutic potential in prevention of cancer recurrence and metastasis. The wingless-int (Wnt) signaling pathway in CSCs has been suggested to play crucial roles in colorectal carcinogenesis, and has become a popular target for anti-CRC therapy. Dysregulation of the Wnt signaling pathway, mostly by inactivating mutations of the adenomatous polyposis coli tumor suppressor or oncogenic mutations of β-catenin, has been implicated as a key factor in colorectal tumorigenesis. Abnormal increases of β-catenin levels represents a common pathway in Wnt signaling activation and is also observed in other human malignancies. These findings highlight the importance of developing small-molecule drugs that target the Wnt pathway. Herein we provide an overview on the current development of small molecules that target the Wnt pathway in colorectal CSCs and discuss future research directions.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China; BioChain (Beijing) Science and Technology, Inc, Beijing, China.
| | - Yuemin Li
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China.
| | - Baoming He
- Department of Nuclear Medicine, the PLA 309 Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, the PLA General Hospital, Beijing, China
| |
Collapse
|
84
|
Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, Xia Y, Verkman AS, Yang B. Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J 2015; 29:1551-63. [PMID: 25573755 DOI: 10.1096/fj.14-260828] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/15/2014] [Indexed: 01/04/2023]
Abstract
Water channel aquaporin-1 (AQP1) is expressed at epithelial cell plasma membranes in renal proximal tubules and thin descending limb of Henle. Recently, AQP1 was reported to interact with β-catenin. Here we investigated the relationship between AQP1 and Wnt signaling in in vitro and in vivo models of autosomal dominant polycystic kidney disease (PKD). AQP1 overexpression decreased β-catenin and cyclinD1 expression, suggesting down-regulation of Wnt signaling, and coimmunoprecipitation showed AQP1 interaction with β-catenin, glycogen synthase kinase 3β, LRP6, and Axin1. AQP1 inhibited cyst development and promoted branching in matrix-grown MDCK cells. In embryonic kidney cultures, AQP1 deletion increased cyst development by up to ∼ 40%. Kidney size and cyst number were significantly greater in AQP1-null PKD mice than in AQP1-expressing PKD mice, with the difference mainly attributed to a greater number of proximal tubule cysts. Biochemical analysis revealed decreased β-catenin phosphorylation and increased β-catenin expression in AQP1-null PKD mice, suggesting enhanced Wnt signaling. These results implicate AQP1 as a novel determinant in renal cyst development that may involve inhibition of Wnt signaling by an AQP1-macromolecular signaling complex.
Collapse
Affiliation(s)
- Weiling Wang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Fei Li
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yi Sun
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Lei Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Hong Zhou
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Tianluo Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yin Xia
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - A S Verkman
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Baoxue Yang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| |
Collapse
|
85
|
Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis 2015; 6:e1584. [PMID: 25569101 PMCID: PMC4669748 DOI: 10.1038/cddis.2014.550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/04/2022]
Abstract
BTG3 (B-cell translocation gene 3) is a p53 target that also binds and inhibits E2F1. Although it connects two major growth-regulatory pathways functionally and is downregulated in human cancers, whether and how BTG3 acts as a tumor suppressor remain largely uncharacterized. Here we present evidence that BTG3 binds and suppresses AKT, a kinase frequently deregulated in cancers. BTG3 ablation results in increased AKT activity that phosphorylates and inhibits glycogen synthase kinase 3β. Consequently, we also observed elevated β-catenin/T-cell factor activity, upregulation of mesenchymal markers, and enhanced cell migration. Consistent with these findings, BTG3 overexpression suppressed tumor growth in mouse xenografts, and was associated with diminished AKT phosphorylation and reduced β-catenin in tissue specimens. Significantly, a short BTG3-derived peptide was identified, which recapitulates these effects in vitro and in cells. Thus, our study provides mechanistic insights into a previously unreported AKT inhibitory pathway downstream of p53. The identification of an AKT inhibitory peptide also unveils a new avenue for cancer therapeutics development.
Collapse
|
86
|
Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front Endocrinol (Lausanne) 2015; 6:59. [PMID: 25964777 PMCID: PMC4408912 DOI: 10.3389/fendo.2015.00059] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is fundamental for growth and survival. A large body of evidence (laboratory, epidemiological, and clinical) implicates the exploitation of this pathway in cancer. Up to 50% of breast tumors express the activated form of the type 1 insulin-like growth factor receptor (IGF1R). Breast cancers are categorized into subtypes based upon hormone and ERRB2 receptor expression and/or gene expression profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance across all breast cancer subtypes, it has specific expression and function in each. In some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is associated with recurrence and poor prognosis, suggesting different actions based upon cellular and molecular contexts. In this review, we examine IGF1R expression and function as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how these cell fate influences may alter the differentiation potential and cellular composition of breast tumors.
Collapse
Affiliation(s)
- Susan M. Farabaugh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David N. Boone
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- *Correspondence: Adrian V. Lee, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Room A412, Pittsburgh, PA 15213, USA
| |
Collapse
|
87
|
O'Gorman DB, Gan BS. The cellular microenvironment: a new target in the search for cellular and molecular treatment for Dupuytren’s disease. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.978856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
88
|
Kasdagly M, Radhakrishnan S, Reddivari L, Veeramachaneni DR, Vanamala J. Colon carcinogenesis: Influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds. Nutrition 2014; 30:1242-56. [DOI: 10.1016/j.nut.2014.02.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
|
89
|
TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. PLoS One 2014; 9:e109868. [PMID: 25360740 PMCID: PMC4215977 DOI: 10.1371/journal.pone.0109868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.
Collapse
|
90
|
Li TWH, Peng H, Yang H, Kurniawidjaja S, Panthaki P, Zheng Y, Mato JM, Lu SC. S-Adenosylmethionine and methylthioadenosine inhibit β-catenin signaling by multiple mechanisms in liver and colon cancer. Mol Pharmacol 2014; 87:77-86. [PMID: 25338671 DOI: 10.1124/mol.114.095679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
S-Adenosylmethionine (SAMe), the principal methyl donor that is available as a nutritional supplement, and its metabolite methylthioadenosine (MTA) exert chemopreventive properties against liver and colon cancer in experimental models. Both agents reduced β-catenin expression on immunohistochemistry in a murine colitis-associated colon cancer model. In this study, we examined the molecular mechanisms involved. SAMe or MTA treatment in the colitis-associated cancer model lowered total β-catenin protein levels by 47 and 78%, respectively. In an orthotopic liver cancer model, increasing SAMe levels by overexpressing methionine adenosyltransferase 1A also reduced total β-catenin levels by 68%. In both cases, lower cyclin D1 and c-Myc expression correlated with lower β-catenin levels. In liver (HepG2) and colon (SW480, HCT116) cancer cells with constitutively active β-catenin signaling, SAMe and MTA treatment inhibited β-catenin activity by excluding it from the nuclear compartment. However, in liver (Huh-7) and colon (RKO) cancer cells expressing wild-type Wnt/β-catenin, SAMe and MTA accelerated β-catenin degradation by a glycogen synthase kinase 3-β-dependent mechanism. Both agents lowered protein kinase B activity, but this was not mediated by inhibiting phosphoinositide 3-kinase. Instead, both agents increased the activity of protein phosphatase 2A, which inactivates protein kinase B. The effect of MTA on lowering β-catenin is direct and not mediated by its conversion to SAMe, as blocking this conversion had no influence. In conclusion, SAMe and MTA inhibit Wnt/β-catenin signaling in colon and liver cancer cells regardless of whether this pathway is aberrantly induced, making them ideal candidates for chemoprevention and/or chemotherapy in these cancers.
Collapse
Affiliation(s)
- Tony W H Li
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - Hui Peng
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - Heping Yang
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - Steven Kurniawidjaja
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - Parizad Panthaki
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - Yuhua Zheng
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - José M Mato
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| | - Shelly C Lu
- Division of Gastroenterology, Cedars Sinai Medical Center, Los Angeles, California (T.W.H.L., H.P., H.Y., S.C.L.); University of Southern California Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, California (T.W.H.L., H.P., H.Y., S.K., P.P., S.C.L.); Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California (Y.Z.); and CIC bioGUNE, Ciberehd, Bizkaia, Spain (J.M.M.)
| |
Collapse
|
91
|
Li JY, Yu T, Xia ZS, Chen GC, Yuan YH, Zhong W, Zhao LN, Chen QK. Enhanced proliferation in colorectal epithelium of patients with type 2 diabetes correlates with β-catenin accumulation. J Diabetes Complications 2014; 28:689-97. [PMID: 24930713 DOI: 10.1016/j.jdiacomp.2014.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022]
Abstract
AIMS β-Catenin accumulation promotes proliferation. However, the correlation between proliferation of colorectal epithelium and β-catenin in type 2 diabetes mellitus (DM) patients remains unclear. METHODS Colorectal epithelium samples from distal ends of colorectal adenocarcinomas without histological aberrances were divided into two groups: DM patients with type 2 DM for more than 1year (n=27) and non-DM patients without hyperglycemia (n=20). Samples from patients without colorectal epithelial disease or hyperglycemia served as a control group (n=6). Proliferative index was calculated as the percentage of proliferating cell nuclear antigen positive cells. Wnt/β-catenin signaling was assessed immunohistochemically and phosphorylation of β-catenin was assessed by immunofluorescence. RESULTS Compared with the non-DM or control group, the proliferative index and expression of lactate dehydrogenase A and Wnt/β-catenin signaling were significantly higher in the DM group (all p<0.01). The proliferative index correlated positively with β-catenin expression (Spearman correlation coefficient=0.55; p<0.01). Reduced phosphorylation at serine 33/37 and increased phosphorylation at serine 675 of β-catenin were detected in the DM group (all p<0.01). CONCLUSIONS Enhanced proliferation, accompanied by increased aerobic glycolysis, was detected in colorectal epithelium of patients with diabetes. β-Catenin accumulation with altered phosphorylation correlated with the proliferative changes.
Collapse
Affiliation(s)
- Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Guang-Cheng Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yu-Hong Yuan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Li-Na Zhao
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China.
| |
Collapse
|
92
|
In silico-based combinatorial pharmacophore modelling and docking studies of GSK-3β and GK inhibitors of Hippophae. J Biosci 2014; 38:805-14. [PMID: 24287660 DOI: 10.1007/s12038-013-9367-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes is an inevitably progressive disease, with irreversible beta cell failure. Glycogen synthase kinase and Glukokinase, two important enzymes with diverse biological actions in carbohydrate metabolism, are promising targets for developing novel antidiabetic drugs. A combinatorial structure-based molecular docking and pharmacophore modelling study was performed with the compounds of Hippophae salicifolia and H. rhamnoides as inhibitors. Docking with Discovery Studio 3.5 revealed that two compounds from H. salicifolia, viz Lutein D and an analogue of Zeaxanthin, and two compounds from H. rhamnoides, viz Isorhamnetin-3-rhamnoside and Isorhamnetin-7-glucoside, bind significantly to the GSK-3 beta receptor and play a role in its inhibition; whereas in the case of Glucokinase, only one compound from both the plants, i.e. vitamin C, had good binding characteristics capable of activation. The results help to understand the type of interactions that occur between the ligands and the receptors. Toxicity predictions revealed that none of the compounds had hepatotoxic effects and had good absorption as well as solubility characteristics. The compounds did not possess plasma protein-binding, crossing blood-brain barrier ability. Further, in vivo and in vitro studies need to be performed to prove that these compounds can be used effectively as antidiabetic drugs.
Collapse
|
93
|
Haidari M, Zhang W, Willerson JT, Dixon RA. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-β-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovasc Diabetol 2014; 13:105. [PMID: 25927959 PMCID: PMC4223716 DOI: 10.1186/1475-2840-13-105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background Hyperglycemia has been recognized as a primary factor in endothelial barrier dysfunction and in the development of micro- and macrovascular diseases associated with diabetes, but the underlying biochemical mechanisms remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) leads to the disruption of endothelial adherens junctions and increases the transendothelial migration (TEM) of leukocytes. Methods VE-cad tyrosine phosphorylation, adherens junction integrity and TEM of monocytes in human umbilical vein endothelial cells (HUVECs) treated with high-concentration glucose were evaluated. The role of protein kinase C (PKC) in induction of endothelial cells adherence junction disruption by exposure of HUVECs to high concentration of glucose was explored. Results The treatment of HUVEC with high-concentration glucose increased VE-cad tyrosine phosphorylation, whereas mannitol or 3-O-methyl-D-glucose had no effect. In addition, high-concentration glucose increased the dissociation of the VE-cad–β-catenin complex, activation of the Wnt/β-catenin pathway, and the TEM of monocytes. These alterations were accompanied by the activation of endothelial PKC and increased phosphorylation of ERK and myosin light chain (MLC). High-concentration glucose-induced tyrosine phosphorylation of VE-cad was attenuated by: 1- the inhibition of PKC-β by overexpression of dominant-negative PKC-β 2- inhibition of MLC phosphorylation by overexpression of a nonphosphorylatable dominant-negative form of MLC, 3- the inhibition of actin polymerization by cytochalasin D and 4- the treatment of HUVECs with forskolin (an activator of adenylate cyclase). Conclusions Our findings show that the high-concentration glucose-induced disruption of endothelial adherens junctions is mediated by tyrosine phosphorylation of VE-cad through PKC-β and MLC phosphorylation.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, 77030, Houston, TX, USA. .,Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - Wei Zhang
- Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - James T Willerson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, 77030, Houston, TX, USA. .,Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - Richard Af Dixon
- Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| |
Collapse
|
94
|
Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol 2014; 50:667-77. [PMID: 24219511 PMCID: PMC5455301 DOI: 10.1165/rcmb.2013-0397tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
Insulin-like growth factor (IGF)-I has been recognized to play critical roles in the pathogenesis of asthma, whereas IGF-binding protein (IGFBP)-3 blocks crucial physiologic manifestations of asthma. IGF-I enhances subepithelial fibrosis, airway inflammation, airway hyperresponsiveness, and airway smooth muscle hyperplasia by interacting with various inflammatory mediators and complex signaling pathways, such as intercellular adhesion molecule-1, and the hypoxia-inducible factor/vascular endothelial growth factor axis. On the other hand, IGFBP-3 decreases airway inflammation and airway hyperresponsiveness through IGFBP-3 receptor-mediated activation of caspases, which subsequently inhibits NF-κB signaling pathway. It also inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial growth factor axis via IGF-I-dependent and/or IGF-I-independent mechanisms. This Translational Review summarizes the role of IGF-I and IGFBP-3 in the context of allergic airway disease, and discusses the therapeutic potential of various strategies targeting the IGF-I and IGFBP-3 signaling pathways for the management of asthma.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - So Ri Kim
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia; and
| | - Seong Ho Cho
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Robert P. Schleimer
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yong Chul Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
95
|
Park SY, Lee YK, Lee WS, Park OJ, Kim YM. The involvement of AMPK/GSK3-beta signals in the control of metastasis and proliferation in hepato-carcinoma cells treated with anthocyanins extracted from Korea wild berry Meoru. Altern Ther Health Med 2014; 14:109. [PMID: 24666969 PMCID: PMC3974438 DOI: 10.1186/1472-6882-14-109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022]
Abstract
Background Activation of the Wnt pathway is known to promote tumorigenesis and tumor metastasis, and targeting Wnt pathway inhibition has emerged as an attractive approach for controlling tumor invasion and metastasis. The major pathway for inhibiting Wnt is through the degradation of β-catenin by the GSK3-beta/CK1/Axin/APC complex. It was found that Hep3B hepato-carcinoma cells respond to anthocyanins through GSK3-beta-induced suppression of beta-catenin; however, they cannot dephosphorylate GSK3-beta without AMPK activation. Methods We tested the effects of anthocyanins on proliferation and apoptosis by MTT and Annexin V-PI staining in vitro. Mouse xenograft models of hepato-carcinomas were established by inoculation with Hep3B cells, and mice were injected with 50 mg/kg/ml of anthocyanins. In addition, protein levels of p-GSK3-beta, beta-catenin, p-AMPK, MMP-9, VEGF, and Ang-1 were also analyzed using western blot. Results Anthocyanins decrease phospho-GSK3-beta and beta-catenin expression in an in vivo tumor xenograft model, increase AMPK activity in this model, and inhibit cell migration and invasion, possibly by inhibiting MMP-2 (in vitro) and the panendothelial marker, CD31 (in vivo). To elucidate the role of the GSK3-beta/beta-catenin pathway in cancer control, we conditionally inactivated this pathway, using activated AMPK for inhibition. Further, we showed that AMPK siRNA treatment abrogated the ability of anthocyanins to control cell proliferation and metastatic potential, and Compound C, an AMPK inhibitor, could not restore GSK3-beta regulation, as exhibited by anthocyanins in Hep3B cells. Conclusion These observations imply that the AMPK-mediated GSK3-beta/beta-catenin circuit plays crucial roles in inhibiting cancer cell proliferation and metastasis in anthocyanin-treated hepato-carcinoma cells of Meoru origin.
Collapse
|
96
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|
97
|
Gao C, Xiao G, Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci 2014; 4:13. [PMID: 24594309 PMCID: PMC3977945 DOI: 10.1186/2045-3701-4-13] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin.
Collapse
Affiliation(s)
| | | | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
98
|
Malaguarnera R, Belfiore A. The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne) 2014; 5:10. [PMID: 24550888 PMCID: PMC3912738 DOI: 10.3389/fendo.2014.00010] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
99
|
de-Freitas-Junior JCM, Carvalho S, Dias AM, Oliveira P, Cabral J, Seruca R, Oliveira C, Morgado-Díaz JA, Reis CA, Pinho SS. Insulin/IGF-I signaling pathways enhances tumor cell invasion through bisecting GlcNAc N-glycans modulation. an interplay with E-cadherin. PLoS One 2013; 8:e81579. [PMID: 24282611 PMCID: PMC3839884 DOI: 10.1371/journal.pone.0081579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022] Open
Abstract
Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications.
Collapse
Affiliation(s)
| | - Sandra Carvalho
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal
| | - Ana M. Dias
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
| | - Patrícia Oliveira
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
| | - Joana Cabral
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
| | - Raquel Seruca
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - José Andrés Morgado-Díaz
- Division of Cellular Biology, Brazilian National Cancer Institute, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (SSP); (CAR); (JAMD)
| | - Celso A. Reis
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
- * E-mail: (SSP); (CAR); (JAMD)
| | - Salomé S. Pinho
- Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal
- * E-mail: (SSP); (CAR); (JAMD)
| |
Collapse
|
100
|
SUN YUANJIE, KIM NAMHO, JI LITING, KIM SEUNGHYUK, LEE JONGHO, RHEE HAEJIN. Lysophosphatidic acid activates β-catenin/T cell factor signaling, which contributes to the suppression of apoptosis in H19-7 cells. Mol Med Rep 2013; 8:1729-33. [DOI: 10.3892/mmr.2013.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/03/2013] [Indexed: 11/06/2022] Open
|