51
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
52
|
Kavian N, Hachim A, Li APY, Cohen CA, Chin AWH, Poon LLM, Fang VJ, Leung NHL, Cowling BJ, Valkenburg SA. Assessment of enhanced influenza vaccination finds that FluAd conveys an advantage in mice and older adults. Clin Transl Immunology 2020; 9:e1107. [PMID: 32025302 PMCID: PMC6997034 DOI: 10.1002/cti2.1107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Enhanced inactivated influenza vaccines (eIIV) aim to increase immunogenicity and protection compared with the widely used standard IIV (S-IIV). METHODS We tested four vaccines in parallel, FluZone high dose, FluBlok and FluAd versus S-IIV in a randomised controlled trial of older adults and in a mouse infection model to assess immunogenicity, protection from lethal challenge and mechanisms of action. RESULTS In older adults, FluAd vaccination stimulated a superior antibody profile, including H3-HA antibodies that were elevated for up to 1 year after vaccination, higher avidity H3HA IgG and larger HA stem IgG responses. In a mouse model, FluAd also elicited an earlier and larger induction of HA stem antibodies with increased germinal centre responses and upregulation and long-term expression of B-cell switch transcription factors. Long-term cross-reactive memory responses were sustained by FluAd following lethal heterosubtypic influenza challenge, with reduced lung damage and viral loads, coinciding with increased T- and B-cell recall. Advantages were also noted for the high-dose FluZone vaccine in both humans and mice. CONCLUSION The early, broadly reactive and long-lived antibody response of FluAd indicates a potential advantage of this vaccine, particularly in years when there is a mismatch between the vaccine strain and the circulating strain of influenza viruses.
Collapse
Affiliation(s)
- Niloufar Kavian
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
- Service d'Immunologie BiologiqueCentre Hospitalier Universitaire CochinFaculté de MédecineAssistance Publique–Hôpitaux de ParisHôpital Universitaire Paris CentreUniversité Paris DescartesSorbonne Paris CitéParisFrance
- Institut CochinINSERM U1016Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Asmaa Hachim
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Athena PY Li
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Carolyn A Cohen
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Alex WH Chin
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Leo LM Poon
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Vicky J Fang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Nancy HL Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Sophie A Valkenburg
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| |
Collapse
|
53
|
Lutz CS, Fink RV, Cloud AJ, Stevenson J, Kim D, Fiebelkorn AP. Factors associated with perceptions of influenza vaccine safety and effectiveness among adults, United States, 2017-2018. Vaccine 2019; 38:1393-1401. [PMID: 31883808 DOI: 10.1016/j.vaccine.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Annual vaccination against seasonal influenza is widely recognized as the primary intervention method in preventing morbidity and mortality from influenza, but coverage among adults is suboptimal in the United States. Safety and effectiveness perceptions regarding vaccines are consistently cited as factors that influence adults' decisions to accept or reject vaccination. Therefore, we conducted this analysis in order to understand sociodemographic, attitude, and knowledge factors associated with these perceptions for influenza vaccine among adults in three different age groups. METHODS Probability-based Internet panel surveys using nationally representative samples of adults aged ≥19 years in the United States were conducted during February-March of 2017 and 2018. We asked respondents if they believed the influenza vaccine was safe and effective. We calculated prevalence ratios using chi-square and pairwise t-tests to determine associations between safety and effectiveness beliefs and sociodemographic variables for adults aged 19-49, 50-64, and ≥65 years. RESULTS Survey completion rates were 58.2% (2017) and 57.2% (2018); we analyzed 4597 combined responses. Overall, most adults reported the influenza vaccine was safe (86.3%) and effective (73.0%). However, fewer younger adults reported positive perceptions compared with older age groups. Respondents who believed the vaccine was safe also reported it was effective. CONCLUSIONS Generally, adults perceived the influenza vaccine as safe and effective. Considering this, any improvements to these perceptions would likely be minor and have a limited effect on coverage. Future research to understand why, despite positive perceptions, adults are still choosing to forego the vaccine may be informative.
Collapse
Affiliation(s)
- Chelsea S Lutz
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD, United States; Oak Ridge Institute for Science and Education, United States Department of Energy, Washington, DC, United States; Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Rebecca V Fink
- Westat, Rockville, MD, United States; Abt Associates, Cambridge, MA, United States.
| | - Ann J Cloud
- Abt Associates, Cambridge, MA, United States.
| | - John Stevenson
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - David Kim
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Division of Vaccines, Office of Infectious Disease and HIV/AIDS, Office of Assistant Secretary for Health, US Department of Health and Human Services, Washington, DC, United States.
| | - Amy Parker Fiebelkorn
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
54
|
Coombs KM, Simon PF, McLeish NJ, Zahedi-Amiri A, Kobasa D. Aptamer Profiling of A549 Cells Infected with Low-Pathogenicity and High-Pathogenicity Influenza Viruses. Viruses 2019; 11:v11111028. [PMID: 31694171 PMCID: PMC6893437 DOI: 10.3390/v11111028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) are important animal and human emerging and re-emerging pathogens that are responsible for yearly seasonal epidemics and sporadic pandemics. IAVs cause a wide range of clinical illnesses, from relatively mild infections by seasonal strains, to acute respiratory distress during infections with highly pathogenic avian IAVs (HPAI). For this study, we infected A549 human lung cells with lab prototype A/PR/8/34 (H1N1) (PR8), a seasonal H1N1 (RV733), the 2009 pandemic H1N1 (pdm09), or with two avian strains, an H5N1 HPAI strain or an H7N9 strain that has low pathogenicity in birds but high pathogenicity in humans. We used a newly-developed aptamer-based multiplexed technique (SOMAscan®) to examine >1300 human lung cell proteins affected by the different IAV strains, and identified more than 500 significantly dysregulated cellular proteins. Our analyses indicated that the avian strains induced more profound changes in the A549 global proteome compared to all tested low-pathogenicity H1N1 strains. The PR8 strain induced a general activation, primarily by upregulating many immune molecules, the seasonal RV733 and pdm09 strains had minimal effect upon assayed molecules, and the avian strains induced significant downregulation, primarily in antimicrobial response, cardiovascular and post-translational modification systems.
Collapse
Affiliation(s)
- Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-7893-976
| | - Philippe F. Simon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Nigel J. McLeish
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
55
|
Jazayeri SD, Poh CL. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines (Basel) 2019; 7:E169. [PMID: 31683888 PMCID: PMC6963725 DOI: 10.3390/vaccines7040169] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Vaccination is still the most efficient way to prevent an infection with influenza viruses. Nevertheless, existing commercial vaccines face serious limitations such as availability during epidemic outbreaks and their efficacy. Existing seasonal influenza vaccines mostly induce antibody responses to the surface proteins of influenza viruses, which frequently change due to antigenic shift and or drift, thus allowing influenza viruses to avoid neutralizing antibodies. Hence, influenza vaccines need a yearly formulation to protect against new seasonal viruses. A broadly protective or universal influenza vaccine must induce effective humoral as well as cellular immunity against conserved influenza antigens, offer good protection against influenza pandemics, be safe, and have a fast production platform. Nanotechnology has great potential to improve vaccine delivery, immunogenicity, and host immune responses. As new strains of human epidemic influenza virus strains could originate from poultry and swine viruses, development of a new universal influenza vaccine will require the immune responses to be directed against viruses from different hosts. This review discusses how the new vaccine platforms and nanoparticles can be beneficial in the development of a broadly protective, universal influenza vaccine.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
56
|
Wong J, Layton D, Wheatley AK, Kent SJ. Improving immunological insights into the ferret model of human viral infectious disease. Influenza Other Respir Viruses 2019; 13:535-546. [PMID: 31583825 PMCID: PMC6800307 DOI: 10.1111/irv.12687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ferrets are a well-established model for studying both the pathogenesis and transmission of human respiratory viruses and evaluation of antiviral vaccines. Advanced immunological studies would add substantial value to the ferret models of disease but are hindered by the low number of ferret-reactive reagents available for flow cytometry and immunohistochemistry. Nevertheless, progress has been made to understand immune responses in the ferret model with a limited set of ferret-specific reagents and assays. This review examines current immunological insights gained from the ferret model across relevant human respiratory diseases, with a focus on influenza viruses. We highlight key knowledge gaps that need to be bridged to advance the utility of ferrets for immunological studies.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Daniel Layton
- CSIRO Health and BiosecurityAustralian Animal Health LaboratoriesGeelongVic.Australia
| | - Adam K. Wheatley
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Stephen J. Kent
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- ARC Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
57
|
Kosikova M, Li L, Radvak P, Ye Z, Wan XF, Xie H. Imprinting of Repeated Influenza A/H3 Exposures on Antibody Quantity and Antibody Quality: Implications for Seasonal Vaccine Strain Selection and Vaccine Performance. Clin Infect Dis 2019; 67:1523-1532. [PMID: 29672713 DOI: 10.1093/cid/ciy327] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/12/2018] [Indexed: 01/04/2023] Open
Abstract
Background Reduced seasonal influenza vaccine effectiveness (VE) was observed in individuals who received repeated annual vaccinations. Preexisting influenza antibody levels were also found inversely correlated with postvaccination titers. These reports suggest that preexisting immunity may affect contemporary seasonal vaccine performance. Methods Influenza A/H3 specific cross-reactivity of postvaccination sera from humans with or without preexisting immunity was assessed by hemagglutination inhibition (HAI) assay. Ferret antisera induced by repeated H3 exposures were also subjected to HAI, antibody affinity, and antibody avidity analyses. Results Human postvaccination sera derived from subjects with or without preexisting immunity showed different cross-reactivity against H3 variant viruses. Similarly, the breadth of cross-reactive ferret antibodies induced by repeated H3 exposures was also broadened. Antigenic differences between H3 viruses characterized by ferret antisera became smaller as the number of exposures increased. Although repeated H3 exposures induced "original antigenic sin" phenomena in HAI titers against later exposed viruses, resultant ferret antibodies showed gradually enhanced avidity for different H3/hemagglutinin. Increased antibody avidity was found to be inversely correlated with decreased antigenic differences among H3 viruses characterized. Conclusions Our results suggest that repeated H3 exposures imprinted not only antibody quantity but also antibody quality. The "naive" ferret model currently used for vaccine strain selection does not recapitulate the complexity of human preexisting immunity. Vaccine strains identified hereby may not provide coverage sufficient for those who were frequently infected and/or vaccinated, leading to the reduced VE observed.
Collapse
Affiliation(s)
- Martina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University
| | - Peter Radvak
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Zhiping Ye
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
58
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
59
|
Fu C, Greene CM, He Q, Liao Y, Wan Y, Shen J, Rong C, Zhou S. Dose effect of influenza vaccine on protection against laboratory-confirmed influenza illness among children aged 6 months to 8 years of age in southern China, 2013/14-2015/16 seasons: a matched case-control study. Hum Vaccin Immunother 2019; 16:595-601. [PMID: 31486333 DOI: 10.1080/21645515.2019.1662267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Background We conducted a matched case-control study in China during the 2013/14-2015/16 influenza seasons to estimate influenza vaccine effectiveness (VE) by dose among children aged 6 months to 8 years.Methods Cases were laboratory-confirmed influenza infections identified through the influenza-like illness sentinel surveillance network in Guangzhou. Age- and sex-matched community controls were randomly selected through the expanded immunization program database. We defined priming as receipt of ≥1 dose of influenza vaccine during the immediate prior season.Results In total, 4,185 case-control pairs were analyzed. Among children 6-35 months, VE for current season dose(s) across the three seasons during 2013/14-2015/16 were 59% (95% Confidence Interval: 44-71%), 12% (-11%,30%), 54% (32-69%); among unprimed children 6-35 months, VE for 1 vs 2 current season doses were 45% (8-67%) vs 65% (46-78%), -2% (-53%,32%) vs 19% (-11%,40%), and 37% (-24%,68%) vs 61% (32-78%). Among children aged 3-8 years, VE for current season dose(s) across study seasons were 62% (36-78%), 43% (22-58%), 32% (1-53%). VE for unprimed children receiving 1 dose only in current season was insignificant or lower than among all children.Conclusion Findings support utility of providing second dose ("booster dose") of seasonal influenza vaccine to unprimed children aged 6-35 months, and the need to study further dose effect of a booster dose among unprimed children aged 3-8 years in China.
Collapse
Affiliation(s)
- Chuanxi Fu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Carolyn M Greene
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Qing He
- Department of Infectious Disease control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Ying Liao
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Yanmin Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Jichuan Shen
- Department of Infectious Disease control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Chao Rong
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suizan Zhou
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
60
|
Asthagiri Arunkumar G, McMahon M, Pavot V, Aramouni M, Ioannou A, Lambe T, Gilbert S, Krammer F. Vaccination with viral vectors expressing NP, M1 and chimeric hemagglutinin induces broad protection against influenza virus challenge in mice. Vaccine 2019; 37:5567-5577. [PMID: 31399277 PMCID: PMC6717082 DOI: 10.1016/j.vaccine.2019.07.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/06/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Seasonal influenza virus infections cause significant morbidity and mortality every year. Annual influenza virus vaccines are effective but only when well matched with circulating strains. Therefore, there is an urgent need for better vaccines that induce broad protection against drifted seasonal and emerging pandemic influenza viruses. One approach to design such vaccines is based on targeting conserved regions of the influenza virus hemagglutinin. Sequential vaccination with chimeric hemagglutinin constructs can refocus antibody responses towards the conserved immunosubdominant stalk domain of the hemagglutinin, rather than the variable immunodominant head. A complementary approach for a universal influenza A virus vaccine is to induce T-cell responses to conserved internal influenza virus antigens. For this purpose, replication deficient recombinant viral vectors based on Chimpanzee Adenovirus Oxford 1 and Modified Vaccinia Ankara virus are used to express the viral nucleoprotein and the matrix protein 1. In this study, we combined these two strategies and evaluated the efficacy of viral vectors expressing both chimeric hemagglutinin and nucleoprotein plus matrix protein 1 in a mouse model against challenge with group 2 influenza viruses including H3N2, H7N9 and H10N8. We found that vectored vaccines expressing both sets of antigens provided enhanced protection against H3N2 virus challenge when compared to vaccination with viral vectors expressing only one set of antigens. Vaccine induced antibody responses against divergent group 2 hemagglutinins, nucleoprotein and matrix protein 1 as well as robust T-cell responses to the nucleoprotein and matrix protein 1 were detected. Of note, it was observed that while antibodies to the H3 stalk were already boosted to high levels after two vaccinations with chimeric hemagglutinins (cHAs), three exposures were required to induce strong reactivity across subtypes. Overall, these results show that a combinations of different universal influenza virus vaccine strategies can induce broad antibody and T-cell responses and can provide increased protection against influenza.
Collapse
Affiliation(s)
- Guha Asthagiri Arunkumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Vincent Pavot
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Andriani Ioannou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
61
|
Khan S, Jain A, Taghavian O, Nakajima R, Jasinskas A, Supnet M, Felgner J, Davies J, de Assis RR, Jan S, Obiero J, Strahsburger E, Pone EJ, Liang L, Davies DH, Felgner PL. Use of an Influenza Antigen Microarray to Measure the Breadth of Serum Antibodies Across Virus Subtypes. J Vis Exp 2019:10.3791/59973. [PMID: 31403629 PMCID: PMC11177630 DOI: 10.3791/59973] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The influenza virus remains a significant cause of mortality worldwide due to the limited effectiveness of currently available vaccines. A key challenge to the development of universal influenza vaccines is high antigenic diversity resulting from antigenic drift. Overcoming this challenge requires novel research tools to measure the breadth of serum antibodies directed against many virus strains across different antigenic subtypes. Here, we present a protocol for analyzing the breadth of serum antibodies against diverse influenza virus strains using a protein microarray of influenza antigens. This influenza antigen microarray is constructed by printing purified hemagglutinin and neuraminidase antigens onto a nitrocellulose-coated membrane using a microarray printer. Human sera are incubated on the microarray to bind antibodies against the influenza antigens. Quantum-dot-conjugated secondary antibodies are used to simultaneously detect IgG and IgA antibodies binding to each antigen on the microarray. Quantitative antibody binding is measured as fluorescence intensity using a portable imager. Representative results are shown to demonstrate assay reproducibility in measuring subtype-specific and cross-reactive influenza antibodies in human sera. Compared to traditional methods such as ELISA, the influenza antigen microarray provides a high throughput multiplexed approach capable of testing hundreds of sera for multiple antibody isotypes against hundreds of antigens in a short time frame, and thus has applications in sero-surveillance and vaccine development. A limitation is the inability to distinguish binding antibodies from neutralizing antibodies.
Collapse
Affiliation(s)
- Saahir Khan
- Division of Infectious Diseases, Department of Medicine, University of California Irvine Health
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Omid Taghavian
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Algis Jasinskas
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Medalyn Supnet
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Jenny Davies
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Joshua Obiero
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Erwin Strahsburger
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Egest J Pone
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine;
| |
Collapse
|
62
|
Isakova-Sivak I, Matyushenko V, Kotomina T, Kiseleva I, Krutikova E, Donina S, Rekstin A, Larionova N, Mezhenskaya D, Sivak K, Muzhikyan A, Katelnikova A, Rudenko L. Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge. Vaccines (Basel) 2019; 7:vaccines7030061. [PMID: 31288422 PMCID: PMC6789596 DOI: 10.3390/vaccines7030061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The development of universal influenza vaccines has been a priority for more than 20 years. We conducted a preclinical study in ferrets of two sets of live attenuated influenza vaccines (LAIVs) expressing chimeric hemagglutinin (cHA). These vaccines contained the HA stalk domain from H1N1pdm09 virus but had antigenically unrelated globular head domains from avian influenza viruses H5N1, H8N4 and H9N2. The viral nucleoproteins (NPs) in the two sets of universal LAIV candidates were from different sources: one LAIV set contained NP from A/Leningrad/17 master donor virus (MDV), while in the other set this gene was from wild-type (WT) H1N1pdm09 virus, in order to better match the CD8 T-cell epitopes of currently circulating influenza A viruses. To avoid any difference in protective effect of the various anti-neuraminidase (NA) antibodies, all LAIVs were engineered to contain the NA gene of Len/17 MDV. Naïve ferrets were sequentially immunized with three doses of (i) classical LAIVs containing non-chimeric HA and NP from MDV (LAIVs (NP-MDV)); (ii) cHA-based LAIVs containing NP from MDV (cHA LAIVs (NP-MDV)); and (iii) cHA-based LAIVs containing NP from H1N1pdm09 virus (cHA LAIVs (NP-WT)). All vaccination regimens were safe, producing no significant increase in body temperature or weight loss, in comparison with the placebo group. The two groups of cHA-based vaccines induced a broadly reactive HA stalk-directed antibody, while classical LAIVs did not. A high-dose challenge with H1N1pdm09 virus induced significant pathology in the control, non-immunized ferrets, including high virus titers in respiratory tissues, clinical signs of disease and histopathological changes in nasal turbinates and lung tissues. All three vaccination regimens protected animals from clinical manifestations of disease: immunized ferrets did not lose weight or show clinical symptoms, and their fever was significantly lower than in the control group. Further analysis of virological and pathological data revealed the following hierarchy in the cross-protective efficacy of the vaccines: cHA LAIVs (NP-WT) > cHA LAIVs (NP-MDV) > LAIVs (NP-MDV). This ferret study showed that prototype universal cHA-based LAIVs are highly promising candidates for further clinical development.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia.
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Elena Krutikova
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Natalia Larionova
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Konstantin Sivak
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, St Petersburg 197376, Russia
| | - Arman Muzhikyan
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, St Petersburg 197376, Russia
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., St Petersburg 188663, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| |
Collapse
|
63
|
Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies. mBio 2019; 10:mBio.00307-19. [PMID: 30967460 PMCID: PMC6456748 DOI: 10.1128/mbio.00307-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effectiveness of seasonal influenza vaccines against circulating A(H1N1)pdm09 viruses has been modest in recent years, despite the absence of antigenic drift of HA, the primary vaccine component. Human monoclonal antibodies identified antigenic sites in NA that changed early after the new pandemic virus emerged. The reactivity of ferret antisera demonstrated antigenic drift of A(H1N1)pdm09 NA from 2013 onward. Passive transfer of serum raised against A/California/7/2009 was less effective than ferret serum against the homologous virus in protecting mice against a virus with the NA of more recent virus, A/Michigan/45/2015. Given the long-standing observation that NA-inhibiting antibodies are associated with resistance against disease in humans, these data demonstrate the importance of evaluating NA drift and suggest that vaccine effectiveness might be improved by selecting viruses for vaccine production that have NAs antigenically similar to those of circulating influenza viruses. The effectiveness of influenza vaccines against circulating A(H1N1)pdm09 viruses was modest for several seasons despite the absence of antigenic drift of hemagglutinin (HA), the primary vaccine component. Since antibodies against HA and neuraminidase (NA) contribute independently to protection against disease, antigenic changes in NA may allow A(H1N1)pdm09 viruses to escape from vaccine-induced immunity. In this study, analysis of the specificities of human NA-specific monoclonal antibodies identified antigenic sites that have changed over time. The impact of these differences on in vitro inhibition of enzyme activity was not evident for polyclonal antisera until viruses emerged in 2013 without a predicted glycosylation site at amino acid 386 in NA. Phylogenetic and antigenic cartography demonstrated significant antigenic changes that in most cases aligned with genetic differences. Typical of NA drift, the antigenic difference is observed in one direction, with antibodies against conserved antigenic domains in A/California/7/2009 (CA/09) continuing to inhibit NA of recent A(H1N1)pdm09 viruses reasonably well. However, ferret CA/09-specific antiserum that inhibited the NA of A/Michigan/45/2015 (MI/15) very well in vitro, protected mice against lethal MI/15 infection poorly. These data show that antiserum against the homologous antigen is most effective and suggest the antigenic properties of NA should not be overlooked when selecting viruses for vaccine production.
Collapse
|
64
|
Jorquera PA, Mishin VP, Chesnokov A, Nguyen HT, Mann B, Garten R, Barnes J, Hodges E, De La Cruz J, Xu X, Katz J, Wentworth DE, Gubareva LV. Insights into the antigenic advancement of influenza A(H3N2) viruses, 2011-2018. Sci Rep 2019; 9:2676. [PMID: 30804469 PMCID: PMC6389938 DOI: 10.1038/s41598-019-39276-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 11/12/2022] Open
Abstract
Influenza A(H3N2) viruses evade human immunity primarily by acquiring antigenic changes in the haemagglutinin (HA). HA receptor-binding features of contemporary A(H3N2) viruses hinder traditional antigenic characterization using haemagglutination inhibition and promote selection of HA mutants. Thus, alternative approaches are needed to reliably assess antigenic relatedness between circulating viruses and vaccines. We developed a high content imaging-based neutralization test (HINT) to reduce antigenic mischaracterization resulting from virus adaptation to cell culture. Ferret reference antisera were raised using clinical specimens containing viruses representing recent vaccine strains. Analysis of viruses circulating during 2011-2018 showed that gain of an N158-linked glycosylation in HA was a molecular determinant of antigenic distancing between A/Hong Kong/4801/2014-like (clade 3C.2a) and A/Texas/50/2012-like viruses (clade 3C.1), while multiple evolutionary HA F193S substitution were linked to antigenic distancing from A/Switzerland/97152963/2013-like (clade 3C.3a) and further antigenic distancing from A/Texas/50/2012-like viruses. Additionally, a few viruses carrying HA T135K and/or I192T showed reduced neutralization by A/Hong Kong/4801/2014-like antiserum. Notably, this technique elucidated the antigenic characteristics of clinical specimens, enabling direct characterization of viruses produced in vivo, and eliminating in vitro culture, which rapidly alters the genotype/phenotype. HINT is a valuable new antigenic analysis tool for vaccine strain selection.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Ferrets/immunology
- Ferrets/virology
- Glycosylation
- Hemagglutination Inhibition Tests/methods
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Immune Sera/immunology
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza Vaccines/immunology
- Influenza, Human/diagnosis
- Influenza, Human/immunology
- Influenza, Human/virology
- Neutralization Tests/methods
- Phylogeny
Collapse
Affiliation(s)
- Patricia A Jorquera
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
- CNI Advantage, LLC. 17 Executive Park Dr NE, Atlanta, GA, 30329, USA
| | - Vasiliy P Mishin
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Anton Chesnokov
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Ha T Nguyen
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
- Battelle Memorial Institute, 2987 Clairmont Rd, Suite 450, Atlanta, GA, 30329, USA
| | - Brian Mann
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
- Battelle Memorial Institute, 2987 Clairmont Rd, Suite 450, Atlanta, GA, 30329, USA
| | - Rebecca Garten
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - John Barnes
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Erin Hodges
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
- CNI Advantage, LLC. 17 Executive Park Dr NE, Atlanta, GA, 30329, USA
| | - Juan De La Cruz
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
- Battelle Memorial Institute, 2987 Clairmont Rd, Suite 450, Atlanta, GA, 30329, USA
| | - Xiyan Xu
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Jackie Katz
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Larisa V Gubareva
- Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
65
|
Del Campo J, Pizzorno A, Djebali S, Bouley J, Haller M, Pérez-Vargas J, Lina B, Boivin G, Hamelin ME, Nicolas F, Le Vert A, Leverrier Y, Rosa-Calatrava M, Marvel J, Hill F. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. NPJ Vaccines 2019; 4:4. [PMID: 30701093 PMCID: PMC6344521 DOI: 10.1038/s41541-019-0098-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Inactivated influenza vaccines (IIVs) lack broad efficacy. Cellular immunity to a conserved internal antigen, the nucleoprotein (NP), has been correlated to protection against pandemic and seasonal influenza and thus could have the potential to broaden vaccine efficacy. We developed OVX836, a recombinant protein vaccine based on an oligomerized NP, which shows increased uptake by dendritic cells and immunogenicity compared with NP. Intramuscular immunization in mice with OVX836 induced strong NP-specific CD4+ and CD8+ T-cell systemic responses and established CD8+ tissue memory T cells in the lung parenchyma. Strikingly, OVX836 protected mice against viral challenge with three different influenza A subtypes, isolated several decades apart and induced a reduction in viral load. When co-administered with IIV, OVX836 was even more effective in reducing lung viral load. Circulating influenza A virus (IAV) strains differ in their surface proteins each year, and vaccines eliciting an immune response to these proteins are often only partially protective. Internal viral proteins, such as the nucleoprotein (NP), are highly conserved, and cellular immunity to NP has been correlated with protection from diverse strains. However, current IAV vaccines induce a poor immune response to NP. In this study, led by Fergal Hill from Osivax, researchers develop an oligomeric version of NP with improved immunogenicity. Vaccination of mice with oligomeric NP results in an improved NP-specific T-cell response, including CD8+ tissue memory T cells in the lung, and protects mice against three different IAV subtypes. Co-administration with the currently used inactivated influenza vaccine further improves protection against virus infection in mice. These results encourage further pre-clinical and clinical development for this vaccine candidate.
Collapse
Affiliation(s)
| | - Andres Pizzorno
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France
| | - Sophia Djebali
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | | | | | - Jimena Pérez-Vargas
- Osivax, 99, rue de Gerland, 69007 Lyon, France.,6Present Address: Enveloped Viruses, Vectors and Immunotherapy Team, Centre International de Recherché en Infectiologie (CIRI), INSERM U1111, Université de Lyon, Lyon, France
| | - Bruno Lina
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France.,Hospices Civils de Lyon, Centre National de Référence des Virus Influenza France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, Lyon, France
| | - Guy Boivin
- 5Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Marie-Eve Hamelin
- 5Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | | | | | - Yann Leverrier
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | - Manuel Rosa-Calatrava
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France
| | - Jacqueline Marvel
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | - Fergal Hill
- Osivax, 99, rue de Gerland, 69007 Lyon, France
| |
Collapse
|
66
|
Laursen NS, Friesen RHE, Zhu X, Jongeneelen M, Blokland S, Vermond J, van Eijgen A, Tang C, van Diepen H, Obmolova G, van der Neut Kolfschoten M, Zuijdgeest D, Straetemans R, Hoffman RMB, Nieusma T, Pallesen J, Turner HL, Bernard SM, Ward AB, Luo J, Poon LLM, Tretiakova AP, Wilson JM, Limberis MP, Vogels R, Brandenburg B, Kolkman JA, Wilson IA. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 2018; 362:598-602. [PMID: 30385580 DOI: 10.1126/science.aaq0620] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.
Collapse
Affiliation(s)
- Nick S Laursen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mandy Jongeneelen
- Janssen Vaccines and Prevention, Archimedesweg 4-6, 2333 CN, Leiden, Netherlands
| | - Sven Blokland
- Janssen Vaccines and Prevention, Archimedesweg 4-6, 2333 CN, Leiden, Netherlands
| | - Jan Vermond
- Janssen Prevention Center, Archimedesweg 6, 2333 CN, Leiden, Netherlands
| | - Alida van Eijgen
- Janssen Prevention Center, Archimedesweg 6, 2333 CN, Leiden, Netherlands
| | - Chan Tang
- Janssen Vaccines and Prevention, Archimedesweg 4-6, 2333 CN, Leiden, Netherlands
| | - Harry van Diepen
- Janssen Prevention Center, Archimedesweg 6, 2333 CN, Leiden, Netherlands
| | - Galina Obmolova
- Janssen Research and Development, Spring House, PA 19002, USA
| | | | - David Zuijdgeest
- Janssen Vaccines and Prevention, Archimedesweg 4-6, 2333 CN, Leiden, Netherlands
| | - Roel Straetemans
- Quantitative Sciences, Janssen Pharmaceutical Companies of Johnson and Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ryan M B Hoffman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Travis Nieusma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jinquan Luo
- Janssen Research and Development, Spring House, PA 19002, USA
| | - Leo L M Poon
- Center of Influenza Research and School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Anna P Tretiakova
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria P Limberis
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald Vogels
- Janssen Vaccines and Prevention, Archimedesweg 4-6, 2333 CN, Leiden, Netherlands
| | - Boerries Brandenburg
- Janssen Vaccines and Prevention, Archimedesweg 4-6, 2333 CN, Leiden, Netherlands
| | - Joost A Kolkman
- Janssen Infectious Diseases, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
67
|
Distinct molecular evolution of influenza H3N2 strains in the 2016/17 season and its implications for vaccine effectiveness. Mol Phylogenet Evol 2018; 131:29-34. [PMID: 30399431 DOI: 10.1016/j.ympev.2018.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
Influenza virus is a respiratory pathogen that causes seasonal epidemics by resulting in a considerable number of influenza-like illness (ILI) patients. During the 2016/17 season, ILI rates increased unusually earlier and higher than previous seasons in Korea, and most viral isolates were subtyped as H3N2 strains. Notably, the hemagglutinin (HA) of most Korean H3N2 strains retained newly introduced lysine signatures in HA antigenic sites A and D, compared with that of clade 3C.2a vaccine virus, which affected antigenic distances to the standard vaccine antisera in a hemagglutination inhibition assay. The neuraminidase (NA) of Korean H3N2 strains also harbored amino acid mutations. However, neither consistent amino acid mutations nor common phylogenetic clustering patterns were observed. These suggest that Korean H3N2 strains of the 2016/17 season might be distantly related with the vaccine virus both in genotypic and phenotypic classifications, which would adversely affect vaccine effectiveness.
Collapse
|
68
|
Zou G, Kosikova M, Kim SR, Kotian S, Wu WW, Shen R, Powers DN, Agarabi C, Xie H, Ju T. Comprehensive analysis of N-glycans in IgG purified from ferrets with or without influenza A virus infection. J Biol Chem 2018; 293:19277-19289. [PMID: 30315103 DOI: 10.1074/jbc.ra118.005294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Indexed: 11/06/2022] Open
Abstract
Influenza viruses cause contagious respiratory infections, resulting in significant economic burdens to communities. Production of influenza-specific Igs, specifically IgGs, is one of the major protective immune mechanisms against influenza viruses. In humans, N-glycosylation of IgGs plays a critical role in antigen binding and effector functions. The ferret is the most commonly used animal model for studying influenza pathogenesis, virus transmission, and vaccine development, but its IgG structure and functions remain largely undefined. Here we show that ferret IgGs are N-glycosylated and that their N-glycan structures are diverse. Using a comprehensive strategy based on MS and ultra-HPLC analyses in combination with exoglycosidase digestions, we assigned 42 N-glycan structures in ferret IgGs. We observed that N-glycans of ferret IgGs consist mainly of complex-type glycans, including some high-mannose and hybrid glycans, similar to those observed in human IgG. The complex-type glycans of ferret IgGs were primarily core-fucosylated. Furthermore, a fraction of N-glycans carried bisecting GlcNAc. Ferret IgGs also had a minor fraction of glycans carrying α2-6Neu5Ac(s). We noted that, unlike human IgG, ferret IgGs have αGal epitopes on some N-glycans. Interestingly, influenza A infection caused prominent changes in the N-glycans of ferret IgG, mainly because of an increase in bisecting GlcNAc and F1A2G0 and a corresponding decrease in F1A2G1. This suggests that the glycosylation of virus-specific IgG may play a role in its functionality. Our study highlights the need to further elucidate the structure-function relationships of IgGs in universal influenza vaccine development.
Collapse
Affiliation(s)
- Guozhang Zou
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | | | - Su-Ryun Kim
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Shweta Kotian
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Rongfong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - David N Powers
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Cyrus Agarabi
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Hang Xie
- the Office of Vaccines Research and Review and
| | - Tongzhong Ju
- From the Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| |
Collapse
|
69
|
Thompson CP, Obolski U. Influenza vaccination and the 'diversity paradox'. Hum Vaccin Immunother 2018; 14:3005-3009. [PMID: 30239261 PMCID: PMC6343615 DOI: 10.1080/21645515.2018.1504596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022] Open
Abstract
The antigenic evolution of influenza is widely assumed to occur by antigenic drift, in which strains incrementally acquire mutations in highly variable epitopes under strong immune selective pressure, such as those in the major influenza antigen haemagglutinin. However, this is not easy to reconcile with epidemiological observations, which show that each influenza season is dominated by a limited number of strains. Here, we discuss this paradox in light of recent influenza epidemics that have been characterised by low vaccine effectiveness and dominated by strains of limited antigenic and genetic diversity.
Collapse
Affiliation(s)
| | - Uri Obolski
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
70
|
Sunwoo SY, Schotsaert M, Morozov I, Davis AS, Li Y, Lee J, McDowell C, Meade P, Nachbagauer R, García-Sastre A, Ma W, Krammer F, Richt JA. A Universal Influenza Virus Vaccine Candidate Tested in a Pig Vaccination-Infection Model in the Presence of Maternal Antibodies. Vaccines (Basel) 2018; 6:vaccines6030064. [PMID: 30223475 PMCID: PMC6161263 DOI: 10.3390/vaccines6030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
The antigenically conserved hemagglutinin stalk region is a target for universal influenza virus vaccines since antibodies against it can provide broad protection against influenza viruses of different subtypes. We tested a universal influenza virus vaccination regimen based on sequential immunization with chimeric hemagglutinin (HA) containing viruses in a swine influenza virus pig model with maternal antibodies against pandemic H1N1. Vaccines were administered as live attenuated virus or inactivated influenza virus split vaccine (+/− Emulsigen adjuvant). As controls, we included groups that received trivalent inactivated influenza vaccine that contained pandemic H1N1 antigens, inactivated adjuvanted H1N2 vaccine (control group for vaccine associated enhanced respiratory disease in the pig model) or mock-vaccination. No induction of H1 head or stalk-specific antibody responses was observed upon vaccination, while responses against H3 and influenza B HA were elicited in the group vaccinated with the trivalent vaccine. Four weeks post vaccination, pigs were intratracheally challenged with pandemic H1N1 virus and euthanized 5 days after challenge. Despite the lack of detectable anti-stalk immunity, the chimeric hemagglutinin vaccine resulted in better clinical outcomes compared to control groups.
Collapse
Affiliation(s)
- Sun-Young Sunwoo
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Anne Sally Davis
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yuhao Li
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Jinhwa Lee
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
71
|
Figueira TN, Augusto MT, Rybkina K, Stelitano D, Noval MG, Harder OE, Veiga AS, Huey D, Alabi CA, Biswas S, Niewiesk S, Moscona A, Santos NC, Castanho MARB, Porotto M. Effective in Vivo Targeting of Influenza Virus through a Cell-Penetrating/Fusion Inhibitor Tandem Peptide Anchored to the Plasma Membrane. Bioconjug Chem 2018; 29:3362-3376. [PMID: 30169965 DOI: 10.1021/acs.bioconjchem.8b00527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of influenza virus infection is felt each year on a global scale when approximately 5-10% of adults and 20-30% of children globally are infected. While vaccination is the primary strategy for influenza prevention, there are a number of likely scenarios for which vaccination is inadequate, making the development of effective antiviral agents of utmost importance. Anti-influenza treatments with innovative mechanisms of action are critical in the face of emerging viral resistance to the existing drugs. These new antiviral agents are urgently needed to address future epidemic (or pandemic) influenza and are critical for the immune-compromised cohort who cannot be vaccinated. We have previously shown that lipid tagged peptides derived from the C-terminal region of influenza hemagglutinin (HA) were effective influenza fusion inhibitors. In this study, we modified the influenza fusion inhibitors by adding a cell penetrating peptide sequence to promote intracellular targeting. These fusion-inhibiting peptides self-assemble into ∼15-30 nm nanoparticles (NPs), target relevant infectious tissues in vivo, and reduce viral infectivity upon interaction with the cell membrane. Overall, our data show that the CPP and the lipid moiety are both required for efficient biodistribution, fusion inhibition, and efficacy in vivo.
Collapse
Affiliation(s)
- T N Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - M T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - K Rybkina
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - D Stelitano
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - M G Noval
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - O E Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - D Huey
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - C A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - S Biswas
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - S Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A Moscona
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Microbiology & Immunology , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Physiology & Cellular Biophysics , Columbia University Medical Center , New York , New York 10032 , United States
| | - N C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M Porotto
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Experimental Medicine , University of Campania 'Luigi Vanvitelli' , 81100 Caserta , Caserta , Italy
| |
Collapse
|
72
|
Zhang H, Henry C, Anderson CS, Nogales A, DeDiego ML, Bucukovski J, Martinez-Sobrido L, Wilson PC, Topham DJ, Miller BL. Crowd on a Chip: Label-Free Human Monoclonal Antibody Arrays for Serotyping Influenza. Anal Chem 2018; 90:9583-9590. [PMID: 29985597 PMCID: PMC6082710 DOI: 10.1021/acs.analchem.8b02479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rapid changes in influenza A virus (IAV) antigenicity create challenges in surveillance, disease diagnosis, and vaccine development. Further, serological methods for studying antigenic properties of influenza viruses often rely on animal models and therefore may not fully reflect the dynamics of human immunity. We hypothesized that arrays of human monoclonal antibodies (hmAbs) to influenza could be employed in a pattern-recognition approach to expedite IAV serology and to study the antigenic evolution of newly emerging viruses. Using the multiplex, label-free Arrayed Imaging Reflectometry (AIR) platform, we have demonstrated that such arrays readily discriminated among various subtypes of IAVs, including H1, H3 seasonal strains, and avian-sourced human H7 viruses. Array responses also allowed the first determination of antigenic relationships among IAV strains directly from hmAb responses. Finally, correlation analysis of antibody binding to all tested IAV subtypes allowed efficient identification of broadly reactive clones. In addition to specific applications in the context of understanding influenza biology with potential utility in "universal" flu vaccine development, these studies validate AIR as a platform technology for studying antigenic properties of viruses and also antibody properties in a high-throughput manner. We further anticipate that this approach will facilitate advances in the study of other viral pathogens.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
- Materials Science Program, University of Rochester, Rochester, New York 14627
| | - Carole Henry
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Christopher S. Anderson
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Marta L. DeDiego
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Joseph Bucukovski
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Patrick C. Wilson
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
- Materials Science Program, University of Rochester, Rochester, New York 14627
| |
Collapse
|
73
|
Zhou F, Trieu MC, Davies R, Cox RJ. Improving influenza vaccines: challenges to effective implementation. Curr Opin Immunol 2018; 53:88-95. [DOI: 10.1016/j.coi.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
|
74
|
Harnessing immune history to combat influenza viruses. Curr Opin Immunol 2018; 53:187-195. [DOI: 10.1016/j.coi.2018.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/23/2023]
|
75
|
Machablishvili A, Chakhunashvili G, Zakhashvili K, Karseladze I, Tarkhan-Mouravi O, Gavashelidze M, Jashiashvili T, Sabadze L, Imnadze P, Daniels RS, Ermetal B, McCauley JW. Overview of three influenza seasons in Georgia, 2014-2017. PLoS One 2018; 13:e0201207. [PMID: 30052663 PMCID: PMC6063423 DOI: 10.1371/journal.pone.0201207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Influenza epidemiological and virologic data from Georgia are limited. We aimed to present Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) surveillance data and characterize influenza viruses circulating in the country over three influenza seasons. METHODS We analyzed sentinel site ILI and SARI data for the 2014-2017 seasons in Georgia. Patients' samples were screened by real-time RT-PCR and influenza viruses isolated were characterized antigenically by haemagglutination inhibition assay and genetically by sequencing of HA and NA genes. RESULTS 32% (397/1248) of ILI and 29% (581/1997) of SARI patients tested were positive for influenza viruses. In 2014-2015 the median week of influenza detection was week 7/2015 with B/Yamagata lineage viruses dominating (79%); in 2015-2016-week 5/2016 was the median with A/H1N1pdm09 viruses prevailing (83%); and in 2016-2017 a bimodal distribution of influenza activity was observed-the first wave was caused by A/H3N2 (55%) with median week 51/2016 and the second by B/Victoria lineage viruses (45%) with median week 9/2017. For ILI, influenza virus detection was highest in children aged 5-14 years while for SARI patients most were aged >15 years and 27 (4.6%) of 581 SARI cases died during the three seasons. Persons aged 30-64 years had the highest risk of fatal outcome, notably those infected with A/H1N1pdm09 (OR 11.41, CI 3.94-33.04, p<0.001). A/H1N1pdm09 viruses analyzed by gene sequencing fell into genetic groups 6B and 6B.1; A/H3N2 viruses belonged to genetic subclades 3C.3b, 3C.3a, 3C.2a and 3C.2a1; B/Yamagata lineage viruses were of clade 3 and B/Victoria lineage viruses fell in clade1A. CONCLUSION In Georgia influenza virus activity occurred mainly from December through March in all seasons, with varying peak weeks and predominating viruses. Around one third of ILI/ SARI cases were associated with influenza caused by antigenically and genetically distinct influenza viruses over the course of the three seasons.
Collapse
Affiliation(s)
- Ann Machablishvili
- National Center for Disease Control and Public Health, Tbilisi, Georgia
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | | | - Irakli Karseladze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | | | - Mari Gavashelidze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | | | - Lela Sabadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Rodney S. Daniels
- Worldwide Influenza Centre (WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- Worldwide Influenza Centre (WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre (WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
76
|
Krammer F, García-Sastre A, Palese P. Is It Possible to Develop a "Universal" Influenza Virus Vaccine? Potential Target Antigens and Critical Aspects for a Universal Influenza Vaccine. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028845. [PMID: 28663209 DOI: 10.1101/cshperspect.a028845] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza viruses cause seasonal epidemics as well as pandemics and are a significant concern for human health. Current influenza virus vaccines show efficacy when they are antigenically well matched to circulating strains. Seasonal influenza viruses undergo antigenic drift at a high rate and, therefore, current vaccines have to be reformulated and readministered on an annual basis. Mismatches between vaccine strains and circulating strains frequently occur, significantly decreasing vaccine efficacy. In addition, current seasonal influenza virus vaccines have limited efficacy against newly emerging pandemic viruses. A universal influenza virus vaccine that induces long-term protection against all influenza virus strains would abolish the need for annual readministration of seasonal influenza virus vaccines and would significantly enhance our pandemic preparedness. Here we discuss the characteristics of universal influenza virus vaccines, their potential target antigens, and critical aspects to consider on the path to successfully developing such vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York 10029
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York 10029.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York 10029.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York 10029.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029
| |
Collapse
|
77
|
Mallory RM, Yu J, Kameo S, Tanaka M, Rito K, Itoh Y, Dubovsky F. The safety and efficacy of quadrivalent live attenuated influenza vaccine in Japanese children aged 2-18 years: Results of two phase 3 studies. Influenza Other Respir Viruses 2018; 12:438-445. [PMID: 29573143 PMCID: PMC6005581 DOI: 10.1111/irv.12555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Quadrivalent live attenuated influenza vaccine (Q/LAIV) has not been assessed in Japanese children. OBJECTIVES Evaluate safety and efficacy of Q/LAIV in Japanese children. PATIENTS/METHODS Two phase 3 studies were conducted in the 2014-2015 influenza season. Study 1 was an open-label, uncontrolled single arm, multicenter study of Q/LAIV safety in subjects aged 2-6 years. Study 2 was a randomized, double-blind, placebo-controlled multicenter study of Q/LAIV safety and efficacy; subjects aged 7-18 years were randomized 2:1 to receive Q/LAIV or placebo. Primary efficacy endpoint was laboratory-confirmed symptomatic influenza infection caused by vaccine-matched strains; secondary endpoint evaluated efficacy against all strains regardless of match. Both studies reported solicited symptoms, adverse events (AEs), and serious AEs. RESULTS In Study 1, 100 subjects received Q/LAIV. In Study 2, 1301 subjects received Q/LAIV (n = 868) or placebo (n = 433). Treatment-emergent AEs occurred in 42% of subjects in Study 1, and in 24.3% of subjects in the Q/LAIV arm and in 25.9% of subjects in the placebo arm in Study 2. In Study 2, a single infection by a vaccine-matched strain was reported in the placebo arm, resulting in a vaccine efficacy estimate of 100% (95% CI: -1875.3, 100.0); efficacy for all strains regardless of match to the vaccine was 27.5% (95% CI: 7.4, 43.0). CONCLUSIONS Quadrivalent live attenuated influenza vaccine did not meet its primary efficacy endpoint as only a single infection by a vaccine-matched strain was detected; however, efficacy for the secondary endpoint, all strains regardless of match, was achieved. Q/LAIV was generally well tolerated in the Japanese pediatric population.
Collapse
Affiliation(s)
| | | | | | | | - Ki Rito
- Formerly of AstraZeneca JapanTokyoJapan
| | | | | |
Collapse
|
78
|
Lambkin-Williams R, Noulin N, Mann A, Catchpole A, Gilbert AS. The human viral challenge model: accelerating the evaluation of respiratory antivirals, vaccines and novel diagnostics. Respir Res 2018; 19:123. [PMID: 29929556 PMCID: PMC6013893 DOI: 10.1186/s12931-018-0784-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Human Viral Challenge (HVC) model has, for many decades, helped in the understanding of respiratory viruses and their role in disease pathogenesis. In a controlled setting using small numbers of volunteers removed from community exposure to other infections, this experimental model enables proof of concept work to be undertaken on novel therapeutics, including vaccines, immunomodulators and antivirals, as well as new diagnostics.Crucially, unlike conventional phase 1 studies, challenge studies include evaluable efficacy endpoints that then guide decisions on how to optimise subsequent field studies, as recommended by the FDA and thus licensing studies that follow. Such a strategy optimises the benefit of the studies and identifies possible threats early on, minimising the risk to subsequent volunteers but also maximising the benefit of scarce resources available to the research group investing in the research. Inspired by the principles of the 3Rs (Replacement, Reduction and Refinement) now commonly applied in the preclinical phase, HVC studies allow refinement and reduction of the subsequent development phase, accelerating progress towards further statistically powered phase 2b studies. The breadth of data generated from challenge studies allows for exploration of a wide range of variables and endpoints that can then be taken through to pivotal phase 3 studies.We describe the disease burden for acute respiratory viral infections for which current conventional development strategies have failed to produce therapeutics that meet clinical need. The Authors describe the HVC model's utility in increasing scientific understanding and in progressing promising therapeutics through development.The contribution of the model to the elucidation of the virus-host interaction, both regarding viral pathogenicity and the body's immunological response is discussed, along with its utility to assist in the development of novel diagnostics.Future applications of the model are also explored.
Collapse
Affiliation(s)
- Rob Lambkin-Williams
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK.
| | - Nicolas Noulin
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Alex Mann
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Andrew Catchpole
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Anthony S Gilbert
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| |
Collapse
|
79
|
Mohn KGI, Zhou F. Clinical Expectations for Better Influenza Virus Vaccines-Perspectives from the Young Investigators' Point of View. Vaccines (Basel) 2018; 6:E32. [PMID: 29861454 PMCID: PMC6027204 DOI: 10.3390/vaccines6020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
The influenza virus is one of a few viruses that is capable of rendering an otherwise healthy person acutly bedridden for several days. This impressive knock-out effect, without prodromal symptoms, challenges our immune system. The influenza virus undergoes continuous mutations, escaping our pre-existing immunity and causing epidemics, and its segmented genome is subject to reassortment, resulting in novel viruses with pandemic potential. The personal and socieoeconomic burden from influenza is high. Vaccination is the most cost-effective countermeasure, with several vaccines that are available. The current limitations in vaccine effectivness, combined with the need for yearly updating of vaccine strains, is a driving force for research into developing new and improved influenza vaccines. The lack of public concern about influenza severity, and misleading information concerning vaccine safety contribute to low vaccination coverage even in high-risk groups. The success of future influeza vaccines will depend on an increased public awarness of the disease, and hence, the need for vaccination-aided through improved rapid diagnositics. The vaccines must be safe and broadly acting, with new, measurable correlates of protection and robust post-marketing safety studies, to improve the confidence in influenza vaccines.
Collapse
Affiliation(s)
- Kristin G-I Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- Emergency Care clinic, Haukeland University Hospital, Bergen 5021, Norway.
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| |
Collapse
|
80
|
Xie H, Li L, Ye Z, Li X, Plant EP, Zoueva O, Zhao Y, Jing X, Lin Z, Kawano T, Chiang MJ, Finch CL, Kosikova M, Zhang A, Zhu Y, Wan XF. Differential Effects of Prior Influenza Exposures on H3N2 Cross-reactivity of Human Postvaccination Sera. Clin Infect Dis 2018; 65:259-267. [PMID: 28369230 DOI: 10.1093/cid/cix269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
Background Effectiveness of seasonal influenza vaccines mainly depends upon how well vaccine strains represent circulating viruses; mismatched strains can lead to reduced protection. Humans have complex influenza exposure histories that increase with age, which may lead to different postvaccination responses to emerging influenza variants. Recent observational studies also suggest that prior vaccination may influence the performance of current seasonal vaccines. Methods To elucidate the effects of age and influenza preexposures on cross-reactivity of vaccination-induced human antibodies, we generated antigenic maps based on postvaccination hemagglutination inhibition titers against representative H3 variants circulating during the 2015-2016, 2014-2015, and 2012-2013 influenza seasons. Results Antigenic maps determined using sera from subjects 18-64 and ≥65 years of age correlated well with each other but poorly with those determined using sera from children. Antigenic maps derived from human postvaccination sera with H1 influenza preexposure also correlated poorly with those derived from sera with neither H1 nor type B influenza preexposure, and the correlation lessened considerably over time. In contrast, antigenic maps derived from human postvaccination sera with only type B influenza preexposure consistently showed good correlation with those derived from sera with neither H1 nor type B influenza preexposure. Conclusions Our results suggest an age-specific difference in human postvaccination responses. Our findings also suggest that prior exposure to H1 or type B influenza may differentially affect cross-reactivity of vaccination-induced H3-specific hemagglutination inhibition antibody responses, and consequently might affect vaccine effectiveness. Our study highlights the need to study the impact of prior exposure on influenza vaccine performance.
Collapse
Affiliation(s)
- Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Zhiping Ye
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xing Li
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Ewan P Plant
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Olga Zoueva
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Yangqing Zhao
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xianghong Jing
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Zhengshi Lin
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Toshiaki Kawano
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Meng-Jung Chiang
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Courtney L Finch
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Anding Zhang
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Yanhong Zhu
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
81
|
Tan J, Asthagiri Arunkumar G, Krammer F. Universal influenza virus vaccines and therapeutics: where do we stand with influenza B virus? Curr Opin Immunol 2018; 53:45-50. [PMID: 29677684 DOI: 10.1016/j.coi.2018.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
The development of a broadly protective or universal influenza virus vaccine is currently a public health priority worldwide. The vast majority of these efforts is exclusively focused on influenza A viruses. While influenza A viruses cause the majority of all influenza cases worldwide, influenza B viruses should not be ignored. Approximately 25% of all influenza cases are caused by influenza B viruses which circulate as two distinct B/Victoria/2/87-like and B/Yamagata/16/88-like lineages. In contrast to popular belief, influenza B cases frequently cause significant morbidity and mortality, especially in children. Similar to influenza A viruses, influenza B viruses drift antigenically and the influenza B components of current vaccines have to be reformulated almost on an annual basis. A broadly protective vaccine against influenza B viruses is therefore urgently needed. Here we review both broadly protective anti-influenza B antibodies as well as the sparse attempts to create a universal influenza B virus vaccine.
Collapse
Affiliation(s)
- Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Guha Asthagiri Arunkumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
82
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
83
|
Stewart A, Vanderkooi OG, Reimer RA, Doyle-Baker PK. Immune response in highly active young men to the 2014/2015 seasonal influenza vaccine. Appl Physiol Nutr Metab 2018; 43:769-774. [PMID: 29481760 DOI: 10.1139/apnm-2017-0683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the 2009 H1N1 pandemic, individuals with obesity were disproportionately affected by H1N1 with increased levels of mortality and morbidity. This led to questions regarding the potential impact of lifestyle on the effectiveness of immunization. Currently, the research is limited on influenza vaccination and the associated changes in immune response with body composition and physical activity. The purpose of this pilot study was to investigate the potential role of adiposity and physical activity in the immune response elicited by the 2014/2015 seasonal trivalent influenza vaccine. A prospective cohort study examining the 2014/2015 seasonal trivalent influenza vaccine was conducted by collecting baseline and 4-week postvaccination fasting blood samples from 45 male Albertans between the ages of 18 and 35 years. Percent body fat (%BF) was assessed through dual X-ray absorptiometry imagining and physical activity through self-reported survey scores. While no differences in median %BF were associated with seroconversion rates in participants, the median physical activity score was higher among those that did not seroconvert to the vaccine. Significant differences were found for the A/Texas strain (p < 0.01) and a similar trend of lower magnitude observed for the remaining 2 influenza strains. These results suggest that higher physical activity levels may influence immune response to vaccination and that assessing factors beyond those commonly used can be of value when identifying vaccine response in the population.
Collapse
Affiliation(s)
- Andrew Stewart
- a Human Performance Lab, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Otto G Vanderkooi
- b Departments of Paediatrics, Pathology & Laboratory Medicine, Microbiology & Infectious diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Raylene A Reimer
- a Human Performance Lab, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.,c Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Patricia K Doyle-Baker
- a Human Performance Lab, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.,d Faculty of Environmental Design, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
84
|
Agor JK, Özaltın OY. Models for predicting the evolution of influenza to inform vaccine strain selection. Hum Vaccin Immunother 2018; 14:678-683. [PMID: 29337643 DOI: 10.1080/21645515.2017.1423152] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Influenza vaccine composition is reviewed before every flu season because influenza viruses constantly evolve through antigenic changes. To inform vaccine updates, laboratories that contribute to the World Health Organization Global Influenza Surveillance and Response System monitor the antigenic phenotypes of circulating viruses all year round. Vaccine strains are selected in anticipation of the upcoming influenza season to allow adequate time for production. A mismatch between vaccine strains and predominant strains in the flu season can significantly reduce vaccine effectiveness. Models for predicting the evolution of influenza based on the relationship of genetic mutations and antigenic characteristics of circulating viruses may inform vaccine strain selection decisions. We review the literature on state-of-the-art tools and prediction methodologies utilized in modeling the evolution of influenza to inform vaccine strain selection. We then discuss areas that are open for improvement and need further research.
Collapse
Affiliation(s)
- Joseph K Agor
- a Operations Research, North Carolina State University , Raleigh , NC , USA
| | - Osman Y Özaltın
- b Edward P. Fitts Department of Industrial and Systems Engineering , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
85
|
A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles. Vaccine 2018; 36:873-880. [DOI: 10.1016/j.vaccine.2017.12.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 11/19/2022]
|
86
|
Morris DH, Gostic KM, Pompei S, Bedford T, Łuksza M, Neher RA, Grenfell BT, Lässig M, McCauley JW. Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. Trends Microbiol 2018; 26:102-118. [PMID: 29097090 PMCID: PMC5830126 DOI: 10.1016/j.tim.2017.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023]
Abstract
Seasonal influenza is controlled through vaccination campaigns. Evolution of influenza virus antigens means that vaccines must be updated to match novel strains, and vaccine effectiveness depends on the ability of scientists to predict nearly a year in advance which influenza variants will dominate in upcoming seasons. In this review, we highlight a promising new surveillance tool: predictive models. Based on data-sharing and close collaboration between the World Health Organization and academic scientists, these models use surveillance data to make quantitative predictions regarding influenza evolution. Predictive models demonstrate the potential of applied evolutionary biology to improve public health and disease control. We review the state of influenza predictive modeling and discuss next steps and recommendations to ensure that these models deliver upon their considerable biomedical promise.
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Katelyn M Gostic
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Simone Pompei
- Institute for Theoretical Physics, University of Cologne, Cologne, Germany
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marta Łuksza
- Institute for Advanced Study, Princeton, NJ, USA
| | - Richard A Neher
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael Lässig
- Institute for Theoretical Physics, University of Cologne, Cologne, Germany
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| |
Collapse
|
87
|
Groves HT, McDonald JU, Langat P, Kinnear E, Kellam P, McCauley J, Ellis J, Thompson C, Elderfield R, Parker L, Barclay W, Tregoning JS. Mouse Models of Influenza Infection with Circulating Strains to Test Seasonal Vaccine Efficacy. Front Immunol 2018; 9:126. [PMID: 29445377 PMCID: PMC5797846 DOI: 10.3389/fimmu.2018.00126] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
Influenza virus infection is a significant cause of morbidity and mortality worldwide. The surface antigens of influenza virus change over time blunting both naturally acquired and vaccine induced adaptive immune protection. Viral antigenic drift is a major contributing factor to both the spread and disease burden of influenza. The aim of this study was to develop better infection models using clinically relevant, influenza strains to test vaccine induced protection. CB6F1 mice were infected with a range of influenza viruses and disease, inflammation, cell influx, and viral load were characterized after infection. Infection with circulating H1N1 and representative influenza B viruses induced a dose-dependent disease response; however, a recent seasonal H3N2 virus did not cause any disease in mice, even at high titers. Viral infection led to recoverable virus, detectable both by plaque assay and RNA quantification after infection, and increased upper airway inflammation on day 7 after infection comprised largely of CD8 T cells. Having established seasonal infection models, mice were immunized with seasonal inactivated vaccine and responses were compared to matched and mismatched challenge strains. While the H1N1 subtype strain recommended for vaccine use has remained constant in the seven seasons between 2010 and 2016, the circulating strain of H1N1 influenza (2009 pandemic subtype) has drifted both genetically and antigenically since 2009. To investigate the effect of this observed drift on vaccine induced protection, mice were immunized with antigens from A/California/7/2009 (H1N1) and challenged with H1N1 subtype viruses recovered from 2009, 2010, or 2015. Vaccination with A/California/7/2009 antigens protected against infection with either the 2009 or 2010 strains, but was less effective against the 2015 strain. This observed reduction in protection suggests that mouse models of influenza virus vaccination and infection can be used as an additional tool to predict vaccine efficacy against drift strains.
Collapse
Affiliation(s)
- Helen T Groves
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Jacqueline U McDonald
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Pinky Langat
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Ekaterina Kinnear
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Paul Kellam
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | | | - Joanna Ellis
- Respiratory Virus Unit, Public Health England, London, United Kingdom
| | | | - Ruth Elderfield
- Molecular Virology, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Lauren Parker
- Molecular Virology, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Wendy Barclay
- Molecular Virology, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
88
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
89
|
Cole KS, Martin JM, Horne WT, Lin CJ, Nowalk MP, Alcorn JF, Zimmerman RK. Differential gene expression elicited by children in response to the 2015-16 live attenuated versus inactivated influenza vaccine. Vaccine 2017; 35:6893-6897. [PMID: 29132989 DOI: 10.1016/j.vaccine.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND In recent influenza seasons, the live attenuated influenza vaccine (LAIV) has not demonstrated the same level of vaccine effectiveness as that observed among children who received the inactivated influenza vaccine (IIV). To better understand this difference, this study compared the mRNA sequencing transcription profile (RNA seq) in children who received either IIV or LAIV. METHODS Children 3-17years of age receiving quadrivalent influenza vaccine were enrolled. Blood samples were collected on Day 0 prior to vaccination and again on Day 7 (range 6-10days) following vaccination. Total RNA was isolated from PAXgene tubes and sequenced for a custom panel of 89 transcripts using the TruSeq Targeted RNA Expression method. Fold differences in normalized RNA seq counts from Day 0 to Day 7 were calculated, log2 transformed and compared between the two vaccine groups. RESULTS Of 72 children, 46 received IIV and 26 received LAIV. Following IIV vaccination, 7 genes demonstrated significant differential expression at Day 7 (down-regulated). In contrast, following LAIV vaccination, 8 genes demonstrated significant differential expression at Day 7 (5 up-regulated and 3 down-regulated). Only two genes demonstrated similar patterns of regulation in both groups. CONCLUSIONS Differential regulation of genes was observed between 2015-16 LAIV and IIV recipients. These results help to elucidate the immune response to influenza vaccines and may be related to the difference in vaccine effectiveness observed in recent years between LAIV and IIV.
Collapse
Affiliation(s)
- Kelly Stefano Cole
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William T Horne
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chyongchiou J Lin
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
90
|
Whole genome sequencing identifies influenza A H3N2 transmission and offers superior resolution to classical typing methods. Infection 2017; 46:69-76. [PMID: 29086356 DOI: 10.1007/s15010-017-1091-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Influenza with its annual epidemic waves is a major cause of morbidity and mortality worldwide. However, only little whole genome data are available regarding the molecular epidemiology promoting our understanding of viral spread in human populations. METHODS We implemented a RT-PCR strategy starting from patient material to generate influenza A whole genome sequences for molecular epidemiological surveillance. Samples were obtained within the Bavarian Influenza Sentinel. The complete influenza virus genome was amplified by a one-tube multiplex RT-PCR and sequenced on an Illumina MiSeq. RESULTS We report whole genomic sequences for 50 influenza A H3N2 viruses, which was the predominating virus in the season 2014/15, directly from patient specimens. The dataset included random samples from Bavaria (Germany) throughout the influenza season and samples from three suspected transmission clusters. We identified the outbreak samples based on sequence identity. Whole genome sequencing (WGS) was superior in resolution compared to analysis of single segments or partial segment analysis. Additionally, we detected manifestation of substantial amounts of viral quasispecies in several patients, carrying mutations varying from the dominant virus in each patient. CONCLUSION Our rapid whole genome sequencing approach for influenza A virus shows that WGS can effectively be used to detect and understand outbreaks in large communities. Additionally, the genomic data provide in-depth details about the circulating virus within one season.
Collapse
|
91
|
Kirchenbaum GA, Allen JD, Layman TS, Sautto GA, Ross TM. Infection of Ferrets with Influenza Virus Elicits a Light Chain-Biased Antibody Response against Hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2017; 199:3798-3807. [PMID: 29079697 DOI: 10.4049/jimmunol.1701174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023]
Abstract
The domestic ferret (Mustela putorius furo) is a commonly used animal model for the study of influenza virus infection and vaccination. Recently, our group has developed murine mAbs with specificity for the κ (Igκ) and λ (Igλ) L chains of ferret Ig. These mAbs were used to quantify the abundance of Igκ and Igλ in serum and to evaluate L chain usage of the Ab response against the hemagglutinin (HA) protein elicited by influenza infection. After influenza A infection of immunologically naive ferrets with various H1N1 or H3N2 strains, the acute Ab response against HA exhibited an inherent bias toward λ L chain usage. In contrast, secondary infection of H1N1 preimmune ferrets with an antigenically distinct H1N1 virus elicited a recall response against the original HA that was no longer biased toward Igλ and possessed differential specificity. Moreover, sequential infection of ferrets with H1N1 influenza viruses elicited an Igκ-biased Ab response directed against the HA globular head and stem regions. Furthermore, sequential infection of ferrets with viral vectors expressing chimeric HA, aimed at boosting Ab reactivity against the HA stem region, also elicited an Igκ-biased response. Collectively, these findings suggest that ferret B cells expressing an Igκ or Igλ BCR possess differential specificities, and highlight the utility of our recently developed mAbs for studying the immune response to influenza virus infection and vaccination in the ferret model.
Collapse
Affiliation(s)
- Greg A Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602; and
| | - James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602; and
| | - Thomas S Layman
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602; and
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602; and
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602; and .,Department of Infectious Diseases, University of Georgia, Athens, GA 30602
| |
Collapse
|
92
|
Chong Y, Ikematsu H. Is seasonal vaccination a contributing factor to the selection of influenza epidemic variants? Hum Vaccin Immunother 2017; 14:518-522. [PMID: 28857677 DOI: 10.1080/21645515.2017.1373228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Influenza A/H3N2 viruses are the most common and virulent subtypes for humans. Antigenic drift, changes in antigenicity through the accumulation of mutations in the hemagglutinin (HA) gene is chiefly responsible for the continuing circulation of A/H3N2 viruses, resulting in frequent updates of vaccine strains based on new variant analyses. In humans, these drift-related mutations are considered to be primarily caused by the immune pressure elicited by natural infection. Whether or not the immune pressure elicited by vaccination (vaccine pressure) can have a certain effect on drift-related mutations is unclear. Recently, our findings suggested the possible effect of vaccine pressure on HA mutations by directly comparing amino acid differences from the corresponding vaccine strains between isolates from vaccinated and unvaccinated patients. It is possible that influenza vaccine pressure selects variants genetically distant from the vaccine strains. Considering the effect of vaccine pressure on HA mutations would contribute to further understanding the mechanism of antigenic drift, which would be helpful for predicting future epidemic viruses.
Collapse
Affiliation(s)
- Yong Chong
- a Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences , Fukuoka , Japan
| | - Hideyuki Ikematsu
- b Influenza Study Group, Japan Physicians Association , Fukuoka , Japan
| |
Collapse
|
93
|
Merani S, Kuchel GA, Kleppinger A, McElhaney JE. Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage. Exp Gerontol 2017; 107:116-125. [PMID: 28958701 DOI: 10.1016/j.exger.2017.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/19/2022]
Abstract
Age-related changes in T-cell function are associated with a loss of influenza vaccine efficacy in older adults. Both antibody and cell-mediated immunity plays a prominent role in protecting older adults, particularly against the serious complications of influenza. High dose (HD) influenza vaccines induce higher antibody titers in older adults compared to standard dose (SD) vaccines, yet its impact on T-cell memory is not clear. The aim of this study was to compare the antibody and T-cell responses in older adults randomized to receive HD or SD influenza vaccine as well as determine whether cytomegalovirus (CMV) serostatus affects the response to vaccination, and identify differences in the response to vaccination in those older adults who subsequently have an influenza infection. Older adults (≥65years) were enrolled (n=106) and randomized to receive SD or HD influenza vaccine. Blood was collected pre-vaccination, followed by 4, 10 and 20weeks post-vaccination. Serum antibody titers, as well as levels of inducible granzyme B (iGrB) and cytokines were measured in PBMCs challenged ex vivo with live influenza virus. Surveillance conducted during the influenza season identified those with laboratory confirmed influenza illness or infection. HD influenza vaccination induced a high antibody titer and IL-10 response, and a short-lived increase in Th1 responses (IFN-γ and iGrB) compared to SD vaccination in PBMCs challenged ex vivo with live influenza virus. Of the older adults who became infected with influenza, a high IL-10 and iGrB response in virus-challenged cells was observed post-infection (week 10 to 20), as well as IFN-γ and TNF-α at week 20. Additionally, CMV seropositive older adults had an impaired iGrB response to influenza virus-challenge, regardless of vaccine dose. This study illustrates that HD influenza vaccines have little impact on the development of functional T-cell memory in older adults. Furthermore, poor outcomes of influenza infection in older adults may be due to a strong IL-10 response to influenza following vaccination, and persistent CMV infection.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, P3E 5J1, ON, Canada
| | - George A Kuchel
- University of Connecticut Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, 06030-5215, CT, USA
| | | | - Janet E McElhaney
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, P3E 5J1, ON, Canada.
| |
Collapse
|
94
|
Farrukee R, Hurt AC. Antiviral Drugs for the Treatment and Prevention of Influenza. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
95
|
Increased risk of influenza among vaccinated adults who are obese. Int J Obes (Lond) 2017; 41:1324-1330. [PMID: 28584297 PMCID: PMC5585026 DOI: 10.1038/ijo.2017.131] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/16/2017] [Accepted: 04/16/2017] [Indexed: 12/19/2022]
Abstract
Background Influenza infects 5–15% of the global population each year, and obesity has been shown to be an independent risk factor for increased influenza-related complications including hospitalization and death. However, the risk of developing influenza or ILI in a vaccinated obese adult population has not been addressed. Objective This study evaluated whether obesity was associated with increased risk of influenza and influenza-like illness among vaccinated adults. Subjects and Methods During the 2013–2014 and 2014–2015 influenza seasons, we recruited 1042 subjects to a prospective observational study of trivalent inactivated influenza vaccine (IIV3) in adults.1022 subjects completed the study. Assessments of relative risk for laboratory confirmed influenza and influenza-like illness were determined based on BMI. Seroconversion and seroprotection rates were determined using pre-vaccination and 26–35 days post-vaccination serum samples. Recruitment criteria for this study were adults 18 years of age and older receiving the seasonal trivalent inactivated influenza vaccine (IIV3) for the years 2013–2014 and 2014–2015. Exclusion criteria were immunosuppressive diseases, use of immunomodulatory or immunosuppressive drugs, acute febrile illness, history of Guillain-Barre syndrome, use of theophylline preparations, or use of warfarin. Results Among obese, 9.8% had either confirmed influenza or influenza-like-illness compared with 5.1% of healthy weight participants. Compared with vaccinated healthy weight, obese participants had double the risk of developing influenza or influenza-like illness (relative risk= 2.01, 95% CI 1.12, 3.60, p=0.020). Seroconversion or seroprotection rates were not different between healthy weight and obese adults with influenza or ILI. Conclusions Despite robust serological responses, vaccinated obese adults are twice as likely to develop influenza and influenza-like illness compared to healthy weight adults. This finding challenges the current standard for correlates of protection, suggesting use of antibody titers to determine vaccine effectiveness in an obese population may provide misleading information.
Collapse
|
96
|
Trachootham D, Chupeerach C, Tuntipopipat S, Pathomyok L, Boonnak K, Praengam K, Promkam C, Santivarangkna C. Drinking fermented milk containing Lactobacillus paracasei 431 (IMULUS™) improves immune response against H1N1 and cross-reactive H3N2 viruses after influenza vaccination: A pilot randomized triple-blinded placebo controlled trial. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
97
|
Shipovalov AV, Durymanov AG, Petrova OV, Ivanova EV, Epanchintseva AV, Svyatchenko SV, Maltsev SV, Marchenko' VY, Mikheev VN, Ryzhikov AB, Ilicheva TN. ANALYSIS OF POPULATION IMMUNITY AGAINST INFLUENZA PRIOR TO 2014 AND 2015 EPIDEMIC SEASONS. JOURNAL OF MICROBIOLOGY EPIDEMIOLOGY IMMUNOBIOLOGY 2017. [DOI: 10.36233/0372-9311-2017-2-53-60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim. Control for the population herd immunity against seasonal influenza viruses as well as for emergence of antibodies against influenza with pandemic potential in human blood sera. Materials and methods. HAI reaction against vaccine and epidemic influenza viruses as well as HPAI viruses A/rook/Chany/32/2015 (H5N1) (clade 2.3.2.1c.) andA/Anhui/01/2013 (H7N9). Results. Among all the sera samples collected in the autumn of 2014 and 2015, none had reacted in HAI against A(H5N1) and A(H7N9) antigens even at 1:10 dilution. Among samples collected in autumn 2014, 41% were positive to A/Califorrna/07/09(HlNlpdm09) virus, 36% - A/Texas/50/2012 (H3N2), 40% - B/Brisbane/60/2008 (Vict.lin.) and 47% reacted in HAI against the B/Massachusetts/2/2012 (Yam.lin.) strain. 22% of all the samples had a titer of at least 40 against all the antigens and only 10% in HAI had a titer of 40 or more against all the vaccine strains. Among the samples collected in autumn 2015, the number of seropositive against A/Califorrna/07/09(HlNlpdm09) varied from 31% in the Urals FD to 46% in the Southern FD. The amount of seropositive against A/Switzerland/9715293/13 (H3N2) strain was at the level of 4 - 13% in all the FDs except Urals, where this parameter was slightly above 30%. The amount of seropositive against vaccine influenza В viruses varied from 23 to 76%. Only 2% of sera had titers in HAI of 40 or above against all the vaccine strains, 29% of all the samples were seronegative. Conclusion. Population immunity in Russia against influenza A(H3N2) is at a very low level, thus socially significant consequences of influenza epidemics in many aspects will depend on the vaccination campaign of autumn 2016.
Collapse
Affiliation(s)
| | - A. G. Durymanov
- State Scientific Centre of Virology and Biotechnology «Vector»
| | - O. V. Petrova
- State Scientific Centre of Virology and Biotechnology «Vector»
| | - E. V. Ivanova
- Centre of Hygiene and Epidemiology in Novosibirsk Region
| | | | | | - S. V. Maltsev
- State Scientific Centre of Virology and Biotechnology «Vector»
| | | | - V. N. Mikheev
- State Scientific Centre of Virology and Biotechnology «Vector»
| | - A. B. Ryzhikov
- State Scientific Centre of Virology and Biotechnology «Vector»
| | - T. N. Ilicheva
- State Scientific Centre of Virology and Biotechnology «Vector»
| |
Collapse
|
98
|
Hu Y, Wang Y, Li F, Ma C, Wang J. Design and expeditious synthesis of organosilanes as potent antivirals targeting multidrug-resistant influenza A viruses. Eur J Med Chem 2017; 135:70-76. [PMID: 28433777 DOI: 10.1016/j.ejmech.2017.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Abstract
The efficacy of current influenza vaccines and small molecule antiviral drugs is curtailed by the emerging of multidrug-resistant influenza viruses. As resistance to the only FDA-approved oral influenza antiviral, oseltamivir (Tamiflu), continues to rise, there is a clear need to develop the next-generation of antiviral drugs. Since more than 95% of current circulating influenza A viruses carry the S31N mutation in their M2 genes, the AM2-S31N mutant proton channel represents an attractive target for the development of broad-spectrum antivirals. In this study we report the design and synthesis of the first class of organosilanes that have potent antiviral activity against a panel of human clinical isolates of influenza A viruses, including viruses that are resistant to amantadine, oseltamivir, or both.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yuanxiang Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Fang Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Chunlong Ma
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
99
|
Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect 2017; 23:222-228. [PMID: 28216325 PMCID: PMC5389886 DOI: 10.1016/j.cmi.2017.02.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. AIMS To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. SOURCES PubMed and clinicaltrials.gov were used as sources for this review. CONTENT Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. IMPLICATIONS Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections.
Collapse
Affiliation(s)
- R Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
100
|
Krammer F. Strategies to induce broadly protective antibody responses to viral glycoproteins. Expert Rev Vaccines 2017; 16:503-513. [PMID: 28277797 DOI: 10.1080/14760584.2017.1299576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.
Collapse
Affiliation(s)
- F Krammer
- a Department of Microbiology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|