51
|
Comparative Study of Trehalose and Trehalose 6-Phosphate to Improve Antioxidant Defense Mechanisms in Wheat and Mustard Seedlings under Salt and Water Deficit Stresses. STRESSES 2022. [DOI: 10.3390/stresses2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Trehalose 6-phosphate (T6P) regulates sugar levels and starch metabolism in a plant cell and thus interacts with various signaling pathways, and after converting T6P into trehalose (Tre), it acts as a vital osmoprotectant under stress conditions. This study was conducted using wheat (Triticum aestivum L. cv. Norin 61) and mustard (Brassica juncea L. cv. BARI sharisha 13) seedlings to investigate the role of Tre and T6P in improving salt and water deficit stress tolerance. The seedlings were grown hydroponically using Hyponex solution and exposed to salt (300 and 200 mM NaCl for wheat and mustard, respectively) and water deficit (20 and 12% PEG 6000 for wheat and mustard, respectively) stresses with or without Tre and T6P. The study demonstrated that salt and water deficit stress negatively influenced plant growth by destroying photosynthetic pigments and increasing oxidative damage. In response to salt and water deficit stresses, the generation of H2O2 increased by 114 and 67%, respectively, in wheat seedlings, while in mustard, it increased by 86 and 50%, respectively. Antioxidant defense systems were also altered by salt and water deficit stresses due to higher oxidative damage. The AsA content was reduced by 65 and 38% in wheat and 61 and 45% in mustard under salt and water deficit stresses, respectively. The subsequent negative results of salinity and water deficit can be overcome by exogenous application of Tre and T6P; these agents reduced the oxidative stress by decreasing H2O2 and TBARS levels and increasing enzymatic and non-enzymatic antioxidants. Moreover, the application of Tre and T6P decreased the accumulation of Na in the shoots and roots of wheat and mustard seedlings. Therefore, the results suggest that the use of Tre and T6P is apromising strategy to alleviate osmotic and ionic toxicity in plants under salt and water deficit stresses.
Collapse
|
52
|
Basit F, Bhat JA, Dong Z, Mou Q, Zhu X, Wang Y, Hu J, Jan BL, Shakoor A, Guan Y, Ahmad P. Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine. CHEMOSPHERE 2022; 302:134423. [PMID: 35430206 DOI: 10.1016/j.chemosphere.2022.134423] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
The chromium (Cr) induced phytotoxicity avowed the scientific community to develop stress mitigation strategies to restrain the Cr accumulation inside the food chain. Whereas, brassinosteroids (BRs), and spermine (SPM) are well-known growth-promoting phytohormones, which enhance the plants health, and resilient the toxic effects under stress conditions. Until now, their interactive role against Cr-mitigation is poorly known. Hence, we conducted the hydroponic experiment to perceive the behavior of seed primed with BRs, or/and SPM treatment against Cr disclosure in two different rice cultivars (CY927; sensitive, YLY689; tolerant). Our findings delineated that BRs (0.01 μM), or/and SPM (0.01 mM) remarkably alleviated Cr-induced phytotoxicity by improving the seed germination ratio, chlorophyll pigments, PSII system, total soluble sugar, and minimizing the MDA contents level, ROS extra generation, and electrolyte leakage through restricting the Cr accretion in roots, and shoots of both rice cultivars under Cr stress. Additionally, the BRs, or/and SPM modulated the antioxidant enzyme, and non-enzyme activities to reduce the Cr-induced cellular oxidative damage as well as maintained the ionic hemostasis in both rice cultivars, especially in YLY689. Concisely, enhanced the plants biomass and growth. Overall, our outcomes revealed that BRs and SPM interact positively to alleviate the Cr-induced damages in rice seedlings on the above-mentioned indices, and combine treatment is much more efficient than solely. Moreover, the effect of BRs, or/and SPM was more obvious in YLY689 than CY927 to hamper the oxidative stress, and boost the antioxidant capacity.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Zhang Dong
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Qingshan Mou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Yang Wang
- College of Advanced Agricultural Science, The Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin' an, Hangzhou, 311300, China
| | - Jin Hu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Yajing Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 8, Riyadh, Saudi Arabia.
| |
Collapse
|
53
|
Basit F, Bhat JA, Guan Y, Jan BL, Tyagi A, Ahmad P. Nitric oxide and spermine revealed positive defense interplay for the regulation of the chromium toxicity in soybean (Glycine max L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119602. [PMID: 35716895 DOI: 10.1016/j.envpol.2022.119602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Current investigation demonstrated that chromium (Cr) toxicity affects adversely on the normal growth of soybean plants. However, the seed priming with nitric oxide (NO; 100 μM), and spermine (Spm; 0.01 Mm) can significantly alleviate the Cr toxicity in soybean plant. Herein, the hydroponic experiment was conducted to observe the individual as well as the interactive behavior of NO, and Spm on the various morpho-physiological and, biochemical parameters in soybean such as plant growth, plant height, seed germination indices, photosynthesis-related indices such as chlorophyll biosynthesis, PS system II, nutrient uptake of soybean seedlings against Cr (VI) toxicity. Our outcomes deliberated that the alone treatment of NO, and Spm cause a significant improvement in seed germination ratio, photosynthetic pigments, and biomass of plants by restricting Cr uptake; while NO + Spm treatment being more effective in the improvement of soybean growth relative to their individual treatment under Cr stress. Relative to alone treatment of NO, and Spm, the combined treatment significantly modulated the antioxidant activities, and lowered the ROS accumulation, and electrolyte leakage. In addition, seed priming with NO, and Spm mitigate the Cr-induced toxicity by reducing Cr uptake and stimulating the antioxidative defense mechanisms. Hence, these findings confirmed the positive defense interplay of the NO and Spm in the modulation of the Cr tolerance in soybean. However, the underlying defense mechanism of these synergetic effects needs to be further explored.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir, India.
| |
Collapse
|
54
|
Basit F, Bhat JA, Hu J, Kaushik P, Ahmad A, Guan Y, Ahmad P. Brassinosteroid Supplementation Alleviates Chromium Toxicity in Soybean (Glycine max L.) via Reducing Its Translocation. PLANTS 2022; 11:plants11172292. [PMID: 36079674 PMCID: PMC9460071 DOI: 10.3390/plants11172292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil.
Collapse
Affiliation(s)
- Farwa Basit
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jin Hu
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yajing Guan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.G.); (P.A.)
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Srinagar 192301, Jammu and Kashmir, India
- Correspondence: (Y.G.); (P.A.)
| |
Collapse
|
55
|
Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (Chenopodium quinoa) by Interaction with Auxin Pathway Genes. Int J Mol Sci 2022; 23:ijms23158480. [PMID: 35955612 PMCID: PMC9369402 DOI: 10.3390/ijms23158480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
Collapse
|
56
|
Roy UK, Bhattacharjee S. Exploring the parameters of central redox hub for screening salinity tolerant rice landraces of coastal Bangladesh. Sci Rep 2022; 12:12989. [PMID: 35906294 PMCID: PMC9338030 DOI: 10.1038/s41598-022-17078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Regulation of oxidative stress towards origin of favorable internal redox cue plays a decisive role in salinity stress acclimation and least studied in rice and hence is the subject of present investigation. Redox landscaping of seedlings of ten experimental land races of rice of coastal Bangladesh grown under post imbibitional salinity stress (PISS) has been done through characterization of ROS-antioxidant interaction dynamics at metabolic interface, transcriptional reprogramming of redox-regulatory genes along with the assessment of biomarkers of oxidative threat for standardizing redox strategies and quality parameters for screening. The results exhibited a strong correlation between salinity induced redox status (pro-oxidant/antioxidant ratio, efficacy of H2O2 turnover through integrated RboH-Ascorbate–Glutathione/Catalase pathway and estimation of sensitive redox biomarkers of oxidative deterioration) and germination phenotypes of all landraces of rice. Transcript abundance of the marker genes of the enzymes associated with central antioxidant hub for H2O2 processing (CatA, OsAPx2, SodCc2, GRase and RboH) of all experimental landraces of the rice advocate the central role of H2O2 turnover dynamics in regulating redox status and salinity tolerance. Landraces suffering greater loss of abilities of decisive regulation of H2O2 turnover dynamics exhibited threat on the oxidative windows of the germinating seeds under salinity.
Collapse
Affiliation(s)
- Uthpal Krishna Roy
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, UGC Centre for Advanced Study, The University of Burdwan, Burdwan, West Bengal, 713104, India.,Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, UGC Centre for Advanced Study, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
57
|
Cocozza C, Bartolini P, Brunetti C, Miozzi L, Pignattelli S, Podda A, Scippa GS, Trupiano D, Rotunno S, Brilli F, Maserti BE. Modulation of class III peroxidase pathways and phenylpropanoids in Arundo donax under salt and phosphorus stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:151-159. [PMID: 35598532 DOI: 10.1016/j.plaphy.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Arundo donax L. is an invasive species that has been recently employed for biomass production due to its well-known ability to colonize harsh environment. Based on previous observations, the present study investigated the potential role of phenylpropanoids and class III peroxidases to confer adaptation through biochemical and transcriptomic analysis in A. donax after Na+ and P excess supply, both in single stress and in combination, and after growth at low P level. The levels of hydrogen peroxide, flavonoids (i.e., quercetin, apigenin and kaempferol derivatives) and the activity of class III peroxidases, as well as the expression of several genes encoding for their enzymes involved in their biosynthesis, increased when Na+ was supplied in combination with P. These results suggest that those biomolecules are involved in the response of A. donax, to the presence of +Na and P in the soil. Moreover, even though at the sampling time no significant accumulation of lignin has been determined, the trend of accumulation of such metabolite and most of all the increase of several transcripts involved in its synthesis was found. This work for the first time indicates the need for further investigation devoted to elucidating whether the strengthening of cell walls via lignin synthesis is one of the mechanisms used by A. donax to adapt to harsh environments.
Collapse
Affiliation(s)
- C Cocozza
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50145, Florence, Italy.
| | - P Bartolini
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - C Brunetti
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - L Miozzi
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - S Pignattelli
- CNR-IBBR - Institute of Biosciences and Bioresourses, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Podda
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - G S Scippa
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | - D Trupiano
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | - S Rotunno
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy; Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | - F Brilli
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - B E Maserti
- CNR-IPSP- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
58
|
Rather BA, Mir IR, Masood A, Anjum NA, Khan NA. Ethylene-nitrogen synergism induces tolerance to copper stress by modulating antioxidant system and nitrogen metabolism and improves photosynthetic capacity in mustard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49029-49049. [PMID: 35212900 DOI: 10.1007/s11356-022-19380-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to test the efficiency of ethylene (Eth; 200 µL L-1 ethephon) in presence or absence of nitrogen (N; 80 mg N kg-1 soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H2O2, and superoxide anion, O2•-), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Naser A Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
59
|
Soccio M, Marangi M, Laus MN. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat ( Triticum durum Desf.). FRONTIERS IN PLANT SCIENCE 2022; 13:934523. [PMID: 35832233 PMCID: PMC9272005 DOI: 10.3389/fpls.2022.934523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 μM and 0.519 ± 0.004 μmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.
Collapse
Affiliation(s)
- Mario Soccio
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| | - Marianna Marangi
- Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maura N. Laus
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
60
|
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean ( Glycine max L. Merr.) Seed Aging. FRONTIERS IN PLANT SCIENCE 2022; 13:908949. [PMID: 35812982 PMCID: PMC9263854 DOI: 10.3389/fpls.2022.908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Collapse
Affiliation(s)
- Yi-xin Lin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hai-jin Xu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Guang-kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-chang Zhou
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xin-xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
61
|
Liu Q, Wang S, Du Y, Yin K. Improved drought tolerance in soybean by protein elicitor AMEP412 induced ROS accumulation and scavenging. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2089596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Quan Liu
- Department of Biotechnology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Siwen Wang
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yanli Du
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Kuide Yin
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| |
Collapse
|
62
|
Impact of Ferrous Sulfate on Thylakoidal Multiprotein Complexes, Metabolism and Defence of Brassica juncea L. under Arsenic Stress. PLANTS 2022; 11:plants11121559. [PMID: 35736711 PMCID: PMC9228442 DOI: 10.3390/plants11121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at 7 days after treatment (7 DAT) and 14 DAT. Whereas, As induced high magnitude oxidative stress, FeSO4 limited it. In general, As decreased the growth and photosynthetic parameters less when in the presence of FeSO4. Furthermore, components of the antioxidant system operated in better coordination with FeSO4. Contents of non-protein thiols and phytochelatins were higher with the supply of FeSO4. Blue-Native polyacrylamide gel electrophoresis revealed an As-induced decrease in almost every multi-protein-pigment complex (MPC), and an increase in PSII subcomplex, LHCII monomers and free proteins. FeSO4 supplication helped in the retention of a better stoichiometry of light-harvesting complexes and stabilized every MPC, including supra-molecular complexes, PSI/PSII core dimer/ATP Synthase, Cytochrome b6/f dimer and LHCII dimer. FeSO4 strengthened the plant defence, perhaps by channelizing iron (Fe) and sulfur (S) to biosynthetic and anabolic pathways. Such metabolism could improve levels of antioxidant enzymes, and the contents of glutathione, and phytochelatins. Important key support might be extended to the chloroplast through better supply of Fe-S clusters. Therefore, our results suggest the importance of both iron and sulfur to combat As-induced stress in the Indian mustard plant at biochemical and molecular levels through enhanced antioxidant potential and proteomic adjustments in the photosynthetic apparatus.
Collapse
|
63
|
Paradisone V, Navarro-León E, Albacete A, Ruiz JM, Esposito S, Blasco B. Improvement of the physiological response of barley plants to both Zinc deficiency and toxicity by the application of calcium silicate. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111259. [PMID: 35487667 DOI: 10.1016/j.plantsci.2022.111259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
An adequate availability of Zinc (Zn) is crucial for plant growth and development given the essentiality of this element. Thus, both Zn deficiency and Zn toxicity can limit crop yields. In plants, the responses to Zn imbalances involve important physiological aspects such as reactive oxygen species (ROS) accumulation, phytohormone balance, tricarboxylic acid cycle (TCA) metabolism, and organic acids (OAs) accumulation. However, a way to improve tolerance to stresses such as those produced by nutritional imbalances is the application of beneficial elements such as silicon (Si). In this study, we grew barley plants in hydroponics under Zn deficiency and toxicity conditions, applying Si in the form of CaSiO3 in order to assess its effectiveness against Zn imbalances. Parameters related to plant growth, oxidative stress, TCA enzyme activities, phytohormones and OAs accumulation were analyzed. Both Zn deficiency and toxicity reduced leaf biomass, increased ROS accumulation, and affected phytohormone and OAs concentrations and TCA enzyme activities. CaSiO3 treatment was effective in counteracting these effects enhancing Zn accumulation under Zn deficient conditions and limiting its accumulation under toxic conditions. In addition, this treatment decreased ROS levels, and improved ascorbate/glutathione and phytohormonal responses, citrate synthase activity, and malate/oxalate ratio. Therefore, this study enhanced the notion of the efficacy of CaSiO3 in improving tolerance to Zn imbalances.
Collapse
Affiliation(s)
- Valeria Paradisone
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli 80126, Italy.
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain.
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Sergio Esposito
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli 80126, Italy.
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
64
|
El-Sharkawy HHA, Rashad YM, El-Kenawy MA, Galilah DA. Magnesium carbonate elicits defense-related genes in King Ruby grapevines against downy mildew and improves its growth, yield, and berries quality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105075. [PMID: 35715030 DOI: 10.1016/j.pestbp.2022.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by Plasmopara viticola (Berk. and M. A. Curtis) Berl. and De Toni, is a serious disease of grapevines in general and King Ruby seedless cultivar in particular, affecting their growth and yield. Magnesium carbonate (MgCO3) is an antitranspirant, which induces stomatal closing and enhances plant growth and physiology. In this study, effect of foliar application of MgCO3 at 1 and 3% on plant resistance, growth, yield and physiology of grapevines (cv. King Ruby seedless) infected with downy mildew was investigated under field conditions. The obtained results showed that foliar application of MgCO3 at 3% led to upregulation of the transcription factor JERF3 (9.6-fold), and the defense-related genes GLU (6.3-fold), POD (8.7-fold), PR1 (9.6-fold), and CHI II (8.6-fold). In addition, this treatment led to a reduction in the disease severity (78%), and an increment in the yield per grapevine (20%). Furthermore, biochemical properties of berries, total contents of the photosynthetic pigments, phenolic compounds, and activities of the antioxidant enzymes peroxidase and polyphenol oxidase also enhanced. In contrast, lipid peroxidation, and H2O2 content in grapevines leaves reduced in response to MgCO3 spraying. Light microscope observations revealed that average number of closed stomata increased and the average stomatal pore area decreased in grapevines leaves as a result to MgCO3 spraying. Based on these results, we can conclude that spraying with MgCO3 at 3% has effective roles in inducing the plant resistance against downy mildew, and improving the growth and yield of grapevines.
Collapse
Affiliation(s)
- Hany H A El-Sharkawy
- Department of Mycology Research and Plant Disease Survey, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Younes M Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt.
| | - Mosaad A El-Kenawy
- Viticulture Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Doaa A Galilah
- Mansoura University, Faculty of Science, Botany Department, Mansoura, Egypt
| |
Collapse
|
65
|
Kaur H, Hussain SJ, Al-Huqail AA, Siddiqui MH, Al-Huqail AA, Khan MIR. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:660-669. [PMID: 34516728 DOI: 10.1111/plb.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a pervasive noxious heavy metal, is a key threat to agricultural system. It is rapidly translocated and has detrimental effects on plant growth and development. Hydrogen sulphide (H2 S) is emerging as a potential messenger molecule for modulating plant tolerance to Cd. Salicylic acid (SA), a phenolic signalling molecule, can alleviate Cd toxicity in plants. The present study investigated the mediatory role of H2 S (100 µM) and SA (0.5 mM), individually and in combination, in modulating antioxidant defence machinery and nutrient balance to impart Cd (50 µM) resistance to mustard. Accumulation of Cd resulted in oxidative stress (TBARS and H2 O2 ), mineral nutrient imbalance (N, P, K, Ca), decreased leaf gas exchange and PSII efficiency, ultimately reducing plant growth. Both H2 S and SA independently attenuated phytotoxic effects of Cd by triggering antioxidant systems, enhancing the nutrient pool, eventually leading to improved photosynthesis and biomass of mustard plants. The positive effects were more pronounced under combined application of H2 S and SA, indicating a synergistic relationship between these two signalling molecules in mitigating the detrimental effects of Cd on nutrient homeostasis and overall health of mustard, primarily by boosting antioxidant pathway. Our findings provide new insights into H2 S- and SA-induced protective mechanisms in mustard plants subjected to Cd stress and suggest their combined use as a feasible strategy to confer Cd tolerance.
Collapse
Affiliation(s)
- H Kaur
- Department of Botany, Akal University, Bathinda, India
| | - S J Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - A A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Al-Huqail
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
66
|
Kumari A, Goyal M, Mittal A, Kumar R. Defensive capabilities of contrasting sorghum genotypes against Atherigona soccata (Rondani) infestation. PROTOPLASMA 2022; 259:809-822. [PMID: 34553239 DOI: 10.1007/s00709-021-01703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Plants are equipped with a wide range of defensive mechanisms such as morphophysiological, biochemical, molecular, and hormonal signaling for protecting against insect-pest infestation. The infestation of a devastating pest shoot fly [Atherigona soccata (Rodani)] at seedling stage causes huge loss of sorghum crop productivity. In morphophysiological screening ICSV700, ICSV705, and IS18551 have been categorized as resistant, PSC-4 moderately resistant, SL-44 and SWARNA as susceptible. The present study focused on the role of defensive gene expression and its products viz: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), polyphenol oxidase (PPO), phenyl alanine ammonia lyase (PAL), responsive enzymes, and metabolites restoring redox status in sorghum plants against shoot fly infestation. In both leaf and stem tissue of sorghum genotypes, shoot fly infestation induced SOD, APX, DHAR, GR, PAL, and PPO activities while CAT activity was significantly declined at 15 and 21 days after emergence (DAE). IS18551 with resistant behavior showed upregulation of SOD, GR, APX, and DHAR along with accumulation of ascorbate, glutathione enhancing redox status of the plant during shoot fly infestation at later stage of infestation. While SWARNA with susceptible response exhibited enhanced activity of phenylpropanoid pathway enzymes PAL and PPO which in turn increased the levels of secondary metabolites like o-dihydroxyphenol and other phenols deterring the insect to attack the plant. The qRT-PCR data predicted that stress-responsive genes were initially unregulated in SWARNA; however, at 21 DAE, multifold higher expression of SOD, CAT, APX, and PPO (24.8-, 37.2-, 21.7-, and 17.9-fold respectively) in 1S18551 indicates the resistance behavior of this genotype against insect infestation owing to sustainable development capability.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Meenakshi Goyal
- Department of Plant Breeding, and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ravinder Kumar
- Department of Vegetable Crops, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
67
|
Wu S, Tian J, Ren T, Wang Y. Osmotic Adjustment and Antioxidant System Regulated by Nitrogen Deposition Improve Photosynthetic and Growth Performance and Alleviate Oxidative Damage in Dwarf Bamboo Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819071. [PMID: 35498701 PMCID: PMC9047053 DOI: 10.3389/fpls.2022.819071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Dwarf bamboo (Fargesia denudata) is a staple food for the endangered giant pandas and plays a critical role in the sub-alpine ecosystem. Characterized by shallow roots and expeditious growth, it is exceedingly susceptible to drought stress and nitrogen (N) deposition in the context of a changing global environment. However, a comprehensive picture about the interactive response mechanism of dwarf bamboo to the two factors, water regime and N deposition, is far from being given. Therefore, a completely randomized design with two factors of water regimes (well-watered and water-stressed) and N deposition levels (with and without N addition) of F. denudata was conducted. In view of the obtained results, drought stress had an adverse impact on F. denudata, showing that it destroyed ultrastructure integrity and induced oxidative damage and restricted water status in leaves and roots, as well as declined photosynthetic efficiency in leaves, especially in N non-deposition plants. Nevertheless, F. denudata significantly increased heat dissipation in leaves, regulated antioxidant enzymes activities, antioxidants contents, and osmoregulation substances concentrations in leaves and roots, as well as shifted biomass partitioning in response to drought stress. However, regardless of water availability, N deposition maintained better ultrastructure in leaves and roots, resulting in superior photosynthesis and growth of F. denudata. Additionally, although N deposition did not cause oxidative damage in well-watered plants, ameliorated the effects of drought stress on F. denudata through co-deploying heat dissipation in leaves, the antioxidant system in roots as well as osmotic adjustment in leaves and roots. Noticeably, the leaves and roots of F. denudata expressed quite distinct acclimation responses to drought resistance under N deposition.
Collapse
|
68
|
Effects of Azorhizobium caulinodans and Piriformospora indica Co-Inoculation on Growth and Fruit Quality of Tomato (Solanum lycopersicum L.) under Salt Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salt stress is a worldwide environmental signal, reducing the growth and yield of crops. To improve crop tolerance to salt, several beneficial microbes are utilized. Here, nitrogen-fixing bacterium Azorhizobium caulinodans and root endophytic fungus Piriformospora indica were used to inoculate tomato (Solanum lycopersicum) under salt stress, and the effects of the co-inoculation were investigated. Results showed that A. caulinodans colonized in the intercellular space in stems and roots of tomato plants, while P. indica colonized in the root cortex. Two weeks following salt treatment, co-inoculated tomato plants grew substantially taller and had larger stem base diameters. Activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and reduced and oxidized ascorbate and glutathione (i.e., AsA, DHA, GSH, and GSSG, respectively) concentrations along with the ratios of AsA/(AsA + DHA) and GSH/(GSH + GSSG) increased in the leaves of co-inoculated plants under salt stress. The co-inoculation significantly increased soluble proteins and AsA in fruits; however, concentrations of soluble sugars and proanthocyanins did not show significant changes, compared with NaCl only treatment. Data suggest that A. caulinodans and P. indica co-inoculation boosted tomato growth and improved the quality of tomato fruits under salt stress. O-inoculation of A. caulinodans and P. indica might be employed to enhance tomato plant salt tolerance.
Collapse
|
69
|
Kaushik S, Sharma P, Kaur G, Singh AK, Al-Misned FA, Shafik HM, Sirhindi G. Seed priming with methyl jasmonate mitigates copper and cadmium toxicity by modifying biochemical attributes and antioxidants in Cajanus cajan. Saudi J Biol Sci 2022; 29:721-729. [PMID: 35197737 PMCID: PMC8847966 DOI: 10.1016/j.sjbs.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Contamination of agricultural soils with heavy metals (HMs) has posed major threat to the environment as well as human health. The aim of this study was to appraise the efficiency of key-antioxidant enzymes in enhancing plants' tolerance to HMs (heavy metals) like copper (Cu) and Cadmium (Cd), under the action of methyl jasmonate (Me-JA) in Cajanus cajan L. Seeds of C. cajan treated with Me-JA (0, 1 nM) were discretely subjected to noxious concentrations of Cu and Cd (0, 1, 5 mM) and raised for 12 days under controlled conditions in plant growth chamber for biochemical analysis. In contrast to Cd, Cu triggered oxidative stress more significantly (44.54% in 5 mM Cu increase in MDA as compared to control) and prominently thereby affecting plants' physiological and biochemical attributes. By activating the antioxidant machinery, Me-JA pre-treatment reduced HMs-induced oxidative stress, increased proline production, glutathione (41.95% under 5 mM Cu when treated with 1 nM Me-JA treatment) and ascorbic acid content by 160.4 % under aforemtioned treatments thus improving the redox status. Thus, in light of this our results put forward a firm basis of the positive role that Me-JA might play in the mitigation of oxidative stress caused due to HMs stress by stimulating antioxidant defense system leading to overall improvement of growth of C. cajan seedlings.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Poonam Sharma
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Gurvarinder Kaur
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hesham M Shafik
- Hungarian Academy of Sciences, Limnoecology Research Group, University of Pannonia, Gyetem u. 10, H-8200 Veszprem, Hungary
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
70
|
Biczak R, Pawłowska B. Reaction of spring barley seedlings and H. incongruens crustaceans to the presence of acetylsalicylic acid in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113936. [PMID: 34700078 DOI: 10.1016/j.jenvman.2021.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Acetylsalicylic acid (ASA) is one of the more commonly used analgesic, antipyretic, and anti-inflammatory as well as anticoagulant drugs available in the OTC (over the counter) segment. Due to the considerable use of this drug, an attempt was made to determine the effect of ASA on the crustacean Heterocypris incongruens and the monocotyledonous plant spring barley. The tested compounds were introduced into soil in which these organisms "lived". The study showed that ASA had an adverse effect on seed germination potential as well as a negative effect on spring barley growth; however, and photosynthetic pigments content was observed only at the highest concentrations of the studied compounds. ASA did not cause oxidative stress in plants but did also cause disturbances in the growth of H. incongruens, without causing their mortality. As a result, ASA may have certain negative effects on both crustaceans and monocots.
Collapse
Affiliation(s)
- Robert Biczak
- Jan Długosz University in Częstochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland.
| | - Barbara Pawłowska
- Jan Długosz University in Częstochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland
| |
Collapse
|
71
|
Jha S, Maity S, Singh J, Chouhan C, Tak N, Ambatipudi K. Integrated physiological and comparative proteomics analysis of contrasting genotypes of pearl millet reveals underlying salt-responsive mechanisms. PHYSIOLOGIA PLANTARUM 2022; 174:e13605. [PMID: 34837239 DOI: 10.1111/ppl.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Salinity stress poses a significant risk to plant development and agricultural yield. Therefore, elucidation of stress-response mechanisms has become essential to identify salt-tolerance genes in plants. In the present study, two genotypes of pearl millet (Pennisetum glaucum L.) with contrasting tolerance for salinity exhibited differential morpho-physiological and proteomic responses under 150 mM NaCl. The genotype IC 325825 was shown to withstand the stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain intracellular osmotic, ionic, and redox homeostasis and membrane integrity under stress. The IC 325825 genotype exhibited a higher abundance of C4 photosynthesis enzymes, efficient enzymatic and non-enzymatic antioxidant system, and lower Na+ /K+ ratio compared with IP 17224. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt stress. The differentially abundant proteins were in silico characterized for their functions, subcellular-localization, associated pathways, and protein-protein interaction. These proteins were mainly involved in photosynthesis/response to light stimulus, carbohydrate and energy metabolism, and stress responses. Proteomics data were validated through expression profiling of the selected genes, revealing a poor correlation between protein abundance and their relative transcript levels. This study has provided novel insights into salt adaptive mechanisms in P. glaucum, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for engineering stress tolerance in salt-sensitive major crops.
Collapse
Affiliation(s)
- Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawahar Singh
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Chaya Chouhan
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
72
|
Roy D, Adhikari S, Adhikari A, Ghosh S, Azahar I, Basuli D, Hossain Z. Impact of CuO nanoparticles on maize: Comparison with CuO bulk particles with special reference to oxidative stress damages and antioxidant defense status. CHEMOSPHERE 2022; 287:131911. [PMID: 34461334 DOI: 10.1016/j.chemosphere.2021.131911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to systematically investigate the particle size effects of copper (II) oxide [CuO nanoparticles (<50 nm) and CuO bulk particles (<10 μm)] on maize (Zea mays L.). Bioaccumulation of Cu, in vivo ROS generation, membrane damage, transcriptional modulation of antioxidant genes, cellular redox status of glutathione and ascorbate pool, expression patterns of COPPER TRANSPORTER 4 and stress responsive miRNAs (miR398a, miR171b, miR159f-3p) with their targets were investigated for better understanding of the underlying mechanisms and the extent of CuO nanoparticles and CuO bulk particles induced oxidative stress damages. More restricted seedling growth, comparatively higher membrane injury, marked decline in the levels of chlorophylls and carotenoids and severe oxidative burst were evident in CuO bulk particles challenged leaves. Dihydroethidium and CM-H2DCFDA staining further supported elevated reactive oxygen species generation in CuO bulk particles stressed roots. CuO bulk particles exposed seedlings accumulated much higher amount of Cu in roots as compared to CuO nanoparticles stressed plants with low root-to-shoot Cu translocation. Moderately high GR expression with maintenance of a steady GSH-GSSG ratio in CuO nanoparticles challenged leaves might be accountable for their rather improved performance under stressed condition. miR171b-mediated enhanced expression of SCARECROW 6 might participate in the marked decline of chlorophyll content in CuO bulk particles exposed leaves. Ineffective recycling of AsA pool is another decisive feature of inadequate performance of CuO bulk particles stressed seedlings in combating oxidative stress damages. Taken together, our findings revealed that toxicity of CuO bulk particles was higher than CuO nanoparticles and the adverse effects of CuO bulk particles on maize seedlings might be due to higher Cu ions dissolution.
Collapse
Affiliation(s)
- Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Supriya Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ikbal Azahar
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Debapriya Basuli
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
73
|
Cheng F, Gao M, Lu J, Huang Y, Bie Z. Spatial-Temporal Response of Reactive Oxygen Species and Salicylic Acid Suggest Their Interaction in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon Plants. Antioxidants (Basel) 2021; 10:2024. [PMID: 34943126 PMCID: PMC8698449 DOI: 10.3390/antiox10122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio-temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.
Collapse
Affiliation(s)
| | | | | | | | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (F.C.); (M.G.); (J.L.); (Y.H.)
| |
Collapse
|
74
|
Aazami MA, Rasouli F, Ebrahimzadeh A. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC PLANT BIOLOGY 2021; 21:597. [PMID: 34915853 PMCID: PMC8675469 DOI: 10.1186/s12870-021-03379-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Salinity is one of the most challenging abiotic stresses restricting the growth of plants. In vitro screening will increase the efficiency and speed of salinity tolerant genotypes identifications. The response of four tomato cultivars under salinity was analyzed in vitro to evaluate the seedlings growth, biochemical, and gene expression responses as well as the effect of nano zinc and iron on callus induction and plant regeneration. RESULTS The results showed that an increase in salinity stress in the medium decreased the germination percentage, fresh and dry weight of shoot, root length, chlorophyll a, b and carotenoids content, K and Ca content, and on the other hand, Na content was increased. MDA content ('Nora', 'PS-10', 'Peto' and 'Roma': 1.71, 1.78, 1.66 and 2.16 folds, respectively), electrolyte leakage ('PS-10': 33.33%; 'Roma': 56.33%), were increased with salinity of 100 mM compared to control. Proline content was increased in 50 mM NaCl (10.8 fold). The most activity of antioxidant enzymes including CAT, SOD, APX, GPX, and GR was observed in the 'PS-10' cultivar, and the lowest activity of these enzymes was observed in 'Roma' under salinity stress. The AsA and GSH were decreased and DHA and GSSG were increased with the increased intensity of salinity. The relative expression of SOD, APX, and GR genes varied in different cultivars at different salinity concentrations. The most percentage of callus induction was observed with applying iron oxide nanoparticles, and the most regeneration rate was recorded using zinc oxide nanoparticles. CONCLUSION The results showed that salt-tolerant cultivars such as 'PS-10' with better osmotic adjustment, are suitable candidates for the future production and breeding programs. The use of nutrient nanoparticles under salinity stress for different tomato cultivars increased their performance.
Collapse
Affiliation(s)
- Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Asghar Ebrahimzadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
75
|
Zeeshan M, Hu YX, Iqbal A, Salam A, Liu YX, Muhammad I, Ahmad S, Khan AH, Hale B, Wu HY, Zhou XB. Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112738. [PMID: 34481352 DOI: 10.1016/j.ecoenv.2021.112738] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 μM Na2HAsO4) stressed plants were treated with ZnONP (25 μM ZnO) and SeNP (25 μM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yu Xin Hu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Anas Iqbal
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Xin Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, China
| | - Brett Hale
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | - Hai Yan Wu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
76
|
ElSayed AI, Rafudeen MS, Gomaa AM, Hasanuzzaman M. Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense-related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:1369-1381. [PMID: 33619766 DOI: 10.1111/ppl.13372] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre-treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2-cysteine peroxiredoxin (2-Cys-Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2-Cys-Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity-prone soils.
Collapse
Affiliation(s)
| | | | - Ayman M Gomaa
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
77
|
Abstract
Summary
Introduction:
Moringa oleifera (moringa) is a fast-growing tree from north India and Himalayan foothills considered to be one of the most nutritious species. Especially it’s leaves contain proteins in a high concentration, all essential amino acids, nutrients like calcium, iron, potassium and cooper, vitamin A, E and group B, and also antioxidants and polyphenols. Many studies have demonstrated the medicinal properties of moringa leaves consumption thanks to its antioxidant, anti-inflammatory, prevention of diabetes or antitumor and anticancer properties. The amount and number of essential nutrients and phytochemical constituents may vary depending on the plant tissue and age and especially on the climatic and edaphological conditions.
Methods: We pointed to demonstrate moringa plants grown on proper conditions display a better production of its desired compounds. In this work, the mineral, amino acids, antioxidant activity and various bioactive compounds were analysed in moringa leaves extract from plants grown on Tenerife Island under organic production and similar climatic and edaphological conditions as the place of origin.
Results: Our results revealed a high concentration of several nutrients as calcium, potassium and iron, as comparison to other moringa plants; β-carotene (pro-vitamin A), ascorbate (vitamin C) and glutathione, whose function is mainly antioxidant; chlorogenic acid with anticancer function; quercetin with antioxidant, anticancer and antidiabetic functions, among others; glucomoringin-isothiocyanate with anti-micro-biological and neuroprotective function.
Conclusion: The results obtained in this study placed on Tenerife Island as one of the best suitable places for moringa good quality production and highlight the potential use of moringa novel food for humans and as a biostimulant for plants.
Collapse
|
78
|
Krishna R, Ansari WA, Jaiswal DK, Singh AK, Prasad R, Verma JP, Singh M. Overexpression of AtDREB1 and BcZAT12 genes confers drought tolerance by reducing oxidative stress in double transgenic tomato (Solanum lycopersicum L.). PLANT CELL REPORTS 2021. [PMID: 34091725 DOI: 10.1016/j.envexpbot.2021.104396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
Collapse
Affiliation(s)
- Ram Krishna
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Waquar Akhter Ansari
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Achuit Kumar Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, India.
| |
Collapse
|
79
|
Pawłowska B, Telesiński A, Biczak R. Effect of diclofenac and naproxen and their mixture on spring barley seedlings and Heterocypris incongruens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103746. [PMID: 34536620 DOI: 10.1016/j.etap.2021.103746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a popular group of drugs used worldwide. These drugs are also available over the counter, which implies that their consumption is not strictly regulated. They are released through wastewater and feces and can have adverse effects on the environment. The present study aimed to evaluate the effect of two NSAIDs, diclofenac (DCF) and naproxen (NAP), and their mixture (DCF + NAP) on spring barley seedlings and ostracods Heterocypris incongruens. The tested drugs had a negative impact on bivalve ostracods and the studied plants. DCF was the most toxic toward ostracods, while spring barley seedlings were affected the most by NAP. The application of the tested compounds and their mixture resulted in a decrease in fresh weight yield and the content of photosynthetic pigments. In addition, an increase in H2O2 and proline content and changes in the activity of antioxidant enzymes (POD, APX, CAT, and SOD) were observed.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., 42-200, Czestochowa, Poland.
| | - Arkadiusz Telesiński
- West Pomeranian University of Technology in Szczecin, The Faculty of Environmental Management and Agriculture, Juliusza Słowackiego st. 17, 71-434, Szczecin, Poland
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., 42-200, Czestochowa, Poland
| |
Collapse
|
80
|
Krishna R, Ansari WA, Jaiswal DK, Singh AK, Prasad R, Verma JP, Singh M. Overexpression of AtDREB1 and BcZAT12 genes confers drought tolerance by reducing oxidative stress in double transgenic tomato (Solanum lycopersicum L.). PLANT CELL REPORTS 2021; 40:2173-2190. [PMID: 34091725 DOI: 10.1007/s00299-021-02725-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
Collapse
Affiliation(s)
- Ram Krishna
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Waquar Akhter Ansari
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Achuit Kumar Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, India.
| |
Collapse
|
81
|
Rashad YM, El-Sharkawy HHA, Belal BEA, Abdel Razik ES, Galilah DA. Silica Nanoparticles as a Probable Anti-Oomycete Compound Against Downy Mildew, and Yield and Quality Enhancer in Grapevines: Field Evaluation, Molecular, Physiological, Ultrastructural, and Toxicity Investigations. FRONTIERS IN PLANT SCIENCE 2021; 12:763365. [PMID: 34777446 PMCID: PMC8581734 DOI: 10.3389/fpls.2021.763365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 06/01/2023]
Abstract
Downy mildew is the most destructive disease of grapevines in the regions of relatively warm and humid climate causing up to 50% yield losses. Application of silicon- (Si-) based products have been extensively studied against various oomycete, fungal, bacterial, and viral plant diseases, but studies on Si application in their nanosize are limited. In this study, the field application of silica nanoparticles (SiNPs) on Thompson Seedless grapevines (H4 strain) infected with downy mildew was evaluated. In addition, molecular, physiological, ultrastructural, and toxicity investigations were also conducted. The obtained results revealed that spraying of grapevines with SiNPs at 150 ppm significantly overexpressed the transcription factor jasmonate and ethylene-responsive factor 3 recording 8.7-fold, and the defense-related genes β-1,3-glucanase (11-fold), peroxidase (10.7-fold) pathogenesis-related-protein 1 (10.6-fold), and chitinase (6.5-fold). Moreover, a reduction up to 81.5% in the disease severity was achieved in response to this treatment. Shoot length and yield per grapevine were considerably enhanced recording up to 26.3 and 23.7% increase, respectively. The berries quality was also improved. Furthermore, this treatment led to an enhancement in the photosynthetic pigments, induction of phenolic and ascorbic acid contents, an increase in the activity of peroxidase and polyphenol oxidase enzymes, and a reduction in the cellular electrolyte leakage, lipid peroxidation, and H2O2 content. Scanning electron microscopy observations showed an increase up to 86.6% in the number of closed stomata and a reduction up to 55% in the average stomatal pore area in response to this treatment. Observations of the transmission electron microscopy showed ultrastructural alterations in the cells of a grapevine leaf due to the infection with downy mildew, including plasmolysis and disruption of the cellular components, abnormal chloroplasts, and thickening of the cell wall and cell membrane. These abnormal alterations were reduced in response to SiNPs spray. In contrast, this study also showed that this treatment had considerable cytotoxic and genotoxic effects at this direct dose/concentration. So, additional investigations to determine the SiNPs residue in the produced edible plant parts are urgently needed. In addition, the pre-harvest interval, toxicity index, and risk assessment should be evaluated before any recommendation for use.
Collapse
Affiliation(s)
- Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Hany H. A. El-Sharkawy
- Department of Mycology Research and Plant Disease Survey, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Bassam E. A. Belal
- Viticulture Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Doaa A. Galilah
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
82
|
Lin PH, Chao YY. Different Drought-Tolerant Mechanisms in Quinoa ( Chenopodium quinoa Willd.) and Djulis ( Chenopodium formosanum Koidz.) Based on Physiological Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112279. [PMID: 34834642 PMCID: PMC8620838 DOI: 10.3390/plants10112279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 06/02/2023]
Abstract
The purpose of this experiment is to study the effects of treatment with 90% (28.5% volumetric water content (VWC)), 75% (24% VWC), 50% (16% VWC), and 25% (8% VWC) of water requirements on the growth of two djulis (Chenopodium formosana Koidz) varieties (red: RP and yellow: OR) and one quinoa (Chenopodium quinoa Willd) varieties (PI). The results showed that drought stress (8% VWC) significantly reduced plant growth and relative water content, and increased H2O2 and MDA content in C. formosana and C. quinoa. The most significant increase in these parameters was detected in the OR variety. The antioxidant enzymes, such as SOD, APX, and GR activities of PI variety under drought treatment (8% VWC), are significantly increased, while GR activity of C. formosana also increased significantly. Additionally, C. formosana and PI variety remained at a stable AsA/DHA ratio, but the GSH/GSSG ratio decreased during drought treatment. Moreover, drought stress increased total soluble sugars and proline content in the PI variety. However, C. formosana proline content was extremely significantly enhanced, and only the OR variety increased the total soluble sugar content at the same time during the vegetative growth period. In summary, C. formosana and C. quinoa have different drought tolerance mechanisms to adapt to being cultivated and produced under severe drought conditions.
Collapse
|
83
|
Sun W, Zhan J, Zheng T, Wu G, Xu H, Chen Y, Yao M, Zeng J, Yan J, Chen H. Involvement of several putative transporters of different families in β-cyclocitral-induced alleviation of cadmium toxicity in quinoa (Chenopodium quinoa) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126474. [PMID: 34186425 DOI: 10.1016/j.jhazmat.2021.126474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has a serious negative impact on crop growth and human food security. This study investigated the alleviating effect of β-cyclocitral, a potential heavy metal barrier, on Cd stress in quinoa seedlings and the associated mechanisms. Our results showed that β-cyclocitral alleviated Cd stress-induced growth inhibition in quinoa seedlings and promoted quinoa seedling root development under Cd stress. Moreover, it maintained the antioxidant system of quinoa seedlings, including the enzymatic, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and nonenzymatic, i.e., reduced glutathione (GSH) and ascorbic acid (ASA), antioxidants, which eliminate the damage from excessive reactive oxygen species (ROS). Our results showed that β-cyclocitral could reduce the amount of Cd absorbed by roots. Furthermore, we systematically identified five transporter families from the quinoa genome, and the RT-qPCR results showed that ZIP, Nramp and YSL gene families were downregulated by β-cyclocitral to reduce Cd uptake by roots. Thus, β-cyclocitral promoted the growth, photosynthetic capacity and antioxidant capacity of the aboveground parts of quinoa seedlings. Taken together, these results suggested that the β-cyclocitral-induced decrease in Cd uptake may be caused by the downregulation of several selected transporter genes.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing 210032, China.
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Guoming Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Haishen Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Min Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jing Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
84
|
Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Iqbal N, Irfan M, Sehar Z, Khan NA. Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112535. [PMID: 34325203 DOI: 10.1016/j.ecoenv.2021.112535] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 05/25/2023]
Abstract
Salicylic acid (SA) is a well-known plant growth regulator, which participates in many physiological processes of plants under normal and stressful conditions. In this study, we investigated the impact of SA supplementation on the components of ascorbate-glutathione cycle and glyoxalase system, photosynthesis and growth of rice (Oryza sativa) plants subjected to arsenic (As) stress. Plants grown with As exhibited enhanced As uptake, increased oxidative stress, and photosynthesis and growth inhibition. Application of SA promoted photosynthesis and growth in plants with or without As stress by improving plant defense systems and reducing oxidative stress through interaction with ethylene and nitric oxide (NO). SA acted as an ethylene antagonist, reducing stress ethylene formation under As stress, while NO formation was induced. This resulted in coordinated control over the antioxidant defense systems and enhanced As tolerance, protecting photosynthesis and growth from As-induced damage. The study showed that positive responses of SA in promoting photosynthesis and growth under As stress were the result of its interplay with ethylene and NO, enhanced capacity of defense systems to reduce oxidative stress. The crosstalk of SA with ethylene and NO will be useful in augmenting the performance of rice plants under As stress.
Collapse
Affiliation(s)
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zebus Sehar
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
85
|
Nisar F, Gul B, Aziz I, Hameed A, Egan T. Increasing salinity leads to differential growth and H 2O 2 homeostasis in plants produced from heteromorphic seeds of the succulent halophyte Arthrocnemum indicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:225-234. [PMID: 34119872 DOI: 10.1016/j.plaphy.2021.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Information about responses of plants grown from heteromorphic seeds is limited and inconclusive. This is especially true of subtropical halophytes where such studies have yet to be published. Therefore, growth, water-relations, and oxidative stress mitigation of plants germinated from the heteromorphic seeds of the succulent halophyte Arthrocnemum indicum under increasing (0, 300, and 900 mM NaCl) salinity were studied. Growth of plants from only small seeds was stimulated in moderate (300 mM NaCl) salinity. High (900 mM NaCl) salinity inhibited the growth of plants emerged from both small and large sized seeds. Plants germinating from both seed sizes demonstrated similar patterns of osmotic adjustment and did not develop signs of oxidative damage under increasing salinity. However, the magnitude of hydrogen peroxide and antioxidant responses differed between plant types. Under moderate salinity, plants from small seeds showed constitutive activities of most antioxidant enzymes (except superoxide dismutase) and levels of non-enzymatic antioxidants (except ascorbate). Conversely, a decline in activities of most antioxidant enzymes and levels of most non-enzymatic antioxidants occurred in plants from large seeds. While under high salinity, increased ascorbate peroxidase, glutathione, and polyphenol levels, along with unaffected ascorbate and superoxide dismutase levels, occurred in plants from small seeds. In plants from large seeds, there were increased ascorbate and polyphenol levels, but changes to the ascorbate peroxidase levels were not observed. These results thus indicate differential growth and hydrogen peroxide homeostasis in A. indicum plants emerged from heteromorphic seeds.
Collapse
Affiliation(s)
- Farah Nisar
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan
| | - Bilquees Gul
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan
| | - Abdul Hameed
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi-75270, Karachi, Pakistan.
| | - Todd Egan
- Division of Mathematics and Natural Science, Elmira College, One Park Place, Elmira, NY, 14901, USA
| |
Collapse
|
86
|
Effect of tebuconazole and trifloxystrobin on Ceratocystis fimbriata to control black rot of sweet potato: processes of reactive oxygen species generation and antioxidant defense responses. World J Microbiol Biotechnol 2021; 37:148. [PMID: 34363541 DOI: 10.1007/s11274-021-03111-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Black rot, caused by Ceratocystis fimbriata, is one of the most destructive disease of sweet potato worldwide, resulting in significant yield losses. However, a proper management system can increase resistance to this disease. Therefore, this study investigated the potential of using tebuconazole (TEB) and trifloxystrobin (TRI) to improve the antioxidant defense systems in sweet potato as well as the inhibitory effects on the growth of and antioxidant activity in C. fimbriata. Four days after inoculating cut surfaces of sweet potato disks with C. fimbriata, disease development was reduced by different concentrations of TEB + TRI. Infection by C. fimbriata increased the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), and the activity of lipoxygenase (LOX) by 138, 152, 73, and 282%, respectively, in sweet potato disks, relative to control. In the sweet potato disks, C. fimbriata reduced the antioxidant enzyme activities as well as the contents of ascorbate (AsA) and reduced glutathione (GSH) by 82 and 91%, respectively, compared with control. However, TEB + TRI reduced the oxidative damage in the C. fimbriata-inoculated sweet potato disks by enhancing the antioxidant defense systems. On the other hand, applying TEB + TRI increased the levels of H2O2, MDA, and EL, and increased the activity of LOX in C. fimbriata, in which the contents of AsA and GSH decreased, and therefore, inhibited the growth of C. fimbriata. These results suggest that TEB + TRI can significantly control black rot disease in sweet potato by inhibiting the growth of C. fimbriata.
Collapse
|
87
|
Żur I, Kopeć P, Surówka E, Dubas E, Krzewska M, Nowicka A, Janowiak F, Juzoń K, Janas A, Barna B, Fodor J. Impact of Ascorbate-Glutathione Cycle Components on the Effectiveness of Embryogenesis Induction in Isolated Microspore Cultures of Barley and Triticale. Antioxidants (Basel) 2021; 10:1254. [PMID: 34439502 PMCID: PMC8389252 DOI: 10.3390/antiox10081254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Enhanced antioxidant defence plays an essential role in plant survival under stress conditions. However, excessive antioxidant activity sometimes suppresses the signal necessary for the initiation of the desired biological reactions. One such example is microspore embryogenesis (ME)-a process of embryo-like structure formation triggered by stress in immature male gametophytes. The study focused on the role of reactive oxygen species and antioxidant defence in triticale (×Triticosecale Wittm.) and barley (Hordeum vulgare L.) microspore reprogramming. ME was induced through various stress treatments of tillers and its effectiveness was analysed in terms of ascorbate and glutathione contents, total activity of low molecular weight antioxidants and activities of glutathione-ascorbate cycle enzymes. The most effective treatment for both species was a combination of low temperature and exogenous application of 0.3 M mannitol, with or without 0.3 mM reduced glutathione. The applied treatments induced genotype-specific defence responses. In triticale, both ascorbate and glutathione were associated with ME induction, though the role of glutathione did not seem to be related to its function as a reducing agent. In barley, effective ME was accompanied by an accumulation of ascorbate and high activity of enzymes regulating its redox status, without direct relation to glutathione content.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Anna Nowicka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Katarzyna Juzoń
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Agnieszka Janas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (J.F.)
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (J.F.)
| |
Collapse
|
88
|
Dhali S, Pradhan M, Sahoo RK, Mohanty S, Pradhan C. Alleviating Cr(VI) stress in horse gram (Macrotyloma uniflorum Var. Madhu) by native Cr-tolerant nodule endophytes isolated from contaminated site of Sukinda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31717-31730. [PMID: 33611748 PMCID: PMC7896553 DOI: 10.1007/s11356-021-13009-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Sukinda chromite mine of Odisha is a heavily polluted site, generating huge overburden dumps. The present experiment was designed to evaluate the potential of two native nodule endophytic bacterial strains, viz. Bacillus aryabhattai AS03 (MT645244) and Rhizobium pusense AS05 (MT645243), isolated from contaminated sites to be considered remediation tool to minimize the effect of Cr toxicity on Macrotyloma uniflorum var. Madhu. The two nodule endophytic bacterial strains AS03 and AS05 exhibited tolerance to 1800 and 3000 ppm of Cr(VI) respectively in vitro when cultured alone. AAS analysis confirmed higher accumulation of Cr(VI) in roots and less accumulation in shoots which is dose-specific (bio-inoculant) either treated alone or combined. Complete absence of Cr accumulation approximately 99% in shoots of Macrotyloma was observed owing to synergistic effect of both the strains (biochar-based formulation). This study also suggests increased shoot and root length, nodule nos., and leghemoglobin content of the plant at 60 days indicating the plant growth-promoting effects of both the strains. ROS and antioxidant enzymes of the plant recorded decreasing trend in inoculated plants. However, a significant increment in transpiration rate, total photosynthetic rate, intracellular CO2 conc., and stomatal conductance in leaves was observed owing to dual inoculation. Our findings corroborate the supremacy of synergistic effect of both the strains applied in the form of biochar-based biofertilizer in enhancing growth and tolerance index of M. uniflorum cultivated in Cr(VI)-stressed soil. This investigation depicts the efficiency of the two nodule bacteria as a mixed inoculant to alleviate Cr toxicity and making the seeds safe for consumption.
Collapse
Affiliation(s)
- Shilpee Dhali
- Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Santanu Mohanty
- Department of Soil Science and Agricultural Chemistry, OUAT, Bhubaneswar, Odisha, 751003, India
| | - Chinmay Pradhan
- Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
89
|
Khan MIR, Khan NA, Jahan B, Goyal V, Hamid J, Khan S, Iqbal N, Alamri S, Siddiqui MH. Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:152-161. [PMID: 33176068 DOI: 10.1111/plb.13211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 05/21/2023]
Abstract
The interaction of mineral nutrients with metals/metalloids and signalling molecules is well known. In the present study, we investigated the effect of phosphorus (P) in mitigation of arsenic (As) stress in mustard (Brassica juncea L.). The study was conducted to investigate potential of 30 mg P·kg-1 soil P supplement (diammonium phosphate) to cope up with the adverse effects of As stress (24 mg As·kg-1 soil) in mustard plants Supplementation of P influenced nitric oxide (NO) generation, which up-regulated proline metabolism, ascorbate-glutathione system and glyoxalase system and alleviated the effects of on photosynthesis and growth. Arsenic stress generated ROS and methylglyoxal content was scavenged through P-mediated NO, and reduced As translocation from roots to leaves. The involvement of NO under P-mediated alleviation of As stress was substantiated with the use of cPTIO (NO biosynthesis inhibitor) and SNP (NO inducer). The reversal of P effects on photosynthesis under As stress with the use of cPTIO emphasized the role of P-mediated NO in mitigation of As stress and protection of photosynthesis The results suggested that P reversed As-induced oxidative stress by modulation of NO formation, which regulated antioxidant machinery. Thus, P-induced regulatory interaction between NO and reversal of As-induced oxidative stress for the protection of photosynthesis may be suggested for sustainable crops.
Collapse
Affiliation(s)
- M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - N A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - B Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - V Goyal
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - J Hamid
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - S Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - N Iqbal
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - S Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
90
|
Mohsin SM, Hasanuzzaman M, Parvin K, Shahadat Hossain M, Fujita M. Protective role of tebuconazole and trifloxystrobin in wheat ( Triticum aestivum L.) under cadmium stress via enhancement of antioxidant defense and glyoxalase systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1043-1057. [PMID: 34092950 PMCID: PMC8139999 DOI: 10.1007/s12298-021-00983-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a toxic metal and an environmental pollutant that significantly reduces plant growth and productivity. Proper management can ameliorate dysfunction and improve the plant growth and productivity exposed to Cd. Therefore, the present study was conducted to explore the protective role of the fungicides tebuconazole (TEB) and trifloxystrobin (TRI) in helping wheat (Triticum aestivum L. cv. Norin 61) seedlings to tolerate Cd. Five-day-old hydroponically grown seedlings were allowed to mild (0.25 mM CdCl2) and severe (0.5 mM CdCl2) Cd stress separately and with the fungicides (2.75 µM TEB + 1.0 µM TRI) for the next four days. Compared to control, the level of H2O2 in the seedlings exposed to mild and severe Cd stress alone increased by 81 and 112%, respectively. The accumulation of Cd also increased in the wheat seedlings along with declining mineral nutrients under Cd stress. The protective effect of TEB and TRI was observed with the enhancement of the antioxidant defense and methylglyoxalase systems and reduction in oxidative damage. Applying TEB and TRI reduced MDA (by 9 and 18%), EL (by 21 and 17%), MG (by 12 and 17%), and LOX activity (by 37 and 27%), respectively, relative to Cd stress alone. Cadmium uptake also decreased in the shoots (by 48 and 50%, respectively) and roots (by 23 and 25%, respectively) of the fungicide-treated wheat seedlings under mild and severe Cd stress, relative to stress alone. These results indicate the exogenous application of TEB and TRI is a promising approach to improve Cd tolerance in wheat plants. Further investigation is needed under field conditions and for other crop species to determine the Cd-tolerance induced by TEB and TRI application.
Collapse
Affiliation(s)
- Sayed Mohammad Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795 Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md. Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795 Japan
| |
Collapse
|
91
|
Xu L, Li J, Najeeb U, Li X, Pan J, Huang Q, Zhou W, Liang Z. Synergistic effects of EDDS and ALA on phytoextraction of cadmium as revealed by biochemical and ultrastructural changes in sunflower (Helianthus annuus L.) tissues. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124764. [PMID: 33348204 DOI: 10.1016/j.jhazmat.2020.124764] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This study explored the phytoremediation potential of sunflower on cadmium (Cd) contaminated soils. We also studied the mechanisms through which a plant growth regulator, 5-aminolevolinic acid (ALA) protected sunflower plants from Cd-induced cellular injury. Six-leaf old sunflower plants were exposed to 0.3 g kg-1 Cd for one week and then treated with chelating agents i.e. trisodium (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS, 5 mmol kg-1) and citric acid (CA,10 mmol kg-1), and 10 mg L-1 ALA. One week after chelators and ALA application, plants were harvested for further analyses. Results suggested that chelators EDDS/CA significantly increased Cd accumulation but inhibited plant growth of sunflower. In contrast, ALA promoted both Cd absorption and biomass accumulation, especially when applied in combination with EDDS. Bioaccumulation quantity and remove efficiency of Cd + EDDS + ALA treated plants was increased by 21.00% and 20.93% as compared with Cd + EDDS treatment. The qRT-PCR results revealed that increased Cd uptake by chelators EDDS/CA and ALA was associated with an increased expression of Cd transport genes e.g. OPT6, HMA3 and Nramp1 in sunflower leaves and roots. Our study suggested that ALA protects sunflower plants from Cd-induced cellular injury by immobilizing Cd ions, modulating activities of antioxidative enzymes and capturing reactive oxygen species.
Collapse
Affiliation(s)
- Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanjuan Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350, Australia
| | - Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianmin Pan
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
92
|
Doğru A. Effects of heat stress on photosystem II activity and antioxidant enzymes in two maize cultivars. PLANTA 2021; 253:85. [PMID: 33788056 DOI: 10.1007/s00425-021-03611-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The main reason for the maize genotype "DKC7221" to be heat tolerant is to have higher photosynthetic activity under heat stress conditions. The genotype "P3167" is sensitive to high temperature because of the heat-induced inhibition in photosynthetic electron transport reactions. In the present study, the effect of heat stress (45 ºC for 20 min) on some physiological changes was investigated through a chlorophyll afluorescence technique, and some endogenous resistance mechanisms (activities of some antioxidant enzymes, free proline, and reduced ascorbate contents) in two maize cultivars (Zea mays L. cvs. P3167 and DKC7221). Chlorophyll fluorescence measurements demonstrated that heat stress led to the reduction in the efficiency of the Hill reaction, accumulation of inactive reaction centers, inhibition of electron flow from reaction centers to the plastoquinone pool, and induction of non-photochemical dissipation of absorbed light energy. Changes in Φo/(1 - Φo), SFIABS and PIABS indicated that electron transport reactions in P3167 were almost completely inhibited by heat stress. In DKC7221, however, photosynthetic electron transport reactions were maintained under heat stress conditions. As a result of impairment in the photosynthetic efficiency in P3167 under heat stress, oxidative stress appeared as shown by lower antioxidant activity, accumulation of H2O2, malondialdehyde, and formazon and photooxidative injuries in chlorophyll pigments in the leaf tissue. DKC7221, on the other hand, had a higher antioxidant efficiency and lower oxidative damage under heat stress. FeSOD activity was found to be responsible for the dismutation of superoxide radicals in both maize genotypes under heat stress. As a result, it may be concluded that the genotype DKC7221 is more tolerant to heat stress than P3167.
Collapse
Affiliation(s)
- Ali Doğru
- Faculty of Arts and Sciences, Department of Biology, Sakarya University, Esentepe, 54187, Sakarya, Turkey.
| |
Collapse
|
93
|
The effect of the root-colonizing Piriformospora indica on passion fruit (Passiflora edulis) development: Initial defense shifts to fitness benefits and higher fruit quality. Food Chem 2021; 359:129671. [PMID: 34001419 DOI: 10.1016/j.foodchem.2021.129671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Passion fruit (Passiflora edulis) has an important economic value as exotic ingredient in juice blends. We inoculated the passion fruit cultivar Passiflora edulis Sims f. edulis's roots with the beneficial root-colonizing fungus Piriformospora indica under greenhouse conditions. The experiments were performed at three different locations and times (between 2017 and 2019). After transient initial growth retardation associated with a mild salicylic-acid (SA)-dependent defense activation and reduced sucrose metabolism, plant performance and growth are promoted during later stages. The elevated SA level in the aerial parts stimulates the plant immune system and promotes pathogen resistance in the adult plants and the fruit peels. P. indica stimulates the fruit size and fruit quality, and the higher amounts of defense-related secondary metabolites in the peels restrict growth of herbivorous insect larvae fed with peel extracts. We conclude that application of P. indica to passion fruits stimulates the plants' immune system and improves the fruits' quality.
Collapse
|
94
|
Fatma M, Iqbal N, Gautam H, Sehar Z, Sofo A, D’Ippolito I, Khan NA. Ethylene and Sulfur Coordinately Modulate the Antioxidant System and ABA Accumulation in Mustard Plants under Salt Stress. PLANTS 2021; 10:plants10010180. [PMID: 33478097 PMCID: PMC7835815 DOI: 10.3390/plants10010180] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/01/2023]
Abstract
This study explored the interactive effect of ethephon (2-chloroethyl phosphonic acid; an ethylene source) and sulfur (S) in regulating the antioxidant system and ABA content and in maintaining stomatal responses, chloroplast structure, and photosynthetic performance of mustard plants (Brassica juncea L. Czern.) grown under 100 mM NaCl stress. The treatment of ethephon (200 µL L−1) and S (200 mg S kg−1 soil) together markedly improved the activity of enzymatic and non-enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle, resulting in declined oxidative stress through lesser content of sodium (Na+) ion and hydrogen peroxide (H2O2) in salt-stressed plants. These changes promoted the development of chloroplast thylakoids and photosynthetic performance under salt stress. Ethephon + S also reduced abscisic acid (ABA) accumulation in guard cell, leading to maximal stomatal conductance under salt stress. The inhibition of ethylene action by norbornadiene (NBD) in salt- plus non-stressed treated plants increased ABA and H2O2 contents, and reduced stomatal opening, suggesting the involvement of ethephon and S in regulating stomatal conductance. These findings suggest that ethephon and S modulate antioxidant system and ABA accumulation in guard cells, controlling stomatal conductance, and the structure and efficiency of the photosynthetic apparatus in plants under salt stress.
Collapse
Affiliation(s)
- Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
- Correspondence: (A.S.); (N.A.K.)
| | - Ilaria D’Ippolito
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
- Correspondence: (A.S.); (N.A.K.)
| |
Collapse
|
95
|
Pignattelli S, Broccoli A, Piccardo M, Felline S, Terlizzi A, Renzi M. Short-term physiological and biometrical responses of Lepidium sativum seedlings exposed to PET-made microplastics and acid rain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111718. [PMID: 33396049 DOI: 10.1016/j.ecoenv.2020.111718] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Plastics enter in terrestrial natural system primarily by agricultural purposes, while acid rain is the result of anthropogenic activities. The synergistic effects of microplastics and acid rain on plant growth are not known. In this study, different sizes of polyethylene terephthalate (PET) and acid rain are tested on Lepidium sativum, in two separate experimental sets. In the first one we treated plants only with PET, in the second one we used PET and acid rain together. In both experimentations we analyzed: i) plant biometrical parameters (shoot height, leaf number, percentage inhibition of seed germination, fresh biomass), and ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione). Results carried out from our experiments highlighted that different sizes of polyethylene terephthalate are able to affect plant growth and physiological responses, with or without acid rain supplied during acute toxicity (6 days). SHORT DESCRIPTION: This study showed that different sizes of PET microplastics affect physiological and biometrical responses of Lepidum sativum seedlings, with or without acid rain; roots and leaves responded differently.
Collapse
Affiliation(s)
- Sara Pignattelli
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, SI-5000 Rožna Dolina, Nova Gorica, Slovenia; Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy
| | - Andrea Broccoli
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy
| | - Manuela Piccardo
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | | | - Antonio Terlizzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
96
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat ( Triticum aestivum L.) Plants. Antioxidants (Basel) 2021; 10:antiox10010108. [PMID: 33466569 PMCID: PMC7828694 DOI: 10.3390/antiox10010108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/24/2023] Open
Abstract
The involvement of nitric oxide (NO) and hydrogen sulfide (H2S) in countermanding heat-inhibited photosynthetic features were studied in wheat (Triticum aestivum L.). Heat stress (HS) was employed at 40 °C after establishment for 6 h daily, and then plants were allowed to recover at 25 °C and grown for 30 days. Glucose (Glc) content increased under HS and repressed plant photosynthetic ability, but the application of sodium nitroprusside (SNP, as NO donor) either alone or with sodium hydrosulfide (NaHS, as H2S donor) reduced Glc-mediated photosynthetic suppression by enhancing ascorbate-glutathione (AsA-GSH) metabolism and antioxidant system, which reduced oxidative stress with decreased H2O2 and TBARS content. Oxidative stress reduction or inhibiting Glc repression was maximum with combined SNP and NaHS treatment, which was substantiated by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and hypotaurine (HT), scavengers for NO and H2S, respectively. The scavenge of H2S reduced NO-mediated alleviation of HS suggesting of its downstream action in NO-mediated heat-tolerance. However, a simultaneous decrease of both (NO and H2S) led to higher Glc-mediated repression of photosynthesis and oxidative stress in terms of increased H2O2 content that was comparable to HS plants. Thus, NO and H2S cooperate to enhance photosynthesis under HS by reducing H2O2-induced oxidative stress and excess Glc-mediated photosynthetic suppression.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
- Correspondence: (N.I.); (F.J.C.)
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
- Correspondence: (N.I.); (F.J.C.)
| |
Collapse
|
97
|
Xu L, Hu Y, Jin G, Lei P, Sang L, Luo Q, Liu Z, Guan F, Meng F, Zhao X. Physiological and Proteomic Responses to Drought in Leaves of Amygdalus mira ( Koehne) Yü et Lu. FRONTIERS IN PLANT SCIENCE 2021; 12:620499. [PMID: 34249029 PMCID: PMC8264794 DOI: 10.3389/fpls.2021.620499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.
Collapse
Affiliation(s)
- Liping Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangze Jin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Pei Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Liqun Sang
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
| | - Qiuxiang Luo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhi Liu
- Department of Medical Genetics, Center for Genome Research, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fachun Guan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
- Jilin Academy of Agricultural Science, Changchun, China
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Fanjuan Meng,
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Xiyang Zhao,
| |
Collapse
|
98
|
Feng Y, Fu X, Han L, Xu C, Liu C, Bi H, Ai X. Nitric Oxide Functions as a Downstream Signal for Melatonin-Induced Cold Tolerance in Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:686545. [PMID: 34367212 PMCID: PMC8343141 DOI: 10.3389/fpls.2021.686545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 05/21/2023]
Abstract
Melatonin (MT) and nitric oxide (NO) are two multifunctional signaling molecules that are involved in the response of plants to abiotic stresses. However, how MT and NO synergize in response to cold stress affecting plants is still not clear. In this study, we found that endogenous MT accumulation under cold stress was positively correlated with cold tolerance in different varieties of cucumber seedlings. The data presented here also provide evidence that endogenous NO is involved in the response to cold stress. About 100 μM MT significantly increased the nitrate reductase (NR) activity, NR-relative messenger RNA (mRNA) expression, and endogenous NO accumulation in cucumber seedlings. However, 75 μM sodium nitroprusside (SNP, a NO donor) showed no significant effect on the relative mRNA expression of tryptophan decarboxylase (TDC), tryptamine-5-hydroxylase (T5H), serotonin-N-acetyltransferase (SNAT), or acetylserotonin O-methyltransferase (ASMT), the key genes for MT synthesis and endogenous MT levels. Compared with H2O treatment, both MT and SNP decreased electrolyte leakage (EL), malondialdehyde (MDA), and reactive oxygen species (ROS) accumulation by activating the antioxidant system and consequently mitigated cold damage in cucumber seedlings. MT and SNP also enhanced photosynthetic carbon assimilation, which was mainly attributed to an increase in the activity and mRNA expression of the key enzymes in the Calvin-Benson cycle. Simultaneously, MT- and SNP-induced photoprotection for both photosystem II (PSII) and photosystem I (PSI) in cucumber seedlings, by stimulating the PsbA (D1) protein repair pathway and ferredoxin-mediated NADP+ photoreduction, respectively. Moreover, exogenous MT and SNP markedly upregulated the expression of chilling response genes, such as inducer of CBF expression (ICE1), C-repeat-binding factor (CBF1), and cold-responsive (COR47). MT-induced cold tolerance was suppressed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a specific scavenger of NO). However, p-chlorophenylalanine (p-CPA, a MT synthesis inhibitor) did not affect NO-induced cold tolerance. Thus, novel results suggest that NO acts as a downstream signal in the MT-induced plant tolerance to cold stress.
Collapse
|
99
|
Khanna RR, Jahan B, Iqbal N, Khan NA, AlAjmi MF, Tabish Rehman M, Khan MIR. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat. J Biotechnol 2020; 325:73-82. [PMID: 33189727 DOI: 10.1016/j.jbiotec.2020.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a newly recognized signaling molecule participating in physiological processes, growth, and development of plants under optimal and stressful environments. In the present reported research, we investigated the role of GABA in imparting salt stress tolerance in wheat (Triticum aestivum L.). Exposure of wheat plants to 100 mM NaCl resulted in increased oxidative stress, glucose content, nitric oxide (NO) production together with reduced growth and photosynthetic traits of plants. Contrarily, GABA application improved nitrogen (N) metabolism, sulfur (S) assimilation, ion homeostasis, growth and photosynthesis under salt stress. Additionally, GABA mitigated oxidative stress induced by salt stress with the increased ascorbate-glutathione cycle and proline metabolism. The study with NO inhibitor, c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide] in GABA experiment suggested that the impact of GABA on improvement of growth and photosynthesis under salt stress was mediated by NO and influenced N and S assimilation and antioxidant systems. The results suggested that the GABA has a significant potential in reversing the salt stress response in wheat plants, and GABA-mediated signals are manifested through NO.
Collapse
Affiliation(s)
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
100
|
Pan DY, Fu X, Zhang XW, Liu FJ, Bi HG, Ai XZ. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. PROTOPLASMA 2020; 257:1543-1557. [PMID: 32621044 DOI: 10.1007/s00709-020-01531-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) and hydrogen sulfide (H2S) have been proved to be multifunctional signal molecules to participate in the response of plants to abiotic stresses. However, it is still unclear whether there is interaction between SA and H2S in response to chilling intensity of cucumber seedlings. Here, we found SA was sensitive to chilling intensity. Under normal condition, NaHS (H2S donor) or removing endogenous H2S with hypotaurine (HT, a specific scavenger of H2S) and DL-propargylglycine (PAG, a specific inhibitor of H2S) has no effect on endogenous SA level; however, SA induced endogenous H2S content and activated the activities and mRNA level of L-/D-cysteine desulfhydrase (L-/D-CD), and inhibiting endogenous SA with paclobutrazol (PAC) or 2-aminoindan-2-phosphonic acid (AIP) blocked this effect, implying H2S may play a role after SA signal. Further studies showed that both SA and NaHS notably alleviated chilling injury, which was evidenced by lower electrolyte leakage (EL), MDA content, and ROS accumulation, compared with H2O treatment. Of note, SA and H2S improved the activities and mRNA level of antioxidant enzymes (SOD, POD, CAT, APX, and GR) as well as the contents of AsA and GSH. Additionally, the chilling-response genes (ICE, CBF1, and COR) were obviously upregulated by exogenous SA and NaHS. However, the positive effect of SA on chilling tolerance was inhibited by HT, whereas PAC or AIP did not affect NaHS-induced chilling tolerance. Taken together, the data reveals that H2S acts as a downstream signal of SA-induced chilling tolerance of cucumber via modulating antioxidant system and chilling-response genes.
Collapse
Affiliation(s)
- Dong-Yun Pan
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Fu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|