51
|
Matsuda Y. Molecular mechanism underlying the functional loss of cyclindependent kinase inhibitors p16 and p27 in hepatocellular carcinoma. World J Gastroenterol 2008; 14:1734-40. [PMID: 18350604 PMCID: PMC2695913 DOI: 10.3748/wjg.14.1734] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human cancers, and its incidence is still increasing in many countries. The prognosis of HCC patients remains poor, and identification of useful molecular prognostic markers is required. Many recent studies have shown that functional alterations of cell-cycle regulators can be observed in HCC. Among the various types of cell-cycle regulators, p16 and p27 are frequently inactivated in HCC and are considered to be potent tumor suppressors. p16, a G1-specific cell-cycle inhibitor that prevents the association of cyclindependent kinase (CDK) 4 and CDK6 with cyclin D1, is frequently inactivated in HCC via CpG methylation of its promoter region. p16 may be involved in the early steps of hepatocarcinogenesis, since p16 gene methylation has been detected in subsets of pre-neoplastic liver cirrhosis patients. p27, a negative regulator of the G1-S phase transition through inhibition of the kinase activities of Cdk2/cyclin A and Cdk2/cyclin E complexes, is now considered to be an adverse prognostic factor in HCC. In some cases of HCC with increased cell proliferation, p27 is overexpressed but inactivated by sequestration into cyclin D1-CDK4-containing complexes. Since loss of p16 is closely related to functional inactivation of p27 in HCC, investigating both p16 and p27 may be useful for precise prognostic predictions in individuals with HCC.
Collapse
|
52
|
Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol 2008; 28:3219-35. [PMID: 18332107 DOI: 10.1128/mcb.01516-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase inhibitor (HDACi) has been shown to demethylate the mammalian genome, which further strengthens the concept that DNA methylation and histone modifications interact in regulation of gene expression. Here, we report that an HDAC inhibitor, depsipeptide, exhibited significant demethylating activity on the promoters of several genes, including p16, SALL3, and GATA4 in human lung cancer cell lines H719 and H23, colon cancer cell line HT-29, and pancreatic cancer cell line PANC1. Although expression of DNA methyltransferase 1 (DNMT1) was not affected by depsipeptide, a decrease in binding of DNMT1 to the promoter of these genes played a dominant role in depsipeptide-induced demethylation and reactivation. Depsipeptide also suppressed expression of histone methyltransferases G9A and SUV39H1, which in turn resulted in a decrease of di- and trimethylated H3K9 around these genes' promoter. Furthermore, both loading of heterochromatin-associated protein 1 (HP1alpha and HP1beta) to methylated H3K9 and binding of DNMT1 to these genes' promoter were significantly reduced in depsipeptide-treated cells. Similar DNA demethylation was induced by another HDAC inhibitor, apicidin, but not by trichostatin A. Our data describe a novel mechanism of HDACi-mediated DNA demethylation via suppression of histone methyltransferases and reduced recruitment of HP1 and DNMT1 to the genes' promoter.
Collapse
|
53
|
Al-Romaih K, Somers GR, Bayani J, Hughes S, Prasad M, Cutz JC, Xue H, Zielenska M, Wang Y, Squire JA. Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Cancer Cell Int 2007; 7:14. [PMID: 17845729 PMCID: PMC2034371 DOI: 10.1186/1475-2867-7-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 09/10/2007] [Indexed: 11/30/2022] Open
Abstract
Background Methylation-mediated silencing of genes is one epigenetic mechanism implicated in cancer. Studies regarding the role of modulation of gene expression utilizing inhibitors of DNA methylation, such as decitabine, in osteosarcoma (OS) have been limited. A biological understanding of the overall effects of decitabine in OS is important because this particular agent is currently undergoing clinical trials. The objective of this study was to measure the response of the OS cell line, U2OS, to decitabine treatment both in vitro and in vivo. Results Microarray expression profiling was used to distinguish decitabine-dependent changes in gene expression in U2OS cells, and to identify responsive loci with demethylated CpG promoter regions. U2OS xenografts were established under the sub-renal capsule of immune-deficient mice to study the effect of decitabine in vivo on tumor growth and differentiation. Reduced nuclear methylation levels could be detected in xenografts derived from treated mice by immunohistochemistry utilizing a 5-methylcytidine antibody. Decitabine treatment reduced tumor xenograft size significantly (p < 0.05). Histological analysis of treated U2OS xenograft sections revealed a lower mitotic activity (p < 0.0001), increased bone matrix production (p < 0.0001), and a higher number of apoptotic cells (p = 0.0329). Microarray expression profiling of U2OS cultured cells showed that decitabine treatment caused a significant induction (p < 0.0025) in the expression of 88 genes. Thirteen had a ≥2-fold change, 11 of which had CpG-island-associated promoters. Interestingly, 6 of these 11 were pro-apoptotic genes and decitabine resulted in a significant induction of cell death in U2OS cells in vitro (p < 0.05). The 6 pro-apoptotic genes (GADD45A, HSPA9B, PAWR, PDCD5, NFKBIA, and TNFAIP3) were also induced to ≥2-fold in vivo. Quantitative methylation pyrosequencing confirmed that the tested pro-apoptotic genes had CpG-island DNA demethylationas a result of U2OS decitabine treatment both in vitro and in xenografts Conclusion These data provide new insights regarding the use of epigenetic modifiers in OS, and have important implications for therapeutic trials involving demethylation drugs. Collectively, these data have provided biological evidence that one mode of action of decitabine may be the induction of apoptosis utilizing promoter-CpG demethylation of specific effectors in cell death pathways in OS.
Collapse
Affiliation(s)
- Khaldoun Al-Romaih
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Gino R Somers
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada. M5G 1X8
| | - Jane Bayani
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Simon Hughes
- Division of Tumor Biology, Institute of Cancer and Cancer Research, UK Clinical Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, United Kingdom, EC1M 6BQ
| | - Mona Prasad
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Jean-Claude Cutz
- Departments of Pathology & Molecular Medicine, and Laboratory Medicine, McMaster University, St. Joseph's Healthcare – Hamilton Regional Laboratory Medicine Program, Hamilton, Canada L8N 4A6
| | - Hui Xue
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
| | - Maria Zielenska
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada. M5G 1X8
| | - Yuzhuo Wang
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
- The Prostate Centre, Vancouver General Hospital, Vancouver, Canada, V6H 3Z6
| | - Jeremy A Squire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
| |
Collapse
|
54
|
Dai Z, Liu S, Marcucci G, Sadee W. 5-Aza-2'-deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer). Biochem Biophys Res Commun 2006; 351:455-61. [PMID: 17064661 DOI: 10.1016/j.bbrc.2006.10.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/10/2006] [Indexed: 12/31/2022]
Abstract
DNA methylation and histone acetylation are main epigenetic events regulating gene expression, serving as anticancer drug targets. A combination of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine with the histone deacetylase inhibitor depsipeptide synergistically induces apoptosis. To characterize genes involved in this process, we measured expression of 376 apoptosis-related genes with microarrays after treatment with the two inhibitors alone or in combination. The pro-apoptotic BIK (Bcl2-interacting killer) was the only gene synergistically upregulated in all four cancer cell lines tested (A549, PC-3, TK-10, and UO-31). BIK induction was confirmed by RT-PCR and Western blots. Histone acetylation of the BIK promoter region increased with depsipeptide treatment but was not further affected by 5-aza-2'-deoxycytidine. In summary, synergistic upregulation of pro-apoptotic BIK-previously shown to suppress tumor growth-appears to play a critical role in anticancer effects of 5-aza-2'-deoxycytidine plus depsipeptide.
Collapse
Affiliation(s)
- Zunyan Dai
- Program of Pharmacogenomics, Department of Pharmacology, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
55
|
Cao ZA, Bass KE, Balasubramanian S, Liu L, Schultz B, Verner E, Dai Y, Molina RA, Davis JR, Misialek S, Sendzik M, Orr CJ, Leung L, Callan O, Young P, Dalrymple SA, Buggy JJ. CRA-026440: a potent, broad-spectrum, hydroxamic histone deacetylase inhibitor with antiproliferative and antiangiogenic activity in vitro and in vivo. Mol Cancer Ther 2006; 5:1693-701. [PMID: 16891455 DOI: 10.1158/1535-7163.mct-06-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CRA-026440 is a novel, broad-spectrum, hydroxamic acid-based inhibitor of histone deacetylase (HDAC) that shows antitumor and antiangiogenic activities in vitro and in vivo preclinically. CRA-026440 inhibited pure recombinant isozymes HDAC1, HDAC2, HDAC3/SMRT, HDAC6, HDAC8, and HDAC10 in the nanomolar range. Treatment of cultured tumor cell lines grown in vitro with CRA-026440 resulted in the accumulation of acetylated histone and acetylated tubulin, leading to an inhibition of tumor cell growth and the induction of apoptosis. CRA-026440 inhibited ex vivo angiogenesis in a dose-dependent manner. CRA-026440 parenterally given to mice harboring HCT116 or U937 human tumor xenografts resulted in a statistically significant reduction in tumor growth. CRA-026440, when used in combination with Avastin, achieved greater preclinical efficacy in HCT 116 colorectal tumor model. Inhibition of tumor growth was accompanied by an increase in the acetylation of alpha-tubulin in peripheral blood mononuclear cells and an alteration in the expression of many genes in the tumors, including several involved in angiogenesis, apoptosis, and cell growth. These results reveal CRA-026440 to be a novel HDAC inhibitor with potent antitumor activity.
Collapse
Affiliation(s)
- Z Alexander Cao
- Celera Genomics, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Tsujiuchi T, Shimizu K, Onishi M, Sugata E, Fujii H, Mori T, Honoki K, Fukushima N. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines. Biochem Biophys Res Commun 2006; 349:1151-5. [DOI: 10.1016/j.bbrc.2006.08.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 12/31/2022]
|
57
|
Fouladi M, Furman WL, Chin T, Freeman BB, Dudkin L, Stewart CF, Krailo MD, Speights R, Ingle AM, Houghton PJ, Wright J, Adamson PC, Blaney SM. Phase I Study of Depsipeptide in Pediatric Patients With Refractory Solid Tumors: A Children's Oncology Group Report. J Clin Oncol 2006; 24:3678-85. [PMID: 16877737 DOI: 10.1200/jco.2006.06.4964] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose To determine the maximum-tolerated dose (MTD), dose-limiting toxicities (DLT), pharmacokinetic profile, and pharmacodynamics of the histone deacetylase inhibitor, depsipeptide, in children with refractory or recurrent solid tumors. Patients and Methods Depsipeptide was administered as a 4-hour infusion weekly for 3 consecutive weeks every 28 days at dose levels of 10 mg/m2, 13 mg/m2, 17 mg/m2, and 22 mg/m2. Pharmacokinetics and histone acetylation studies were performed in the first course. The levels of H3 histone and acetyl-H3 histone were evaluated in peripheral blood mononuclear cells (PBMC) using immunofluorescence techniques. Results There were 24 patients, and 18 who were assessable were enrolled. DLTs included reversible, asymptomatic T-wave inversions, without any associated changes in troponin levels or evidence of ventricular dysfunction, in the inferior leads in two patients at 22 mg/m2 and in the lateral leads in one patient at 13 mg/m2 (n = 1), and transient asymptomatic sick sinus syndrome and hypocalcemia in one patient at 17 mg/m2. At the MTD (17 mg/m2), the median depsipeptide clearance was 6.8 L/h/m2 with an area under the plasma depsipeptide concentration-time curve from 0 to infinity of 2,414 ng/mL/h, similar to adults. Accumulation of acetylated H3 histones was seen in all patients in a dose independent manner, with maximal accumulation at a median of 4 hours, (range, 0 hours to 20 hours) after the end of the infusion. No objective tumor responses were observed. Conclusion Depsipeptide is well tolerated in children with recurrent or refractory solid tumors when administered weekly for 3 consecutive weeks every 28 days and inhibits histone deacetylase activity in PBMC in a dose-independent manner. The recommended phase II dose in children with solid tumors is 17 mg/m2.
Collapse
|
58
|
Zhang Z, Joh K, Yatsuki H, Zhao W, Soejima H, Higashimoto K, Noguchi M, Yokoyama M, Iwasaka T, Mukai T. Retinoic acid receptor beta2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett 2006; 247:318-27. [PMID: 16806674 DOI: 10.1016/j.canlet.2006.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 01/01/2023]
Abstract
To elucidate the silencing mechanism of retinoic acid receptor beta2 (RAR beta2) in cervical carcinogenesis, we investigated RAR beta2 expression and the status of both DNA methylation and histone modifications at the promoter in cervical cancer cell lines. RAR beta2 was frequently repressed in cancer cell lines and in primary cancers of the cervix. Although the majority of RAR beta2-negative cancers had methylated promoter, RAR beta2 was repressed with hypomethylated promoter in a substantial fraction of the cancers. The RAR beta2-negative cells with hypomethylated promoters showed a repressive histone modification pattern at the promoter. RAR beta2 was reactivated by a histone deacetylase inhibitor, accompanied by formation of active histone modifications. The repressive modification was also observed in cells repressed with hypermethylated promoter, but RAR beta2 was reactivated only by DNA demethylating agent and not by histone deacetylase inhibitor. Our results suggest that RAR beta2 is silenced by either of the two key epigenetic pathways, DNA methylation or repressive histone modifications, depending on the individual cancer cells.
Collapse
Affiliation(s)
- Zhongming Zhang
- Division of Molecular Biology and Genetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene 2006; 26:77-90. [PMID: 16799634 DOI: 10.1038/sj.onc.1209763] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epigenetic silencing of tumor suppressor genes is a common event during carcinogenesis, and often involves aberrant DNA methylation and histone modification of gene regulatory regions, resulting in the formation of a transcriptionally repressive chromatin state. Two examples include the antimetastatic, tumor suppressor genes, desmocollin 3 (DSC3) and MASPIN, which are frequently silenced in this manner in human breast cancer. Treatment of the breast tumor cell lines MDA-MB-231 and UACC 1179 with 5-aza-2'-deoxycytidine (5-aza-CdR) induced transcriptional reactivation of both genes in a dose-dependent manner. Importantly, DSC3 and MASPIN reactivation was closely and consistently linked with significant decreases in promoter H3 K9 di-methylation. Moreover, 5-aza-CdR treatment also resulted in global decreases in H3 K9 di-methylation, an effect that was linked to its ability to mediate dose-dependent, post-transcriptional decreases in the key enzyme responsible for this epigenetic modification, G9A. Finally, small interfering RNA (siRNA)-mediated knockdown of G9A and DNMT1 led to increased MASPIN expression in MDA-MB-231 cells, to levels that were supra-additive, verifying the importance of these enzymes in maintaining multiple layers of epigenetic repression in breast tumor cells. These results highlight an additional, complimentary mechanism of action for 5-aza-CdR in the reactivation of epigenetically silenced genes, in a manner that is independent of its effects on DNA methylation, further supporting an important role for H3 K9 methylation in the aberrant repression of tumor suppressor genes in human cancer.
Collapse
Affiliation(s)
- R J Wozniak
- Department of Pharmacology and Toxicology, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5024, USA
| | | | | | | | | |
Collapse
|
60
|
Zhang Y, Fatima N, Dufau ML. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Mol Cell Biol 2005; 25:7929-39. [PMID: 16135786 PMCID: PMC1234307 DOI: 10.1128/mcb.25.18.7929-7939.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously demonstrated that transcription of the luteinizing hormone receptor (LHR) gene is subject to repression by histone deacetylation at its promoter region, where a histone deacetylase (HDAC)/mSin3A complex is anchored at a proximal Sp1 site. The present studies have shown that epigenetic silencing and activation of the LHR gene is achieved through coordinated regulation at both the histone and DNA levels. The HDAC inhibitor trichostatin A (TSA) evoked robust but significantly lower activation of the LHR gene in JAR than in MCF-7 cells. This effect was localized to the 176-bp promoter region, which is highly methylated in JAR and lightly methylated in MCF-7 cells. Consequently, TSA and the DNA demethylating reagent 5-azacytidine (5-AzaC) caused marked synergistic activation of the LHR gene in JAR but not in MCF-7 cells. Multiple site-specific lysine acetylation of H3/H4 is associated with such LHR gene activation. Methylation or acetylation of H3 at K9 is present at the silenced and derepressed LHR promoter, respectively. While DNA methylation levels did not affect the histone code of the LHR gene promoter, demethylation of the promoter CpG sites was necessary for maximal stimulation of this gene. Mechanistically, the combined actions of TSA and 5-AzaC, but not either 5-AzaC or TSA alone, resulted in complete demethylation of the LHR gene promoter in JAR cells. Release of the repressive HDAC/mSin3A complex from the LHR gene promoter in both cell types required both TSA-induced changes of histone modifications and, concurrently, a demethylated promoter. Also, Dnmt1 was largely dissociated from the LHR gene promoter in the presence of TSA or TSA plus 5-AzaC, and binding of MBD2 in JAR cells was diminished upon conversion of the promoter to a demethylated state. Such changes induced a more permissive chromatin where recruitment of polymerase II and TFIIB to the promoter was significantly increased. The activated state of the LHR gene induced by TSA and 5-AzaC in JAR and MCF-7 cells was observed basally in LHR-expressing PLC cells, in which the promoter is unmethylated and associated with hyperacetylated histones. Consequently, PLC cells are unresponsive to drug treatment. These findings have elucidated a regulatory mechanism whereby concurrent dissociation of repressors and association of activators and basal transcriptional components, resulting from coordinated histone hyperacetylation and DNA demethylation, lead to derepression of the LHR gene expression.
Collapse
Affiliation(s)
- Ying Zhang
- ERRB, NICHD, National Institutes of Health, Bldg. 49, Rm. 6A-36, 49 Convent Dr., MSC 4510, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
61
|
Abstract
The most extensively studied inhibitors of DNA methylation are the cytidine analogs 5-azacytidine (5-aza-CR; azacitidine) and 5-aza-2'- deoxycytidine (5-aza-CdR; decitabine). Despite decades of nonclinical and clinical research, there remains considerable interest in finding innovative and better ways to use these DNA methyltransferase (DNMT) inhibitors. A mounting body of data supports the role of methylation in silencing genes involved in tumor growth and resistance. This information has fueled further nonclinical and clinical research on ways to use inhibitors of methylation to restore normal gene expression and function. As such, recent clinical strategies have shifted from simply evaluating cytotoxic effects to exploring and optimizing the ability of these agents to restore or reactivate gene expression and putative targets. This article considers innovative approaches to develop and evaluate inhibitors of DNA methylation as epigenetic remodeling agents for the treatment of cancer. These include optimization of dose and schedule, restoration or enhancement of sensitivity to other treatment modalities, and combinations with other agents including histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Anthony J Murgo
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 6130 Executive Boulevard, Bethesda, MD 20852, USA.
| |
Collapse
|
62
|
Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 2005; 68:917-32. [PMID: 15955865 DOI: 10.1124/mol.105.014167] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The epigenome is defined by DNA methylation patterns and the associated post-translational modifications of histones. This histone code determines the expression status of individual genes dependent upon their localization on the chromatin. The histone deacetylases (HDACs) play a major role in keeping the balance between the acetylated and deacetylated states of chromatin and eventually regulate gene expression. Recent developments in understanding the cancer cell cycle, specifically the interplay with chromatin control, are providing opportunities for developing mechanism-based therapeutic drugs. Inhibitors of HDACs are under considerable exploration, in part because of their potential roles in reversing the silenced genes in transformed tumor cells by modulating transcriptional processes. This review is an effort to summarize the nonclinical and clinical status of HDAC inhibitors currently under development in anticancer therapy.
Collapse
Affiliation(s)
- Milin R Acharya
- Clinical Pharmacology Research Core, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
63
|
Abstract
Alterations in chromatin structure resulting from aberrant DNA methylation and perturbations of the histone code profoundly influence gene expression during pulmonary carcinogenesis. Recent studies indicate that DNA demethylating agents and histone deacetylase (HDAC) inhibitors synergistically induce gene expression and apoptosis in cultured lung cancer cells, and prevent lung cancer development in animals following exposure to tobacco carcinogens. Preliminary clinical trials have established proof of principle regarding the use of DNA demethylating agents and HDAC inhibitors for enhancing immunogenicity and apoptosis of lung cancer cells, and have revealed the complexities concerning the mechanisms by which chromatin remodeling agents mediate antitumor effects in vivo. These data support additional investigations pertaining to the epigenetics of lung cancer, and the evaluation of chromatin remodeling agents for the treatment and prevention of this disease.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1201, USA.
| | | |
Collapse
|
64
|
Chinnaiyan P, Varambally S, Tomlins SA, Ray S, Huang S, Chinnaiyan AM, Harari PM. Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition. Int J Cancer 2005; 118:1041-50. [PMID: 16152586 DOI: 10.1002/ijc.21465] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular inhibition of the ErbB signaling pathway represents a promising cancer treatment strategy. Preclinical studies suggest that enhancement of antitumor activity can be achieved by maximizing ErbB signaling inhibition. Using cDNA microarrays, we identified histone deacetylase (HDAC) inhibitors as having strong potential to enhance the effects of anti-ErbB agents. Studies using a 20,000 element (20K) cDNA microarray demonstrate decreased transcript expression of ErbB1 (epidermal growth factor receptor) and ErbB2 in DU145 (prostate) and ErbB2 in SKBr3 (breast) cancer cell lines. Additional changes in the DU145 gene expression profile with potential interaction to ErbB signaling include down-regulation of caveolin-1 and hypoxia inducible factor 1-alpha (HIF1-alpha), and up-regulation of gelsolin, p19(INK4D) and Nur77. Findings were validated using real time RT-PCR and Western blot analysis. Enhanced proliferative inhibition, apoptosis induction and signaling inhibition were demonstrated when combining HDAC inhibition with ErbB blockade. These results suggest that used cooperatively, anti-ErbB agents and HDAC inhibitors may offer a promising strategy of dual targeted therapy. Additionally, microarray data suggest that the beneficial interaction of these agents may not derive solely from modulation of ErbB expression, but may result from effects on other oncogenic processes including angiogenesis, invasion and cell cycle kinetics.
Collapse
Affiliation(s)
- Prakash Chinnaiyan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53792-0600, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Grote HJ, Schmiemann V, Geddert H, Rohr UP, Kappes R, Gabbert HE, Böcking A. Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. Int J Cancer 2005; 116:720-5. [PMID: 15849750 DOI: 10.1002/ijc.21090] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aberrant promoter methylation of normally unmethylated CpG-islands offers a promising tool for the development of molecular biomarkers. We investigated bronchial aspirates of patients admitted for suspected lung cancer with regard to the prevalence of aberrant methylation of potential marker genes. Applying quantitative methylation specific PCR (QMSP) we analyzed bronchial aspirates from 75 patients with primary lung cancer and 64 bronchial aspirates of patients diagnosed with benign lung disease for promoter methylation of 3 candidate marker genes (p16(INK4a), RARB2 and SEMA3B). Hypermethylation of p16(INK4a) detected 18/75 (24%) cases with primary lung cancer and was present predominantly in squamous cell carcinomas (14/25; 56%). RARB2 QMSP at an assay threshold greater than 30 was found in 42/75 (56%) patients with lung cancer without relation to histological subtype. Patients with benign lung disease showed methylation of p16(INK4a) and a RARB2 QMSP at an assay threshold greater than 30 in 0/64 (0%) and 8/64 (13%) cases, respectively. Combining the 2 methylation markers, p16(INK4a) and RARB2, yielded a sensitivity of 69% and a specificity of 87% for the diagnosis of pulmonary malignancy. In contrast, SEMA3B displayed frequent promoter methylation (around 90%) both in bronchial aspirates of tumor and nontumor cases and thus was not suited as a biomarker. The results of this study indicate that QMSP analysis of p16(INK4a) and RARB2 may aid the diagnosis of primary lung cancer in bronchial aspirates. In particular, detection of p16(INK4a) methylation by QMSP may serve as a highly specific marker of pulmonary squamous cell carcinoma.
Collapse
Affiliation(s)
- Hans J Grote
- Institute of Cytopathology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
66
|
Scott SA, Dong WF, Ichinohasama R, Hirsch C, Sheridan D, Sanche SE, Geyer CR, Decoteau JF. 5-Aza-2'-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res 2005; 30:69-76. [PMID: 16043219 DOI: 10.1016/j.leukres.2005.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/10/2005] [Accepted: 05/14/2005] [Indexed: 02/02/2023]
Abstract
Decitabine is a potent demethylating agent that exhibits clinical activity against myeloid malignancies. Numerous genes silenced by hypermethylation are reactivated by decitabine through a mechanism involving promoter demethylation with subsequent release of histone deacetylases (HDACs) and accumulation of acetylated histones. Recent studies indicating that decitabine also induces regional chromatin remodeling of some unmethylated genes suggest additional mechanisms of action. Decitabine reactivates unmethylated p21WAF1 in some AML cell lines but the possible occurrence of p21WAF1 methylation in AML in vivo has not been studied in detail and decitabine effects on p21WAF1 chromatin remodeling have not been reported. We found that p21WAF1 mRNA was undetectable in 6 of 24 AML patient samples and 4 of 5 AML cell lines but there was no evidence of p21WAF1 promoter methylation. However, decitabine induced p21WAF1 in AML cell lines KG-1 and KG-1a in association with release of HDAC1 and increased acetylated histone H3 at the unmethylated p21WAF1 promoter. Decitabine effects on p21WAF1 histone acetylation and induction were enhanced by the HDAC inhibitor trichostatin A and were independent of wild type p53. Our findings indicate that decitabine can relieve p21WAF1 repression in AML by a mechanism that involves release of HDAC1 without requiring promoter demethylation. Furthermore, our study provides evidence that combined decitabine and HDAC inhibitor treatment can enhance chromatin remodeling and reactivation of an unmethylated tumor suppressor gene. This latter finding is of relevance to the clinical use of these agents in AML as we found the p21WAF1 promoter to be unmethylated in vivo.
Collapse
Affiliation(s)
- Stuart A Scott
- Department of Pathology, University of Saskatchewan, Saskatoon Cancer Centre, 20 Campus Drive, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Digel W, Lübbert M. DNA methylation disturbances as novel therapeutic target in lung cancer: Preclinical and clinical results. Crit Rev Oncol Hematol 2005; 55:1-11. [PMID: 15886007 DOI: 10.1016/j.critrevonc.2005.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 02/01/2005] [Accepted: 02/15/2005] [Indexed: 12/28/2022] Open
Abstract
The prognosis of lung cancer is very much limited by the difficulties of diagnosing early stage disease amenable to surgery. Thus, novel diagnostic and therapeutic approaches are urgently needed for this common type of cancer. Recently, epigenetic alterations of tumor cells have been defined for a multitude of tissues and genes. Thus, promoter hypermethylation of tumor suppressor genes, and other targets of neoplasia-associated methylation disturbances, have become the most frequent recurrent alteration in solid tumors and hematologic neoplasia. In lung cancer, several sets of genes including the tumor suppressor gene p16, the DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT), E-cadherin and retinoic acid receptor beta have been shown to be frequently methylated and inactivated. Distinct methylation patterns can provide molecular distinctions between different histologic subtypes of lung cancer. Gene hypermethylation in lung cancer is an early event associated with exposure to tobacco-specific carcinogens. Highly sensitive detection of hypermethylated DNA in sputum and peripheral blood offers a powerful tool for detecting lung cancer at an early stage. Epigenetic alterations in cancer, as opposed to genetic lesions, are potentially reversible. Thus, hypermethylation has been studied as a therapeutic target for agents which revert this epigenotype. The most advanced drugs to inhibit methylation are two azanucleosides, decitabine and its ribonucleoside analogue 5-azacytidine. In vitro, demethylating agents given at low doses reactivate tumor suppressor genes, and in mouse models, the development of lung cancer can be retarded. This effect is more powerful when histone acetylation, as a second epigenetic silencing mechanism, is also inhibited pharmacologically (HDAC inhibitors). Clinical trials of both groups of agents have been performed, and novel demethylating agents which are not incorporated into DNA offer further perspectives for epigenetic therapy of lung cancer and other malignancies.
Collapse
Affiliation(s)
- Werner Digel
- Department Internal Medicine, Division Hematology/Oncology, University of Freiburg Medical Center, Hugstetterstr. 55, D- 79106 Freiburg, Germany
| | | |
Collapse
|
68
|
Schmelz K, Sattler N, Wagner M, Lübbert M, Dörken B, Tamm I. Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia 2005; 19:103-11. [PMID: 15510208 DOI: 10.1038/sj.leu.2403552] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR, decitabine) has therapeutic efficacy in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Using microarray analysis, we investigated global changes in gene expression after 5-Aza-CdR treatment in AML. In the AML cell line OCI-AML2, Aza-CdR induced the expression of 81 out of 22 000 genes; 96 genes were downregulated (> or =2-fold change in expression). RT-PCR analysis of 10 randomly selected genes confirmed the changes of expression in AML cells. Similar results were obtained with primary AML and MDS cells after treatment with 5-Aza-CdR ex vivo and in vivo, respectively. In contrast, significantly fewer changes in gene expression and cytotoxicity were detected in normal peripheral blood mononuclear and bone marrow cells or transformed epithelial cells treated with 5-Aza-CdR. Interestingly, only 50.6% of the induced genes contain putative CpG islands in the 5' region. To further investigate the significance of promoter methylation in the induced genes, we analyzed the actual methylation status of randomly selected 5-Aza-CdR-inducible genes. We detected hypermethylation exclusively in the 5' region of the myeloperoxidase (MPO) gene. DNA methylation inversely correlated with MPO expression in newly diagnosed untreated AML patients (P< or =0.004). In contrast, all other analyzed 5-Aza-CdR-inducible genes revealed no CpG methylation in the promoter region, suggesting a methylation-independent effect of 5-Aza-CdR.
Collapse
Affiliation(s)
- K Schmelz
- Charité, Department of Hematology and Oncology, Virchow-Clinic, Internal Medicine, Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C, Liu S, Smith LT, Lee S, Rassenti L, Marcucci G, Byrd J, Caligiuri MA, Plass C. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 2005; 37:265-74. [PMID: 15723065 DOI: 10.1038/ng1521] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 01/24/2005] [Indexed: 02/07/2023]
Abstract
DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.
Collapse
Affiliation(s)
- Li Yu
- Internal Medicine, Division of Hematology/Oncology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Fang JY, Chen YX, Lu J, Lu R, Yang L, Zhu HY, Gu WQ, Lu LG. Epigenetic modification regulates both expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines: Colo-320 and SW1116. Cell Res 2005; 14:217-26. [PMID: 15225415 DOI: 10.1038/sj.cr.7290222] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study is to assess the effects of DNA methylation and histone acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methylation-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.
Collapse
Affiliation(s)
- Jing Yuan Fang
- Shanghai Institute of Digestive Disease, Renji Hospital Shanghai Second Medical University, Shanghai 200001, China.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Gilbert J, Gore SD, Herman JG, Carducci MA. The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 2005; 10:4589-96. [PMID: 15269129 DOI: 10.1158/1078-0432.ccr-03-0297] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methods of gene inactivation include genetic events such as mutations or deletions. Epigenetic changes, heritable traits that are mediated by changes in DNA other than nucleotide sequences, play an important role in gene expression. Two epigenetic events that have been associated with transcriptional silencing include methylation of CpG islands located in gene promoter regions of cancer cells and changes in chromatin conformation involving histone acetylation. Recent evidence demonstrates that these processes form layers of epigenetic silencing. Reversal of these epigenetic processes and up-regulation of genes important to prevent or reverse the malignant phenotype has therefore become a new therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Jill Gilbert
- Division of Oncology and Hematology, Stanley S Scott Cancer Center, Louisiana State University, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
72
|
Dai Z, Popkie AP, Zhu WG, Timmers CD, Raval A, Tannehill-Gregg S, Morrison CD, Auer H, Kratzke RA, Niehans G, Amatschek S, Sommergruber W, Leone GW, Rosol T, Otterson GA, Plass C. Bone morphogenetic protein 3B silencing in non-small-cell lung cancer. Oncogene 2004; 23:3521-9. [PMID: 15116090 DOI: 10.1038/sj.onc.1207441] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein 3B (BMP3B) is a member of the TGF-beta superfamily. The BMP3B promoter sequence was previously identified as a target for aberrant DNA methylation in non-small-cell lung cancer (NSCLC). Aberrant DNA hypermethylation in the BMP3B promoter is associated with downregulation of BMP3B transcription in both primary human lung cancers as well as lung cancer cell lines. In order to understand the mechanisms of BMP3B silencing in lung cancer, a sample set of 91 primary NSCLCs was used to detect aberrant BMP3B promoter methylation, mutations in the coding sequence of BMP3B, and loss of heterozygosity (LOH). Our results showed that 45 of 91 (or 49.5%) tested primary NSCLCs exhibited increased promoter methylation, and 40% demonstrated LOH in at least one of the flanking microsatellite markers sJRH and D10S196 (63 kb upstream or 3.338 Mbp downstream of BMP3B). The lung cancer cell line A549, a type II alveolar epithelial human lung cancer cell line, is characterized by aberrant DNA promoter methylation. We used retroviral vector constructs containing the BMP3B cDNA to re-express the gene in A549 cells and to investigate the effects on cell growth. No change in the cell growth rate was observed after BMP3B re-expression, as compared to the vector controls. Although the number of colonies formed in anchorage-dependent assays was only slightly decreased, the colony-forming ability of A549 cells after BMP3B expression in anchorage-independent assays in soft agar was significantly reduced to 10% (P<0.005, t-test). Moreover, the in vivo tumorigenicity assay in nude mice indicated that cells re-expressing BMP3B grew significantly slower than cells not expressing BMP3B (P<0.05, t-test). In conclusion, this study provides evidence that BMP3B expression is repressed by different mechanisms in lung cancer, and that the silencing of BMP3B promotes lung tumor development.
Collapse
Affiliation(s)
- Zunyan Dai
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Sato N, Fukushima N, Matsubayashi H, Goggins M. Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene 2004; 23:1531-8. [PMID: 14716296 DOI: 10.1038/sj.onc.1207269] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA hypomethylation is one of the major epigenetic alterations in human cancers. We have previously shown that genes identified as hypomethylated in pancreatic cancer are expressed in pancreatic cancer cell lines, but not in normal pancreatic ductal epithelium and can be reexpressed in nonexpressing cells using 'epigenetic modifying agents' such as DNA methyltransferase inhibitors. To identify additional targets for aberrant hypomethylation in pancreatic cancer, we used oligonucleotide microarrays to screen for genes that displayed expression patterns associated with hypomethylation. This analysis identified a substantial number of candidates including previously reported hypomethylated genes. A subset of eight genes were selected for further methylation analysis, and two cancer-related genes, maspin and S100P, were found to be aberrantly hypomethylated in a large fraction of pancreatic cancer cell lines and primary pancreatic carcinomas. Combined treatment with 5-aza-2'-deoxycytidie and trichostatin A resulted in synergistic induction of maspin and S100P mRNA in MiaPaCa2 cells where both genes were methylated. Furthermore, there was an inverse correlation between methylation and mRNA expression level for maspin and S100P in a large panel of pancreatic cancer cell lines. We also found a significant difference in the methylation patterns of maspin and two previously identified hypomethylated genes (trefoil factor 2 and lipocalin 2) between pancreatic and breast cancer cell lines, suggesting cancer-type specificity for some hypomethylation patterns. Thus, our present results confirm that DNA hypomethylation is a frequent epigenetic event in pancreatic cancer, and suggest that gene expression profiling may help to identify potential targets affected by this epigenetic alteration.
Collapse
Affiliation(s)
- Norihiro Sato
- 1Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | |
Collapse
|
74
|
Honoki K, Tsujiuchi T, Mori T, Yoshitani K, Tsutsumi M, Takakura Y, Mii Y. Expression of the p16INK4a gene and methylation pattern of CpG sites in the promoter region in rat tumor cell lines. Mol Carcinog 2004; 39:10-4. [PMID: 14694443 DOI: 10.1002/mc.10165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss of p16(INK4a) protein expression has frequently been related to DNA methylation in association with gene silencing. Although the methylation status of exon1alpha for p16(INK4a) involvement in various cancers has been extensively analyzed, it has been pointed out that some inconsistencies existed in its relationship to gene silencing of p16(INK4a). In this study, we focused on the expression and methylation status in the regions of nt -478 to -201, containing a putative TATA box (nt -401 to -396), and nt -233 to 26, both in a recently cloned 5' upstream region of rat p16(INK4a). We showed that rat lung adenocarcinoma RLCNR did not express the p16(INK4a) gene, whereas rat osteosarcoma COS1NR and malignant fibrous histiocytoma MFH1NR both expressed it at levels similar to normal fibroblasts, even though the region of nt -233 to 26 was hypermethylated in COS1NR rather than RLCNR. In contrast, the CpG islands near the putative TATA box region were consistently methylated in RLCNR, but not in COS1NR and MFH1NR, as well as in normal fibroblasts. Treatment with 5-aza 2'-deoxycytidine induced expression of p16(INK4a) gene in RLCNR after 48 h, but no changes were observed in COS1NR and MFH1NR. The results indicated that methylation of CpG islands near a TATA box region played a critical role for gene silencing of the rat p16(INK4a) gene, rather than that of other regions.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, Otterson GA. 5-aza-2'-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004; 279:15161-6. [PMID: 14722112 DOI: 10.1074/jbc.m311703200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In addition to its demethylating function, 5-aza-2'-deoxycytidine (5-aza-CdR) also plays an important role in inducing cell cycle arrest, differentiation, and cell death. However, the mechanism by which 5-aza-CdR induces antineoplastic activity is not clear. In this study, we found that 5-aza-CdR at limited concentrations (0.01-5 microm) induces inhibition of cell proliferation as well as increased p53/p21(Waf1/Cip1) expression in A549 cells (wild-type p53) but not in H1299 (p53-null) and H719 cells (p53 mutant). The p53-dependent p21(Waf1/Cip1) expression induced by 5-aza-CdR was not seen in A549 cells transfected with the wild-type human papilloma virus type-16 E6 gene that induces p53 degradation. Furthermore, deletion analysis and site-directed mutagenesis of the p21 promoter reveals that 5-aza-CdR induces p21(Waf1/Cip1) expression through two p53 binding sites in the p21 promoter. Finally, 5-aza-CdR-induced p21(Waf1/Cip1) expression was dependent on DNA damage but not on DNA demethylation as demonstrated by comet assay and bisulfite sequencing, respectively. Our data provide useful clues for judging the therapeutic efficacy of 5-aza-CdR in the treatment of human cancer cells.
Collapse
Affiliation(s)
- Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, University of Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
The incidence of melanoma is rising at an alarming rate and has become an important public health concern. If detected early, melanoma carries an excellent prognosis after appropriate surgical resection. Unfortunately, advanced melanoma has a poor prognosis and is notoriously resistant to radiation and chemotherapy. The relative resistance of melanoma to a wide-range of chemotherapeutic agents and high toxicity of current therapies has prompted a search for effective alternative treatments that would improve prognosis and limit side effects. Advances in molecular genetics are revealing in increasing detail the mechanisms responsible for the development of melanoma. Hopefully, elucidation of these pathways will provide a means of screening high-risk individuals and allow new drug development for prevention and treatment by identification of specific pharmacological targets. This review will summarize the genetics of melanoma with the goal of providing insights into potential pharmacogenetic candidate genes.
Collapse
|
77
|
Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax 2003; 58:892-900. [PMID: 14514947 PMCID: PMC1746489 DOI: 10.1136/thorax.58.10.892] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been hypothesised that clinically evident lung cancers have accumulated many different genetic or epigenetic abnormalities in oncogenes and/or tumour suppressor genes. This notion has important clinical ramifications. Recent developments in our knowledge of the molecular biology of lung cancer are reviewed, with particular reference to genetic abnormalities in tumour suppressor gene inactivation and overactivity of growth promoting oncogenes. These changes lead to the "hallmarks of lung cancer". These hallmarks are the new rational targets for early detection, prevention, and treatment of lung cancer.
Collapse
Affiliation(s)
- K M Fong
- The Prince Charles Hospital, Rode Road, Chermside, Brisbane 4032, Australia
| | | | | | | |
Collapse
|
78
|
Zhu WG, Srinivasan K, Dai Z, Duan W, Druhan LJ, Ding H, Yee L, Villalona-Calero MA, Plass C, Otterson GA. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol 2003; 23:4056-65. [PMID: 12773551 PMCID: PMC156121 DOI: 10.1128/mcb.23.12.4056-4065.2003] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA methylation in the promoter of certain genes is associated with transcriptional silencing. Methylation affects gene expression directly by interfering with transcription factor binding and/or indirectly by recruiting histone deacetylases through methyl-DNA-binding proteins. In this study, we demonstrate that the human lung cancer cell line H719 lacks p53-dependent and -independent p21(Cip1) expression. p53 response to treatment with gamma irradiation or etoposide is lost due to a mutation at codon 242 of p53 (C-->W). Treatment with depsipeptide, an inhibitor of histone deacetylase, was unable to induce p53-independent p21(Cip1) expression because the promoter of p21(Cip1) in these cells is hypermethylated. By analyzing luciferase activity of transfected p21(Cip1) promoter vectors, we demonstrate that depsipeptide functions on Sp1-binding sites to induce p21(Cip1) expression. We hypothesize that hypermethylation may interfere with Sp1/Sp3 binding. By using an electrophoretic mobility shift assay, we show that, although methylation within the consensus Sp1-binding site did not reduce Sp1/Sp3 binding, methylation outside of the consensus Sp1 element induced a significant decrease in Sp1/Sp3 binding. Depsipeptide induced p21(Cip1) expression was reconstituted when cells were pretreated with 5-aza-2'-deoxycytidine. Our data suggest, for the first time, that hypermethylation around the consensus Sp1-binding sites may directly reduce Sp1/Sp3 binding, therefore leading to a reduced p21(Cip1) expression in response to depsipeptide treatment.
Collapse
Affiliation(s)
- Wei-Guo Zhu
- Department of Internal Medicine. Department of Pathology, The Ohio State University-Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Narayan G, Pulido HA, Koul S, Lu XY, Harris CP, Yeh YA, Vargas H, Posso H, Terry MB, Gissmann L, Schneider A, Mansukhani M, Rao PH, Murty VVVS. Genetic analysis identifies putative tumor suppressor sites at 2q35-q36.1 and 2q36.3-q37.1 involved in cervical cancer progression. Oncogene 2003; 22:3489-99. [PMID: 12776201 DOI: 10.1038/sj.onc.1206432] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We performed comparative genomic hybridization (CGH) and high-resolution deletion mapping of the long arm of chromosome 2 (2q) in invasive cervical carcinoma (CC). The CGH analyses on 52 CCs identified genetic losses at 2q33-q36, gain of 3q26-q29, and frequent chromosomal amplifications. Characterization of 2q deletions by loss of heterozygosity (LOH) in 60 primary tumors identified two sites of minimal deleted regions at 2q35-q36.1 and 2q36.3-q37.1. To delineate the stage at which these genetic alterations occur in CC progression, we analysed 33 cervical intraepithelial neoplasia (CIN) for LOH. We found that 89% of high-grade (CINII and CINIII) and 40% of low-grade (CINI) CINs exhibited LOH at 2q. To identify the target tumor suppressor gene (TSG), we performed an extensive genetic and epigenetic analyses of a number of candidate genes mapped to the deleted regions. We did not find inactivating mutations in CASP10, BARD1, XRCC5, or PPP1R7 genes mapped to the deleted regions. However, we did find evidence of downregulated gene expression in CFLAR, CASP10 and PPP1R7 in CC cell lines. We also found reactivated gene expression in CC cell lines in vitro after exposure to demethylating and histone deacetylase (HDAC) inhibiting agents. Thus, these data identify frequent chromosomal amplifications in CC, and sites of TSGs at 2q35-q36.1 and 2q36.3-q37.1 that are critical in CC development.
Collapse
Affiliation(s)
- Gopeshwar Narayan
- Department of Pathology, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Danesi R, de Braud F, Fogli S, de Pas TM, Di Paolo A, Curigliano G, Del Tacca M. Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev 2003; 55:57-103. [PMID: 12615954 DOI: 10.1124/pr.55.1.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In mammalian cells, the process of malignant transformation is characterized by the loss or down-regulation of tumor-suppressor genes and/or the mutation or overexpression of proto-oncogenes, whose products promote dysregulated proliferation of cells and extend their life span. Deregulation in intracellular transduction pathways generates mitogenic signals that promote abnormal cell growth and the acquisition of an undifferentiated phenotype. Genetic abnormalities in cancer have been widely studied to identify those factors predictive of tumor progression, survival, and response to chemotherapeutic agents. Pharmacogenetics has been founded as a science to examine the genetic basis of interindividual variation in drug metabolism, drug targets, and transporters, which result in differences in the efficacy and safety of many therapeutic agents. The traditional pharmacogenetic approach relies on studying sequence variations in candidate genes suspected of affecting drug response. However, these studies have yielded contradictory results because of the small number of molecular determinants of drug response examined, and in several cases this approach was revealed to be reductionistic. This limitation is now being overcome by the use of novel techniques, i.e., high-density DNA and protein arrays, which allow genome- and proteome-wide tumor profiling. Pharmacogenomics represents the natural evolution of pharmacogenetics since it addresses, on a genome-wide basis, the effect of the sum of genetic variants on drug responses of individuals. Development of pharmacogenomics as a new field has accelerated the progress in drug discovery by the identification of novel therapeutic targets by expression profiling at the genomic or proteomic levels. In addition to this, pharmacogenetics and pharmacogenomics provide an important opportunity to select patients who may benefit from the administration of specific agents that best match the genetic profile of the disease, thus allowing maximum activity.
Collapse
Affiliation(s)
- Romano Danesi
- Division of Pharmacology and Chemotherapy, Department of Oncology, Transplants and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Primeau M, Gagnon J, Momparler RL. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells. Int J Cancer 2003; 103:177-84. [PMID: 12455031 DOI: 10.1002/ijc.10789] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During tumorigenesis, cancer-related genes can be silenced by aberrant DNA methylation and by changes in chromatin structure. It has been reported that 5-aza-2'-deoxycytidine, a potent inhibitor of DNA methylation, in combination with histone deacetylase inhibitors, can produce a synergistic reactivation of these genes. The aim of our study was to investigate the in vitro antineoplastic activity of 5-aza-2'-deoxycytidine in combination with depsipeptide, a potent histone deacetylase inhibitor, against MDA-MB-231 and MDA-MB-435 human breast carcinoma cell lines. We observed that the combination of 5-aza-2'-deoxycytidine and depsipeptide produced a synergistic antineoplastic effect against these tumor cells as compared to either agent administered alone. We also investigated the effect of this drug combination on the activation of maspin and gelsolin expression. These 2 genes whose function is to suppress tumor metastasis have been reported to be silenced by epigenetic events in breast cancer. Using semi-quantitative RT-PCR, we observed that 5-aza-2'-deoxycytidine in combination with depsipeptide produced a greater reactivation of both maspin and gelsolin as compared to each agent alone. The synergistic interaction between 5-aza-2'-deoxycytidine and depsipeptide on breast carcinoma cell lines provides a rationale to investigate this interesting drug combination in future clinical trials on patients with advanced breast cancer.
Collapse
Affiliation(s)
- Mélanie Primeau
- Département de Pharmacologie, Université de Montréal and Centre de Recherche Pédiatrique, Hôpital Sainte-Justine, Montréal, Québec, Canada
| | | | | |
Collapse
|
83
|
Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002; 21:5450-61. [PMID: 12154407 DOI: 10.1038/sj.onc.1205605] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Carcinoma of the lung is the most common cause of cancer death worldwide. The estimated 5-year survival ranges from 6-16%, depending on the cell type. The best opportunity for improving survival of lung cancer patients is through early detection, when curative surgical resection is possible. Although the subjects at increased risk for developing carcinoma of the lung (long-term smokers) can be identified, only 10-20% of this group will ultimately develop the disease. Screening tests of long-term smokers employed to date (radiography and sputum cytology) have not been successful in reducing lung cancer mortality. The application of molecular markers specific for lung cancer offers new possibilities for early detection. Hypermethylation of CpG islands in the promoter regions of genes is a common phenomenon in lung cancer, as demonstrated by the analysis of the methylation status of over 40 genes from lung cancer tumors, cell lines, patient sputum and/or serum. Determination of the methylation patterns of multiple genes to obtain complex DNA methylation signatures promises to provide a highly sensitive and specific tool for lung cancer diagnosis. When combined with the development of non-invasive methods to detect such signatures, this may provide a viable method to screen subjects at risk for lung cancer.
Collapse
Affiliation(s)
- Jeffrey A Tsou
- Department of Biochemistry, University of Southern California, School of Medicine, Norris Comprehensive Cancer Center, NOR 6420, 1441 Eastlake Ave, Los Angeles, California, CA 90089-9176, USA
| | | | | | | |
Collapse
|
84
|
Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21:5427-40. [PMID: 12154405 DOI: 10.1038/sj.onc.1205600] [Citation(s) in RCA: 879] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have come a long way since the first reports of the existence of aberrant DNA methylation in human cancer. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as an important mechanism for gene inactivation. CpG island hypermethylation has been described in almost every tumor type. Many cellular pathways are inactivated by this type of epigenetic lesion: DNA repair (hMLH1, MGMT), cell cycle (p16(INK4a), p15(INK4b), p14(ARF)), apoptosis (DAPK), cell adherence (CDH1, CDH13), detoxification (GSTP1), etc em leader However, we still know little of the mechanisms of aberrant methylation and why certain genes are selected over others. Hypermethylation is not an isolated layer of epigenetic control, but is linked to the other pieces of the puzzle such as methyl-binding proteins, DNA methyltransferases and histone deacetylase, but our understanding of the degree of specificity of these epigenetic layers in the silencing of specific tumor suppressor genes remains incomplete. The explosion of user-friendly technologies has given rise to a rapidly increasing list of hypermethylated genes. Careful functional and genetic studies are necessary to determine which hypermethylation events are truly relevant for human tumorigenesis. The development of CpG island hypermethylation profiles for every form of human tumors has yielded valuable pilot clinical data in monitoring and treating cancer patients based in our knowledge of DNA methylation. Basic and translational will both be needed in the near future to fully understand the mechanisms, roles and uses of CpG island hypermethylation in human cancer. The expectations are high.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Molecular Pathology Program, Centro Nacional de Investigaciones Oncologicas, 28029 Madrid, Spain
| |
Collapse
|