51
|
Harink B, Le Gac S, Truckenmüller R, van Blitterswijk C, Habibovic P. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. LAB ON A CHIP 2013; 13:3512-28. [PMID: 23877890 DOI: 10.1039/c3lc50293g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of regenerative medicine is to restore or establish normal function of damaged tissues or organs. Tremendous efforts are placed into development of novel regenerative strategies, involving (stem) cells, soluble factors, biomaterials or combinations thereof, as a result of the growing need caused by continuous population aging. To satisfy this need, fast and reliable assessment of (biological) performance is sought, not only to select the potentially interesting candidates, but also to rule out poor ones at an early stage of development. Microfluidics may provide a new avenue to accelerate research and development in the field of regenerative medicine as it has proven its maturity for the realization of high-throughput screening platforms. In addition, microfluidic systems offer other advantages such as the possibility to create in vivo-like microenvironments. Besides the complexity of organs or tissues that need to be regenerated, regenerative medicine brings additional challenges of complex regeneration processes and strategies. The question therefore arises whether so much complexity can be integrated into microfluidic systems without compromising reliability and throughput of assays. With this review, we aim to investigate whether microfluidics can become widely applied in regenerative medicine research and/or strategies.
Collapse
Affiliation(s)
- Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Engineering and Technical Medicine, PO Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
52
|
Vrana NE, Lavalle P, Dokmeci MR, Dehghani F, Ghaemmaghami AM, Khademhosseini A. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:529-43. [PMID: 23705900 DOI: 10.1089/ten.teb.2012.0603] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Nihal E Vrana
- 1 Institut National de la Santé et de la Recherche Médicale , INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie," Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
53
|
Buchanan C, Rylander MN. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 2013; 110:2063-72. [PMID: 23616255 DOI: 10.1002/bit.24944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 02/03/2023]
Abstract
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment.
Collapse
Affiliation(s)
- Cara Buchanan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Lab 340 ICTAS Building I, Stanger Street, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
54
|
Toepke MW, Impellitteri NA, Theisen JM, Murphy WL. Characterization of Thiol-Ene Crosslinked PEG Hydrogels. MACROMOLECULAR MATERIALS AND ENGINEERING 2013; 298:699-703. [PMID: 24883041 PMCID: PMC4039639 DOI: 10.1002/mame.201200119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The properties of synthetic hydrogels can be tuned to address the needs of many tissue-culture applications. This work characterizes the swelling and mechanical properties of thiol-ene crosslinked PEG hydrogels made with varying prepolymer formulations, demonstrating that hydrogels with a compressive modulus exceeding 600 kPa can be formed. The amount of peptide incorporated into the hydrogel is shown to be proportional to the amount of peptide in the prepolymer solution. Cell attachment and spreading on the surface of the peptide-functionalized hydrogels is demonstrated. Additionally, a method for bonding distinct layers of cured hydrogels is used to create a microfluidic channel.
Collapse
Affiliation(s)
- Michael W. Toepke
- Department of Biomedical Engineering, University of Wisconsin, Madison WI 53705, USA
| | | | - Jeffrey M. Theisen
- Department of Biomedical Engineering, University of Wisconsin, Madison WI 53705, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison WI 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
55
|
Abstract
BACKGROUND Microfluidic technology emerges as a convenient route to applying automated and reliable assays in a high-throughput manner with low cost. OBJECTIVE This review aims to answer questions related to the capabilities and potential applications of microfluidic assays that can benefit the drug development process and extends an outlook on its future trends. METHODS This article reviews recent publications in the field of microfluidics, with an emphasis on novel applications for drug development. RESULTS/CONCLUSION Microfluidics affords unique capabilities in sample preparation and separation, combinatorial synthesis and array formation, and incorporating nanotechnology for more functionalities. The pharmaceutical industry, facing challenges from limited productivity and accelerated competition, can thus greatly benefit from applying new microfluidic assays in various drug development stages, from target screening and lead optimization to absorption distribution metabolism elimination and toxicity studies in preclinical evaluations, diagnostics in clinical trials and drug formulation and manufacturing process optimization.
Collapse
Affiliation(s)
- Yuan Wen
- The Ohio State University, Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, Columbus, Ohio 43210, USA +1 614 2926611 ; +1 614 2923769 ;
| | | |
Collapse
|
56
|
Abstract
Stem cell research can significantly benefit from recent advances of microfluidics technology. In a rationally designed microfluidics device, analyses of stem cells can be done in a much deeper and wider way than in a conventional tissue culture dish. Miniaturization makes analyses operated in a high-throughput fashion, while controls of fluids help to reconstruct the physiological environments. Through integration with present characterization tools like fluorescent microscope, microfluidics offers a systematic way to study the decision-making process of stem cells, which has attractive medical applications. In this paper, recent progress of microfluidics devices on stem cell research are discussed. The purpose of this review is to highlight some key features of microfluidics for stem cell biologists, as well as provide physicists/engineers an overview of how microfluidics has been and could be used for stem cell research.
Collapse
Affiliation(s)
- Qiucen Zhang
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Robert H. Austin
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
57
|
Abstract
The process of protein crosslinking comprises the chemical, enzymatic, or chemoenzymatic formation of new covalent bonds between polypeptides. This allows (1) the site-directed coupling of proteins with distinct properties and (2) the de novo assembly of polymeric protein networks. Transferases, hydrolases, and oxidoreductases can be employed as catalysts for the synthesis of crosslinked proteins, thereby complementing chemical crosslinking strategies. Here, we review enzymatic approaches that are used for protein crosslinking at the industrial level or have shown promising potential in investigations on the lab-scale. We illustrate the underlying mechanisms of crosslink formation and point out the roles of the enzymes in their natural environments. Additionally, we discuss advantages and drawbacks of the enzyme-based crosslinking strategies and their potential for different applications.
Collapse
Affiliation(s)
- Tobias Heck
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
58
|
Li LM, Wang XY, Hu LS, Chen RS, Huang Y, Chen SJ, Huang WH, Huo KF, Chu PK. Vascular lumen simulation and highly-sensitive nitric oxide detection using three-dimensional gelatin chip coupled to TiC/C nanowire arrays microelectrode. LAB ON A CHIP 2012; 12:4249-56. [PMID: 22903191 DOI: 10.1039/c2lc40148g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reproducing the physiological environment of blood vessels for the in vitro investigation of endothelial cell functions is very challenging. Here, we describe a vascular-like structure based on a three-dimensional (3D) gelatin chip with good compatibility and permeability which is also cost-effective and easy to produce. The controllable lumen diameter and wall thickness enable close mimicking of blood vessels in vitro. The 3D gelatin matrix between adjacent lumens is capable of generating soluble-factor gradients inside, and diffusion of molecules with different molecular weights through the matrix is studied. The cultured human umbilical vein endothelial cells proliferate on the gelatin lumen linings to form a vascular lumen. The hemodynamic behavior including adhesion, alignment of endothelial cells (ECs) under shear stress and pulsatile stretch is studied. Furthermore, a microelectrode comprising TiC/C nanowire arrays is fabricated to detect nitric oxide with sub-nM detection limits and NO generation from the cultured ECs is monitored in real time. This vascular model reproduces the surrounding parenchyma of endothelial cells and mimics the hemodynamics inside blood vessels very well, thereby enabling potential direct investigation of hemodynamics, angiogenesis, and tumor metastasis in vitro.
Collapse
Affiliation(s)
- Lin-Mei Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Vichasilp C, Nakagawa K, Sookwong P, Higuchi O, Kimura F, Miyazawa T. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem 2012; 134:1823-30. [DOI: 10.1016/j.foodchem.2012.03.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 11/26/2022]
|
60
|
Millet LJ, Gillette MU. New perspectives on neuronal development via microfluidic environments. Trends Neurosci 2012; 35:752-61. [PMID: 23031246 DOI: 10.1016/j.tins.2012.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/18/2012] [Accepted: 09/06/2012] [Indexed: 11/28/2022]
Abstract
Understanding the signals that guide neuronal development and direct formation of axons, dendrites, and synapses during wiring of the brain is a fundamental challenge in developmental neuroscience. Discovery of how local signals shape developing neurons has been impeded by the inability of conventional culture methods to interrogate microenvironments of complex neuronal cytoarchitectures, where different subdomains encounter distinct chemical, physical, and fluidic features. Microfabrication techniques are facilitating the creation of microenvironments tailored to neuronal structures and subdomains with unprecedented access and control. The design, fabrication, and properties of microfluidic devices offer significant advantages for addressing unresolved issues of neuronal development. These high-resolution approaches are poised to contribute new insights into mechanisms for restoring neuronal function and connectivity compromised by injury, stress, and neurodegeneration.
Collapse
Affiliation(s)
- Larry J Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
61
|
Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers (Basel) 2012. [DOI: 10.3390/polym4031349] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
62
|
Muskovich M, Bettinger CJ. Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 2012; 1:248-66. [PMID: 23184740 PMCID: PMC3642371 DOI: 10.1002/adhm.201200071] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 12/18/2022]
Abstract
Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted.
Collapse
Affiliation(s)
- Meredith Muskovich
- Department of Materials Science & Engineering, 5000 Forbes Avenue, Pittsburgh, PA, 15213
| | - Christopher J. Bettinger
- Department of Biomedical Engineering, Department of Materials Science & Engineering, 5000 Forbes Avenue, Pittsburgh, PA, 15213
| |
Collapse
|
63
|
Medium to High Throughput Screening: Microfabrication and Chip-Based Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:181-209. [DOI: 10.1007/978-1-4614-3055-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
64
|
Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011; 21:745-54. [PMID: 22033488 DOI: 10.1016/j.tcb.2011.09.005] [Citation(s) in RCA: 1174] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 01/09/2023]
Abstract
3D cell-culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional 2D culture systems. We review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell-culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs. These 'organs-on-chips' permit the study of human physiology in an organ-specific context, enable development of novel in vitro disease models, and could potentially serve as replacements for animals used in drug development and toxin testing.
Collapse
Affiliation(s)
- Dongeun Huh
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | | |
Collapse
|
65
|
Luecha J, Hsiao A, Brodsky S, Liu GL, Kokini JL. Green microfluidic devices made of corn proteins. LAB ON A CHIP 2011; 11:3419-3425. [PMID: 21918783 DOI: 10.1039/c1lc20726a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An alternative green microfluidic device made of zein, a prolamin of corn, can be utilized as a disposable environmentally friendly microchip especially in agriculture applications. Using standard soft lithography and stereo lithography techniques, we fabricated thin zein films with microfluidic chambers and channels. These were bonded to both a glass slide and another zein film. The zein film with microfluidic features bonds irreversibly with other surfaces by vapor-deposition of ethanol to create an adhesive layer resulting in very little or no trapped air and small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design that showed no leakage under high hydraulic pressure. Zein-glass microfluidic devices with serpentine mixing design showed successful fluid manipulation as a concentration gradient of Rhodamine B solution was generated. The ease of fabrication and bonding and the flexibility and moldability of zein offer attractive possibilities for microfluidic device design and manufacturing. These devices can include several unit operations with mixing being one of the most commonly used. The zein-based microfluidic devices, made entirely from a biopolymer from agricultural origin, offer alternative environmentally friendly material choices that are less dependent on limited petroleum based polymer resources.
Collapse
Affiliation(s)
- Jarupat Luecha
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
66
|
Choudhury D, Mo X, Iliescu C, Tan LL, Tong WH, Yu H. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. BIOMICROFLUIDICS 2011; 5:22203. [PMID: 21799710 PMCID: PMC3145229 DOI: 10.1063/1.3593407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/02/2011] [Indexed: 05/06/2023]
Abstract
There are a plethora of approaches to construct microtissues as building blocks for the repair and regeneration of larger and complex tissues. Here we focus on various physical and chemical trapping methods for engineering three-dimensional microtissue constructs in microfluidic systems that recapitulate the in vivo tissue microstructures and functions. Advances in these in vitro tissue models have enabled various applications, including drug screening, disease or injury models, and cell-based biosensors. The future would see strides toward the mesoscale control of even finer tissue microstructures and the scaling of various designs for high throughput applications. These tools and knowledge will establish the foundation for precision engineering of complex tissues of the internal organs for biomedical applications.
Collapse
|
67
|
Biofabrication with Biopolymers and Enzymes: Potential for Constructing Scaffolds from Soft Matter. Int J Artif Organs 2011; 34:215-24. [DOI: 10.5301/ijao.2011.6406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2010] [Indexed: 12/29/2022]
Abstract
Purpose Regenerative medicine will benefit from technologies capable of fabricating soft matter to have appropriate architectures and that provide the necessary physical, chemical and biological cues to recruit cells and guide their development. The goal of this report is to review an emerging set of biofabrication techniques and suggest how these techniques could be applied for the fabrication of scaffolds for tissue engineering. Methods Electrical potentials are applied to submerged electrodes to perform cathodic and anodic reactions that direct stimuli-responsive film-forming polysaccharides to assemble into hydrogel films. Standard methods are used to microfabricate electrode surfaces to allow the electrical signals to be applied with spatial and temporal control. The enzymes mushroom tyrosinase and microbial transglutaminase are used to catalyze macromolecular grafting and crosslinking of proteins. Results Electrodeposition of the polysaccharides chitosan and alginate allow hydrogel films to be formed in response to localized electrical signals. Co-deposition of various components (e.g., proteins, vesicles and cells), and subsequent electrochemical processing allow the physical, chemical and biological activities of these films to be tailored. Enzymatic processing allows for the generation of stimuli-responsive protein conjugates that can also be directed to assemble in response to imposed electrical signals. Further, enzyme-catalyzed crosslinking of gelatin allows replica molding of soft matter to create hydrogel films with topological structure. Conclusions Biofabrication with biological materials and mechanisms provides new approaches for soft matter construction. These methods may enable the formation of tissue engineering scaffolds with appropriate architectures, assembled cells, and spatially organized physical, chemical and biological cues.
Collapse
|
68
|
|
69
|
Wen Y, Zhang X, Yang ST. Microplate-reader compatible perfusion microbioreactor array for modular tissue culture and cytotoxicity assays. Biotechnol Prog 2010; 26:1135-44. [PMID: 20730768 DOI: 10.1002/btpr.423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One important application of tissue engineering is to provide novel in vitro models for cell-based assays. Perfusion microbioreactor array provides a useful tool for microscale tissue culture in parallel. However, high-throughput data generation has been a challenge. In this study, a 4 x 4 array of perfusion microbioreactors was developed for plate-reader compatible, time-series quantification of cell proliferation, and cytotoxicity assays. The device was built through multilayer soft lithography. Low-cost nonwoven polyethylene terephthalate fibrous matrices were integrated as modular tissue culture scaffolds. Human colon cancer HT-29 cells with stable expression of enhanced green fluorescent protein were cultured in the device with continuous perfusion and reached a cell density over 5 x 10(7) cells/mL. The microbioreactor array was used to test a chemotherapeutic drug 5-FU for its effect on HT-29 cells in continuous perfusion 3D culture. Compared with conventional 2D cytotoxicity assay, significant drug resistance was observed in the 3D perfusion culture.
Collapse
Affiliation(s)
- Yuan Wen
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
70
|
Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2010; 2:045004. [PMID: 21079286 DOI: 10.1088/1758-5082/2/4/045004] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In their normal in vivo matrix milieu, tissues assume complex well-organized three-dimensional architectures. Therefore, the primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario. This challenge can be addressed by applying emerging layered biofabrication approaches in which the precise configuration and composition of cells and bioactive matrix components can recapitulate the well-defined three-dimensional biomimetic microenvironments that promote cell-cell and cell-matrix interactions. Furthermore, the advent of and refinements in microfabricated systems can present physical and chemical cues to cells in a controllable and reproducible fashion unmatched with conventional cultures, resulting in the precise construction of engineered biomimetic microenvironments on the cellular length scale in geometries that are readily parallelized for high throughput in vitro models. As such, the convergence of layered solid freeform fabrication (SFF) technologies along with microfabrication techniques enables the creation of a three-dimensional micro-organ device to serve as an in vitro platform for cell culture, drug screening or to elicit further biological insights, particularly for NASA's interest in a flight-suitable high-fidelity microscale platform to study drug metabolism in space and planetary environments. The proposed model in this paper involves the combinatorial setup of an automated syringe-based, layered direct cell writing bioprinting process with micro-patterning techniques to fabricate a microscale in vitro device housing a chamber of bioprinted three-dimensional liver cell-encapsulated hydrogel-based tissue constructs in defined design patterns that biomimic the cell's natural microenvironment for enhanced biological functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, reproducibly fabricated tissue constructs were biologically characterized for liver cell-specific function. Another key facet of the in vivo microenvironment that was recapitulated with the in vitro system included the necessary dynamic perfusion of the three-dimensional microscale liver analog with cells probed for their collective drug metabolic function and suitability as a drug metabolism model. This paper details the principles and methods that undergird the direct cell writing biofabrication process development and adaptation of microfluidic devices for the creation of a drug screening model, thereby establishing a novel drug metabolism study platform for NASA's interest to adopt a microfluidic microanalytical device with an embedded three-dimensional microscale liver tissue analog to assess drug pharmacokinetic profiles in planetary environments.
Collapse
Affiliation(s)
- Robert Chang
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
71
|
Yang CWT, Ouellet E, Lagally ET. Using inexpensive Jell-O chips for hands-on microfluidics education. Anal Chem 2010; 82:5408-14. [PMID: 20499853 DOI: 10.1021/ac902926x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the field of microfluidics continues to grow, there is an increasing demand for public education about this technology. This article presents a quick, simple, safe, and inexpensive method for teaching microfluidics to younger students and the general public. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).
Collapse
|
72
|
Spurlin TA, Forry SP, Cooksey GA, Plant AL. Characterization of collagen fibrils films formed on polydimethylsiloxane surfaces for microfluidic applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14111-14117. [PMID: 20666411 DOI: 10.1021/la102150s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Type I collagen fibrillar thin films have been prepared on hydrophobic recovered poly(dimethylsiloxane) (PDMS) surfaces and inside of irreversibly sealed PDMS microfluidic devices. Fibrillar films prepared on PDMS surfaces have been characterized with optical microscopy and atomic force microscopy and compared with films prepared using more traditional bulk methods on thiol-coated gold substrates. Collagen fibril films formed after 18 h of incubation on PDMS surfaces were observed to have similar underlying film thicknesses (15 nm), fibril size (67 nm), fibril coverage (45%), and physiologically supermolecular structure when compared to films on gold substrates. Collagen fibrils formed within devices were also determined to be usable across physiologically relevant cell perfusion rates. To validate the utility of these collagen fibril thin films for cell culture applications, vascular smooth muscle cells are shown to attach to collagen fibrils and exhibit cell spread areas equivalent to those seen on collagen fibrils created via bulk cell culture methods on thiol-coated gold substrates. These results extend the use and benefits of collagen fibril thin films into microfluidic-based cellular studies.
Collapse
Affiliation(s)
- Tighe A Spurlin
- Biochemical Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
| | | | | | | |
Collapse
|
73
|
Yung CW, Bentley WE, Barbari TA. Diffusion of interleukin-2 from cells overlaid with cytocompatible enzyme-crosslinked gelatin hydrogels. J Biomed Mater Res A 2010; 95:25-32. [DOI: 10.1002/jbm.a.32740] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California. Ann Biomed Eng 2010; 38:1164-77. [PMID: 20336839 DOI: 10.1007/s10439-010-9899-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent advances in microfluidic technologies have opened the door for creating more realistic in vitro cell culture methods that replicate many aspects of the true in vivo microenvironment. These new designs (i) provide enormous flexibility in controlling the critical biochemical and biomechanical factors that influence cell behavior, (ii) allow for the introduction of multiple cell types in a single system, (iii) provide for the establishment of biochemical gradients in two- or three-dimensional geometries, and (iv) allow for high quality, time-lapse imaging. Here, some of the recent developments are reviewed, with a focus on studies from our own laboratory in three separate areas: angiogenesis, cell migration in the context of tumor cell-endothelial interactions, and liver tissue engineering.
Collapse
Affiliation(s)
- Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
75
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
76
|
Carstens C, Elbracht R, Gärtner C, Becker H. Opportunities and limits of cell-based assay miniaturization in drug discovery. Expert Opin Drug Discov 2010; 5:673-9. [DOI: 10.1517/17460441.2010.488264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
77
|
Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. NANO TODAY 2010; 5:28-47. [PMID: 21152269 PMCID: PMC2998071 DOI: 10.1016/j.nantod.2009.12.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications.
Collapse
Affiliation(s)
| | | | | | - Phong T. Tran
- Institut Curie, UMR 144 CNRS, Paris 75005, France
- University of Pennsylvania, Cell and Developmental Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
78
|
Domachuk P, Tsioris K, Omenetto FG, Kaplan DL. Bio-microfluidics: biomaterials and biomimetic designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:249-60. [PMID: 20217686 DOI: 10.1002/adma.200900821] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.
Collapse
Affiliation(s)
- Peter Domachuk
- Department of Biomedical Engineering, Tufts University Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
79
|
Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:4863-7. [PMID: 21049511 DOI: 10.1002/adma.200901727] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Seok Chung
- School of Mechanical Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Korea
| | | | | | | | | |
Collapse
|
80
|
Puleo CM, McIntosh Ambrose W, Takezawa T, Elisseeff J, Wang TH. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. LAB ON A CHIP 2009; 9:3221-7. [PMID: 19865728 DOI: 10.1039/b908332d] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper describes the fabrication and application of microfluidic devices containing collagen vitrigel (CV) used as both a functional and sacrificial cell growth substrate for the development of corneal microtissue patches. Within the device, vacuum fixation of the CV in a dehydrated state enables quick integration with standard multilayer soft lithographic techniques, while on-chip rehydration results in a gel-like collagen substrate for microfluidic cell culture. Fluidic connectivity to both the apical and basal side of the CV permits bilayered culture of epithelium and supporting stromal cell layers. In addition, microfluidic introduction of a collagenase etching media enables sacrificial degradation of the supporting CV membrane for development of barrier tissue constructs containing minimal synthetic substrate. The utility of this platform was evaluated by miniaturizing the standard transepithelial permeability (TEP) assay in order to measure the integrity of an array of corneal tissue micropatches.
Collapse
Affiliation(s)
- Christopher M Puleo
- Johns Hopkins University, Department of Biomedical Engineering, 3400 N. Charles St., Clark Hall, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
81
|
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3307-29. [PMID: 20882499 PMCID: PMC4494665 DOI: 10.1002/adma.200802106] [Citation(s) in RCA: 1771] [Impact Index Per Article: 118.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
Collapse
Affiliation(s)
- Brandon V. Slaughter
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Shahana S. Khurshid
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Omar Z. Fisher
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and
Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health
Sciences and Technology, Massachusetts, Institute of Technology, Cambridge, MA 02139
(USA)
| | - Nicholas A. Peppas
- Biomaterials, Drug Delivery, Bionanotechnology, and Molecular, Recognition
Laboratories, Department of Chemical Engineering, C0400, The University of Texas at
Austin, Austin, TX 78712 (USA)
- Department of Pharmaceutics, C0400, The University of Texas at Austin,
Austin, TX 78712 (USA)
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| |
Collapse
|
82
|
Moraes C, Kagoma YK, Beca BM, Tonelli-Zasarsky RLM, Sun Y, Simmons CA. Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices. Biomaterials 2009; 30:5241-50. [PMID: 19545891 DOI: 10.1016/j.biomaterials.2009.05.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Poly(dimethylsiloxane) (PDMS)-based microdevices have enabled rapid, high-throughput assessment of cellular response to precisely controlled microenvironmental stimuli, including chemical, matrix and mechanical factors. However, the use of PDMS as a culture substrate precludes long-term culture and may significantly impact cell response. Here we describe a method to integrate polyurethane (PU), a well-studied and clinically relevant biomaterial, into the PDMS multilayer microfabrication process, enabling the exploration of long-term cellular response on alternative substrates in microdevices. To demonstrate the utility of these hybrid microdevices for cell culture, we compared initial cell adhesion, cell spreading, and maintenance of protein patterns on PU and PDMS substrates. Initial cell adhesion and cell spreading after three days were comparable between collagen-coated PDMS and PU substrates (with or without collagen coating), but significantly lower on native PDMS substrates. However, for longer culture durations (> or = 6 days), cell spreading and protein adhesion on PU substrates was significantly better than that on PDMS substrates, and comparable to that on tissue culture-treated polystyrene. Thus, the use of a generic polyurethane substrate in microdevices enables longer-term cell culture than is possible with PDMS substrates. More generally, this technique can improve the impact and applicability of microdevice-based research by facilitating the use of alternate, relevant biomaterials while maintaining the advantages of using PDMS for microdevice fabrication.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | | | | | | | |
Collapse
|
83
|
Manocchi AK, Domachuk P, Omenetto FG, Yi H. Facile fabrication of gelatin-based biopolymeric optical waveguides. Biotechnol Bioeng 2009; 103:725-32. [DOI: 10.1002/bit.22306] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
84
|
Shao ML, Bai HJ, Gou HL, Xu JJ, Chen HY. Cytosensing and evaluation of cell surface glycoprotein based on a biocompatible poly(diallydimethylammonium) doped poly(dimethylsiloxane) film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3089-3095. [PMID: 19437775 DOI: 10.1021/la9000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, we constructed an interface that not only retains viability of immobilized BGC823 human gastric carcinoma cells (BGC823 cells) but also efficiently resists nonspecific adsorption of the P-glycoprotein antibody and its secondary antibody, which enabled us to sensitively detect the number of cells and P-glycoproteins on the BGC823 cell surface by the immunoassay method. Preparation of the film was quite simple and inexpensive just by spin-coating poly(dimethylsiloxane) (PDMS) doped with poly(diallydimethylammonium) (PDDA) on the surface of gold electrodes. The composite film's biocompatibility, antinonspecific adsorption ability, and the conductivity for electrochemical probe ([Fe(CN)6]3-/4-) were proved by cell culture experiments, blocking experiments, and electrochemical experiments. Compared with PDMS and PDMS doped with poly(sodium 4-styrenesulfonate) (PSS), the PDMS-PDDA composite film showed a predominant ability to capture cells due to electrostatic reaction between the presence of positively charged PDDA and the negatively charged glycocalyx on the surface of cells. On the advantage of electrochemical immunoassay with a signal amplification path by using biocatalytic precipitation of an insoluble product, differential pulse voltammetry (DPV) measurement based on the changes of electron-transfer resistance was introduced to detect the cell amount and monitor growing states of cells like adhesion, spread, proliferation, and apoptosis on the electrodes. Optimally, signal response was proportional to the logarithm of cell concentration ranging from 1.0 x 10(3) to 5.0 x 10(7) cells mL(-1) with a detection limit of 7.2 x 10(2) cells mL(-1). On the basis of the special property for resisting nonspecific adsorption of this composite film, an ultraviolet and visible (UV-vis) absorption spectrum with one-step immunoreaction was employed to evaluate the P-glycoprotein on the BGC823 cell surface. The P-glycoprotein on a single living intact BGC823 cell was detected correspondingly to 4.7 x 10(7) molecules. The work implied that the composite film possessed potential applications for biosensing and convenient evaluation of surface glycoprotein on living cells.
Collapse
Affiliation(s)
- Min-Ling Shao
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
85
|
Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. LAB ON A CHIP 2009; 9:545-54. [PMID: 19190790 PMCID: PMC2855303 DOI: 10.1039/b810571e] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The heterogeneity of cellular microenvironments in tumors severely limits the efficacy of most cancer therapies. We have designed a microfluidic device that mimics the microenvironment gradients present in tumors that will enable the development of more effective cancer therapies. Tumor cell masses were formed within micron-scale chambers exposed to medium perfusion on one side to create linear nutrient gradients. The optical accessibility of the PDMS and glass device enables quantitative transmitted and fluorescence microscopy of all regions of the cell masses. Time-lapse microscopy was used to measure the growth rate and show that the device can be used for long-term efficacy studies. Fluorescence microscopy was used to demonstrate that the cell mass contained viable, apoptotic, and acidic regions similar to in vivo tumors. The diffusion coefficient of doxorubicin was accurately measured, and the accumulation of therapeutic bacteria was quantified. The device is simple to construct, and it can easily be reproduced to create an array of in vitro tumors. Because microenvironment gradients and penetration play critical roles controlling drug efficacy, we believe that this microfluidic device will be vital for understanding the behavior of common cancer drugs in solid tumors and designing novel intratumorally targeted therapeutics.
Collapse
Affiliation(s)
- Colin L Walsh
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant Street. Amherst, MA 01003-9303, USA
| | | | | | | | | | | |
Collapse
|
86
|
Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. LAB ON A CHIP 2009; 9:269-75. [PMID: 19107284 DOI: 10.1039/b807585a] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Capillary morphogenesis is a complex cellular process that occurs in response to external stimuli. A number of assays have been used to study critical regulators of the process, but those assays are typically limited by the inability to control biochemical gradients and to obtain images on the single cell level. We have recently developed a new microfluidic platform that has the capability to control the biochemical and biomechanical forces within a three dimensional scaffold coupled with accessible image acquisition. Here, the developed platform is used to evaluate and quantify capillary growth and endothelial cell migration from an intact cell monolayer. We also evaluate the endothelial cell response when placed in co-culture with physiologically relevant cell types, including cancer cells and smooth muscle cells. This resulted in the following observations: cancer cells can either attract (MTLn3 cancer cell line) endothelial cells and induce capillary formation or have minimal effect (U87MG cancer cell line) while smooth muscle cells (10T 1/2) suppress endothelial activity. Results presented demonstrate the capabilities of this platform to study cellular morphogenesis both qualitatively and quantitatively while having the advantage of enhanced imaging and internal biological controls. Finally, the platform has numerous applications in the study of angiogenesis, or migration of other cell types including tumor cells, into a three-dimensional scaffold or across an endothelial layer under precisely controlled conditions of mechanical, biochemical and co-culture environments.
Collapse
Affiliation(s)
- Seok Chung
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
87
|
Warrick JW, Murphy WL, Beebe DJ. Screening the cellular microenvironment: a role for microfluidics. IEEE Rev Biomed Eng 2008; 1:75-93. [PMID: 20190880 DOI: 10.1109/rbme.2008.2008241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cellular microenvironment is an increasingly discussed topic in cell biology as it has been implicated in the progression of cancer and the maintenance of stem cells. The microenvironment of a cell is an organized combination of extracellular matrix (ECM), cells, and interstitial fluid that influence cellular phenotype through physical, mechanical, and biochemical mechanisms. Screening can be used to map combinations of cells and microenvironments to phenotypic outcomes in a way that can help develop more predictive in vitro models and to better understand phenotypic mechanisms from a systems biology perspective. This paper examines microenvironmental screening in terms of outcomes and benefits, key elements of the screening process, challenges for implementation, and a possible role for microfluidics as the screening platform. To assess microfluidics for use in microenvironmental screening, examples and categories of micro-scale and microfluidic technology are highlighted. Microfluidic technology shows promise for simultaneous control of multiple parameters of the microenvironment and can provide a base for scaling advanced cell-based experiments into automated high-throughput formats.
Collapse
Affiliation(s)
- Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706-1609, USA
| | | | | |
Collapse
|
88
|
Vickerman V, Blundo J, Chung S, Kamm R. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. LAB ON A CHIP 2008; 8:1468-77. [PMID: 18818801 PMCID: PMC2560179 DOI: 10.1039/b802395f] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
New and more biologically relevant in vitro models are needed for use in drug development, regenerative medicine, and fundamental scientific investigation. While the importance of the extracellular microenvironment is clear, the ability to investigate the effects of physiologically relevant biophysical and biochemical factors is restricted in traditional cell culture platforms. Moreover, the versatility for multi-parameter manipulation, on a single platform, with the optical resolution to monitor the dynamics of individual cells or small population is lacking. Here we introduce a microfluidic platform for 3D cell culture in biologically derived or synthetic hydrogels with the capability to monitor cellular dynamics in response to changes in their microenvironment. Direct scaffold microinjection, was employed to incorporate 3D matrices into microfluidic devices. Our system geometry permits a unique window for studying directional migration, e.g. sprouting angiogenesis, since sprouts grow predominantly in the microscopic viewing plane. In this study, we demonstrate the ability to generate gradients (non-reactive solute), surface shear, interstitial flow, and image cells in situ. Three different capillary morphogenesis assays are demonstrated. Human adult dermal microvascular endothelial cells (HMVEC-ad) were maintained in culture for up to 7 days during which they formed open lumen-like structures which was confirmed with confocal microscopy and by perfusion with fluorescent microspheres. In the sprouting assay, time-lapse movies revealed cellular mechanisms and dynamics (filopodial projection/retraction, directional migration, cell division and lumen formation) during tip-cell invasion of underlying 3D matrix and subsequent lumen formation.
Collapse
Affiliation(s)
- Vernella Vickerman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
89
|
Abhyankar VV, Toepke MW, Cortesio CL, Lokuta MA, Huttenlocher A, Beebe DJ. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. LAB ON A CHIP 2008; 8:1507-15. [PMID: 18818806 PMCID: PMC2804469 DOI: 10.1039/b803533d] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While the quantification of cell movement within defined biochemical gradients is now possible with microfluidic approaches, translating this capability to biologically relevant three-dimensional microenvironments remains a challenge. We introduce an accessible platform, requiring only standard tools (e.g. pipettes), that provides robust soluble factor control within a three-dimensional biological matrix. We demonstrate long-lasting linear and non-linear concentration profiles that were maintained for up to ten days using 34.5 muL solute volume. We also demonstrate the ability to superimpose local soluble factor pulses onto existing gradients via defined dosing windows. The combination of long-term and transient gradient characteristics within a three-dimensional environment opens the door for signaling studies that investigate the migratory behavior of cells within a biologically representative matrix. To this end, we apply temporally evolving and long-lasting gradients to study the chemotactic responses of human neutrophils and the invasion of metastatic rat mammary adenocarcinoma cells (MtLN3) within three-dimensional collagen matrices.
Collapse
Affiliation(s)
- Vinay V Abhyankar
- Department of Biomedical Engineering and Pediatrics, University of Wisconsin-Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
90
|
Gillette BM, Jensen JA, Tang B, Yang GJ, Bazargan-Lari A, Zhong M, Sia SK. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. NATURE MATERIALS 2008; 7:636-40. [PMID: 18511938 DOI: 10.1038/nmat2203] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 04/30/2008] [Indexed: 05/21/2023]
Abstract
Microscale fabrication of three-dimensional (3D) extracellular matrices (ECMs) can be used to mimic the often inhomogeneous and anisotropic properties of native tissues and to construct in vitro cellular microenvironments. Cellular contraction of fibrous natural ECMs (such as fibrin and collagen I) can detach matrices from their surroundings and destroy intended geometry. Here, we demonstrate in situ collagen fibre assembly (the nucleation and growth of new collagen fibres from preformed collagen fibres at an interface) to anchor together multiple phases of cell-seeded 3D hydrogel-based matrices against cellular contractile forces. We apply this technique to stably interface multiple microfabricated 3D natural matrices (containing collagen I, Matrigel, fibrin or alginate); each phase can be seeded with cells and designed to permit cell spreading. With collagen-fibre-mediated interfacing, microfabricated 3D matrices maintain stable interfaces (the individual phases do not separate from each other) over long-term culture (at least 3 weeks) and support spatially restricted development of multicellular structures within designed patterns. The technique enables construction of well-defined and stable patterns of a variety of 3D ECMs formed by diverse mechanisms (including temperature-, ion- and enzyme-mediated crosslinking), and presents a simple approach to interface multiple 3D matrices for biological studies and tissue engineering.
Collapse
Affiliation(s)
- Brian M Gillette
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Characterization and large-scale production of recombinant Streptoverticillium platensis transglutaminase. J Ind Microbiol Biotechnol 2008; 35:981-90. [PMID: 18500544 DOI: 10.1007/s10295-008-0373-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Recombinant Streptomyces platensis transglutaminase (MtgA) produced by the Streptomyces lividans transformant 25-2 was purified by ammonium sulfate fractionation, followed by CM-Sepharose CL-6B fast flow, and blue-Sepharose fast flow chromatography. The purification factor was approximately 33.2-fold, and the yield was 65%. The molecular weight of the purified recombinant MtgA was 40.0 KDa as estimated by SDS-PAGE. The optimal pH and the temperature for the enzyme activity were 6.0 and 55 degrees C, respectively, and the enzyme was stable at pH 5.0-6.0 and at temperature 45-55 degrees C. Enzyme activity was not affected by Ca(2+), Li(+), Mn(2+), Na(+), Fe(3+), K(+), Mg(2+), Al(3+), Ba(2+), Co(2+), EDTA, or IAA but was inhibited by Fe(2+), Pb(2+), Zn(2+), Cu(2+), Hg(2+), PCMB, NEM, and PMSF. Optimization of the fermentation medium resulted in a twofold increase of recombinant MtgA activity in both flasks (5.78 U/ml) and 5-l fermenters (5.39 U/ml). Large-scale productions of the recombinant MtgA in a 30-l air-lift fermenter and a 250-l stirred-tank fermenter were fulfilled with maximal activities of 5.36 and 2.54 U/ml, respectively.
Collapse
|
92
|
West J, Becker M, Tombrink S, Manz A. Micro Total Analysis Systems: Latest Achievements. Anal Chem 2008; 80:4403-19. [PMID: 18498178 DOI: 10.1021/ac800680j] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan West
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | - Marco Becker
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | - Sven Tombrink
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | - Andreas Manz
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| |
Collapse
|
93
|
Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ. Automated cell culture in high density tubeless microfluidic device arrays. LAB ON A CHIP 2008; 8:717-24. [PMID: 18432341 DOI: 10.1039/b715375a] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidics is poised to have an impact on life sciences research. However, current microfluidic methods are not compatible with existing laboratory liquid dispensing and detection infrastructure. This incompatibility is a barrier to adoption of microfluidic systems and calls for improved approaches that will enhance performance and promote acceptance of microfluidic systems in the life sciences. Ease of use, standardized interfaces and automation remain critical challenges. We present a platform based on surface tension effects, where the difference in pressure inside drops of unequal volume drives flow in passive structures. We show integration with existing laboratory infrastructure, microfluidic operations such as pumping, routing and compartmentalization without discrete micro-components as well as cell patterning in both monolayer and three-dimensional cell culture.
Collapse
Affiliation(s)
- Ivar Meyvantsson
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
94
|
Meyvantsson I, Beebe DJ. Cell culture models in microfluidic systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:423-49. [PMID: 20636085 DOI: 10.1146/annurev.anchem.1.031207.113042] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidic technology holds great promise for the creation of advanced cell culture models. In this review, we discuss the characterization of cell culture in microfluidic systems, describe important biochemical and physical features of the cell microenvironment, and review studies of microfluidic cell manipulation in the context of these features. Finally, we consider the integration of analytical elements, ways to achieve high throughput, and the design constraints imposed by cell biology applications.
Collapse
|
95
|
Liebmann T, Rydholm S, Akpe V, Brismar H. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing. BMC Biotechnol 2007; 7:88. [PMID: 18070345 PMCID: PMC2235856 DOI: 10.1186/1472-6750-7-88] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/10/2007] [Indexed: 11/13/2022] Open
Abstract
Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.
Collapse
Affiliation(s)
- Thomas Liebmann
- Cell Physics, Department of Applied Physics, Royal Institute of Technology, S-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
96
|
Young EWK, Wheeler AR, Simmons CA. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. LAB ON A CHIP 2007; 7:1759-66. [PMID: 18030398 DOI: 10.1039/b712486d] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The interactions between endothelial cells and the underlying extracellular matrix regulate adhesion and cellular responses to microenvironmental stimuli, including flow-induced shear stress. In this study, we investigated the adhesion properties of primary porcine aortic endothelial cells (PAECs) and valve endothelial cells (PAVECs) in a microfluidic network. Taking advantage of the parallel arrangement of the microchannels, we compared adhesion of PAECs and PAVECs to fibronectin and type I collagen, two prominent extracellular matrix proteins, over a broad range of concentrations. Cell spreading was measured morphologically, based on cytoplasmic staining with a vital dye, while adhesion strength was characterized by the number of cells attached after application of shear stresses of 11, 110, and 220 dyn cm(-2). Results showed that PAVECs were more well spread on fibronectin than on type I collagen (P < 0.0001), particularly for coating concentrations of 100, 200, and 500 microg mL(-1). PAVECs also withstood shear significantly better on fibronectin than on collagen for 500 microg mL(-1). PAECs were more well spread on collagen compared to PAVECs (P < 0.0001), but did not have significantly better adhesion strength. These results demonstrate that cell adhesion is both cell-type and matrix dependent. Furthermore, they reveal important phenotypic differences between vascular and valvular endothelium, with implications for endothelial mechanobiology and the design of microdevices and engineered tissues.
Collapse
Affiliation(s)
- Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | | | | |
Collapse
|
97
|
Paguirigan AL, Beebe DJ. Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture. Nat Protoc 2007; 2:1782-8. [PMID: 17641645 DOI: 10.1038/nprot.2007.256] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a technique for fabricating microfluidic devices from gelatin using a natural crosslinking process. By producing reusable poly(dimethyl siloxane) molds using standard photolithography, gelatin can be molded into microchannel geometries. The gelatin is crosslinked with the naturally occurring enzyme transglutaminase via a straightforward process that can produce devices suitable for cell culture. The protocol takes approximately 1 day from the start of gelatin preparation to cell seeding. Using these devices, the effects of both the extracellular matrix and soluble factors on cellular behavior and differentiation can be studied in microenvironments that more closely mimic the in vivo environment.
Collapse
Affiliation(s)
- Amy L Paguirigan
- Department of Biomedical Engineering, University of Wisconsin, Engineering Centers Building, 1150 Engineering Dr., Madison, Wisconsin 53706, USA
| | | |
Collapse
|
98
|
Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res A 2007; 83:1039-1046. [PMID: 17584898 DOI: 10.1002/jbm.a.31431] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gelatin is one of the most commonly used biomaterials for creating cellular scaffolds due to its innocuous nature. In order to create stable gelatin hydrogels at physiological temperatures (37 degrees C), chemical crosslinking agents such as glutaraldehyde are typically used. To circumvent potential problems with residual amounts of these crosslinkers in vivo and create scaffolds that are both physiologically robust and biocompatible, a microbial transglutaminase (mTG) was used in this study to enzymatically crosslink gelatin solutions. HEK293 cells encapsulated in mTG-crosslinked gelatin proliferated at a rate of 0.03 day(-1). When released via proteolytic degradation with trypsin, the cells were able to recolonize tissue culture flasks, suggesting that cells for therapeutic purposes could be delivered in vivo using an mTG-crosslinked gelatin construct. Upon submersion in a saline solution at 37 degrees C, the mTG-crosslinked gelatin exhibited no mass loss, within experimental error, indicating that the material is thermally stable. The proteolytic degradation rate of mTG-crosslinked gelatin at RT was slightly faster than that of thermally-cooled (physically-crosslinked) gelatin. Thermally-cooled gelatin that was subsequently crosslinked with mTG resulted in hydrogels that were more resistant to proteolysis. Degradation rates were found to be tunable with gelatin content, an attribute that may be useful for either long-time cell encapsulation or time-released regenerative cell delivery. Further investigation showed that proteolytic degradation was controlled by surface erosion.
Collapse
Affiliation(s)
- C W Yung
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| | - L Q Wu
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250
| | - J A Tullman
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| | - G F Payne
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250
| | - W E Bentley
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742
| | - T A Barbari
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
99
|
Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. LAB ON A CHIP 2007; 7:681-94. [PMID: 17538709 DOI: 10.1039/b704602b] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.
Collapse
Affiliation(s)
- Lily Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm 36-824, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
100
|
Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. A cell-laden microfluidic hydrogel. LAB ON A CHIP 2007; 7:756-62. [PMID: 17538718 DOI: 10.1039/b615486g] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The encapsulation of mammalian cells within the bulk material of microfluidic channels may be beneficial for applications ranging from tissue engineering to cell-based diagnostic assays. In this work, we present a technique for fabricating microfluidic channels from cell-laden agarose hydrogels. Using standard soft lithographic techniques, molten agarose was molded against a SU-8 patterned silicon wafer. To generate sealed and water-tight microfluidic channels, the surface of the molded agarose was heated at 71 degrees C for 3 s and sealed to another surface-heated slab of agarose. Channels of different dimensions were generated and it was shown that agarose, though highly porous, is a suitable material for performing microfluidics. Cells embedded within the microfluidic molds were well distributed and media pumped through the channels allowed the exchange of nutrients and waste products. While most cells were found to be viable upon initial device fabrication, only those cells near the microfluidic channels remained viable after 3 days, demonstrating the importance of a perfused network of microchannels for delivering nutrients and oxygen to maintain cell viability in large hydrogels. Further development of this technique may lead to the generation of biomimetic synthetic vasculature for tissue engineering, diagnostics, and drug screening applications.
Collapse
Affiliation(s)
- Yibo Ling
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|