51
|
Intranasal Oxytocin Modulates the Salience Network in Aging. Neuroimage 2022; 253:119045. [PMID: 35259525 PMCID: PMC9450112 DOI: 10.1016/j.neuroimage.2022.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Growing evidence supports a role of the neuropeptide oxytocin in promoting social cognition and prosocial behavior, possibly via modulation of the salience of social information. The effect of intranasal oxytocin administration on the salience network, however, is not well understood, including in the aging brain. To address this research gap, 42 young (22.52 ± 3.02 years; 24 in the oxytocin group) and 43 older (71.12 ± 5.25 years; 21 in the oxytocin group) participants were randomized to either self-administer intranasal oxytocin or placebo prior to resting-state functional imaging. The salience network was identified using independent component analysis (ICA). Independent t-tests showed that individuals in the oxytocin compared to the placebo group had lower within-network resting-state functional connectivity, both for left amygdala (MNI coordinates: x = −18, y = 0, z = −15; corrected p < 0.05) within a more ventral salience network and for right insula (MNI coordinates: x = 39, y = 6, z = −6; corrected p < 0.05) within a more dorsal salience network. Age moderation analysis furthermore demonstrated that the oxytocin-reduced functional connectivity between the ventral salience network and the left amygdala was only present in older participants. These findings suggest a modulatory role of exogenous oxytocin on resting-state functional connectivity within the salience network and support age-differential effects of acute intranasal oxytocin administration on this network.
Collapse
|
52
|
Wigton R, Tracy DK, Verneuil TM, Johns M, White T, Michalopoulou PG, Averbeck B, Shergill S. The importance of pro-social processing, and ameliorating dysfunction in schizophrenia. An FMRI study of oxytocin. Schizophr Res Cogn 2022; 27:100221. [PMID: 34660212 PMCID: PMC8503903 DOI: 10.1016/j.scog.2021.100221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022]
Abstract
Schizophrenia is often a severe and debilitating mental illness, frequently associated with impairments in social cognition that hinder individuals' abilities to relate to others and integrate effectively in society. Oxytocin has emerged as a putative therapeutic agent for treating social deficits in schizophrenia, but the mode of action remains unclear. This placebo-controlled crossover study aimed to elucidate the neural underpinnings of oxytocin administration in patients with schizophrenia. 20 patients with schizophrenia were examined using functional magnetic resonance imaging under oxytocin (40 IU) or placebo nasal spray. Participants performed a stochastically rewarded decision-making task that incorporated elements of social valence provided by different facial expressions, i.e. happy, angry and neutral. Oxytocin attenuated the normal bias in selecting the happy face accompanied by reduced activation in a network of brain regions that support mentalising, processing of facial emotion, salience, aversion, uncertainty and ambiguity in social stimuli, including amygdala, temporo-parietal junction, posterior cingulate cortex, precuneus and insula. These pro-social effects may contribute to the facilitation of social engagement and social interactions in patients with schizophrenia and warrant further investigation in future clinical trials for social cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Rebekah Wigton
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA, USA
| | - Derek K. Tracy
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
- West London NHS Trust, London, UK
- Corresponding author at: West London NHS Trust, 1 Armstrong Way, Southall, London UB2 4SD, UK.
| | - Tess M. Verneuil
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
| | - Michaela Johns
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
| | - Thomas White
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
- Computational Cognitive Neuroimaging Group, School of Psychology, University of Birmingham, Birmingham, UK
| | - Panayiota G. Michalopoulou
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Bruno Averbeck
- Unit on Learning and Decision Making, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - Sukhwinder Shergill
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Cognition and Schizophrenia Imaging Lab, De Crespigny Park Rd., Denmark Hill SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
53
|
Quintana DS. Towards better hypothesis tests in oxytocin research: Evaluating the validity of auxiliary assumptions. Psychoneuroendocrinology 2022; 137:105642. [PMID: 34991063 DOI: 10.1016/j.psyneuen.2021.105642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Various factors have been attributed to the inconsistent reproducibility of human oxytocin research in the cognitive and behavioral sciences. These factors include small sample sizes, a lack of pre-registered studies, and the absence of overarching theoretical frameworks that can account for oxytocin's effects over a broad range of contexts. While there have been efforts to remedy these issues, there has been very little systematic scrutiny of the role of auxiliary assumptions, which are claims that are not central for testing a hypothesis but nonetheless critical for testing theories. For instance, the hypothesis that oxytocin increases the salience of social cues is predicated on the assumption that intranasally administered oxytocin increases oxytocin levels in the brain. Without robust auxiliary assumptions, it is unclear whether a hypothesis testing failure is due to an incorrect hypothesis or poorly supported auxiliary assumptions. Consequently, poorly supported auxiliary assumptions can be blamed for hypothesis failure, thereby safeguarding theories from falsification. In this article, I will evaluate the body of evidence for key auxiliary assumptions in human behavioral oxytocin research in terms of theory, experimental design, and statistical inference, and highlight assumptions that require stronger evidence. Strong auxiliary assumptions will leave hypotheses vulnerable for falsification, which will improve hypothesis testing and consequently advance our understanding of oxytocin's role in cognition and behavior.
Collapse
Affiliation(s)
- Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| |
Collapse
|
54
|
Ryabinin AE, Zhang Y. Barriers and Breakthroughs in Targeting the Oxytocin System to Treat Alcohol Use Disorder. Front Psychiatry 2022; 13:842609. [PMID: 35295777 PMCID: PMC8919088 DOI: 10.3389/fpsyt.2022.842609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Development of better treatments for alcohol use disorder (AUD) is urgently needed. One promising opportunity for this development is the potential of targeting the oxytocin peptide system. Preclinical studies showed that administration of exogenous oxytocin or, more recently, stimulation of neurons expressing endogenous oxytocin lead to a decreased alcohol consumption across several rodent models. Initial clinical studies also showed that administration of oxytocin decreased craving for alcohol and heavy alcohol drinking. However, several more recent clinical studies were not able to replicate these effects. Thus, although targeting the oxytocin system holds promise for the treatment of AUD, more nuanced approaches toward development and application of these treatments are needed. In this mini-review we discuss potential caveats resulting in differential success of attempts to use oxytocin for modulating alcohol use disorder-related behaviors in clinical studies and evaluate three directions in which targeting the oxytocin system could be improved: (1) increasing potency of exogenously administered oxytocin, (2) developing oxytocin receptor agonists, and (3) stimulating components of the endogenous oxytocin system. Both advances and potential pitfalls of these directions are discussed.
Collapse
Affiliation(s)
- Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
55
|
Borroto-Escuela DO, Fores R, Pita M, Barbancho MA, Zamorano‐Gonzalez P, Casares NG, Fuxe K, Narváez M. Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats. Front Pharmacol 2022; 13:820210. [PMID: 35250569 PMCID: PMC8893223 DOI: 10.3389/fphar.2022.820210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
A need for new therapeutic approaches are necessary for dementia conditions and memory deficits of different origins, such as Alzheimer's disease. There is complex pathophysiological mechanisms involved, affecting adult hippocampal neurogenesis, in which neuropeptides and its neurogenesis regulation seem to participate. Neuropeptide Y(NPY) Y1 receptor (Y1R) and galanin (GAL) receptor 2 (GALR2) interact in brain regions responsible for learning and memory processes, emphasizing the hippocampus. Moreover, a significant challenge for treatments involving peptide drugs is bypassing the blood-brain barrier. The current study assesses the sustained memory performance induced by GALR2 and NPYY1R agonists intranasal coadministration and their neurochemical hippocampal correlates. Memory retrieval was conducted in the object-in-place task together with in situ proximity ligation assay (PLA) to manifest the formation of GALR2/Y1R heteroreceptor complexes and their dynamics under the different treatments. We evaluated cell proliferation through a 5-Bromo-2’-deoxyuridine (BrdU) expression study within the dentate gyrus of the dorsal hippocampus. The GalR2 agonist M1145 was demonstrated to act with the Y1R agonist to improve memory retrieval at 24 hours in the object-in-place task. Our data show that the intranasal administration is a feasible technique for directly delivering Galanin or Neuropeptide Y compounds into CNS. Moreover, we observed the ability of the co-agonist treatment to enhance the cell proliferation in the DG of the dorsal hippocampus through 5- Bromo-2’-deoxyuridine (BrdU) expression analysis at 24 hours. The understanding of the cellular mechanisms was achieved by analyzing the GALR2/Y1R heteroreceptor complexes upon agonist coactivation of their two types of receptor protomers in Doublecortin-expressing neuroblasts. Our results may provide the basis for developing heterobivalent agonist pharmacophores, targeting GALR2-Y1R heterocomplexes. It involves especially the neuronal precursor cells of the dentate gyrus in the dorsal hippocampus for the novel treatment of neurodegenerative pathologies as in the Alzheimer’s disease.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Ramón Fores
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Mariana Pita
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Departamento de Neurogenética, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pablo Zamorano‐Gonzalez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Natalia García Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Manuel Narváez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- *Correspondence: Manuel Narváez,
| |
Collapse
|
56
|
Van der Donck S, Moerkerke M, Dlhosova T, Vettori S, Dzhelyova M, Alaerts K, Boets B. Monitoring the effect of oxytocin on the neural sensitivity to emotional faces via frequency-tagging EEG: A double-blind, cross-over study. Psychophysiology 2022; 59:e14026. [PMID: 35150446 DOI: 10.1111/psyp.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 01/23/2023]
Abstract
The neuropeptide oxytocin (OXT) is suggested to exert an important role in human social behaviors by modulating the salience of social cues. To date, however, there is mixed evidence whether a single dose of OXT can improve the behavioral and neural sensitivity for emotional face processing. To overcome difficulties encountered with classic event-related potential studies assessing stimulus-saliency, we applied frequency-tagging EEG to implicitly assess the effect of a single dose of OXT (24 IU) on the neural sensitivity for positive and negative facial emotions. Neutral faces with different identities were presented at 6 Hz, periodically interleaved with an expressive face (angry, fearful, and happy, in separate sequences) every fifth image (i.e., 1.2 Hz oddball frequency). These distinctive frequency tags for neutral and expressive stimuli allowed direct and objective quantification of the neural expression-categorization responses. The study involved a double-blind, placebo-controlled, cross-over trial with 31 healthy adult men. Contrary to our expectations, we did not find an effect of OXT on facial emotion processing, neither at the neural, nor at the behavioral level. A single dose of OXT did not evoke social enhancement in general, nor did it affect social approach-avoidance tendencies. Possibly ceiling performances in facial emotion processing might have hampered further improvement.
Collapse
Affiliation(s)
- Stephanie Van der Donck
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Matthijs Moerkerke
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Tereza Dlhosova
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Sofie Vettori
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Milena Dzhelyova
- Institute of Research in Psychological Sciences, Université de Louvain, Louvain-La-Neuve, Belgium.,Institute of Neuroscience, Université de Louvain, Louvain-La-Neuve, Belgium
| | - Kaat Alaerts
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
57
|
Stauffer CS, Morrison TE, Meinzer NK, Leung D, Buffington J, Sheh EG, Neylan TC, O’Donovan A, Woolley JD. Effects of oxytocin administration on fear-potentiated acoustic startle in co-occurring PTSD and alcohol use disorder: A randomized clinical trial. Psychiatry Res 2022; 308:114340. [PMID: 34983010 PMCID: PMC9074818 DOI: 10.1016/j.psychres.2021.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
Co-occurring posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) is common and particularly associated with elevation of hyperarousal compared to PTSD alone. Treatment options are limited. Oxytocin regulates physiological stress response. Intranasal oxytocin administration has demonstrated potential in reducing symptoms of both PTSD and AUD. This study addresses a gap in the literature by investigating effects of intranasal oxytocin on startle reactivity, an important potential marker of both PTSD and AUD symptomatology. This is a randomized, double-blind, placebo-controlled, within- and between-participant, crossover, dose-ranging study examining the effects of a single administration of oxytocin 20 IU versus 40 IU versus placebo on psychophysiological responses to a common laboratory fear-potentiated acoustic startle paradigm in participants with PTSD-AUD (n = 47) and controls (n = 37) under three different levels of threat. Contrary to our hypothesis, for the PTSD-AUD group, oxytocin 20 IU had no effect on startle reactivity, while oxytocin 40 IU increased measures of startle reactivity. Additionally, for PTSD-AUD only, ambiguous versus low threat was associated with an elevated skin conductance response. For controls only, oxytocin 20 IU versus placebo was associated with reduced startle reactivity.
Collapse
Affiliation(s)
- Christopher S. Stauffer
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA,Portland Veterans Affairs Health Care Center, Portland, OR, USA,Corresponding author. (C.S. Stauffer)
| | - Tyler E. Morrison
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | | | - David Leung
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Evan G. Sheh
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Thomas C. Neylan
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Aoife O’Donovan
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua D. Woolley
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
58
|
Reinhard MA, Padberg F, Dewald-Kaufmann J, Wüstenberg T, Goerigk S, Barton BB, Zülch A, Brandl L, Windmüller H, Fernandes F, Brunoni AR, Musil R, Jobst A. Sequential Social Exclusion in a Novel Cyberball Paradigm Leads to Reduced Behavioral Repair and Plasma Oxytocin in Borderline Personality Disorder. J Pers Disord 2022; 36:99-115. [PMID: 34427490 DOI: 10.1521/pedi_2021_35_532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patients with borderline personality disorder (BPD) show interpersonal deficits, and altered emotional and oxytocin (OT) responses to social exclusion (Cyberball). In order to extend previous findings, this study applies a novel Cyberball variant. Nineteen BPD patients and 56 healthy controls (HC) played Cyberball for 2 minutes of inclusion, 5 minutes of partial exclusion by one of two co-players, and 2 minutes total exclusion by both. Plasma OT levels at baseline and after 7, 9, 15, and 40 minutes were measured with radioimmunoassay. BPD patients showed a greater aversive reaction and a trend for greater OT reduction after social exclusion than HC. BPD patients also tended to play less frequently with the excluder. Though limited by our sample size, we partially replicate previous findings. Our preliminary behavioral data support the notion of an altered OT regulation and reduced capacity for social cooperation in BPD.
Collapse
Affiliation(s)
- Matthias A Reinhard
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Julia Dewald-Kaufmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Barbara B Barton
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Adima Zülch
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Lisa Brandl
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Hannah Windmüller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Fabiana Fernandes
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Andre R Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Department of Psychiatry, National Institute of Biomarkers in Psychiatry and Laboratory of Neurosciences (LIM-27), Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Andrea Jobst
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| |
Collapse
|
59
|
Yao S, Kendrick KM. Effects of Intranasal Administration of Oxytocin and Vasopressin on Social Cognition and Potential Routes and Mechanisms of Action. Pharmaceutics 2022; 14:323. [PMID: 35214056 PMCID: PMC8874551 DOI: 10.3390/pharmaceutics14020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Acute and chronic administration of intranasal oxytocin and vasopressin have been extensively utilized in both animal models and human preclinical and clinical studies over the last few decades to modulate various aspects of social cognition and their underlying neural mechanisms, although effects are not always consistent. The use of an intranasal route of administration is largely driven by evidence that it permits neuropeptides to penetrate directly into the brain by circumventing the blood-brain barrier, which has been considered relatively impermeable to them. However, this interpretation has been the subject of considerable debate. In this review, we will focus on research in both animal models and humans, which investigates the different potential routes via which these intranasally administered neuropeptides may be producing their various effects on social cognition. We will also consider the contribution of different methods of intranasal application and additionally the importance of dose magnitude and frequency for influencing G protein-coupled receptor signaling and subsequent functional outcomes. Overall, we conclude that while some functional effects of intranasal oxytocin and vasopressin in the domain of social cognition may result from direct penetration into the brain following intranasal administration, others may be contributed by the neuropeptides either entering the peripheral circulation and crossing the blood-brain barrier and/or producing vagal stimulation via peripheral receptors. Furthermore, to complicate matters, functional effects via these routes may differ, and both dose magnitude and frequency can produce very different functional outcomes and therefore need to be optimized to produce desired effects.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith Maurice Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
60
|
Stauffer CS, Samson S, Hickok A, Hoffman WF, Batki SL. Intranasal Oxytocin for Stimulant Use Disorder Among Male Veterans Enrolled in an Opioid Treatment Program: A Randomized Controlled Trial. Front Psychiatry 2022; 12:804997. [PMID: 35111090 PMCID: PMC8801418 DOI: 10.3389/fpsyt.2021.804997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of illicit stimulant use among those in opioid treatment programs poses a significant risk to public health, stimulant users have the lowest rate of retention and poorest outcomes among those in addiction treatment, and current treatment options are limited. Oxytocin administration has shown promise in reducing addiction-related behavior and enhancing salience to social cues. We conducted a randomized, double-blind, placebo-controlled clinical trial of intranasal oxytocin administered twice daily for 6 weeks to male Veterans with stimulant use disorder who were also receiving opioid agonist therapy and counseling (n = 42). There was no significant effect of oxytocin on stimulant use, stimulant craving, or therapeutic alliance over 6 weeks. However, participants receiving oxytocin (vs. placebo) attended significantly more daily opioid agonist therapy dispensing visits. This replicated previous work suggesting that oxytocin may enhance treatment engagement among individuals with stimulant and opioid use disorders, which would address a significant barrier to effective care.
Collapse
Affiliation(s)
- Christopher S. Stauffer
- Department of Mental Health, VA Portland Health Care System, Portland, OR, United States
- Social Neuroscience and Psychotherapy Lab, Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Psychiatry and Behavioral Sciences, San Francisco School of Medicine and San Francisco VA Health Care System, University of California, San Francisco, San Francisco, CA, United States
| | - Salem Samson
- School of Nursing, Massachusetts General Hospital (MGH) Institute of Health Professions, Boston, MA, United States
| | - Alex Hickok
- Department of Mental Health, VA Portland Health Care System, Portland, OR, United States
- Social Neuroscience and Psychotherapy Lab, Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - William F. Hoffman
- Department of Mental Health, VA Portland Health Care System, Portland, OR, United States
- Social Neuroscience and Psychotherapy Lab, Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Steven L. Batki
- Department of Psychiatry and Behavioral Sciences, San Francisco School of Medicine and San Francisco VA Health Care System, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
61
|
Pichugina YA, Maksimova IV, Berezovskaya MA, Afanaseva NA, Pichugin AB, Dmitrenko DV, Timechko EE, Salmina AB, Lopatina OL. Salivary oxytocin in autistic patients and in patients with intellectual disability. Front Psychiatry 2022; 13:969674. [PMID: 36506430 PMCID: PMC9729552 DOI: 10.3389/fpsyt.2022.969674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Assessing the role of oxytocin (OT) in the regulation of social interaction is a promising area that opens up new opportunities for studying the mechanisms of developing autism spectrum disorders (ASD). AIM To assess the correlation between the salivary OT level and age-related and psychopathological symptoms of children with intellectual disability (ID) and ASD. METHODS We used the clinical and psychopathological method to assess the signs of ASD based on International Classification of Diseases (ICD-10), the severity of ASD was specified by the selected Russian type version "Childhood Autism Rating Scale" (CARS). Patients of both groups had an IQ score below 70 points. RESULTS The median and interquartile range of salivary OT levels in patients with ID and ASD were 23.897 [14.260-59.643] pg/mL, and in the group ID without ASD - Me = 50.896 [33.502-83.774] pg/mL (p = 0.001). The severity of ASD on the CARS scale Me = 51.5 [40.75-56.0] score in the group ID with ASD, and in the group ID without ASD-at the level of Me = 32 [27.0-38.0] points (p < 0.001). According to the results of correlation-regression analysis in the main group, a direct correlation was established between salivary OT level and a high degree of severity of ASD Rho = 0.435 (p = 0.005). There was no correlation between the salivary OT level and intellectual development in the group ID with ASD, Rho = 0.013 (p = 0.941) and we have found a relationship between oxytocin and intellectual development in the group ID without ASD, Rho = 0.297 (p = 0.005). There was no correlation between salivary OT and age, ASD and age. CONCLUSION The results of this study indicate that patients in the group ID with ASD demonstrated a lower level of salivary OT concentration and a direct relationship between the maximum values of this indicator and the severity of autistic disorders, in contrast to patients in the group ID without ASD.
Collapse
Affiliation(s)
- Yulia A Pichugina
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Irina V Maksimova
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Marina A Berezovskaya
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Natalya A Afanaseva
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Aleksey B Pichugin
- Social Neuroscience Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Diana V Dmitrenko
- Department of Medical Genetics of Clinical Neurophysiology, Institute of Postgraduate Education, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.,Medical Genetic Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Elena E Timechko
- Medical Genetic Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Alla B Salmina
- Laboratory of Experimental Brain Cytology, Department of Brain Studies, Research Center of Neurology, Moscow, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Social Neuroscience Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
62
|
Burmester V, Butler GK, Terry P. Intranasal oxytocin reduces attentional bias to food stimuli. Appetite 2022; 168:105684. [PMID: 34496275 DOI: 10.1016/j.appet.2021.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
Attentional biases to food-related stimuli have been demonstrated in response to hunger as well as during restrained eating. Such biases are often associated with obesity, but healthy-weight individuals who do not self-report hunger have also demonstrated attentional biases to stimuli signalling food using laboratory-based cognitive tasks. Levels of the anorectic neuropeptide oxytocin are elevated by food intake and, when administered intranasally, oxytocin inhibits food intake in the laboratory. To investigate whether oxytocin can affect appetite via an action on attentional processes, 40 adults (29 women; mean age 24.0 years old) self-administered 24 IU of oxytocin or placebo intranasally. Forty minutes after administration, participants ate a small snack to maintain alertness and ameliorate deprivation-induced hunger before starting a computerized dot-probe attentional bias task that presented 180 trials of paired visual stimuli comprising neutral, food, social and/or romantic images (500 ms presentation time). Reaction times to probe stimuli that appeared after the offset of the visual images indicated a significant attentional bias to food pictures after placebo; this effect was significantly attenuated by oxytocin, p < .001. The effect of oxytocin on attentional bias to the food pictures was not altered by the type of stimulus paired with the food image, and was independent of BMI, age, sex, self-rated eating behaviour, and self-reported parental bonding; however, the effect was modulated by self-reported food cravings and trait stress. The findings support and extend previous work which has suggested that oxytocin can counteract attentional biases to food-related stimuli in a sample with anorexia by demonstrating the same effect for the first time in a cohort who do not have an eating disorder.
Collapse
Affiliation(s)
- V Burmester
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, 7N11c Commonwealth Building Hammersmith Hospital, 72 Du Road, London W12 0NN, UK.
| | - G K Butler
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston Upon Thames, Surrey KT1 2EE, UK
| | - P Terry
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston Upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
63
|
Kay MW, Jain V, Panjrath G, Mendelowitz D. Targeting Parasympathetic Activity to Improve Autonomic Tone and Clinical Outcomes. Physiology (Bethesda) 2022; 37:39-45. [PMID: 34486396 PMCID: PMC8742722 DOI: 10.1152/physiol.00023.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this review we will briefly summarize the evidence that autonomic imbalance, more specifically reduced parasympathetic activity to the heart, generates and/or maintains many cardiorespiratory diseases and will discuss mechanisms and sites, from myocytes to the brain, that are potential translational targets for restoring parasympathetic activity and improving cardiorespiratory health.
Collapse
Affiliation(s)
- Matthew W. Kay
- 1Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Vivek Jain
- 2Division of Pulmonary Medicine, Department of Medicine, George Washington University, Washington, District of Columbia
| | - Gurusher Panjrath
- 3Division of Cardiology, Department of Medicine, George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- 4Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
64
|
Wong SF, Cardoso C, Orlando MA, Brown CA, Ellenbogen MA. Depressive symptoms and social context modulate oxytocin's effect on negative memory recall. Soc Cogn Affect Neurosci 2021; 16:1234-1243. [PMID: 34100542 PMCID: PMC8717011 DOI: 10.1093/scan/nsab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Oxytocin promotes social affiliation across various species, in part by altering social cognition to facilitate approach behaviour. However, the effects of intranasal oxytocin on human social cognition are mixed, perhaps because its effects are context dependent and subject to inter-individual differences. Few studies have included explicit manipulations of social context to test this supposition. We examined oxytocin's effects on autobiographical memory recall in two contexts, with and without social contact, and evaluated whether these effects were moderated by depressive symptoms. Two non-clinical samples (Study 1, n = 48; Study 2, n = 63) completed randomised, placebo-controlled, within-subject experiments. We assessed autobiographical memory recall across two sessions (intranasal oxytocin or placebo) and two contexts (memories elicited by an experimenter or by computer). Overall, intranasal oxytocin increased ratings of the vividness of recalled memories during the social context only. Individuals with elevated depressive symptoms also recalled memories that were more negative following oxytocin relative to placebo only in the non-social context across the two studies. Findings highlight the negative consequences of increasing oxytocin bioavailability in vulnerable persons in the absence of social contact. Contextual factors such as social isolation among depressed populations may complicate the clinical use of oxytocin.
Collapse
Affiliation(s)
- Shiu F Wong
- Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Christopher Cardoso
- Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Mark A Orlando
- Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | - Mark A Ellenbogen
- Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
65
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
66
|
Ishii D, Kageyama M, Umeda S. Cerebral and extracerebral distribution of radioactivity associated with oxytocin in rabbits after intranasal administration: Comparison of TTA-121, a newly developed oxytocin formulation, with Syntocinon. PLoS One 2021; 16:e0261451. [PMID: 34929003 PMCID: PMC8687547 DOI: 10.1371/journal.pone.0261451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with deficits in social interactions/communication. Despite the large number of ASD patients, there is no drug approved to treat its core symptoms. Recently, Syntocinon (oxytocin nasal spray) has been reported to have a therapeutic effect on ASD. However, the disadvantage of Syntocinon for ASD treatment is that 6 puffs/administration are required to achieve the effective pharmacological dose. Furthermore, there are no published reports evaluating the cerebral distribution profile of oxytocin after intranasal administration. TTA-121 is a newly developed intranasal oxytocin formulation with high bioavailability produced by optimizing the physicochemical properties. In this study, we prepared the same formula as Syntocinon as the control formulation (CF), and the cerebral and extracerebral distribution of oxytocin in rabbits after single intranasal administration of 3H-labeled oxytocin formulations—[3H]TTA-121 and [3H]CF were examined and compared. The area under the concentration-time curve to the time of the last quantifiable concentration (AUCt) in the whole brain was 3.6-fold higher in the [3H]TTA-121 group than in the [3H]CF group, indicating increased delivery of radioactivity to the brain by TTA-121 than by CF. Since the distribution profiles showed no notable differences in radioactivity between the olfactory bulb and trigeminal nerve, intranasally-administered oxytocin was probably transferred to the brain via both pathways. The results also showed an increase in radioactivity in the prefrontal area and the precuneus, which are probable sites of pharmacological action as shown in clinical studies using functional magnetic resonance imaging (fMRI), confirming that intranasally-administered oxytocin could reach these tissues.
Collapse
Affiliation(s)
- Daisuke Ishii
- DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan
- * E-mail:
| | | | - Shin Umeda
- Business Development & Licensing Department, Teijin Pharma Limited, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
67
|
Barraza JA, Hu X, Terris ET, Wang C, Zak PJ. Oxytocin increases perceived competence and social-emotional engagement with brands. PLoS One 2021; 16:e0260589. [PMID: 34847200 PMCID: PMC8631632 DOI: 10.1371/journal.pone.0260589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Humans express loyalty to consumer brands much like they do in human relationships. The neuroactive chemical oxytocin is an important biological substrate of human attachment and this study tested whether consumer-brand relationships can be influenced by oxytocin administration. We present a mathematical model of brand attachment that generates empirically-testable hypotheses. The model is tested by administering synthetic oxytocin or placebo to male and female participants (N = 77) who received information about brands and had an opportunity to purchase branded products. We focused on two brand personality dimensions: warmth and competence. Oxytocin increased perceptions of brand competence but not brand warmth relative to placebo. We also found that participants were willing to pay more for branded products through its effect on brand competence. When writing about one's favorite brands, oxytocin enhanced the use of positive emotional language as well as words related to family and friends. These findings provide preliminary evidence that consumers build relationships with brands using the biological mechanisms that evolved to form human attachments.
Collapse
Affiliation(s)
- Jorge A. Barraza
- Department of Psychology, University of Southern California, Los Angeles, CA, United States of America
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States of America
| | - Xinbo Hu
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States of America
| | - Elizabeth T. Terris
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States of America
| | - Chuan Wang
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States of America
| | - Paul J. Zak
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States of America
- * E-mail:
| |
Collapse
|
68
|
Abstract
Humans are an unusually prosocial species, who engage in social behaviors that include altruism-whereby an individual engages in costly or risky acts to improve the welfare of another person-care, and cooperation. Current perspectives on the neurobiology of human prosociality suggest that it is deeply rooted in the neuroendocrine architecture of the social brain and emphasize the modulatory role of the neuropeptide hormone oxytocin. In this review, we provide a conceptual overview of the neurobiology of prosocial behavior with a focus on oxytocin's modulatory role in human prosociality. Specifically, we aim to encourage a better understanding of the peptide's susceptibility to diverse factors that produce heterogeneity in outcomes and the resulting methodological implications for measuring the behavioral effects of oxytocin in humans. After providing an overview of the state-of-the-art research on oxytocin's exogenous use, we elaborate on the peptide's modulatory role in the context of care-based altruism, cooperation, and conflict and discuss its potential for therapeutic interventions in psychiatric disorders characterized by social dysfunction.
Collapse
Affiliation(s)
- Nina Marsh
- Department of Psychiatry, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Abigail A. Marsh
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, USA
| | - René Hurlemann
- Department of Psychiatry, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
| |
Collapse
|
69
|
Niu J, Tong J, Blevins JE. Oxytocin as an Anti-obesity Treatment. Front Neurosci 2021; 15:743546. [PMID: 34720864 PMCID: PMC8549820 DOI: 10.3389/fnins.2021.743546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is a growing health concern, as it increases risk for heart disease, hypertension, type 2 diabetes, cancer, COVID-19 related hospitalizations and mortality. However, current weight loss therapies are often associated with psychiatric or cardiovascular side effects or poor tolerability that limit their long-term use. The hypothalamic neuropeptide, oxytocin (OT), mediates a wide range of physiologic actions, which include reproductive behavior, formation of prosocial behaviors and control of body weight. We and others have shown that OT circumvents leptin resistance and elicits weight loss in diet-induced obese rodents and non-human primates by reducing both food intake and increasing energy expenditure (EE). Chronic intranasal OT also elicits promising effects on weight loss in obese humans. This review evaluates the potential use of OT as a therapeutic strategy to treat obesity in rodents, non-human primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- JingJing Niu
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Jenny Tong
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
70
|
Leng G, Leng RI. Oxytocin: A citation network analysis of 10 000 papers. J Neuroendocrinol 2021; 33:e13014. [PMID: 34328668 DOI: 10.1111/jne.13014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022]
Abstract
Our understanding of the oxytocin system has been built over the last 70 years by the work of hundreds of scientists, reported in thousands of papers. Here, we construct a map to that literature, using citation network analysis in conjunction with bibliometrics. The map identifies ten major 'clusters' of papers on oxytocin that differ in their particular research focus and that densely cite papers from the same cluster. We identify highly cited papers within each cluster and in each decade, not because citations are a good indicator of quality, but as a guide to recognising what questions were of wide interest at particular times. The clusters differ in their temporal profiles and bibliometric features; here, we attempt to understand the origins of these differences.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rhodri I Leng
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
71
|
Caicedo Mera JC, Cárdenas Molano MA, García López CC, Acevedo Triana C, Martínez Cotrina J. Discussions and perspectives regarding oxytocin as a biomarker in human investigations. Heliyon 2021; 7:e08289. [PMID: 34805562 PMCID: PMC8581272 DOI: 10.1016/j.heliyon.2021.e08289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
This article introduces a review of research that has implemented oxytocin measurements in different fluids such as plasma, cerebrospinal fluid, urine and, mainly, saliva. The main purpose is to evaluate the level of evidence supporting the measurement of this biomarker implicated in a variety of psychological and social processes. First, a review of the technical developments that allowed the characterization, function establishing, and central and peripheral levels of this hormone is proposed. Then, the article approaches the current discussions regarding the level of reliability of the laboratory techniques that enable the measurement of oxytocin, focusing mainly on the determination of its concentration in saliva through Enzyme-Linked Immunosorbent Assay (ELISA). Finally, research results, which have established the major physiological correlates of this hormone in fields such as social neuroscience and neuropsychology, are collected and discussed in terms of the hormone measurement methods that different authors have used. In this way, the article is expected to contribute to the panorama of debates and current perspectives regarding investigation involving this important biomarker.
Collapse
Affiliation(s)
- Juan Carlos Caicedo Mera
- Laboratorio Interdisciplinar de Ciencias y Procesos Humanos LINCIPH, Facultad de Ciencias Sociales y Humanas, Universidad Externado de Colombia, Colombia
| | - Melissa Andrea Cárdenas Molano
- Laboratorio Interdisciplinar de Ciencias y Procesos Humanos LINCIPH, Facultad de Ciencias Sociales y Humanas, Universidad Externado de Colombia, Colombia
| | - Christian Camilo García López
- Laboratorio Interdisciplinar de Ciencias y Procesos Humanos LINCIPH, Facultad de Ciencias Sociales y Humanas, Universidad Externado de Colombia, Colombia
| | - Cristina Acevedo Triana
- Laboratorio Interdisciplinar de Ciencias y Procesos Humanos LINCIPH, Facultad de Ciencias Sociales y Humanas, Universidad Externado de Colombia, Colombia
| | - Jorge Martínez Cotrina
- Laboratorio Interdisciplinar de Ciencias y Procesos Humanos LINCIPH, Facultad de Ciencias Sociales y Humanas, Universidad Externado de Colombia, Colombia
| |
Collapse
|
72
|
Raymond JS, Rehn S, Hoyos CM, Bowen MT. The influence of oxytocin-based interventions on sleep-wake and sleep-related behaviour and neurobiology: A systematic review of preclinical and clinical studies. Neurosci Biobehav Rev 2021; 131:1005-1026. [PMID: 34673110 DOI: 10.1016/j.neubiorev.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
The oxytocin (OXT) system has garnered considerable interest due to its influence on diverse behaviours. However, scant research has considered the influence of oxytocin on sleep-wake and sleep-related behaviour and neurobiology. Consequently, the objective of this systematic review was to assess the extant preclinical and clinical evidence for the influence of oxytocin-based interventions on sleep-wake outcomes. The primary search was conducted on 22/7/2020 using six electronic databases; 30 studies (19 preclinical, 11 clinical) were included based on inclusion criteria. Studies were evaluated for risk of bias using the SYRCLE tool and the Cochrane risk of bias tools for preclinical and clinical studies, respectively. Results indicated manipulation of the OXT system can influence sleep-wake outcomes. Preclinical evidence suggests a wake-promoting influence of OXT system activation whereas the clinical evidence suggests little or no sleep-promoting influence of OXT. OXT dose was identified as a likely modulatory factor of OXT-induced effects on sleep-wake behaviour. Future studies are necessary to validate and strengthen these tentative conclusions about the influence of OXT on sleep-wake behaviour.
Collapse
Affiliation(s)
- Joel S Raymond
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia; The University of Sydney, Brain and Mind Centre, Camperdown, NSW, Australia
| | - Simone Rehn
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia
| | - Camilla M Hoyos
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia; The University of Sydney, Brain and Mind Centre, Camperdown, NSW, Australia; The University of Sydney, Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Camperdown, NSW, Australia
| | - Michael T Bowen
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia; The University of Sydney, Brain and Mind Centre, Camperdown, NSW, Australia.
| |
Collapse
|
73
|
Hale LH, Tickerhoof MC, Smith AS. Chronic intranasal oxytocin reverses stress-induced social avoidance in female prairie voles. Neuropharmacology 2021; 198:108770. [PMID: 34461067 DOI: 10.1016/j.neuropharm.2021.108770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Social anxiety disorder (SAD) is a prevalent mental illness in both men and women, but current treatment approaches with selective serotonin reuptake inhibitors (SSRI) have limited success. The neuropeptide oxytocin (OXT) has become a therapeutic target due to its prosocial and anxiolytic effects. Nevertheless, no research has focused on the impact of chronic OXT treatment in animal models of SAD. Social defeat stress is an animal model of social conflict that reliably induces a social avoidance phenotype, reflecting symptoms observed in individuals suffering from SAD. Here, we used the socially monogamous prairie vole, which exhibits aggressive behavior in both sexes, to examine the effects of OXT and SSRI treatment following social defeat stress in males and females. Defeated voles became avoidant in unfamiliar social situations as early as one day after defeat experience, and this phenotype persisted for at least eight weeks. OXT receptor (OXTR) binding in mesocorticolimbic and paralimbic regions was reduced in defeated females during the eight-week recovery period. In males, serotonin 1A receptor binding was decreased in the basolateral amygdala and dorsal raphe nucleus starting at one week and four weeks post-defeat, respectively. Chronic intranasal treatment with OXT had a negative effect on sociability and mesolimbic OXTR binding in non-defeated females. However, chronic intranasal OXT promoted social engagement and increased mesolimbic OXTR binding in defeated females but not males. SSRI treatment led to only modest effects. This study identifies a sex-specific and stress-dependent function of intranasal OXT on mesolimbic OXTR and social behaviors.
Collapse
Affiliation(s)
- Luanne H Hale
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Maria C Tickerhoof
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
74
|
Chen CY, Chiang YC, Kuo TC, Tam KW, Loh EW. Effects of intranasal oxytocin in food intake and craving: A meta-analysis of clinical trials. Clin Nutr 2021; 40:5407-5416. [PMID: 34600216 DOI: 10.1016/j.clnu.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/25/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE A rise of endogenous oxytocin (OT) is associated with anxiety and meal size reduction, and the effects of intranasal OT (INOT) have been examined in the management of food intake and craving. However, the discrepancy INOT effects in different disease populations are not entirely clear. RESEARCH DESIGN AND METHODS Updated systematic review and meta-analysis. By systematically searching the PubMed, Embase and Cochrane Library, we obtained 12 controlled trials. We performed meta-analyses to examine food intake, craving, anxiety or stress reduction on INOT administration, using standard mean difference (SMD) with a 95% confidence interval (CI) and a random-effects model. RESULTS This study examined 12 trials with 266 non-psychiatric and 157 psychiatric participants. The pooled results showed that single-dose INOT induced a significant lesser food intake in non-psychiatric subjects (SMD: -0.66 [95% CI: -1.18, -0.14]), but no effects was found in anorexia nervosa (AN) (SMD: 0.17 [95% CI: -0.32, 0.66]), bulimia nervosa (BN) and binge eating disorder (BED) (SMD: -0.41 [95% CI: -0.94, 0.11]), and schizophrenia (SMD: 0.04 [95% CI: -0.94, 1.02] subjects. Further analysis on leisure food also indicated an inhibition of consumption of chocolate biscuits in non-psychiatric subjects. Neither the non-psychiatric (SMD: -0.08 [95% CI: -0.50, 0.33]) nor the BN and BED (SMD: -0.08 [95% CI: -0.72, 0.88]) and schizophrenia subjects (SMD: -0.07 [95% CI: -1.05, 0.91]) demonstrated a difference in food craving or hunger compared with placebo. Anxiety or stress level was not influenced by INOT in any subgroup (non-psychiatric, SMD: 0.19 [95% CI: -0.22, 0.60]; AN, SMD: -0.01 [95% CI: -0.28, 0.88]; BN and BED: SMD: 0.00 [95% CI: -0.80, 0.80]). CONCLUSIONS Single-dose INOT significantly reduces food intake in nonpsychiatric subjects, and further studies are necessary to assess the long-term effects and safety in obese patients. Whether INOT could be a treatment option for patients with eating disorders remains to be investigated.
Collapse
Affiliation(s)
- Chi-Ying Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Chiang
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Tai-Chih Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ka-Wai Tam
- Center for Evidence-Based Health Care, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - El-Wui Loh
- Center for Evidence-Based Health Care, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
75
|
Activation of hypothalamic oxytocin neurons reduces binge-like alcohol drinking through signaling at central oxytocin receptors. Neuropsychopharmacology 2021; 46:1950-1957. [PMID: 34127796 PMCID: PMC8429589 DOI: 10.1038/s41386-021-01046-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Preclinical and clinical evidence suggests that exogenous administration of oxytocin (OT) may hold promise as a therapeutic strategy for reducing heavy alcohol drinking. However, it remains unknown whether these effects are mediated by stimulation of endogenous sources of OT and signaling at oxytocin receptors (OTR) in brain or in the periphery. To address this question, we employed a targeted chemogenetic approach to examine whether selective activation of OT-containing neurons in the paraventricular nucleus of the hypothalamus (PVN) alters alcohol consumption in a binge-like drinking ("Drinking-in-the-Dark"; DID) model. Adult male Oxt-IRES-Cre mice received bilateral infusion of a Cre-dependent virus containing an excitatory DREADD (AAV8-hSyn-DIO-hM3Dq-mCherry) or control virus (AAV8-hSyn-DIO-mCherry) into the PVN. Chemogenetic activation of PVNOT+ neurons following clozapine-N-oxide injection reduced binge-like alcohol drinking in a similar manner as systemic administration of the neuropeptide. Pretreatment with a brain-penetrant OTR antagonist (L-368,899) reversed this effect while systemic administration of a peripherally restricted OTR antagonist (Atosiban) did not alter reduced alcohol drinking following chemogenetic activation of PVNOT+ neurons. Altogether, these data are the first to demonstrate that targeted activation of hypothalamic (endogenous) OT reduces alcohol consumption, providing further evidence that this neuropeptide plays a role in regulation of alcohol self-administration behavior. Further, results indicate that the ability OT to reduce alcohol drinking is mediated by signaling at OTR in the brain.
Collapse
|
76
|
Divergent effects of oxytocin on "mind-reading" in healthy males. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:112-122. [PMID: 34519018 PMCID: PMC8791897 DOI: 10.3758/s13415-021-00936-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
The neuropeptide oxytocin (OT) has been associated with a broad range of human behaviors, particularly in the domain of social cognition, and is being discussed to play a role in a range of psychiatric disorders. Studies using the Reading The Mind In The Eyes Test (RMET) to investigate the role of OT in mental state recognition reported inconsistent outcomes. The present study applied a randomized, double-blind, cross-over design, and included measures of serum OT. Twenty healthy males received intranasal placebo or OT (24 IU) before performing the RMET. Frequentist and Bayesian analyses showed that contrary to previous studies (Domes et al., 2007; Radke & de Bruijn, 2015), individuals performed worse in the OT condition compared to the placebo condition (p = 0.023, Cohen’s d = 0.55, 95% confidence interval [CI] [0.08, 1.02], BF10 = 6.93). OT effects did not depend on item characteristics (difficulty, valence, intensity, sex) of the RMET. Furthermore, OT serum levels did not change after intranasal OT administration. Given that similar study designs lead to heterogeneous outcomes, our results highlight the complexity of OT effects and support evidence that OT might even interfere with social cognitive abilities. However, the Bayesian analysis approach shows that there is only moderate evidence that OT influences mind-reading, highlighting the need for larger-scale studies considering the discussed aspects that might have led to divergent study results.
Collapse
|
77
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wietecha TA, Wolden-Hanson T, Graham JL, Honeycutt MK, Slattery JD, O’Brien KD, Havel PJ, Blevins JE. Effects of Combined Oxytocin and Beta-3 Receptor Agonist (CL 316243) Treatment on Body Weight and Adiposity in Male Diet-Induced Obese Rats. Front Physiol 2021; 12:725912. [PMID: 34566687 PMCID: PMC8457402 DOI: 10.3389/fphys.2021.725912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that oxytocin (OT) reduces body weight in diet-induced obese (DIO) rodents through reductions in energy intake and increases in energy expenditure. We recently demonstrated that hindbrain [fourth ventricular (4V)] administration of OT evokes weight loss and elevates interscapular brown adipose tissue temperature (T IBAT ) in DIO rats. What remains unclear is whether OT can be used as an adjunct with other drugs that directly target beta-3 receptors in IBAT to promote BAT thermogenesis and reduce body weight in DIO rats. We hypothesized that the combined treatment of OT and the beta-3 agonist, CL 316243, would produce an additive effect to decrease body weight and adiposity in DIO rats by reducing energy intake and increasing BAT thermogenesis. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle (VEH) in combination with daily intraperitoneal injections of CL 316243 (0.5 mg/kg) or VEH on food intake, T IBAT , body weight and body composition. OT and CL 316243 alone reduced body weight by 7.8 ± 1.3% (P < 0.05) and 9.1 ± 2.1% (P < 0.05), respectively, but the combined treatment produced more pronounced weight loss (15.5 ± 1.2%; P < 0.05) than either treatment alone. These effects were associated with decreased adiposity, adipocyte size, energy intake and increased uncoupling protein 1 (UCP-1) content in epididymal white adipose tissue (EWAT) (P < 0.05). In addition, CL 316243 alone (P < 0.05) and in combination with OT (P < 0.05) elevated T IBAT and IBAT UCP-1 content and IBAT thermogenic gene expression. These findings are consistent with the hypothesis that the combined treatment of OT and the beta-3 agonist, CL 316243, produces an additive effect to decrease body weight. The findings from the current study suggest that the effects of the combined treatment on energy intake, fat mass, adipocyte size and browning of EWAT were not additive and appear to be driven, in part, by transient changes in energy intake in response to OT or CL 316243 alone as well as CL 316243-elicited reduction of fat mass and adipocyte size and induction of browning of EWAT.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
78
|
Sabe M, Zhao N, Crippa A, Strauss GP, Kaiser S. Intranasal Oxytocin for Negative Symptoms of Schizophrenia: Systematic Review, Meta-Analysis, and Dose-Response Meta-Analysis of Randomized Controlled Trials. Int J Neuropsychopharmacol 2021; 24:601-614. [PMID: 33890987 PMCID: PMC8378078 DOI: 10.1093/ijnp/pyab020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Negative symptoms are a core aspect of psychopathology in schizophrenia. Currently available pharmacological agents have proven minimally efficacious for remediating negative symptoms. A promising treatment avenue is the intranasal administration of the neuropeptide oxytocin. However, there have been inconsistencies in effects of oxytocin on negative symptoms throughout the literature, and factors leading to inconsistent effects are unclear. METHODS We conducted a systematic review and meta-analysis of randomized clinical trials to compare the effectiveness of oxytocin with placebo for the treatment of negative symptoms and determine moderators of treatment effect. Random effects meta-analyses and dose-response meta-analysis were performed on mean changes in negative symptoms. RESULTS In an initial analysis of all 9 identified randomized clinical trials, intranasal oxytocin showed no significant effect on negative symptoms. For higher doses (>40-80 IU), a beneficial effect on negative symptoms was found with a moderate effect size, but this effect disappeared after exclusion of 1 outlier study. The dose-response meta-analysis predicted that higher doses of oxytocin may be more efficacious for negative symptoms. For positive symptoms, no beneficial effect of oxytocin was found in the main meta-analysis, but the dose-response meta-analysis suggested a potential advantage of higher doses. CONCLUSIONS The present results show no consistent beneficial effect of intranasal oxytocin for the treatment of negative and positive symptoms. The dose-response meta-analysis does not allow drawing any firm conclusions but suggests that high doses of intranasal oxytocin may be more efficacious. If future studies are conducted, an effort to reach adequate CNS concentrations for a sufficient duration is required.
Collapse
Affiliation(s)
- Michel Sabe
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Nan Zhao
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Alessio Crippa
- Department of Public Health Sciences, Karolinska Institutet, Stockholm,Sweden
| | - Gregory P Strauss
- Department of Psychology, University of Georgia, 125 Baldwin St., Athens, GA, 30602, USA
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
79
|
Kerem L, Lawson EA. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int J Mol Sci 2021; 22:7737. [PMID: 34299356 PMCID: PMC8306733 DOI: 10.3390/ijms22147737] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic peptide oxytocin and its receptor are involved in a range of physiological processes, including parturition, lactation, cell growth, wound healing, and social behavior. More recently, increasing evidence has established the effects of oxytocin on food intake, energy expenditure, and peripheral metabolism. In this review, we provide a comprehensive description of the central oxytocinergic system in which oxytocin acts to shape eating behavior and metabolism. Next, we discuss the peripheral beneficial effects oxytocin exerts on key metabolic organs, including suppression of visceral adipose tissue inflammation, skeletal muscle regeneration, and bone tissue mineralization. A brief summary of oxytocin actions learned from animal models is presented, showing that weight loss induced by chronic oxytocin treatment is related not only to its anorexigenic effects, but also to the resulting increase in energy expenditure and lipolysis. Following an in-depth discussion on the technical challenges related to endogenous oxytocin measurements in humans, we synthesize data related to the association between endogenous oxytocin levels, weight status, metabolic syndrome, and bone health. We then review clinical trials showing that in humans, acute oxytocin administration reduces food intake, attenuates fMRI activation of food motivation brain areas, and increases activation of self-control brain regions. Further strengthening the role of oxytocin in appetite regulation, we review conditions of hypothalamic insult and certain genetic pathologies associated with oxytocin depletion that present with hyperphagia, extreme weight gain, and poor metabolic profile. Intranasal oxytocin is currently being evaluated in human clinical trials to learn whether oxytocin-based therapeutics can be used to treat obesity and its associated sequela. At the end of this review, we address the fundamental challenges that remain in translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
80
|
Wirth S, Soumier A, Eliava M, Derdikman D, Wagner S, Grinevich V, Sirigu A. Territorial blueprint in the hippocampal system. Trends Cogn Sci 2021; 25:831-842. [PMID: 34281765 DOI: 10.1016/j.tics.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
As we skillfully navigate through familiar places, neural computations of distances and coordinates escape our attention. However, we perceive clearly the division of space into socially meaningful territories. 'My space' versus 'your space' is a distinction familiar to all of us. Spatial frontiers are social in nature since they regulate individuals' access to utilities in space depending on hierarchy and affiliation. How does the brain integrate spatial geometry with social territory? We propose that the action of oxytocin (OT) in the entorhinal-hippocampal regions supports this process. Grounded on the functional role of the hypothalamic neuropeptide in the hippocampal system, we show how OT-induced plasticity may bias the geometrical coding of place and grid cells to represent social territories.
Collapse
Affiliation(s)
- Sylvia Wirth
- Institute of Cognitive Science Marc Jeannerod, CNRS and University of Lyon, Etablissement 1, Bron, France.
| | - Amelie Soumier
- iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Dori Derdikman
- Neuroscience Department, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Angela Sirigu
- Institute of Cognitive Science Marc Jeannerod, CNRS and University of Lyon, Etablissement 1, Bron, France; iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France.
| |
Collapse
|
81
|
Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Transl Psychiatry 2021; 11:388. [PMID: 34247185 PMCID: PMC8272715 DOI: 10.1038/s41398-021-01511-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
There is evidence of the therapeutic potential of intranasal oxytocin for the treatment of pain and various psychiatric disorders, however, there is scant evidence that oxytocin reaches the brain. We quantified the concentration and distribution pattern of [125I]-radiolabeled oxytocin in the brains and peripheral tissues of rats after intranasal delivery using gamma counting and autoradiography, respectively. Radiolabel was detected in high concentrations in the trigeminal and olfactory nerves as well as in brain regions along their trajectories. Considerable concentrations were observed in the blood, however, relatively low levels of radiolabel were measured in peripheral tissues. The addition of a mucoadhesive did not enhance brain concentrations. These results provide support for intranasal OT reaching the brain via the olfactory and trigeminal neural pathways. These findings will inform the design and interpretation of clinical studies with intranasal oxytocin.
Collapse
|
82
|
Xie S, Hu Y, Fang L, Chen S, Botchway BOA, Tan X, Fang M, Hu Z. The association of oxytocin with major depressive disorder: role of confounding effects of antidepressants. Rev Neurosci 2021; 33:59-77. [PMID: 33989469 DOI: 10.1515/revneuro-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/18/2021] [Indexed: 01/15/2023]
Abstract
Major depressive disorder is a genetic susceptible disease, and a psychiatric syndrome with a high rate of incidence and recurrence. Because of its complexity concerning etiology and pathogenesis, the cure rate of first-line antidepressants is low. In recent years, accumulative evidences revealed that oxytocin act as a physiological or pathological participant in a variety of complex neuropsychological activities, including major depressive disorder. Six electronic databases (Web of Science, PubMed, Scopus, Google Scholar, CNKI, and Wanfang) were employed for researching relevant publications. At last, 226 articles were extracted. The current review addresses the correlation of the oxytocin system and major depressive disorder. Besides, we summarize the mechanisms by which the oxytocin system exerts potential antidepressant effects, including regulating neuronal activity, influencing neuroplasticity and regeneration, altering neurotransmitter release, down regulating hypothalamic-pituitary-adrenal axis, anti-inflammatory, antioxidation, and genetic effects. Increasing evidence shows that oxytocin and its receptor gene may play a potential role in major depressive disorder. Future research should focus on the predictive ability of the oxytocin system as a biomarker, as well as its role in targeted prevention and early intervention of major depressive disorder.
Collapse
Affiliation(s)
- Shiyi Xie
- Obstetrics & Gynecology Department, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, 208 Huanchendong Road, 310003Hangzhou, China.,Clinical Medical College, Zhejiang Chinese Medical University, 310053Hangzhou, China
| | - Yan Hu
- Clinical Medical College, Zhejiang Chinese Medical University, 310053Hangzhou, China
| | - Li Fang
- Obstetrics & Gynecology Department, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, 208 Huanchendong Road, 310003Hangzhou, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, 208 Huanchendong Road, 310003Hangzhou, China
| |
Collapse
|
83
|
Oeri HE. Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy. J Psychopharmacol 2021; 35:512-536. [PMID: 32909493 PMCID: PMC8155739 DOI: 10.1177/0269881120920420] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The last two decades have seen a revival of interest in the entactogen 3,4-methylenedioxy-N-methylamphetamine (MDMA) as an adjunct to psychotherapy, particularly for the treatment of post-traumatic stress disorder. While clinical results are highly promising, and MDMA is expected to be approved as a treatment in the near future, it is currently the only compound in its class of action that is being actively investigated as a medicine. This lack of alternatives to MDMA may prove detrimental to patients who do not respond well to the particular mechanism of action of MDMA or whose treatment calls for a modification of MDMA's effects. For instance, patients with existing cardiovascular conditions or with a prolonged history of stimulant drug use may not fit into the current model of MDMA-assisted psychotherapy, and could benefit from alternative drugs. This review examines the existing literature on a host of entactogenic drugs, which may prove to be useful alternatives in the future, paying particularly close attention to any neurotoxic risks, neuropharmacological mechanism of action and entactogenic commonalities with MDMA. The substances examined derive from the 1,3-benzodioxole, cathinone, benzofuran, aminoindane, indole and amphetamine classes. Several compounds from these classes are identified as potential alternatives to MDMA.
Collapse
Affiliation(s)
- Hans Emanuel Oeri
- Hans Emanuel Oeri, University of Victoria,
3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
84
|
Guoynes CD, Marler CA. An acute dose of intranasal oxytocin rapidly increases maternal communication and maintains maternal care in primiparous postpartum California mice. PLoS One 2021; 16:e0244033. [PMID: 33886559 PMCID: PMC8061985 DOI: 10.1371/journal.pone.0244033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal-offspring communication and care are essential for offspring survival. Oxytocin (OXT) is known for its role in initiation of maternal care, but whether OXT can rapidly influence maternal behavior or ultrasonic vocalizations (USVs; above 50 kHz) has not been examined. To test for rapid effects of OXT, California mouse mothers were administered an acute intranasal (IN) dose of OXT (0.8 IU/kg) or saline followed by a separation test with three phases: habituation with pups in a new testing chamber, separation via a wire mesh, and finally reunion with pups. We measured maternal care, maternal USVs, and pup USVs. In mothers, we primarily observed simple sweep USVs, a short downward sweeping call around 50 kHz, and in pups we only observed pup whines, a long call with multiple harmonics ranging from 20 kHz to 50 kHz. We found that IN OXT rapidly and selectively enhanced the normal increase in maternal simple sweep USVs when mothers had physical access to pups (habituation and reunion), but not when mothers were physically separated from pups. Frequency of mothers' and pups' USVs were correlated upon reunion, but IN OXT did not influence this correlation. Finally, mothers given IN OXT showed more efficient pup retrieval/carrying and greater total maternal care upon reunion. Behavioral changes were specific to maternal behaviors (e.g. retrievals) as mothers given IN OXT did not differ from controls in stress-related behaviors (e.g. freezing). Overall, these findings highlight the rapid effects and context-dependent effect a single treatment with IN OXT has on both maternal USV production and offspring care.
Collapse
Affiliation(s)
- Caleigh D. Guoynes
- Department of Psychology, University of Wisconsin, Madison, WI, United States America
| | - Catherine A. Marler
- Department of Psychology, University of Wisconsin, Madison, WI, United States America
| |
Collapse
|
85
|
Zheng X, Kendrick KM. Neural and Molecular Contributions to Pathological Jealousy and a Potential Therapeutic Role for Intranasal Oxytocin. Front Pharmacol 2021; 12:652473. [PMID: 33959017 PMCID: PMC8094533 DOI: 10.3389/fphar.2021.652473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
Romantic jealousy, especially in its pathological form, is a significant contributor to both domestic abuse, including partner sexual coercion and even murder, although relatively little research has been conducted on it. Both obsessive and delusional forms have been identified although only the latter is currently recognized as a pathological disorder. Studies in both clinical and healthy populations have identified altered fronto-striatal responsivity as being associated primarily with romantic jealousy and to date drug based treatments have targeted both dopaminergic and serotonergic systems. However, there is increasing interest in a potential role for the neuropeptide oxytocin, which can also modulate dopaminergic and serotonin systems in the brain and has been shown to altered in other psychotic conditions, such as schizophrenia and obsessive compulsive disorder. Recent studies in healthy populations have reported that when oxytocin is administered intranasally it can influence the brain to promote strengthening of romantic bonds and reduce romantic jealousy in both men and women evoked in either imagined or real contexts. These findings indicate a possible therapeutic use of intranasal oxytocin administration in pathological jealousy.
Collapse
Affiliation(s)
| | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
86
|
Intranasal oxytocin increases state anhedonia following imagery training of positive social outcomes in individuals lower in extraversion, trust-altruism, and openness to experience. Int J Psychophysiol 2021; 165:8-17. [PMID: 33839197 DOI: 10.1016/j.ijpsycho.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Psychological disorders such as major depressive disorder are characterised by interpersonal difficulties and anhedonia. A cognitive mechanism proposed to contribute to the maintenance of these problems is a diminished ability to generate positive mental imagery, especially regarding social interactions. The current study examined whether the effects of social imagery training on social activity and anhedonia could be enhanced with the addition of intranasal oxytocin, and whether these effects might be augmented in persons with a high propensity to engage socially (i.e., high extraversion). University students (N = 111) were randomised to self-administer intranasal oxytocin or placebo, followed by a single session of positive social or non-social imagery training that required participants to imagine 64 positive scenarios occurring in either a social or non-social context, respectively. There were no main effects of imagery type and drug, and no interaction effect on anhedonia and social activity, measured respectively via self-report and a behavioural task. Individuals low in extraversion, trust-altruism, and openness to experience reported significantly more anhedonia after receiving oxytocin relative to placebo, but only following imagery training of positive social outcomes. Results highlight the negative consequences of increasing oxytocin bioavailability after priming social contact in more withdrawn individuals.
Collapse
|
87
|
Rae M, Lemos Duarte M, Gomes I, Camarini R, Devi LA. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. Br J Pharmacol 2021; 179:1544-1564. [PMID: 33817785 DOI: 10.1111/bph.15481] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are endogenous ligands for OT and AVP receptors in the brain and in the peripheral system. Several studies demonstrate that OT and AVP have opposite roles in modulating stress, anxiety and social behaviours. Interestingly, both peptides and their receptors exhibit high sequence homology which could account for the biased signalling interaction of the peptides with OT and AVP receptors. However, how and under which conditions this crosstalk occurs in vivo remains unclear. In this review we shed light on the complexity of the roles of OT and AVP, by focusing on their signalling and behavioural differences and exploring the crosstalk between the receptor systems. Moreover, we discuss the potential of OT and AVP receptors as therapeutic targets to treat human disorders, such as autism, schizophrenia and drug abuse.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
88
|
Veronesi MC, Graner BD, Cheng SH, Zamora M, Zarrinmayeh H, Chen CT, Das SK, Vannier MW. Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Model-Protocol Development. Pharmaceutics 2021; 13:pharmaceutics13030391. [PMID: 33804222 PMCID: PMC8001876 DOI: 10.3390/pharmaceutics13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023] Open
Abstract
The fate of intranasal aerosolized radiolabeled polymeric micellar nanoparticles (LPNPs) was tracked with positron emission tomography/computer tomography (PET/CT) imaging in a rat model to measure nose-to-brain delivery. A quantitative temporal and spatial testing protocol for new radio-nanotheranostic agents was sought in vivo. LPNPs labeled with a zirconium 89 (89Zr) PET tracer were administered via intranasal or intravenous delivery, followed by serial PET/CT imaging. After 2 h of continuous imaging, the animals were sacrificed, and the brain substructures (olfactory bulb, forebrain, and brainstem) were isolated. The activity in each brain region was measured for comparison with the corresponding PET/CT region of interest via activity measurements. Serial imaging of the LPNPs (100 nm PLA–PEG–DSPE+89Zr) delivered intranasally via nasal tubing demonstrated increased activity in the brain after 1 and 2 h following intranasal drug delivery (INDD) compared to intravenous administration, which correlated with ex vivo gamma counting and autoradiography. Although assessment of delivery from nose to brain is a promising approach, the technology has several limitations that require further development. An experimental protocol for aerosolized intranasal delivery is presented herein, which may provide a platform for better targeting the olfactory epithelium.
Collapse
Affiliation(s)
- Michael C. Veronesi
- The Department of Radiology and Imaging Sciences, School of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (B.D.G.); (H.Z.)
- Correspondence:
| | - Brian D. Graner
- The Department of Radiology and Imaging Sciences, School of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (B.D.G.); (H.Z.)
| | - Shih-Hsun Cheng
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| | - Marta Zamora
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| | - Hamideh Zarrinmayeh
- The Department of Radiology and Imaging Sciences, School of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (B.D.G.); (H.Z.)
| | - Chin-Tu Chen
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| | - Sudip K. Das
- The Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Butler University, Indianapolis, IN 46208, USA;
| | - Michael W. Vannier
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| |
Collapse
|
89
|
Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021; 17:103. [PMID: 33663513 PMCID: PMC7934266 DOI: 10.1186/s12917-021-02805-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
90
|
Kou J, Lan C, Zhang Y, Wang Q, Zhou F, Zhao Z, Montag C, Yao S, Becker B, Kendrick KM. In the nose or on the tongue? Contrasting motivational effects of oral and intranasal oxytocin on arousal and reward during social processing. Transl Psychiatry 2021; 11:94. [PMID: 33542175 PMCID: PMC7862637 DOI: 10.1038/s41398-021-01241-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Intranasal oxytocin exerts wide-ranging effects on socioemotional behavior and is proposed as a potential therapeutic intervention in psychiatric disorders. However, following intranasal administration, oxytocin could penetrate directly into the brain or influence its activity via increased peripheral concentrations crossing the blood-brain barrier or influencing vagal projections. In the current randomized, placebo-controlled, pharmaco-imaging clinical trial we investigated effects of 24IU oral (lingual) oxytocin spray, restricting it to peripherally mediated blood-borne and vagal effects, on responses to face emotions in 80 male subjects and compared them with 138 subjects treated intranasally with 24IU. Oral, but not intranasal oxytocin administration increased both arousal ratings for faces and associated brain reward responses, the latter being partially mediated by blood concentration changes. Furthermore, while oral oxytocin increased amygdala and arousal responses to face emotions, after intranasal administration they were decreased. Thus, oxytocin can produce markedly contrasting motivational effects in relation to socioemotional cues when it influences brain function via different routes. These findings have important implications for future therapeutic use since administering oxytocin orally may be both easier and have potentially stronger beneficial effects by enhancing responses to emotional cues and increasing their associated reward.
Collapse
Affiliation(s)
- Juan Kou
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Chunmei Lan
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Yingying Zhang
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Qianqian Wang
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Feng Zhou
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Zhongbo Zhao
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Christian Montag
- grid.6582.90000 0004 1936 9748Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Shuxia Yao
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Benjamin Becker
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| | - Keith M. Kendrick
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 611054 China
| |
Collapse
|
91
|
Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
|
92
|
The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:121-140. [PMID: 34266588 DOI: 10.1016/b978-0-12-819973-2.00009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications.
Collapse
|
93
|
Zhuang Q, Zhu S, Yang X, Zhou X, Xu X, Chen Z, Lan C, Zhao W, Becker B, Yao S, Kendrick KM. Oxytocin-induced facilitation of learning in a probabilistic task is associated with reduced feedback- and error-related negativity potentials. J Psychopharmacol 2021; 35:40-49. [PMID: 33274683 DOI: 10.1177/0269881120972347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Feedback evaluation of actions and error response detection are critical for optimizing behavioral adaptation. Oxytocin can facilitate learning following social feedback but whether its effects vary as a function of feedback valence remains unclear. AIMS The present study aimed to investigate whether oxytocin would influence responses to positive and negative feedback differentially or equivalently. METHODS The present study employed a randomized, double-blind, placebo controlled within-subject design to investigate whether intranasal oxytocin (24 IU) influenced behavioral and evoked electrophysiological potential responses to positive or negative feedback in a probabilistic learning task. RESULTS Results showed that oxytocin facilitated learning and this effect was maintained in the absence of feedback. Using novel stimulus pairings, we found that oxytocin abolished bias towards learning more from negative feedback under placebo by increasing accuracy for positively reinforced stimuli. Oxytocin also decreased the feedback-related negativity difference (negative minus positive feedback) during learning, further suggesting that it rendered the evaluation of positive and negative feedback more equivalent. Additionally, post-learning oxytocin attenuated error-related negativity amplitudes but increased the late error positivity, suggesting that it may lower conflict detection between actual errors and expected correct responses at an early stage of processing but at a later stage increase error awareness and motivation for avoiding them. CONCLUSIONS Oxytocin facilitates learning and subsequent performance by rendering the impact of positive relative to negative feedback more equivalent and also by reducing conflict detection and increasing error awareness, which may be beneficial for behavioral adaption.
Collapse
Affiliation(s)
- Qian Zhuang
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Zhu
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Yang
- Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou, China
| | - Xinqi Zhou
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolei Xu
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuo Chen
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei Lan
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
94
|
Abstract
The hypothalamic peptide oxytocin has been increasingly recognized as a hormone and neurotransmitter with important effects on energy intake, metabolism, and body weight and is under investigation as a potential novel therapeutic agent for obesity. The main neurons producing oxytocin and expressing the oxytocin receptor are strategically located in brain areas known to be critically involved in homeostatic energy balance as well as hedonic and motivational aspects of eating behavior. In this chapter, we will review the central and peripheral physiology of oxytocin and the interaction of oxytocin with key hormones and neural circuitries that affect food intake and metabolism. Next, we will synthesize the available data on endogenous oxytocin levels related to caloric intake, body weight, and metabolic status. We will then review the effects of exogenous oxytocin administration on eating behavior, body weight, and metabolism in humans, including in healthy individuals as well as specific populations with suspected perturbations involving oxytocin pathways. Finally, we will address the promise and fundamental challenges of translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
95
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
96
|
Quintana DS, Lischke A, Grace S, Scheele D, Ma Y, Becker B. Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Mol Psychiatry 2021; 26:80-91. [PMID: 32807845 PMCID: PMC7815514 DOI: 10.1038/s41380-020-00864-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023]
Abstract
Reports on the modulatory role of the neuropeptide oxytocin on social cognition and behavior have steadily increased over the last two decades, stimulating considerable interest in its psychiatric application. Basic and clinical research in humans primarily employs intranasal application protocols. This approach assumes that intranasal administration increases oxytocin levels in the central nervous system via a direct nose-to-brain route, which in turn acts upon centrally-located oxytocin receptors to exert its behavioral effects. However, debates have emerged on whether intranasally administered oxytocin enters the brain via the nose-to-brain route and whether this route leads to functionally relevant increases in central oxytocin levels. In this review we outline recent advances from human and animal research that provide converging evidence for functionally relevant effects of the intranasal oxytocin administration route, suggesting that direct nose-to-brain delivery underlies the behavioral effects of oxytocin on social cognition and behavior. Moreover, advances in previously debated methodological issues, such as pre-registration, reproducibility, statistical power, interpretation of non-significant results, dosage, and sex differences are discussed and integrated with suggestions for the next steps in translating intranasal oxytocin into psychiatric applications.
Collapse
Affiliation(s)
- Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Alexander Lischke
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Sally Grace
- School of Psychology, Australian Catholic University, Melbourne, Australia
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
97
|
Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry 2021; 26:265-279. [PMID: 32514104 PMCID: PMC7278240 DOI: 10.1038/s41380-020-0802-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
The neuropeptide oxytocin has attracted great attention of the general public, basic neuroscience researchers, psychologists, and psychiatrists due to its profound pro-social, anxiolytic, and "anti-stress" behavioral and physiological effects, and its potential application for treatment of mental diseases associated with altered socio-emotional competence. During the last decade, substantial progress has been achieved in understanding the complex neurobiology of the oxytocin system, including oxytocinergic pathways, local release patterns, and oxytocin receptor distribution in the brain, as well as intraneuronal oxytocin receptor signaling. However, the picture of oxytocin actions remains far from being complete, and the central question remains: "How does a single neuropeptide exert such pleotropic actions?" Although this phenomenon, typical for many of about 100 identified neuropeptides, may emerge from the anatomical divergence of oxytocin neurons, their multiple central projections, distinct oxytocin-sensitive cell types in different brain regions, and multiple intraneuronal signaling pathways determining the specific cellular response, further basic studies are required. In conjunction, numerous reports on positive effects of intranasal application of oxytocin on human brain networks controlling socio-emotional behavior in health and disease require harmonic tandems of basic researchers and clinicians. During the COVID-19 crisis in 2020, oxytocin research seems central as question of social isolation-induced inactivation of the oxytocin system, and buffering effects of either activation of the endogenous system or intranasal application of synthetic oxytocin need to be thoroughly investigated.
Collapse
|
98
|
Meusel M, Herrmann M, Machleidt F, Franzen K, Vonthein R, Sayk F. Intranasal oxytocin has sympathoexcitatory effects on vascular tone in healthy males. Am J Physiol Regul Integr Comp Physiol 2020; 320:R162-R172. [PMID: 33296278 DOI: 10.1152/ajpregu.00062.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxytocin appears to be involved in the neuroendocrine regulation of sympathetic blood pressure (BP) homeostasis. In animals, intracerebral administration of oxytocin induces BP-relevant sympathetic activation. In humans, central nervous effects of oxytocin on BP regulation remain unclear. Intranasal administration supposedly delivers oligopeptides such as oxytocin directly to the brain. We investigated the effects of intranasal oxytocin on sympathetic vascular baroreflex function in humans using microneurographic techniques. In a balanced, double-blind crossover design, oxytocin or placebo was administered intranasally to 12 lean, healthy males (age 25 ± 4 yr). Muscle sympathetic nerve activity (MSNA) was assessed microneurographically before (presubstance), 30-45 min (postsubstance I), and 105-120 min (postsubstance II) after oxytocin administration. Baroreflex was challenged via graded infusions of vasoactive drugs, and correlation of BP with MSNA and heart rate (HR) defined baroreflex function. Experiments were conducted in the afternoon after a 5-h fasting period. After oxytocin, resting MSNA (burst rate and total activity) showed significant net increases from pre to postsubstance II compared with placebo [Δincrease = +4.3 ± 1.2 (oxytocin) vs. +2.2 ± 1.4 bursts/min (placebo), ANOVA; P < 0.05; total activity = 184 ± 11.5% (oxytocin) vs. 121 ± 14.3% (placebo), ANOVA; P = 0.01). This was combined with a small but significant net increase in resting diastolic BP, whereas systolic and mean arterial BP or HR as well as baroreflex sensitivity at vasoactive drug challenge were not altered. Intranasally administered oxytocin induced vasoconstrictory sympathoactivation in healthy male humans. The concomitant increase of diastolic BP was most likely attributable to increased vascular tone. This suggests oxytocin-mediated upward resetting of the vascular baroreflex set point at centers superordinate to the mere baroreflex-feedback loop.
Collapse
Affiliation(s)
- M Meusel
- Department of Internal Medicine II, University Heart Center Luebeck, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - M Herrmann
- Department of Internal Medicine II, University Heart Center Luebeck, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - F Machleidt
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - K Franzen
- Department of Internal Medicine III, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - R Vonthein
- Institute for Medical Biometry and Statistics, University of Luebeck, Luebeck, Germany
| | - F Sayk
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
99
|
Damián JP, de Soto L, Espindola D, Gil J, van Lier E. Intranasal oxytocin affects the stress response to social isolation in sheep. Physiol Behav 2020; 230:113282. [PMID: 33306978 DOI: 10.1016/j.physbeh.2020.113282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Oxytocin (OT) is a neuropeptide hormone that modulates several social behaviors and can affect the anxiety and stress response. The aim of this study was to determine if administration of intranasal OT affects the stress response to social isolation in sheep. Twenty adult Merino ewes were assigned to two groups; 1) Control group (CG, n = 10), which received an intranasal administration of isotonic saline and 2) Oxytocin-treated group (OTG, n = 10), which received an intranasal administration of OT (24 IU) 40 min before the animals were placed in the social isolation test. During the social isolation test (10 min), the behavior of the sheep was recorded, and blood samples were obtained before and after the test for the determination of cortisol, glucose and serum proteins, and heart rate and surface temperature were recorded. The OTG ewes had a higher cortisol concentration (P = 0.04) after social isolation, tended to vocalize more (P = 0.06) during isolation, and tended to have lower globulin concentrations (P = 0.10) than the CG ewes. Contrary to what we expected, the administration of intranasal OT increased the stress response to social isolation in ewes, which was evidenced by endocrine (greater increase in cortisol concentration), physiological (a tendency to present lower concentration of globulins in blood) and behavioral (a tendency to vocalize more) indicators. This study suggests that the administration of intranasal OT increased the stress response to isolation possibly by strengthening the social bond among ewes.
Collapse
Affiliation(s)
- Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Unidad de Bioquímica, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, Montevideo, CP 11600, Uruguay.
| | - Leticia de Soto
- Departamento de Biociencias Veterinarias, Unidad de Bioquímica, Facultad de Veterinaria, Universidad de la República, CENUR Litoral Norte, Salto, Universidad de la República, Rivera 1350, Salto, CP 50000, Uruguay
| | - Delfa Espindola
- Departamento de Biociencias Veterinarias, Unidad de Bioquímica, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, Montevideo, CP 11600, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal "Dr. Alfredo Ferraris", CENUR Litoral Norte, Facultad de Veterinaria, EEMAC, Universidad de la República, Ruta 3 km 363, Paysandú, CP 60000, Uruguay
| | - Elize van Lier
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo, CP 12900, Uruguay; Estación Experimental Facultad de Agronomía Salto, Ruta 31, km 21, Salto, CP 50000, Uruguay
| |
Collapse
|
100
|
Chen Y, Li Q, Zhang Q, Kou J, Zhang Y, Cui H, Wernicke J, Montag C, Becker B, Kendrick KM, Yao S. The Effects of Intranasal Oxytocin on Neural and Behavioral Responses to Social Touch in the Form of Massage. Front Neurosci 2020; 14:589878. [PMID: 33343285 PMCID: PMC7746800 DOI: 10.3389/fnins.2020.589878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Manually-administered massage can potently increase endogenous oxytocin concentrations and neural activity in social cognition and reward regions and intranasal oxytocin can increase the pleasantness of social touch. In the present study, we investigated whether intranasal oxytocin modulates behavioral and neural responses to foot massage applied manually or by machine using a randomized placebo-controlled within-subject pharmaco-fMRI design. 46 male participants underwent blocks of massage of each type where they both received and imagined receiving the massage. Intranasal oxytocin significantly increased subjective pleasantness ratings of the manual but not the machine massage and neural responses in key regions involved in reward (orbitofrontal cortex, dorsal striatum and ventral tegmental area), social cognition (superior temporal sulcus and inferior parietal lobule), emotion and salience (amygdala and anterior cingulate and insula) and default mode networks (medial prefrontal cortex, parahippocampal gyrus, posterior cingulate, and precuneus) as well as a number of sensory and motor processing regions. Both neural and behavioral effects of oxytocin occurred independent of whether subjects thought the massage was applied by a male or female masseur. These findings support the importance of oxytocin for enhancing positive behavioral and neural responses to social touch in the form of manually administered massage and that a combination of intranasal oxytocin and massage may have therapeutic potential in autism. CLINICAL TRIALS REGISTRATION The Effects of Oxytocin on Social Touch; registration ID: NCT03278860; URL: https://clinicaltrials.gov/ct2/show/NCT03278860.
Collapse
Affiliation(s)
- Yuanshu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qianqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jennifer Wernicke
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christian Montag
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|