51
|
Motley W, Chaudry V, Lloyd TE. Treatment and Management of Hereditary Neuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
52
|
Virtuoso A, Tveden-Nyborg P, Schou-Pedersen AMV, Lykkesfeldt J, Müller HK, Elfving B, Sørensen DB. A Long-Term Energy-Rich Diet Increases Prefrontal BDNF in Sprague-Dawley Rats. Nutrients 2021; 14:nu14010126. [PMID: 35011001 PMCID: PMC8746649 DOI: 10.3390/nu14010126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022] Open
Abstract
Findings of the effect of high-fat feeding including “Cafeteria Diets” (CAF) on brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and prefrontal cortex (PFC) in rodents are conflicting. CAF is a non-standardized, highly palatable energy-rich diet composed by everyday food items for human consumption and is known to induce metabolic syndrome and obesity in rats. However, the highly palatable nature of CAF may counteract a negative effect of chronic stress on anticipatory behavior and synaptic plasticity in the hippocampus, hence represent a confounding factor (e.g., when evaluating functional effects on the brain). This study investigated the effects of a chronic, restricted access to CAF on BDNF, monoamine neurotransmitters, and redox imbalance in HIP and PFC in male rats. Our results show that CAF induced BDNF and its receptor TrkB in PFC compared to the controls (p < 0.0005). No differences in monoamine neurotransmitters were detected in either PFC or HIP. CAF increased dehydroascorbic acid and decreased malondialdehyde in PFC (p < 0.05), suggesting an early redox imbalance insufficient to induce lipid peroxidation. This study supports that a chronic CAF on a restricted schedule increases BDNF levels in the PFC of rats, highlighting that this may be a suboptimal feeding regime when investigating the effects of diet-induced obesity in the brain and emphasizing this as a point of attention when comparing the findings.
Collapse
Affiliation(s)
- Alessandro Virtuoso
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Anne Marie Voigt Schou-Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (H.K.M.); (B.E.)
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (H.K.M.); (B.E.)
| | - Dorte Bratbo Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; (A.V.); (P.T.-N.); (A.M.V.S.-P.); (J.L.)
- Correspondence:
| |
Collapse
|
53
|
An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol 2021; 910:174469. [PMID: 34478688 DOI: 10.1016/j.ejphar.2021.174469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
Despite the years of research, epilepsy remains uncontrolled in one-third of afflicted individuals and poses a health and economic burden on society. Currently available anti-epileptic drugs mainly target the excitatory-inhibitory imbalance despite targeting the underlying pathophysiology of the disease. Recent research focuses on understanding the pathophysiologic mechanisms that lead to seizure generation and on possible new treatment avenues for preventing epilepsy after a brain injury. Various signaling pathways, including the mechanistic target of rapamycin (mTOR) pathway, mitogen-activated protein kinase (MAP-ERK) pathway, JAK-STAT pathway, wnt/β-catenin signaling, cAMP pathway, and jun kinase pathway, have been suggested to play an essential role in this regard. Recent work suggests that the mTOR pathway intervenes epileptogenesis and proposes that mTOR inhibitors may have antiepileptogenic properties for epilepsy. In the same way, several animal studies have indicated the involvement of the Wnt signaling pathway in neurogenesis and neuronal death induced by seizures in different phases (acute and chronic) of seizure development. Various studies have also documented the activation of JAK-STAT signaling in epilepsy and cAMP involvement in epileptogenesis through CREB (cAMP response element-binding protein). Although studies are there, the mechanism for how components of these pathways mediate epileptogenesis requires further investigation. This review summarises the current role of various signaling pathways involved in epileptogenesis and the crosstalk among them. Furthermore, we will also discuss the mechanical base for the interaction between these pathways and how these interactions could be a new emerging promising target for future epilepsy therapies.
Collapse
|
54
|
Lu MC, Lee IT, Hong LZ, Ben-Arie E, Lin YH, Lin WT, Kao PY, Yang MD, Chan YC. Coffeeberry Activates the CaMKII/CREB/BDNF Pathway, Normalizes Autophagy and Apoptosis Signaling in Nonalcoholic Fatty Liver Rodent Model. Nutrients 2021; 13:nu13103652. [PMID: 34684653 PMCID: PMC8541094 DOI: 10.3390/nu13103652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) shows extensive liver cell destruction with lipid accumulation, which is frequently accompanied by metabolic comorbidities and increases mortality. This study aimed to investigate the effects of coffeeberry (CB) on regulating the redox status, the CaMKII/CREB/BDNF pathway, autophagy, and apoptosis signaling by a NAFLD rodent model senescence-accelerated mice prone 8 (SAMP8). Three-month-old male SAMP8 mice were divided into a control group and three CB groups (50, 100, and 200 mg/kg BW), and fed for 12 weeks. The results show that CB reduced hepatic malondialdehyde and carbonyl protein levels. CB significantly enhanced Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) and reduced the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio. In addition, CB increased the silent information regulator T1 level, promoted Beclin 1 and microtubule-associated protein light chain 3 II expressions, and reduced phosphorylated mammalian target of rapamycin and its downstream p-p70s6k levels. CB also inhibited the expressions of apoptosis-related factors poly (ADP-ribose) polymerase-1 and the apoptosis-inducing factor. In conclusion, CB might protect the liver by reducing oxidative stress, activating the CaMKII/CREB/BDNF pathway, and improving autophagic and apoptotic expressions in a dose-dependent manner.
Collapse
Affiliation(s)
- Meng-Chun Lu
- Department of Clinical Nutrition, China Medical University Hospital, Taichung 406040, Taiwan;
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Ling-Zong Hong
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Eyal Ben-Arie
- Graduate Institute of Acupuncture Science, Collage of Chinese Medicine, China Medical University, Taichung 406040, Taiwan;
| | - Yu-Hsuan Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - Wei-Ting Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - Pei-Yu Kao
- Division of Thoracic Surgery, Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan;
| | - Mei-Due Yang
- Division of General Surgery, Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan;
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
- Correspondence:
| |
Collapse
|
55
|
proNGF Involvement in the Adult Neurogenesis Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221910744. [PMID: 34639085 PMCID: PMC8509282 DOI: 10.3390/ijms221910744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
In recent decades, neurogenesis in the adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory, while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer's disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation, and differentiation. Hence, we hypothesized that pro-NGF and its p75 neurotrophin receptor (p75NTR) contribute to disrupting adult hippocampal neurogenesis during AD. To test this hypothesis, in this study, we took advantage of the availability of mouse models of AD (APP/PS1), which display memory impairment, and AD human samples to address the role of pro-NGF/p75NTR signaling in different aspects of adult neurogenesis. First, we observed that DG doublecortin (DCX) + progenitors express p75NTR both, in healthy humans and control animals, although the percentage of DCX+ cells are significantly reduced in AD. Interestingly, the expression of p75NTR in these progenitors is significantly decreased in AD conditions compared to controls. In order to assess the contribution of the pro-NGF/p75NTR pathway to the memory deficits of APP/PS1 mice, we injected pro-NGF neutralizing antibodies (anti-proNGF) into the DG of control and APP/PS1 mice and animals are subjected to a Morris water maze test. Intriguingly, we observed that anti-pro-NGF significantly restored memory performance of APP/PS1 animals and significantly increase the percentage of DCX+ progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration should be taken into consideration for better understanding of AD pathology. Additionally, we provide a new molecular entry point (pro-NGF/p75NTR signaling) as a promising therapeutic target in AD.
Collapse
|
56
|
Bryant J, Andhavarapu S, Bever C, Guda P, Katuri A, Gupta U, Arvas M, Asemu G, Heredia A, Gerzanich V, Simard JM, Makar TK. 7,8-Dihydroxyflavone improves neuropathological changes in the brain of Tg26 mice, a model for HIV-associated neurocognitive disorder. Sci Rep 2021; 11:18519. [PMID: 34531413 PMCID: PMC8446048 DOI: 10.1038/s41598-021-97220-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.
Collapse
Affiliation(s)
- Joseph Bryant
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Christopher Bever
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
| | | | - Akhil Katuri
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Girma Asemu
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - J Marc Simard
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - Tapas Kumar Makar
- Institute of Human Virology, Baltimore, MD, 21201, USA.
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
57
|
Brahimi F, Galan A, Siegel S, Szobota S, Sarunic MV, Foster AC, Saragovi HU. Therapeutic Neuroprotection by an Engineered Neurotrophin that Selectively Activates Tropomyosin Receptor Kinase (Trk) Family Neurotrophin Receptors but Not the p75 Neurotrophin Receptor. Mol Pharmacol 2021; 100:491-501. [PMID: 34470776 DOI: 10.1124/molpharm.121.000301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
The neurotrophin growth factors bind and activate two types of cell surface receptors: the tropomyosin receptor kinase (Trk) family and p75. TrkA, TrkB, and TrkC are bound preferentially by nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 (NT3), respectively, to activate neuroprotective signals. The p75 receptors are activated by all neurotrophins, and paradoxically in neurodegenerative disease p75 is upregulated and mediates neurotoxic signals. To test neuroprotection strategies, we engineered NT3 to broadly activate Trk receptors (mutant D) or to reduce p75 binding (mutant RK). We also combined these features in a molecule that activates TrkA, TrkB, and TrkC but has reduced p75 binding (mutant DRK). In neurodegenerative disease mouse models in vivo, the DRK protein is a superior therapeutic agent compared with mutant D, mutant RK, and wild-type neurotrophins and protects a broader range of stressed neurons. This work rationalizes a therapeutic strategy based on the biology of each type of receptor, avoiding activation of p75 toxicity while broadly activating neuroprotection in stressed neuronal populations expressing different Trk receptors. SIGNIFICANCE STATEMENT: The neurotrophins nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 each can activate a tropomyosin receptor kinase (Trk) A, TrkB, or TrkC receptor, respectively, and all can activate a p75 receptor. Trks and p75 mediate opposite signals. We report the engineering of a protein that activates all Trks, combined with low p75 binding, as an effective therapeutic agent in vivo.
Collapse
Affiliation(s)
- Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| | - Alba Galan
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| | - Sairey Siegel
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| | - Stephanie Szobota
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| | - Marinko V Sarunic
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| | - Alan C Foster
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital (F.B., A.G., H.U.S.), Pharmacology and Therapeutics (H.U.S.), and Ophthalmology and Vision Science (H.U.S.), McGill University, Montreal, Quebec, Canada; Otonomy, Inc., San Diego, California (S.Si., S.Sz., A.C.F.); and School of Engineering Science, Simon Fraser University, British Columbia, Canada (M.V.S.)
| |
Collapse
|
58
|
Przewodowska D, Marzec W, Madetko N. Novel Therapies for Parkinsonian Syndromes-Recent Progress and Future Perspectives. Front Mol Neurosci 2021; 14:720220. [PMID: 34512258 PMCID: PMC8427499 DOI: 10.3389/fnmol.2021.720220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative diseases associated with abnormal protein accumulation in the brain. Examples of these syndromes include progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. A common clinical feature in parkinsonism is a limited improvement with levodopa. So far, there are no disease-modifying treatments to address these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis is devastating for patients, as prognosis is extremely poor, and the disease tends to progress rapidly. Currently, potential causes and neuropathological mechanisms involved in these diseases are being widely investigated. Objectives: The goal of this review is to summarize recent advances and gather emerging disease-modifying therapies that could slow the progression of atypical parkinsonian syndromes. Methods: PubMed and Google Scholar databases were searched regarding novel perspectives for atypical parkinsonism treatment. The following medical subject headings were used: "atypical parkinsonian syndromes-therapy," "treatment of atypical parkinsonian syndromes," "atypical parkinsonian syndromes-clinical trial," "therapy of tauopathy," "alpha-synucleinopathy treatment," "PSP therapy/treatment," "CBD therapy/treatment," "MSA therapy/treatment," and "atypical parkinsonian syndromes-disease modifying." All search results were manually reviewed prior to inclusion in this review. Results: Neuroinflammation, mitochondrial dysfunction, microglia activation, proteasomal impairment, and oxidative stress play a role in the neurodegenerative process. Ongoing studies and clinical trials target these components in order to suppress toxic protein accumulation. Various approaches such as stem cell therapy, anti-aggregation/anti-phosphorylation agent administration, or usage of active and passive immunization appear to have promising results. Conclusion: Presently, disease-modifying strategies for atypical parkinsonian syndromes are being actively explored, with encouraging preliminary results. This leads to an assumption that developing accurate, safe, and progression-halting treatment is not far off. Nevertheless, the further investigation remains necessary.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Marzec
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
59
|
Kearney-Ramos T, Haney M. Repetitive transcranial magnetic stimulation as a potential treatment approach for cannabis use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110290. [PMID: 33677045 PMCID: PMC9165758 DOI: 10.1016/j.pnpbp.2021.110290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023]
Abstract
The expanding legalization of cannabis across the United States is associated with increases in cannabis use, and accordingly, an increase in the number and severity of individuals with cannabis use disorder (CUD). The lack of FDA-approved pharmacotherapies and modest efficacy of psychotherapeutic interventions means that many of those who seek treatment for CUD relapse within the first few months. Consequently, there is a pressing need for innovative, evidence-based treatment development for CUD. Preliminary evidence suggests that repetitive transcranial magnetic stimulation (rTMS) may be a novel, non-invasive therapeutic neuromodulation tool for the treatment of a variety of substance use disorders (SUDs), including recently receiving FDA clearance (August 2020) for use as a smoking cessation aid in tobacco cigarette smokers. However, the potential of rTMS for CUD has not yet been reviewed. This paper provides a primer on therapeutic neuromodulation techniques for SUDs, with a particular focus on reviewing the current status of rTMS research in people who use cannabis. Lastly, future directions are proposed for rTMS treatment development in CUD, with suggestions for study design parameters and clinical endpoints based on current gold-standard practices for therapeutic neuromodulation research.
Collapse
Affiliation(s)
- Tonisha Kearney-Ramos
- New York State Psychiatric Institute, New York, NY, USA; Columbia University Irving Medical Center, New York, NY, USA.
| | - Margaret Haney
- New York State Psychiatric Institute, New York, New York, USA,Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
60
|
Jabbari-Zadeh F, Cao B, Stanley JA, Liu Y, Wu MJ, Tannous J, Lopez M, Sanches M, Mwangi B, Zunta-Soares GB, Soares JC. Evidence of altered metabolism of cellular membranes in bipolar disorder comorbid with post-traumatic stress disorder. J Affect Disord 2021; 289:81-87. [PMID: 33951550 DOI: 10.1016/j.jad.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
In proton magnetic resonance spectroscopy (¹H MRS) studies, aberrant levels of choline-containing compounds that include glycerophosphocholine plus phosphocholine (GPC+PC), can signify alterations in the metabolism of cellular membrane phospholipids (MPLs) from a healthy baseline. In a recent ¹H MRS study, we reported increased GPC+PC in cortical and subcortical areas of adult patients with bipolar disorder I (BP-I). Post-traumatic stress disorder (PTSD) can worsen the severity of BP-I, but it is unclear whether the effect of a PTSD comorbidity in BP-I is associated with altered MPL metabolism. The purpose of this study was to re-investigate the ¹H MRS data to determine whether the regional extent of elevated GPC+PC was greater in BP-I patients with PTSD (BP-I/wPTSD) compared to BP-I without comorbid PTSD (BP-I/woPTSD) patients and healthy controls. GPC+PC levels from four brain areas [the anterior cingulate cortex (ACC), anterior-dorsal ACC, caudate, and putamen] were measured in 14 BP-I/wPTSD, 36 BP-I/woPTSD, and 44 healthy controls using a multi-voxel 1H MRS approach on a 3 Tesla system with high spatial resolution and absolute quantification. Results show a significant increase in GPC+PC levels from the caudate and putamen of BP-I/wPTSD patients compared to healthy controls (P<0.05) and in the putamen compared to BP-I/woPTSD patients (P<0.05). These findings are consistent with evidence of elevated degradation of MPLs in the neuropil that is more pronounced in BP-I patients with comorbid PTSD.
Collapse
Affiliation(s)
- Faramarz Jabbari-Zadeh
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada.
| | - Jeffrey A Stanley
- Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Yang Liu
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Mizuki Lopez
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| |
Collapse
|
61
|
Kowsari G, Mehrabi S, Soleimani Asl S, Pourhamzeh M, Mousavizadeh K, Mehdizadeh M. Nicotine and modafinil combination protects against the neurotoxicity induced by 3,4-Methylenedioxymethamphetamine in hippocampal neurons of male rats. J Chem Neuroanat 2021; 116:101986. [PMID: 34119664 DOI: 10.1016/j.jchemneu.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
MDMA (3,4-Methylenedioxymethamphetamine) is a common recreational drug of abuse which causes neurodegeneration. Nicotine and modafinil provide antioxidant and neuroprotective properties and may be beneficial in the management of MDMA-induced neurotoxicity. The purpose of this study was to characterize how acute and chronic administration of nicotine and/or modafinil exert protective effects against the MDMA-induced impaired cognitive performance, oxidative stress, and neuronal loss. Adult male rats were divided into three groups, namely control, MDMA and treatment (modafinil and/or nicotine). MDMA (10 mg/kg) was administered intraperitoneally during a three-week schedule (two times/day for two consecutive days/week). The treated-groups were classified based on the acute or chronic status of treatment. In the groups which underwent acute treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected just prior to the MDMA administration (acute nicotine (NA), acute modafinil (MA), and acute nicotine and modafinil (NMA)). In the rats which received chronic treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected every day during the three week-schedule administration of MDMA (chronic nicotine (NC), chronic modafinil (MC), and chronic nicotine and modafinil (NMC)). Learning and memory performance, as well as avoidance response, were assessed by Morris water maze and Shuttle box, respectively. Our findings indicate enhanced learning and memory and avoidance response in the NMC group. By TUNEL test and Cresyl Violet staining we evaluated neuronal loss and apoptosis in the hippocampal CA1 and found increased neuronal viability in the NMC group. On the other hand, chronic administration of modafinil and nicotine significantly down-regulated the caspase 3 and up-regulated both BDNF and TrkB levels in the MDMA-received rats. The serum levels of glutathione peroxidase (GPx) and total antioxidant capacity (TAC) were evaluated and we found that the alterations of serum levels of GPx and TAC were considerably prevented in the NMC group. The overall results indicate that nicotine and modafinil co-administration rescued brain from MDMA-induced neurotoxicity. We suggest that nicotine and modafinil combination therapy could be considered as a possible treatment to reduce the neurological disorders induced by MDMA.
Collapse
Affiliation(s)
- Golshad Kowsari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Pourhamzeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
Ghorbanpour AM, Saboor M, Panahizadeh R, Saadati H, Dadkhah M. Combined effects of royal jelly and environmental enrichment against stress-induced cognitive and behavioral alterations in male rats: behavioral and molecular studies. Nutr Neurosci 2021; 25:1860-1871. [PMID: 33814002 DOI: 10.1080/1028415x.2021.1909205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Exposure to chronic stress has detrimental effects on cognitive and emotional processing. Also, the neuroprotective influences of environmental enrichment (EE) and royal jelly (RJ) have been indicated in previous studies. AIMS To our knowledge, to date, there are no studies about the synergistic effects of EE and RJ on cognitive changes induced by stress. Therefore, this study aimed to investigate the protective effects of RJ, and EE on anxiety-like behaviors, cognitive functions, and expression of hippocampal and also prefrontal cortex (PFC) brain-derived neurotrophic factor (BDNF) levels in stressed rats. METHODS By using restraint and cold temperature, rats were exposed to stressful situations and then subjected to treatment with RJ or/ and EE for 14 days. Stress induction was done 14 days before treatments by placing the rats in the restrainer under 4°C. Following the interventions, anxiety-like behaviors, novel object recognition memory (NORM), inhibitive avoidance performance, hippocampal, and PFC BDNF expression were examined. The plasma corticosterone level of all groups was also evaluated. RESULTS Results showed increased plasma corticosterone levels, stress-induced deficits in the NORM and IA tests, and increased anxiety-like behaviors. EE and RJ improved these deficits with a decline in serum corticosterone and also increased BDNF levels in the hippocampus and PFC in stressed ones. CONCLUSION The EE and the RJ prevented the detrimental effects of stress on anxiety-like behaviors and memory processes. These treatments can protect susceptible brain areas against chronic stress via improvement in behavioral and cognitive impairments through mediating BDNF expression.
Collapse
Affiliation(s)
| | - Meysam Saboor
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Students Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
63
|
Dakin P, Kivitz AJ, Gimbel JS, Skrepnik N, DiMartino SJ, Emeremni CA, Gao H, Stahl N, Weinreich DM, Yancopoulos GD, Geba GP. Efficacy and safety of fasinumab in patients with chronic low back pain: a phase II/III randomised clinical trial. Ann Rheum Dis 2021; 80:509-517. [PMID: 33199274 PMCID: PMC7958114 DOI: 10.1136/annrheumdis-2020-217259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To study the efficacy and safety of fasinumab in moderate-to-severe, chronic low back pain (CLBP). METHODS In this phase II/III, double-blind, placebo-controlled study, patients with CLBP aged ≥35 years with inadequate pain relief/intolerance to acetaminophen, non-steroidal anti-inflammatory drugs and opioids were randomised to fasinumab 6 or 9 mg subcutaneous every 4 weeks (Q4W), 9 mg intravenous every 8 weeks (Q8W) or placebo. Primary endpoint was change from baseline to week 16 in average daily low back pain intensity (LBPI) numeric rating score. Key secondary efficacy variables included Roland-Morris Disability Questionnaire (RMDQ) and Patient Global Assessment (PGA). The results are based on a modified intent-to-treat analysis of 563/800 planned patients when enrolment was stopped early given emerging signals of joint risk in other osteoarthritis (OA) studies at doses being tested here. RESULTS Significant placebo-adjusted LBPI reductions at week 16 were observed for fasinumab 9 mg Q4W and Q8W (least squares mean (standard error) -0.7 (0.3); both nominal p<0.05), but not 6 mg (-0.3 (0.3); p=0.39). RMDQ and PGA improvements to week 16 were greatest for fasinumab 9 mg intravenous. Numerically greater efficacy occurred in patients with, versus those without, peripheral OA (pOA) over 16 weeks. Treatment-emergent adverse events (AEs) occurred in 274/418 (65.6%) patients in the combined fasinumab groups and 94/140 (67.1%) placebo patients. Joint AEs, mostly rapid progressive OA type 1, were more frequent in the combined fasinumab groups (19 events in 16 patients (3.8%) vs 1 event in 1 patient (0.7%) for placebo); all except one occurred in pOA patients. CONCLUSIONS Fasinumab highest doses, but not lower dose, improved both CLBP pain and function. Most joint AEs occurred in pOA patients, consistent with earlier findings in symptomatic OA. Further study is needed of patients with CLBP with and without pOA to determine optimal benefit-risk.
Collapse
Affiliation(s)
- Paula Dakin
- Global Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Alan J Kivitz
- Department of Rheumatology, Altoona Center for Research, Duncansville, Pennsylvania, USA
| | | | - Nebojsa Skrepnik
- Research Center, Tucson Orthopedic Institute, Tucson, Arizona, USA
| | - Stephen J DiMartino
- Global Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Haitao Gao
- R&D, Regeneron Pharmaceuticals Inc, Basking Ridge, New Jersey, USA
| | - Neil Stahl
- Global Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - David M Weinreich
- Global Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - George D Yancopoulos
- Global Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Gregory P Geba
- Global Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
64
|
Nawrotek K, Rudnicka K, Gatkowska J, Michlewska S, Pearson BL, Płociński P, Wieczorek M. Ten-eleven translocation methylcytosine dioxygenase 3-loaded microspheres penetrate neurons in vitro causing active demethylation and neurite outgrowth. J Tissue Eng Regen Med 2021; 15:463-474. [PMID: 33735542 PMCID: PMC8252095 DOI: 10.1002/term.3185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic processes, such as DNA methylation and other chromatin modifications, are believed to be largely responsible for establishing a reduced capacity for growth in the mature nervous system. Ten-eleven translocation methylcytosine dioxygenase 3 (Tet3)-, a member of the Tet gene family, plays a crucial role in promoting injury-induced DNA demethylation and expression of regeneration-associated genes in the peripheral nervous system. Here, we encapsulate Tet3 protein within a clinically tolerated poly(lactide-co-glycolide) microsphere system. Next, we show that Tet3-loaded microspheres are internalized into mHippoE-18 embryonic hippocampal cells. We compare the outgrowth potential of Tet3 microspheres with that of commonly used nerve growth factor (NGF)-loaded microspheres in an in vitro injury model. Tet3-containing microspheres increased levels of nuclear 5-hydroxymethylcytosine indicating active demethylation and outperformed NGF-containing microspheres in measures of neurite outgrowth. Our results suggest that encapsulated demethylases may represent a novel avenue to treat nerve injuries.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Brandon L Pearson
- Department of Environmental Health Sciences, Columbia University, New York City, New York, USA
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
65
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2021; 38:S0213-4853(21)00024-4. [PMID: 33726969 DOI: 10.1016/j.nrl.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Rafts are function-structural cell membrane nano-domains. They contribute to explain the efficiency of signal transduction at the low physiological membrane concentrations of the signaling partners by their clustering inside specialized signaling domains. DEVELOPMENT In this article, we review the current model of the membrane rafts and their physio-pathological relevance in the nervous system, including their role in Parkinson, Alzheimer, and Huntington diseases. CONCLUSIONS Rafts disruption/dysfunction has been shown to relate diverse neurological diseases. Therefore, it has been suggested that preservation of membrane rafts may represent a strategy to prevent or delay neuronal dysfunctions in several diseases.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
66
|
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study. Biochem J 2021; 477:4515-4526. [PMID: 33094812 DOI: 10.1042/bcj20200671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
Tropomyosin receptor kinase B (Trk-B) belongs to the second largest family of membrane receptors, Receptor Tyrosine Kinases (RTKs). Trk-B is known to interact with three different neurotrophins: Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-4 (NT-4), and Neurotrophin-3 (NT-3). All three neurotrophins are involved in survival and proliferation of neuronal cells, but each induces distinct signaling through Trk-B. We hypothesize that the different biological effects correlate with differences in the interactions between the Trk-B receptors, when bound to different ligands, in the plasma membrane. To test this hypothesis, we use quantitative FRET to characterize Trk-B dimerization in response to NT-3 and NT-4 in live cells, and compare it to the previously published data for Trk-B in the absence and presence of BDNF. Our study reveals that the distinct Trk-B signaling outcomes are underpinned by both different configurations and different stabilities of the three ligand-bound Trk-B dimers in the plasma membrane.
Collapse
|
67
|
Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, Zhou G, Johnson NT, Hyman BT, Sorger PK, Albers MW, Sokolov A. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun 2021; 12:1033. [PMID: 33589615 PMCID: PMC7884393 DOI: 10.1038/s41467-021-21330-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD is applied to lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs are inspected for common trends among their targets. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be readily evaluated in a clinical trial.
Collapse
Affiliation(s)
- Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Petar Todorov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nienke Moret
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Kyle Evans
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - George Zhou
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nathan T Johnson
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
68
|
Cerebrolysin for stroke, neurodegeneration, and traumatic brain injury: review of the literature and outcomes. Neurol Sci 2021; 42:1345-1353. [PMID: 33515100 DOI: 10.1007/s10072-021-05089-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Cerebrolysin therapy has the potential to significantly aid in the treatment of a wide variety of debilitating neurological diseases including ischemic strokes, neurodegenerative disorders, and traumatic brain injuries. Although Cerebrolysin is not approved for use in the USA, it is used clinically in over 50 countries worldwide. In this review, we focus on outlining the role that Cerebrolysin has in stimulating the molecular signaling pathways that are critical for neurological regeneration and support. An extensive evaluation of these signaling pathways reveals that Cerebrolysin has the potential to intervene in a diverse array of pathophysiological causes of neurological diseases. In the clinical setting, Cerebrolysin is generally safe for human use and has provided functional improvement when used as an adjunct treatment. However, our literature review revealed inconsistent results, as several clinical studies suggested that Cerebrolysin treatment has minor clinical relevance and did not have significant advantages over a placebo. In conclusion, we found that Cerebrolysin therapy can potentially play a major role in the treatment of many neurological diseases. Nevertheless, there remains much to be elucidated about the efficacy of this treatment for specific neurological conditions, and more robust clinical data is needed to reach a consensus and properly define the therapeutic role of Cerebrolysin.
Collapse
|
69
|
Hang PZ, Zhu H, Li PF, Liu J, Ge FQ, Zhao J, Du ZM. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel) 2021; 11:life11010070. [PMID: 33477900 PMCID: PMC7833389 DOI: 10.3390/life11010070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most abundantneurotrophins in the central nervous system. Numerous studies suggestthat BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlightsthat the BDNF/TrkB pathway is expressed in the cardiovascular system andclosely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkBsignalingand address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD.
Collapse
Affiliation(s)
- Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Pei-Feng Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Jie Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Feng-Qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Jing Zhao
- Medical Research Center, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| | - Zhi-Min Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| |
Collapse
|
70
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|
71
|
Microinjection of the BDNF receptor antagonist ANA-12 into the nucleus accumbens and medial-prefrontal cortex attenuates morphine-induced reward memory, and alterations of BDNF levels and apoptotic cells in rats. Pharmacol Biochem Behav 2021; 201:173111. [PMID: 33444602 DOI: 10.1016/j.pbb.2021.173111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023]
Abstract
This study was designed to examine the effects of intra- nucleus accumbens (NAc) of BDNF receptor antagonist ANA-12 on the acquisition and expression and intra- medial-prefrontal cortex (mPFC) of ANA-12 on the extinction and reinstatement of morphine-induced conditioned place preference (CPP) and also BDNF levels and apoptotic neurons in the NAc and mPFC of rats. In this study, adult male Wistar rats (200-250 g) were used. Two separate cannulas were inserted bilaterally into the NAc and/or mPFC. ANA-12 (3 μg/0.5 μl/side) was injected into the NAc and/or mPFC to evaluate the rewarding effects of morphine using a CPP paradigm. Then, the levels of BDNF and apoptotic in the NAc and mPFC were assessed at the end of each treatment phase using ELISA and TUNEL methods, respectively. All of vehicle-treated rats following morphine CPP showed the increase of BDNF levels and apoptotic neurons in the NAc and mPFC. ANA-12 significantly attenuated the acquisition and expression of morphine-induced CPP, BDNF levels and apoptotic neurons in the NAc during the acquisition, but not the expression phase. Also, ANA-12 significantly facilitated the extinction, but no effect on reinstatement of morphine CPP, and decreased BDNF levels and apoptotic neurons in the mPFC during the extinction, but not the reinstatement. We conclude that blocking TrkB with ANA-12 showed therapeutic effects on morphine-associated reward memory and neuronal death in the NAc and mPFC induced by morphine CPP. Thus, the BDNF-TrkB signaling may be important in the acquisition, expression, extinction, but not the reinstatement of morphine CPP.
Collapse
|
72
|
He Q, Li Z, Li T, Zhang Z, Zhao J. ATP Stimulation Promotes Functional Recovery after Intracerebral Haemorrhage by Increasing the mBDNF/proBDNF Ratio. Neuroscience 2021; 459:104-117. [PMID: 33421569 DOI: 10.1016/j.neuroscience.2020.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), including mature BDNF (mBDNF) and precursor BDNF (proBDNF), plays a pivotal role in neuronal survival, synaptic plasticity and neurogenesis. However, the functional effect of the mBDNF/proBDNF ratio in haemorrhagic stroke remains unclear. ATP is a known mediator of BDNF production in neurons and glia. Therefore, we hypothesized that ATP could facilitate BDNF production, increase the mBDNF/proBDNF ratio and thereby alleviate cerebral haemorrhage-induced injury. In this experiment, a model of intracerebral haemorrhage (ICH) was produced by injecting 50 μL autologous blood into the right corpus striatum in healthy male rats. ATP was injected to promote BDNF production and increase the mBDNF/proBDNF ratio. After ATP pretreatment, P2X4R-shRNA and SB203580 were used to inhibit P2X4R and p38-MAPK, respectively. We provide direct evidence that ATP administration was successful in promoting mBDNF expression and increasing the mBDNF/proBDNF ratio after ICH injury. Additionally, ATP stimulation could significantly improve cerebral neurological function and alleviate neuronal damage. Furthermore, ATP injection was able to upregulate the expression of P2X4R and p-p38-MAPK. Moreover, both P2X4R-shRNA and SB203580 could effectively abolish the effect of ATP injection on the levels of P2X4R and p-p38-MAPK and the mBDNF/proBDNF ratio. Together, these findings show that ATP stimulation contributes to functional recovery after cerebral haemorrhage and that neuroprotection induced by ATP administration in ICH rats is accompanied by a strong increase in the mBDNF/proBDNF ratio. Here, we also show a significant role of P2X4R-p38-MAPK signalling in the ATP-induced increase in the mBDNF/proBDNF ratio in ICH.
Collapse
Affiliation(s)
- Qi He
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tiegang Li
- Institute of Materia Medica, Peking Union Medical College Hospital, Peking, People's Republic of China
| | - Zhiqian Zhang
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
73
|
Mirabella F, Gulisano M, Capelli M, Lauretta G, Cirnigliaro M, Palmucci S, Stella M, Barbagallo D, Di Pietro C, Purrello M, Ragusa M, Rizzo R. Enrichment and Correlation Analysis of Serum miRNAs in Comorbidity Between Arnold-Chiari and Tourette Syndrome Contribute to Clarify Their Molecular Bases. Front Mol Neurosci 2021; 13:608355. [PMID: 33469418 PMCID: PMC7813987 DOI: 10.3389/fnmol.2020.608355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
Due to its rarity, coupled to a multifactorial and very heterogeneous nature, the molecular etiology of Arnold-Chiari (AC) syndrome remains almost totally unknown. Its relationship with other neuropsychiatric disorders such as Tourette syndrome (TS) is also undetermined. The rare comorbid status between both disorders (ACTS) complicates the framework of diagnosis and negatively affects the patients' quality of life. In this exploratory study, we aimed to identify serum microRNA expression profiles as molecular fingerprints for AC, TS, and ACTS, by using a high-throughput approach. For this aim, 10 AC patients, 11 ACTS patients, 6 TS patients, and 8 unaffected controls (NC) were recruited. Nine miRNAs resulted significantly differentially expressed (DE): let-7b-5p (upregulated in ACTS vs. TS); miR-21-5p (upregulated in ACTS vs. AC; downregulated in AC vs. TS); miR-23a-3p (upregulated in TS vs. NCs; downregulated in AC vs. TS); miR-25-3p (upregulated in AC vs. TS and NCs; downregulated in ACTS vs. AC); miR-93-5p (upregulated in AC vs. TS); miR-130a-3p (downregulated in ACTS and TS vs. NCs); miR-144-3p (downregulated in ACTS vs. AC; upregulated in AC vs. TS); miR-222-3p (upregulated in ACTS vs. NCs); miR-451a (upregulated in AC vs. TS and NCs; in ACTS vs. NCs). Altered expression of miRNAs was statistically correlated to neuroimaging and neuropsychological anomalies. Furthermore, computational analyses indicated that DE miRNAs are involved in AC and TS pathomechanisms. Finally, we propose the dysregulation of the miRNA set as a potential molecular tool for supporting the current diagnosis of AC, TS, and ACTS by using liquid biopsies, in an unbiased and non-invasive way.
Collapse
Affiliation(s)
- Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mara Capelli
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute–IRCCS, Troina, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
74
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
75
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
76
|
Yanpallewar S, Fulgenzi G, Tomassoni-Ardori F, Barrick C, Tessarollo L. Delayed onset of inherited ALS by deletion of the BDNF receptor TrkB.T1 is non-cell autonomous. Exp Neurol 2020; 337:113576. [PMID: 33359475 DOI: 10.1016/j.expneurol.2020.113576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
The pathophysiology of Amyotrophic Lateral Sclerosis (ALS), a disease caused by the gradual degeneration of motoneurons, is still largely unknown. Insufficient neurotrophic support has been cited as one of the causes of motoneuron cell death. Neurotrophic factors such as BDNF have been evaluated in ALS human clinical trials, but yielded disappointing results attributed to the poor pharmacokinetics and pharmacodynamics of BDNF. In the inherited ALS G93A SOD1 animal model, deletion of the BDNF receptor TrkB.T1 delays spinal cord motoneuron cell death and muscle weakness through an unknown cellular mechanism. Here we show that TrkB.T1 is expressed ubiquitously in the spinal cord and its deletion does not change the SOD1 mutant spinal cord inflammatory state suggesting that TrkB.T1 does not influence microglia or astrocyte activation. Although TrkB.T1 knockout in astrocytes preserves muscle strength and co-ordination at early stages of disease, its specific conditional deletion in motoneurons or astrocytes does not delay motoneuron cell death during the early stage of the disease. These data suggest that TrkB.T1 may limit the neuroprotective BDNF signaling to motoneurons via a non-cell autonomous mechanism providing new understanding into the reasons for past clinical failures and insights into the design of future clinical trials employing TrkB agonists in ALS.
Collapse
Affiliation(s)
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, NIH, USA
| | | | - Colleen Barrick
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, NIH, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, NIH, USA.
| |
Collapse
|
77
|
Martín-Rodríguez C, Song M, Anta B, González-Calvo FJ, Deogracias R, Jing D, Lee FS, Arevalo JC. TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation. J Cell Sci 2020; 133:jcs247841. [PMID: 33288548 PMCID: PMC7774901 DOI: 10.1242/jcs.247841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carlos Martín-Rodríguez
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Begoña Anta
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Francisco J González-Calvo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Rubén Deogracias
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Juan Carlos Arevalo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
78
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|
79
|
Petrella C, Ciotti MT, Nisticò R, Piccinin S, Calissano P, Capsoni S, Mercanti D, Cavallaro S, Possenti R, Severini C. Involvement of Bradykinin Receptor 2 in Nerve Growth Factor Neuroprotective Activity. Cells 2020; 9:cells9122651. [PMID: 33321704 PMCID: PMC7763563 DOI: 10.3390/cells9122651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Neurotrophin nerve growth factor (NGF) has been demonstrated to upregulate the gene expression of bradykinin receptor 2 (B2R) on sensory neurons, thus facilitating nociceptive signals. The aim of the present study is to investigate the involvement of B2R in the NGF mechanism of action in nonsensory neurons in vitro by using rat mixed cortical primary cultures (CNs) and mouse hippocampal slices, and in vivo in Alzheimer’s disease (AD) transgenic mice (5xFAD) chronically treated with NGF. A significant NGF-mediated upregulation of B2R was demonstrated by microarray, Western blot, and immunofluorescence analysis in CNs, indicating microglial cells as the target of this modulation. The B2R involvement in the NGF mechanism of action was also demonstrated by using a selective B2R antagonist which was able to reverse the neuroprotective effect of NGF in CNs, as revealed by viability assay, and the NGF-induced long-term potentiation (LTP) in hippocampal slices. To confirm in vitro observations, B2R upregulation was observed in 5xFAD mouse brain following chronic intranasal NGF treatment. This study demonstrates for the first time that B2R is a key element in the neuroprotective activity and synaptic plasticity mediated by NGF in brain cells.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (R.N.); (S.P.)
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Sonia Piccinin
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (R.N.); (S.P.)
| | - Pietro Calissano
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Simona Capsoni
- Section of Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Roberta Possenti
- Department Medicine of Systems, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
- Correspondence:
| |
Collapse
|
80
|
Ahmed F, Zapata-Mercado E, Rahman S, Hristova K. The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers. Biophys J 2020; 120:55-63. [PMID: 33285113 DOI: 10.1016/j.bpj.2020.11.2262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Trk-A is a receptor tyrosine kinase (RTK) that plays an essential role in the development and functioning of the nervous system. Trk-A is expressed in neurons and signals in response to two ligands, NGF and neurotrophin-3 (NT-3), with very different functional consequences. Thus, NGF and NT-3 are "biased" ligands for Trk-A. Because it has been hypothesized that biased RTK ligands induce differential stabilization of RTK dimers, here, we seek to test this hypothesis for NGF and NT-3. In particular, we use Förster resonance energy transfer (FRET) and fluorescence intensity fluctuation spectroscopy to assess the strength of Trk-A interactions and Trk-A oligomer size in the presence of the two ligands. Although the difference in Trk-A behavior in response to the two ligands has been previously attributed to differences in their binding to Trk-A in the endosomes at low pH, here, we further show differences in the stabilities of the NGF- and NT-3-bound Trk-A dimers in the plasma membrane and at neutral pH. We discuss the biological significance of these new findings and their implications for the design of Trk-A ligands with novel functionalities.
Collapse
Affiliation(s)
- Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sanim Rahman
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
81
|
Hannan MA, Dash R, Haque MN, Choi SM, Moon IS. Integrated System Pharmacology and In Silico Analysis Elucidating Neuropharmacological Actions of Withania somnifera in the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:541-556. [PMID: 32748763 DOI: 10.2174/1871527319999200730214807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Withania somnifera (WS), also referred to as Medhya Rasayana (nootropic or rejuvenating), has traditionally been prescribed for various neurological ailments, including dementia. Despite substantial evidence, pharmacological roles of WS, neither as nootropic nor as an antidementia agent, are well-understood at the cellular and molecular levels. OBJECTIVES We aimed at elucidating the pharmacological action mechanisms of WS root constituents against Alzheimer's Disease (AD) pathology. METHODS Various bioinformatics tools and resources, including DAVID, Cytoscape, NetworkAnalyst and KEGG pathway database were employed to analyze the interaction of WS root bioactive molecules with the protein targets of AD-associated cellular processes. We also used a molecular simulation approach to validate the interaction of compounds with selected protein targets. RESULTS Network analysis revealed that β-sitosterol, withaferin A, stigmasterol, withanolide A, and withanolide D are the major constituents of WS root that primarily target the cellular pathways such as PI3K/Akt signaling, neurotrophin signaling and toll-like receptor signaling and proteins such as Tropomyosin receptor Kinase B (TrkB), Glycogen Synthase Kinase-3β (GSK-3β), Toll-Like Receptor 2/4 (TLR2/4), and β-secretase (BACE-1). Also, the in silico analysis further validated the interaction patterns and binding affinity of the major WS compounds, particularly stigmasterol, withanolide A, withanolide D and β-sitosterol with TrkB, GSK-3β, TLR2/4, and BACE-1. CONCLUSION The present findings demonstrate that stigmasterol, withanolide A, withanolide D and β-sitosterol are the major metabolites that are responsible for the neuropharmacological action of WS root against AD-associated pathobiology, and TrkB, GSK-3β, TLR2/4, and BACE-1 could be the potential druggable targets.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Nazmul Haque
- Departement of Fisheries Biology and Genetics, Patuakhali Science and Technology University Patuakhali-8602, Bangladesh
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
82
|
Oei JL. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020; 115:2148-2163. [PMID: 32149441 DOI: 10.1111/add.15036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
AIMS To review the impact of prenatal alcohol exposure on the outcomes of the mother and child. DESIGN Narrative review. SETTING Review of literature. PARTICIPANTS Mothers and infants affected by prenatal alcohol use. MEASUREMENTS Outcomes of mothers and children. FINDINGS Prenatal alcohol exposure is one of the most important causes of preventable cognitive impairment in the world. The developing neurological system is exquisitely sensitive to harm from alcohol and there is now also substantial evidence that alcohol-related harm can extend beyond the individual person, leading to epigenetic changes and intergenerational vulnerability and disadvantage. There is no known safe level or timing of drinking for pregnant or lactating women and binge drinking (> four drinks within 2 hours for women) is the most harmful. Alcohol-exposure increases the risk of congenital problems, including Fetal Alcohol Spectrum Disorder (FASD) and its most severe form, Fetal Alcohol Syndrome (FAS). CONCLUSION The impact of FASD and FAS is enduring and life-long with no current treatment or cure. Emerging therapeutic options may mitigate the worst impact of alcohol exposure but significant knowledge gaps remain. This review discusses the history, epidemiology and clinical presentations of prenatal alcohol exposure, focusing on FASD and FAS, and the impact of evidence on future research, practice and policy directions.
Collapse
Affiliation(s)
- Ju Lee Oei
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia.,Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia.,Drug and Alcohol Services, Murrumbidgee Local Health District, NSW, Australia
| |
Collapse
|
83
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
84
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
85
|
Qin Z, Gonsalvez DG, Wood RJ, Daemi F, Yoo S, Ivanusic JJ, Coulson EJ, Murray SS, Xiao J. Partial deletion of p75 NTR in large-diameter DRG neurons exerts no influence upon the survival of peripheral sensory neurons in vivo. J Neurosci Res 2020; 98:1987-1998. [PMID: 32585763 DOI: 10.1002/jnr.24665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023]
Abstract
The p75 neurotrophin receptor (p75NTR ) is required for maintaining peripheral sensory neuron survival and function; however, the underlying cellular mechanism remains unclear. The general view is that expression of p75NTR by the neuron itself is required for maintaining sensory neuron survival and myelination in the peripheral nervous system (PNS). Adopting a neuronal-specific conditional knockout strategy, we demonstrate the partial depletion of p75NTR in neurons exerts little influence upon maintaining sensory neuron survival and peripheral nerve myelination in health and after demyelinating neuropathy. Our data show that the density and total number of dorsal root ganglion (DRG) neurons in 2-month-old mice is not affected following the deletion of p75NTR in large-diameter myelinating neurons, as assessed by stereology. Adopting experimental autoimmune neuritis induced in adult male mice, an animal model of demyelinating peripheral neuropathy, we identify that deleting p75NTR in myelinating neurons exerts no influence upon the disease progression, the total number of DRG neurons, and the extent of myelin damage in the sciatic nerve, indicating that the expression of neuronal p75NTR is not essential for maintaining peripheral neuron survival and myelination after a demyelinating insult in vivo. Together, results of this study suggest that the survival and myelination of peripheral sensory neurons is independent of p75NTR expressed by a subtype of neurons in vivo. Thus, our findings provide new insights into the mechanism underpinning p75NTR -mediated neuronal survival in the PNS.
Collapse
Affiliation(s)
- Zuoheng Qin
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Rhiannon J Wood
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fatemeh Daemi
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Sangwon Yoo
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Queensland University, Brisbane, QLD, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
86
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
87
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
88
|
Ragusa M, Santagati M, Mirabella F, Lauretta G, Cirnigliaro M, Brex D, Barbagallo C, Domini CN, Gulisano M, Barone R, Trovato L, Oliveri S, Mongelli G, Spitale A, Barbagallo D, Di Pietro C, Stefani S, Rizzo R, Purrello M. Potential Associations Among Alteration of Salivary miRNAs, Saliva Microbiome Structure, and Cognitive Impairments in Autistic Children. Int J Mol Sci 2020; 21:ijms21176203. [PMID: 32867322 PMCID: PMC7504581 DOI: 10.3390/ijms21176203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has demonstrated that salivary molecules, as well as bacterial populations, can be perturbed by several pathological conditions, including neuro-psychiatric diseases. This relationship between brain functionality and saliva composition could be exploited to unveil new pathological mechanisms of elusive diseases, such as Autistic Spectrum Disorder (ASD). We performed a combined approach of miRNA expression profiling by NanoString technology, followed by validation experiments in qPCR, and 16S rRNA microbiome analysis on saliva from 53 ASD and 27 neurologically unaffected control (NUC) children. MiR-29a-3p and miR-141-3p were upregulated, while miR-16-5p, let-7b-5p, and miR-451a were downregulated in ASD compared to NUCs. Microbiome analysis on the same subjects revealed that Rothia, Filifactor, Actinobacillus, Weeksellaceae, Ralstonia, Pasteurellaceae, and Aggregatibacter increased their abundance in ASD patients, while Tannerella, Moryella and TM7-3 decreased. Variations of both miRNAs and microbes were statistically associated to different neuropsychological scores related to anomalies in social interaction and communication. Among miRNA/bacteria associations, the most relevant was the negative correlation between salivary miR-141-3p expression and Tannerella abundance. MiRNA and microbiome dysregulations found in the saliva of ASD children are potentially associated with cognitive impairments of the subjects. Furthermore, a potential cross-talking between circulating miRNAs and resident bacteria could occur in saliva of ASD.
Collapse
Affiliation(s)
- Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Carla Noemi Domini
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Mariangela Gulisano
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Rita Barone
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Laura Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Salvatore Oliveri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Gino Mongelli
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95123 Catania, Italy
| | - Ambra Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
- Correspondence:
| |
Collapse
|
89
|
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci 2020; 77:3085-3102. [PMID: 32076742 PMCID: PMC7391401 DOI: 10.1007/s00018-020-03473-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
Collapse
Affiliation(s)
- T E Thingholm
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, J.B. Winsløws Vej 25, 3, 5000, Odense C, Denmark.
| | - L Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Lund Stem Cell Center, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - P A Rosenberg
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
90
|
Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
91
|
Cerebral Dopamine Neurotrophic Factor Regulates Multiple Neuronal Subtypes and Behavior. J Neurosci 2020; 40:6146-6164. [PMID: 32631936 DOI: 10.1523/jneurosci.2636-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) protects dopaminergic neurons against toxic damage in the rodent brain and is in clinical trials to treat Parkinson's disease patients. Yet the underlying mechanism is poorly understood. To examine its significance for neural circuits and behavior, we examined the development of neurotransmitter systems from larval to male adult mutant zebrafish lacking cdnf Although a lack of cdnf did not affect overall brain dopamine levels, dopaminergic neuronal clusters showed significant abnormalities. The number of histamine neurons that surround the dopaminergic neurons was significantly reduced. Expression of tyrosine hydroxylase 2 in the brain was elevated in cdnf mutants throughout their lifespan. There were abnormally few GABA neurons in the hypothalamus in the mutant larvae, and expression of glutamate decarboxylase was reduced throughout the brain. cdnf mutant adults showed a range of behavioral phenotypes, including increased sensitivity to pentylenetetrazole-induced seizures. Shoaling behavior of mutant adults was abnormal, and they did not display social attraction to conspecifics. CDNF plays a profound role in shaping the neurotransmitter circuit structure, seizure susceptibility, and complex behaviors in zebrafish. These findings are informative for dissecting the diverse functions of this poorly understood factor in human conditions related to Parkinson's disease and complex behaviors.SIGNIFICANCE STATEMENT A zebrafish lacking cdnf grows normally and shows no overt morphologic phenotype throughout the life span. Remarkably, impaired social cohesion and increased seizure susceptibility were found in adult cdnf KO fish conceivably associated with significant changes of dopaminergic, GABAergic, and histaminergic systems in selective brain areas. These findings suggest that cdnf has broad effects on regulating neurogenesis and maturation of transmitter-specific neuronal types during development and throughout adulthood, rather than ones restricted to the dopaminergic systems.
Collapse
|
92
|
Zhao S, Zhang Z, Xu D, Wang Y, Li L. Selective Loss of Brain-Derived Neurotrophic Factor Exacerbates Brain Injury by Enhancing Neuroinflammation in Experimental Streptococcus pneumoniae Meningitis. Front Immunol 2020; 11:1357. [PMID: 32676082 PMCID: PMC7333737 DOI: 10.3389/fimmu.2020.01357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae meningitis is a life-threatening bacterial infection of the central nervous system (CNS), and its unfavorable prognosis usually results from an intense inflammatory response. Recent studies have shown that brain-derived neurotrophic factor (BDNF) mediates anti-inflammatory and neuroprotective effects in CNS diseases; however, the distinct contribution of BDNF to pneumococcal meningitis (PM) remains unknown. In this study, we sought to investigate the effects of endogenous BDNF on the inflammatory response and brain damage in experimental PM. We used Camk2a-CreERT2 mice to delete Bdnf from the cerebral cortex and hippocampus, and meningitis was induced by intracisternal infection with S. pneumoniae. Clinical parameters were assessed during acute meningitis. At 24 h post-infection, histopathology, neutrophil granulocytes infiltration, and microglia/macrophage proliferation of brain tissues were evaluated. Additionally, cortical damage and hippocampal apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase dUTP-nick-end labeling (TUNEL), respectively. Pro-inflammatory cytokine levels were determined using real-time polymerase chain reaction (RT-PCR). Key molecules associated with the related signaling pathways were analyzed by RT-PCR and western blot. To investigate the role of microglia/macrophage in infected BDNF conditional knockout mice, GW2580 was used for microglia/macrophage depletion. Here, we, for the first time, found that BDNF conditional knockouts exhibited more profound clinical impairment, pathological severity, and neuron injury and enhanced microglia/macrophage proliferation than were observed in their littermate controls. Furthermore, the BDNF conditional knockouts showed an obviously increase in the expression of pro-inflammatory factors (Tnf-α, Il-1β, and Il-6). Mechanistically, loss of BDNF activated TLR2- and NOD2-mediated downstream nuclear factor kappa B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) pathways associated with S. pneumoniae infection. Furthermore, targeted depletion of microglia/macrophage population decreased the resistance of mice to PM with diminishing neuroinflammation in BDNF conditional knockouts. Our findings suggest that loss of BDNF may enhance the inflammatory response and contribute to brain injury during PM at least partially by modulating TLR2- and NOD2-mediated signaling pathways, thereby providing a potential therapeutic target for future interventions in bacterial meningitis pathologies.
Collapse
Affiliation(s)
- Shengnan Zhao
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhijie Zhang
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanfei Wang
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
93
|
de Girolamo P, Leggieri A, Palladino A, Lucini C, Attanasio C, D’Angelo L. Cholinergic System and NGF Receptors: Insights from the Brain of the Short-Lived Fish Nothobranchius furzeri. Brain Sci 2020; 10:brainsci10060394. [PMID: 32575701 PMCID: PMC7348706 DOI: 10.3390/brainsci10060394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) receptors are evolutionary conserved molecules, and in mammals are considered necessary for ensuring the survival of cholinergic neurons. The age-dependent regulation of NTRK1/NTRKA and p75/NGFR in mammalian brain results in a reduced response of the cholinergic neurons to neurotrophic factors and is thought to play a role in the pathogenesis of neurodegenerative diseases. Here, we study the age-dependent expression of NGF receptors (NTRK1/NTRKA and p75/NGFR) in the brain of the short-lived teleost fish Nothobranchius furzeri. We observed that NTRK1/NTRKA is more expressed than p75/NGFR in young and old animals, although both receptors do not show a significant age-dependent change. We then study the neuroanatomical organization of the cholinergic system, observing that cholinergic fibers project over the entire neuroaxis while cholinergic neurons appear restricted to few nuclei situated in the equivalent of mammalian subpallium, preoptic area and rostral reticular formation. Finally, our experiments do not confirm that NTRK1/NTRKA and p75/NGFR are expressed in cholinergic neuronal populations in the adult brain of N. furzeri. To our knowledge, this is the first study where NGF receptors have been analyzed in relation to the cholinergic system in a fish species along with their age-dependent modulation. We observed differences between mammals and fish, which make the African turquoise killifish an attractive model to further investigate the fish specific NGF receptors regulation.
Collapse
Affiliation(s)
- Paolo de Girolamo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
- Correspondence: ; Tel.: +39-081-2536099
| | - Adele Leggieri
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Antonio Palladino
- CESMA—Centro Servizi metereologici e Tecnologici Avanzati, University of Naples Federico II, I-80126 Naples, Italy;
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Livia D’Angelo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| |
Collapse
|
94
|
Pattwell SS, Arora S, Cimino PJ, Ozawa T, Szulzewsky F, Hoellerbauer P, Bonifert T, Hoffstrom BG, Boiani NE, Bolouri H, Correnti CE, Oldrini B, Silber JR, Squatrito M, Paddison PJ, Holland EC. A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nat Commun 2020; 11:2977. [PMID: 32532995 PMCID: PMC7293284 DOI: 10.1038/s41467-020-16786-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Independent scientific achievements have led to the discovery of aberrant splicing patterns in oncogenesis, while more recent advances have uncovered novel gene fusions involving neurotrophic tyrosine receptor kinases (NTRKs) in gliomas. The exploration of NTRK splice variants in normal and neoplastic brain provides an intersection of these two rapidly evolving fields. Tropomyosin receptor kinase B (TrkB), encoded NTRK2, is known for critical roles in neuronal survival, differentiation, molecular properties associated with memory, and exhibits intricate splicing patterns and post-translational modifications. Here, we show a role for a truncated NTRK2 splice variant, TrkB.T1, in human glioma. TrkB.T1 enhances PDGF-driven gliomas in vivo, augments PDGF-induced Akt and STAT3 signaling in vitro, while next generation sequencing broadly implicates TrkB.T1 in the PI3K signaling cascades in a ligand-independent fashion. These TrkB.T1 findings highlight the importance of expanding upon whole gene and gene fusion analyses to include splice variants in basic and translational neuro-oncology research.
Collapse
Affiliation(s)
- Siobhan S Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA, 98104, USA
| | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Tobias Bonifert
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
| | - Benjamin G Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Norman E Boiani
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA, 98101, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, 28209, Madrid, Spain
| | - John R Silber
- Department of Neurological Surgery, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, 28209, Madrid, Spain
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA, 98109, USA.
- Department of Neurological Surgery, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA, 98104, USA.
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA.
| |
Collapse
|
95
|
Ding XW, Li R, Geetha T, Tao YX, Babu JR. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165858. [PMID: 32531260 DOI: 10.1016/j.bbadis.2020.165858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
As the population ages, obesity and metabolic complications as well as neurological disorders are becoming more prevalent, with huge economic burdens on both societies and families. New therapeutics are urgently needed. Nerve growth factor (NGF), first discovered in 1950s, is a neurotrophic factor involved in regulating cell proliferation, growth, survival, and apoptosis in both central and peripheral nervous systems. NGF and its precursor, proNGF, bind to TrkA and p75 receptors and initiate protein phosphorylation cascades, resulting in changes of cellular functions, and are associated with obesity, diabetes and its complications, and Alzheimer's disease. In this article, we summarize changes in NGF levels in metabolic and neuronal disorders, the signal transduction initiated by NGF and proNGF, the physiological and pathophysiological relevance, and therapeutic potential in treating chronic metabolic diseases and cognitive decline.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
96
|
Park KS, Ganesh AB, Berry NT, Mobley YP, Karper WB, Labban JD, Wahlheim CN, Williams TM, Wideman L, Etnier JL. The effect of physical activity on cognition relative to APOE genotype (PAAD-2): study protocol for a phase II randomized control trial. BMC Neurol 2020; 20:231. [PMID: 32503473 PMCID: PMC7274941 DOI: 10.1186/s12883-020-01732-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND By 2050, the prevalence of Alzheimer's disease (AD) in the United States is predicted to reach 13.8 million. Despite worldwide research efforts, a cure for AD has not been identified. Thus, it is critical to identify preventive strategies that can reduce the risk of or delay the onset of AD. Physical activity (PA) has potential in this regard. This randomized clinical trial aims to (a) test the causal relationship between PA and AD-associated cognitive function for persons with a family history of AD (FH+), (b) determine the moderating role of apolipoprotein epsilon 4 (APOE4) carrier status on cognition, and (c) assess cerebral structure, cerebral function, and putative biomarkers as mediators of the effects of PA on cognition. METHODS We are recruiting cognitively normal, middle aged (40-65 years) sedentary adults with FH+. Participants are randomly assigned to a 12-month PA intervention for 3 days/week or to a control group maintaining their normal lifestyle. Saliva samples are taken at pre-test to determine APOE genotype. At pre-, mid-, and post-tests, participants complete a series of cognitive tests to assess information-processing speed, verbal and visual episodic memory, constructional praxis, mnemonic discrimination, and higher-order executive functions. At pre- and post-tests, brain imaging and blood biomarkers are assessed. DISCUSSION We hypothesize that 1) the PA group will demonstrate improved cognition compared with controls; 2) PA-derived cognitive changes will be moderated by APOE4 status; and 3) PA-induced changes in neural and blood biomarkers will contribute to cognitive changes and differ as a function of APOE4 status. Our results may provide important insights into the potential of PA to preserve neurocognitive function in people with a heightened risk of AD due to FH+ and as moderated by APOE4 status. By using sophisticated analytic techniques to assess APOE as a moderator and neurobiological mechanisms as mediators across trajectories of cognitive change in response to PA, we will advance our understanding of the potential of PA in protecting against AD. TRIAL REGISTRATION ClinicalTrials.gov NCT03876314. Registered March 15, 2019.
Collapse
Affiliation(s)
- Kyoung Shin Park
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Alexis B Ganesh
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Yashonda P Mobley
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - William B Karper
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jeffrey D Labban
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Christopher N Wahlheim
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Tomika M Williams
- Department of Advanced Nursing Practice and Education, East Carolina University, Greenville, NC, 27858, USA
| | - Laurie Wideman
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jennifer L Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
97
|
Jisha GB, Ilayaraja V, Yoithapprabhunath TR, Ganapathy N, Dineshshankar J, Nirmal RM. Immunohistochemical detection of Tyrosine Kinase receptor (TrK) in follicular and plexiform ameloblastoma - A novel study. J Oral Maxillofac Pathol 2020; 24:125-130. [PMID: 32508460 PMCID: PMC7269298 DOI: 10.4103/jomfp.jomfp_220_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/31/2020] [Indexed: 11/04/2022] Open
Abstract
Objectives: The objective is to analyze the immunohistochemical expression pattern of tyrosine kinase receptor (TrK) in ameloblastoma and to compare the immunohistochemical expression pattern of TrK among the histological types of ameloblastoma, follicular and plexiform patterns. Materials and Methods: Forty ameloblastomas (20 follicular and 20 plexiform) were immunostained with anti-human TrK mouse IgG monoclonal antibody, and the pattern of staining is statistically analyzed. Results: Total 20 (4 follicular and 16 plexiform) out of 40 ameloblastomas showed immunoreactivity to TrK. Only the peripheral preameloblast like tall columnar cells showed reactivity, whereas the stellate reticulum like cells is immunonegative. The staining pattern was membranous in the immunoreactive cells. The Chi-square value for the immunoexpression between follicular and plexiform ameloblastoma was statistically significant with a P < 0.005. The results were studied with the downstream pathways from the literature, and a possible mechanism has been proposed. Conclusion: The expression pattern of TrK is found to be more in plexiform ameloblastoma than follicular ameloblastoma.
Collapse
Affiliation(s)
- George Babu Jisha
- Consultant Oral and Maxillofacial Pathologist, SM Dental Clinic, Erode, Tamil Nadu, India
| | - Vadivel Ilayaraja
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | | | - Nalliappan Ganapathy
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | - Janardhanam Dineshshankar
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | - Ramadas Madhavan Nirmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| |
Collapse
|
98
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
99
|
Fulgenzi G, Hong Z, Tomassoni-Ardori F, Barella LF, Becker J, Barrick C, Swing D, Yanpallewar S, Croix BS, Wess J, Gavrilova O, Tessarollo L. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun 2020; 11:1950. [PMID: 32327658 PMCID: PMC7181656 DOI: 10.1038/s41467-020-15833-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
BDNF signaling in hypothalamic circuitries regulates mammalian food intake. However, whether BDNF exerts metabolic effects on peripheral organs is currently unknown. Here, we show that the BDNF receptor TrkB.T1 is expressed by pancreatic β-cells where it regulates insulin release. Mice lacking TrkB.T1 show impaired glucose tolerance and insulin secretion. β-cell BDNF-TrkB.T1 signaling triggers calcium release from intracellular stores, increasing glucose-induced insulin secretion. Additionally, BDNF is secreted by skeletal muscle and muscle-specific BDNF knockout phenocopies the β-cell TrkB.T1 deletion metabolic impairments. The finding that BDNF is also secreted by differentiated human muscle cells and induces insulin secretion in human islets via TrkB.T1 identifies a new regulatory function of BDNF on metabolism that is independent of CNS activity. Our data suggest that muscle-derived BDNF may be a key factor mediating increased glucose metabolism in response to exercise, with implications for the treatment of diabetes and related metabolic diseases. Glucose metabolism is regulated by hypothalamic brain functions and factors produced by peripheral tissues. Here, the authors show that the regulator of food intake Brain-derived neurotrophic factor is also produced and secreted by muscle and stimulates pancreas insulin release.
Collapse
Affiliation(s)
| | - Zhenyi Hong
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | | | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, USA
| | - Jodi Becker
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | - Colleen Barrick
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | - Deborah Swing
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | | | - Brad St Croix
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, USA
| | | | - Lino Tessarollo
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA.
| |
Collapse
|
100
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|