51
|
Relative distribution and biological characterization of CXCL4L1 isoforms in platelets from healthy donors. Biochem Pharmacol 2017; 145:123-131. [DOI: 10.1016/j.bcp.2017.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
52
|
Pujada A, Walter L, Patel A, Bui TA, Zhang Z, Zhang Y, Denning TL, Garg P. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget 2017; 8:94650-94665. [PMID: 29212256 PMCID: PMC5706902 DOI: 10.18632/oncotarget.21841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
In colitis associated cancer (CAC), chronic inflammation exposes the epithelial mucosal defensive lining to inflammatory mediators such as cytokines and anti-microbial peptides (AMPs) causing the dysbiosis of microbiota population and the dysregulation of immune response. Matrix Metalloproteinases (MMPs) are zinc dependent endopeptidases which mediate inflammation, tissue remodeling, and carcinogenesis. MMP9 is undetectable in healthy tissue, although highly upregulated during inflammation and cancer. We have previously shown that MMP9 plays a protective role in CAC opposite to its conventional role of acute inflammation and cancer mediator. In this study, we investigated the mechanistic role of MMP9 in preserving the epithelial mucosal integrity to suppress the progression of tumor microenvironment in CAC. We used transgenic mice constitutively expressing MMP9 in colonic epithelium (TgM9) as an in vivo model and intestinal cell line CaCo2BBE as an in vitro model. We induced CAC with three cycles of dextran sodium sulfate (DSS). We observed that MMP9 expression in colonic epithelium maintains the microbiota. We also observed that MMP9 mediates pro-inflammatory cytokine levels and AMPs but suppresses IL-22 resulting in lower levels of REG3-g and S100A8 AMPs. We also found that MMP9 maintains an efficient barrier function and the integrity of tight junctions. We also observed increased levels of mucin and intestinal trefoil factor among TgM9 mice in CAC. We also found that MMP9 expressing CaCo2BBE cells had increased expressions of EGFR and nuclear transcription factor- specificity protein 1 (Sp1). These data imply that MMP9 acts as a tumor suppressor in CAC by sustaining the epithelial mucosal integrity due to the activation of EGFR-Sp1 signaling pathway.
Collapse
Affiliation(s)
- Adani Pujada
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Lewins Walter
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Aashka Patel
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Tien Anh Bui
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Pallavi Garg
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
53
|
Juica NE, Rodas PI, Solar P, Borda P, Vargas R, Muñoz C, Paredes R, Christodoulides M, Velasquez LA. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants. Front Cell Infect Microbiol 2017; 7:399. [PMID: 28932707 PMCID: PMC5592203 DOI: 10.3389/fcimb.2017.00399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/24/2017] [Indexed: 01/10/2023] Open
Abstract
Background:Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection.
Collapse
Affiliation(s)
- Natalia E Juica
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres BelloSantiago, Chile
| | - Paula I Rodas
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres BelloSantiago, Chile
| | - Paula Solar
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres BelloSantiago, Chile
| | - Paula Borda
- Servicio de Ginecología y Obstetricia, Hospital San JoséSantiago, Chile
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San JoséSantiago, Chile.,Servicio de Ginecología y Obstetricia, Clínica IndisaSantiago, Chile
| | - Cristobal Muñoz
- Facultad de Ecología y Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Andres BelloSantiago, Chile
| | - Rodolfo Paredes
- Facultad de Ecología y Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Andres BelloSantiago, Chile
| | - Myron Christodoulides
- Neisseria Research Group, Sir Henry Wellcome Laboratories, Division of Infection, Inflammation and Immunity, University of Southampton Medical SchoolSouthampton, United Kingdom
| | - Luis A Velasquez
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
54
|
Breznik B, Motaln H, Lah Turnšek T. Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours. Biol Chem 2017; 398:709-719. [PMID: 28002021 DOI: 10.1515/hsz-2016-0283] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
Abstract
Proteolytic enzymes are highly relevant in different processes of cancer progression. Their interplay with other signalling molecules such as cytokines represents important regulation of multicellular cross-talk. In this review, we discuss protease regulation mechanisms of cytokine signalling in various types of cancer. Additionally, we highlight the reverse whereby cytokines have an impact on protease expression in an autocrine and paracrine manner, representing complex feedback mechanisms among multiple members of these two protein families. The relevance of the protease-cytokine axis is illustrated in glioblastoma, where interactions between normal mesenchymal stem cells and cancer cells play an important role in this very malignant form of brain cancer.
Collapse
|
55
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
56
|
Gill SE, Nadler ST, Li Q, Frevert CW, Park PW, Chen P, Parks WC. Shedding of Syndecan-1/CXCL1 Complexes by Matrix Metalloproteinase 7 Functions as an Epithelial Checkpoint of Neutrophil Activation. Am J Respir Cell Mol Biol 2017; 55:243-51. [PMID: 26934670 DOI: 10.1165/rcmb.2015-0193oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although neutrophils play critical roles in innate immunity, in excess these cells cause severe tissue damage. Thus, neutrophil activation must be tightly regulated to prevent indiscriminant damage. Previously, we reported that mice lacking matrix metalloproteinase (MMP) 7 are protected from lung injury owing to markedly impaired neutrophil movement from the interstitium into mucosal lumenal spaces. This phenotype resulted from a lack of MMP7 shedding of syndecan-1, a heparan sulfate proteoglycan that carries the neutrophil chemokine CXCL1 as cargo. Here, we assessed if shedding syndecan-1/CXCL1 complexes affects neutrophil activation. Whereas injured monolayers of wild-type alveolar type II cells potently stimulated neutrophil activation, as gauged by release of myeloperoxidase, cells from Mmp7(-/-) or syndecan-1-null (Sdc1(-/-)) mice or human cells with MMP7 knockdown did not. In vivo, we observed reduced myeloperoxidase release relative to neutrophil numbers in bleomycin-injured Mmp7(-/-) and Sdc1(-/-) mice. Furthermore, we determined that soluble syndecan-1 directly stimulated neutrophil activation in the absence of cellular damage. These data indicate that MMP7 shedding of syndecan-1/CXCL1 complexes functions as a checkpoint that restricts neutrophil activation at sites of epithelial injury.
Collapse
Affiliation(s)
- Sean E Gill
- 1 Center for Lung Biology and Department of.,2 Centre for Critical Illness Research, Western University, London, Ontario, Canada
| | | | | | - Charles W Frevert
- 1 Center for Lung Biology and Department of.,3 Comparative Medicine, University of Washington, Seattle, Washington
| | - Pyong Woo Park
- 4 Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Peter Chen
- 1 Center for Lung Biology and Department of.,5 Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - William C Parks
- 1 Center for Lung Biology and Department of.,5 Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
57
|
Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA, Ridnour LA. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid Redox Signal 2017; 26:1044-1058. [PMID: 27464521 PMCID: PMC5488348 DOI: 10.1089/ars.2016.6813] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Breast cancer is the second leading cause of cancer-related deaths among women in the United States. Development and progression of malignancy are associated with diverse cell signaling pathways that control cell proliferation, survival, motility, invasion, and metastasis. Recent Advances: An increasing number of clinical studies have implicated a strong relationship between elevated tumor nitric oxide synthase-2 (NOS2) expression and poor patient survival. CRITICAL ISSUES Herein, we review what we believe to be key mechanisms in the role(s) of NOS2-derived nitric oxide (NO) as a driver of breast cancer disease progression. High NO increases cyclooxygenase-2 activity, hypoxia inducible factor-1 alpha protein stabilization, and activation of important cell signaling pathways, including phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase, epidermal growth factor receptor, and Ras, through post-translational protein modifications. Moreover, dysregulated NO flux within the tumor microenvironment has other important roles, including the promotion of angiogenesis and modulation of matrix metalloproteinase/tissue inhibitor matrix metalloproteinase associated with tumor progression. FUTURE DIRECTIONS The elucidation of these and other NO-driven pathways implicates NOS2 as a key driver of breast cancer disease progression and provides a new perspective in the identification of novel targets that may be therapeutically beneficial in the treatment of estrogen receptor-negative disease. Antioxid. Redox Signal. 26, 1044-1058.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Veena Somasundaram
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | | | - Aparna Kesarwala
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie L. Heinecke
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Robert Y. Cheng
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Sharon A. Glynn
- Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| |
Collapse
|
58
|
Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S, Ustaoglu A, Sarker SJ, Marshall J, Edwards DR, Jones JL. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res 2017; 19:33. [PMID: 28330493 PMCID: PMC5363009 DOI: 10.1186/s13058-017-0822-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Normal myoepithelial cells (MECs) play an important tumour-suppressor role in the breast but display an altered phenotype in ductal carcinoma in situ (DCIS), gaining tumour-promoter functions. Matrix metalloproteinase-8 (MMP-8) is expressed by normal MECs but is lost in DCIS. This study investigated the function of MMP-8 in MECs and the impact of its loss in DCIS. METHODS Primary normal and DCIS-associated MECs, and normal (N-1089) and DCIS-modified myoepithelial (β6-1089) cell lines, were used to assess MMP-8 expression and function. β6-1089 lacking MMP-8 were transfected with MMP-8 WT and catalytically inactive MMP-8 EA, and MMP-8 in N-1089 MEC was knocked down with siRNA. The effect on adhesion and migration to extracellular matrix (ECM), localisation of α6β4 integrin to hemidesmosomes (HD), TGF-β signalling and gelatinase activity was measured. The effect of altering MEC MMP-8 expression on tumour cell invasion was investigated in 2D and 3D organotypic models. RESULTS Assessment of primary cells and MEC lines confirmed expression of MMP-8 in normal MEC and its loss in DCIS-MEC. Over-expression of MMP-8 WT but not MMP-8 EA in β6-1089 cells increased adhesion to ECM proteins and reduced migration. Conversely, knock-down of MMP-8 in N-1089 reduced adhesion and increased migration. Expression of MMP-8 WT in β6-1089 led to greater localisation of α6β4 to HD and reduced retraction fibre formation, this being reversed by MMP-8 knock-down in N-1089. Over-expression of MMP-8 WT reduced TGF-β signalling and gelatinolytic activity. MMP-8 knock-down enhanced TGF-β signalling and gelatinolytic activity, which was reversed by blocking MMP-9 by knock-down or an inhibitor. MMP-8 WT but not MMP-8 EA over-expression in β6-1089 reduced breast cancer cell invasion in 2D and 3D invasion assays, while MMP-8 knock-down in N-1089 enhanced cancer cell invasion. Staining of breast cancer cases for MMP-8 revealed a statistically significant loss of MMP-8 expression in DCIS with invasion versus pure DCIS (p = 0.001). CONCLUSIONS These data indicate MMP-8 is a vital component of the myoepithelial tumour-suppressor function. It restores MEC interaction with the matrix, opposes TGF-β signalling and MMP-9 proteolysis, which contributes to inhibition of tumour cell invasion. Assessment of MMP-8 expression may help to determine risk of DCIS progression.
Collapse
Affiliation(s)
- Muge Sarper
- Translational Cancer Discovery Team, CRUK Cancer Therapeutics Unit, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Jenny Gomm
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Linda Haywood
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Decock
- Cancer Research Centre, Qatar Biomedical Research Institute, Qatar Foundation, Doha, Qatar
| | - Sally Thirkettle
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ahsen Ustaoglu
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shah-Jalal Sarker
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Marshall
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
59
|
CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Sci Rep 2017; 7:44384. [PMID: 28290520 PMCID: PMC5349559 DOI: 10.1038/srep44384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation.
Collapse
|
60
|
Smigiel KS, Parks WC. Matrix Metalloproteinases and Leukocyte Activation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:167-195. [PMID: 28413028 DOI: 10.1016/bs.pmbts.2017.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As their name implies, matrix metalloproteinases (MMPs) are thought to degrade extracellular matrix proteins, a function that is indeed performed by some members. However, regardless of their cell source, matrix degradation is not the only function of these enzymes. Rather, individual MMPs have been shown to regulate specific immune processes, such as leukocyte influx and migration, antimicrobial activity, macrophage activation, and restoration of barrier function, typically by processing a range of nonmatrix protein substrates. Indeed, MMP expression is low under steady-state conditions but is markedly induced during inflammatory processes including infection, wound healing, and cancer. Increasing research is showing that MMPs are not just a downstream consequence of a generalized inflammatory process, but rather are critical factors in the overall regulation of the pattern, type, and duration of immune responses. This chapter outlines the role of leukocytes in tissue remodeling and describes recent progress in our understanding of how MMPs alter leukocyte activity.
Collapse
Affiliation(s)
- Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
61
|
Franco C, Patricia HR, Timo S, Claudia B, Marcela H. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int J Mol Sci 2017; 18:ijms18020440. [PMID: 28218665 PMCID: PMC5343974 DOI: 10.3390/ijms18020440] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.
Collapse
Affiliation(s)
- Cavalla Franco
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo (FOB/USP), Bauru, São Paulo 17012-901, Brazil.
- Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA.
| | - Hernández-Ríos Patricia
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
| | - Sorsa Timo
- Department of Oral and Maxillofacial Diseases, Helsinki University and Helsinki University Central Hospital, Helsinki 00290, Finland.
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge 14183, Sweden.
| | - Biguetti Claudia
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo (FOB/USP), Bauru, São Paulo 17012-901, Brazil.
- Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA.
| | - Hernández Marcela
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
62
|
Jiang K, Chen X, Zhao G, Wu H, Mi J, Qiu C, Peng X, Deng G. IFN-τ Plays an Anti-Inflammatory Role in Staphylococcus aureus-Induced Endometritis in Mice Through the Suppression of NF-κB Pathway and MMP9 Expression. J Interferon Cytokine Res 2017; 37:81-89. [DOI: 10.1089/jir.2016.0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Junxian Mi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
63
|
Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators Inflamm 2016; 2016:7369020. [PMID: 28104930 PMCID: PMC5220508 DOI: 10.1155/2016/7369020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy.
Collapse
|
64
|
The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 2016; 5:jcm5120118. [PMID: 27999328 PMCID: PMC5184791 DOI: 10.3390/jcm5120118] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Collapse
|
65
|
Jing T, Lai Z, Wu L, Han J, Lim CT, Chen CH. Single Cell Analysis of Leukocyte Protease Activity Using Integrated Continuous-Flow Microfluidics. Anal Chem 2016; 88:11750-11757. [PMID: 27797505 DOI: 10.1021/acs.analchem.6b03370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.
Collapse
Affiliation(s)
- Tengyang Jing
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602
| | - Zhangxing Lai
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077
| | | | - Jongyoon Han
- Singapore-MIT Alliance for Research and Technology , Singapore 138602
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602.,Mechanobiology Institute , Singapore 117411
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602.,Singapore Institute for Neurotechnology (SINAPSE) , Singapore 117456
| |
Collapse
|
66
|
The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 2016; 155:36-56. [PMID: 27530222 DOI: 10.1016/j.pneurobio.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitous extracellular endopeptidases, which play important roles in a variety of physiological and pathological conditions, from the embryonic stages throughout adult life. Their extraordinary physiological "success" is due to concomitant broad substrate specificities and strict regulation of their expression, activation and inhibition levels. In recent years, MMPs have gained increasing attention as significant effectors in various aspects of central nervous system (CNS) physiology. Most importantly, they have been recognized as main players in a variety of brain disorders having different etiologies and evolution. A common aspect of these pathologies is the development of acute or chronic neuroinflammation. MMPs play an integral part in determining the result of neuroinflammation, in some cases turning its beneficial outcome into a harmful one. This review summarizes the most relevant studies concerning the physiology of MMPs, highlighting their involvement in both the developing and mature CNS, in long-lasting and acute brain diseases and, finally, in nervous system repair. Recently, a concerted effort has been made in identifying therapeutic strategies for major brain diseases by targeting MMP activities. However, from this revision of the literature appears clear that MMPs have multifaceted functional characteristics, which modulate physiological processes in multiple ways and with multiple consequences. Therefore, when choosing MMPs as possible targets, great care must be taken to evaluate the delicate balance between their activation and inhibition and to determine at which stage of the disease and at what level they become active in order maximize chances of success.
Collapse
|
67
|
Atkinson SJ, Varisco BM, Sandquist M, Daly MN, Klingbeil L, Kuethe JW, Midura EF, Harmon K, Opaka A, Lahni P, Piraino G, Hake P, Zingarelli B, Mortenson JE, Wynn JL, Wong HR. Matrix Metalloproteinase-8 Augments Bacterial Clearance in a Juvenile Sepsis Model. Mol Med 2016; 22:455-463. [PMID: 27506554 DOI: 10.2119/molmed.2016.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Genetic ablation or pharmacologic inhibition of matrix metalloproteinase-8 (MMP8) improves survival in an adult murine sepsis model. Because developmental age influences the host inflammatory response, we hypothesized that developmental age influences the role of MMP8 in sepsis. First, we compared sepsis survival between wild type (WT, C57BL/6) and MMP8 null juvenile-aged mice (12-14 days) after intraperitoneal injection of a standardized cecal slurry. Second, peritoneal lavages collected at 6 and 18 hours after cecal slurry injection were analyzed for bacterial burden, leukocyte subsets, and inflammatory cytokines. Third, juvenile WT mice were pretreated with an MMP8 inhibitor prior to cecal slurry injection; analysis of their bacterial burden was compared to vehicle-injected animals. Fourth, the phagocytic capacity of WT and MMP8 null peritoneal macrophages was compared. Finally, peritoneal neutrophil extracellular traps (NETs) were compared using immunofluorescent imaging and quantitative image analysis. We found that juvenile MMP8 null mice had greater mortality and higher bacterial burden than WT mice. Leukocyte counts and cytokine concentrations in the peritoneal fluid were increased in the MMP8 null mice, relative to the wild type mice. Peritoneal macrophages from MMP8 null mice had reduced phagocytic capacity compared to WT macrophages. There was no quantitative difference in NET formation, but fewer bacteria were adherent to NETs from MMP8 null animals. In conclusion, in contrast to septic adult mice, genetic ablation of MMP8 increased mortality following bacterial peritonitis in juvenile mice. The increase in mortality in MMP8 null juvenile mice was associated with reduced bacterial clearance and reduced NET efficiency. We conclude that developmental age influences the role of MMP8 in sepsis.
Collapse
Affiliation(s)
- Sarah J Atkinson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mary Sandquist
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Meghan N Daly
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lindsey Klingbeil
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joshua W Kuethe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Emily F Midura
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Amy Opaka
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Paul Hake
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joel E Mortenson
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - James L Wynn
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
68
|
Szul T, Bratcher PE, Fraser KB, Kong M, Tirouvanziam R, Ingersoll S, Sztul E, Rangarajan S, Blalock JE, Xu X, Gaggar A. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes. Am J Respir Cell Mol Biol 2016. [PMID: 26222144 DOI: 10.1165/rcmb.2015-0108oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.
Collapse
Affiliation(s)
- Tomasz Szul
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology
| | - Preston E Bratcher
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology
| | | | - Michele Kong
- 4 Pediatrics.,5 Gregory Fleming James Cystic Fibrosis Research Center
| | - Rabindra Tirouvanziam
- 2 Program in Protease and Matrix Biology.,6 Department of Pediatrics and Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia; and
| | - Sarah Ingersoll
- 6 Department of Pediatrics and Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia; and
| | - Elizabeth Sztul
- 7 Department of Cell, Developmental and Integrative Biology, and
| | - Sunil Rangarajan
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - J Edwin Blalock
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology.,5 Gregory Fleming James Cystic Fibrosis Research Center.,8 University of Alabama at Birmingham Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xin Xu
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology
| | - Amit Gaggar
- 1 Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Program in Protease and Matrix Biology.,5 Gregory Fleming James Cystic Fibrosis Research Center.,7 Department of Cell, Developmental and Integrative Biology, and.,8 University of Alabama at Birmingham Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama.,9 Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
69
|
Koymans KJ, Bisschop A, Vughs MM, van Kessel KPM, de Haas CJC, van Strijp JAG. Staphylococcal Superantigen-Like Protein 1 and 5 (SSL1 & SSL5) Limit Neutrophil Chemotaxis and Migration through MMP-Inhibition. Int J Mol Sci 2016; 17:E1072. [PMID: 27399672 PMCID: PMC4964448 DOI: 10.3390/ijms17071072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases that degrade components of the extracellular matrix, but also modulate inflammation. During bacterial infections, MMPs are important in the recruitment and migration of inflammatory cells. Besides facilitating cell migration by degrading extracellular matrix components, they potentiate the action of several inflammatory molecules, including cytokines, chemokines, and antimicrobial peptides. Staphylococcus aureus secretes an arsenal of immune evasion molecules that interfere with immune cell functioning and hamper proper immune responses. An earlier study identified staphylococcal superantigen-like protein 5 (SSL5) as an MMP9 inhibitor. Since multiple MMPs are involved in neutrophil recruitment, we set up an in-depth search for additional MMP inhibitors by testing a panel of over 70 secreted staphylococcal proteins on the inhibition of the two main neutrophil MMPs: MMP8 (neutrophil collagenase) and MMP9 (neutrophil gelatinase B). We identified SSL1 and SSL5 as potent inhibitors of both neutrophil MMPs and show that they are actually broad range MMP inhibitors. SSL1 and SSL5 prevent MMP-induced cleavage and potentiation of IL-8 and inhibit the migration of neutrophils through collagen. Thus, through MMP-inhibition, SSL1 and SSL5 interfere with neutrophil activation, chemotaxis, and migration, all vital neutrophil functions in bacterial clearance. Studies on MMP-SSL interactions can have therapeutic potential and SSL based derivatives might prove useful in treatment of cancer and destructive inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Mignon M Vughs
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
70
|
Matus CE, Ehrenfeld P, Pavicic F, González CB, Concha M, Bhoola KD, Burgos RA, Figueroa CD. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor. Exp Dermatol 2016; 25:694-700. [PMID: 27093919 DOI: 10.1111/exd.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing.
Collapse
Affiliation(s)
- Carola E Matus
- Instituto de Morfofisiología y Farmacología, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Francisca Pavicic
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B González
- Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Miguel Concha
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Kanti D Bhoola
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Instituto de Morfofisiología y Farmacología, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
71
|
Sachwani GR, Jaehne AK, Jayaprakash N, Kuzich M, Onkoba V, Blyden D, Rivers EP. The association between blood glucose levels and matrix-metalloproteinase-9 in early severe sepsis and septic shock. JOURNAL OF INFLAMMATION-LONDON 2016; 13:13. [PMID: 27110221 PMCID: PMC4840979 DOI: 10.1186/s12950-016-0122-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023]
Abstract
Background Hyperglycemia is a frequent and important metabolic derangement that accompanies severe sepsis and septic shock. Matrix-Metalloproteinase 9 (MMP-9) has been shown to be elevated in acute stress hyperglycemia, chronic hyperglycemia, and in patient with sepsis. The objective of this study was to examine the clinical and pathogenic link between MMP-9 and blood glucose (BG) levels in patients with early severe sepsis and septic shock. Methods We prospectively examined 230 patients with severe sepsis and septic shock immediately upon hospital presentation and before any treatment including insulin administration. Clinical and laboratory data were obtained along with blood samples for the purpose of this study. Univariate tests for mean and median distribution using Spearman correlation and analysis of variance (ANOVA) were performed. A p value ≤ 0.05 was considered statistically significant. Results Patients were grouped based on their presenting BG level (mg/dL): BG <80 (n = 32), 80–120 (n = 53), 121–150 (n = 38), 151–200 (n = 23), and > 201 (n = 84). Rising MMP-9 levels were significantly associated with rising BG levels (p = 0.043). A corresponding increase in the prevalence of diabetes for each glucose grouping from 6.3 to 54.1 % (p = 0.0001) was also found. As MMP-9 levels increased a significantly (p < 0.001) decreases in IL-8 (pg/mL) and ICAM-1 (ng/mL) were noted. Conclusion This is the first study in humans demonstrating a significant and early association between MMP-9 and BG levels in in patients with severe sepsis and septic shock. Neutrophil affecting biomarkers such as IL-8 and ICAM-1 are noted to decrease as MMP-9 levels increase. Clinical risk stratification using MMP-9 levels could potentially help determine which patients would benefit from intensive versus conventional insulin therapy. In addition, antagonizing the up-regulation of MMP-9 could serve as a potential treatment option in severe sepsis or septic shock patients.
Collapse
Affiliation(s)
- Gul R Sachwani
- Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| | - Anja K Jaehne
- Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| | | | - Mark Kuzich
- Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| | - Violet Onkoba
- Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| | - Dione Blyden
- Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| | | |
Collapse
|
72
|
Abstract
Myocarditis is a heterogeneous group of disorders defined by inflammation of the heart muscle. The primary clinical manifestations of myocarditis are heart failure and sudden death in children and young adults. Numerous interventions have been investigated for the treatment of myocarditis, including broad spectrum alteration of the immune response and antiviral treatments; however, success has been limited. Since the myocarditis treatment trials in the 1990s there has been an improved understanding of disease progression and new facets of the immune response have been discovered. This new information provides fresh opportunities to develop therapeutics to treat myocarditis. This review analyzes previous pharmacologic approaches including immunosuppression, high dose intravenous immunoglobulin treatment, immunoadsorption and antiviral treatments, and looks forward toward recently identified immune factors that can be exploited as targets for new treatments. Such strategies include bolstering beneficial regulatory T cells or mitigating the detrimental Th17 T cells which can drive autoimmunity in the heart. The surging interest of the application of humanized monoclonal antibodies makes targeting deleterious arms of the immune response like Th17 cells a tangible goal in the near future. Promising constituents of herbal remedies have also been identified that may hold potential as new pharmacological treatments for myocarditis, however, significant work remains to elucidate the pharmacokinetics and side-effects of these compounds. Finally, advances in our understanding of the function of Matrix Metalloproteinases yield another target for altering disease progression given their role in the development of fibrosis during Dilated Cardiomyopathy. In bringing to light the various new targets and treatments available since the last myocarditis treatment trials, the aim of this review is to explore the new treatments that are possible in new myocarditis treatment trials.
Collapse
|
73
|
Murakami K, Maeda S, Yonezawa T, Matsuki N. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders. J Vet Med Sci 2016; 78:1051-4. [PMID: 26902805 PMCID: PMC4937142 DOI: 10.1292/jvms.15-0711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with
joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity
levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA;
n=4), and healthy controls (n=10). However, dogs with cranial cruciate
ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and
healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than
other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different
from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in
the underlying pathological processes.
Collapse
Affiliation(s)
- Kohei Murakami
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
74
|
Baeza M, Garrido M, Hernández-Ríos P, Dezerega A, García-Sesnich J, Strauss F, Aitken JP, Lesaffre E, Vanbelle S, Gamonal J, Brignardello-Petersen R, Tervahartiala T, Sorsa T, Hernández M. Diagnostic accuracy for apical and chronic periodontitis biomarkers in gingival crevicular fluid: an exploratory study. J Clin Periodontol 2016; 43:34-45. [DOI: 10.1111/jcpe.12479] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Mauricio Baeza
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Mauricio Garrido
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Patricia Hernández-Ríos
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Andrea Dezerega
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Jocelyn García-Sesnich
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Franz Strauss
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Juan Pablo Aitken
- Department of Pathology and Oral Medicine; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Emmanuel Lesaffre
- Leuven Biostatistics and Statistical Bioinformatics Centre; KU Leuven; Leuven Belgium
| | - Sophie Vanbelle
- Department of Methodology and Statistics; CAPHRI; Maastricht University; Maastricht The Netherlands
| | - Jorge Gamonal
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | | | - Taina Tervahartiala
- Departments of Oral and Maxillofacial Diseases; Helsinki University and Helsinki University Central Hospital; Helsinki Finland
| | - Timo Sorsa
- Departments of Oral and Maxillofacial Diseases; Helsinki University and Helsinki University Central Hospital; Helsinki Finland
- Division of Periodontology; Department of Dental Medicine; Karolinska Institutet; Huddinge Sweden
| | - Marcela Hernández
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Pathology and Oral Medicine; Faculty of Dentistry; University of Chile; Santiago Chile
| |
Collapse
|
75
|
Woo M, Patterson EK, Cepinskas G, Clarson C, Omatsu T, Fraser DD. Dynamic regulation of plasma matrix metalloproteinases in human diabetic ketoacidosis. Pediatr Res 2016; 79:295-300. [PMID: 26492282 DOI: 10.1038/pr.2015.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) in children is associated with cerebrovascular-related complications. We recently reported that DKA facilitates leukocyte adherence to the brain microvascular endothelium. Adhered leukocytes can release enzymes that instigate vascular dysfunction. Our aims were to measure plasma levels of leukocyte-derived matrix metalloproteinases (MMPs) from DKA patients and to correlate plasma MMP concentrations with DKA severity. METHODS Plasma was obtained from children with type 1 diabetes, either in DKA (n = 16) or insulin controlled (CON; n = 16). Antibody microarray and gelatin zymography were used to quantify plasma MMPs and their endogenous tissue inhibitors (TIMPs). MMP concentrations were correlated with DKA severity (blood pH). Quantitative PCR of leukocyte mRNA was used to help determine the origin of plasma MMPs. RESULTS DKA was associated with altered plasma levels of ↓MMP-2 (P < 0.001), ↑MMP-8 (P < 0.001), ↑MMP-9 (P < 0.05), and ↑TIMP-4 (P < 0.001), as compared with CON. Elevated MMP-8 and MMP-9 were both positively correlated with DKA severity (P < 0.05). DKA was associated with increased leukocyte mRNA for MMP-8, MMP-9, and TIMP-4 (P < 0.005). CONCLUSION MMPs are dynamically regulated during DKA. Plasma MMP-8 and MMP-9 concentrations correlate with DKA severity and are known to degrade brain microvascular endothelial cell tight junctions. Thus, leukocyte-derived MMPs might contribute to DKA-associated cerebrovascular complications.
Collapse
Affiliation(s)
- Martin Woo
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Centre for Critical Illness Research, London, Ontario, Canada
| | | | - Gediminas Cepinskas
- Centre for Critical Illness Research, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
| | - Cheril Clarson
- Children's Health Research Institute, London, Ontario, Canada
- Pediatrics, Western University, London, Ontario, Canada
| | - Tatsushi Omatsu
- Centre for Critical Illness Research, London, Ontario, Canada
- Pediatrics, Western University, London, Ontario, Canada
| | - Douglas D Fraser
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Centre for Critical Illness Research, London, Ontario, Canada
- Pediatrics, Western University, London, Ontario, Canada
- Clinical Neurological Sciences, Western University, London, Ontario, Canada
- Translational Research Centre, London, Ontario, Canada
| |
Collapse
|
76
|
Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 2015; 91:134-40. [PMID: 26721597 DOI: 10.1016/j.yjmcc.2015.12.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.
Collapse
|
77
|
Marth CD, Young ND, Glenton LY, Noden DM, Browning GF, Krekeler N. Deep sequencing of the uterine immune response to bacteria during the equine oestrous cycle. BMC Genomics 2015; 16:934. [PMID: 26572250 PMCID: PMC4647707 DOI: 10.1186/s12864-015-2139-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 11/14/2022] Open
Abstract
Background The steroid hormone environment in healthy horses seems to have a significant impact on the efficiency of their uterine immune response. The objective of this study was to characterize the changes in gene expression in the equine endometrium in response to the introduction of bacterial pathogens and the influence of steroid hormone concentrations on this expression. Methods Endometrial biopsies were collected from five horses before and 3 h after the inoculation of Escherichia coli once in oestrus (follicle >35 mm in diameter) and once in dioestrus (5 days after ovulation) and analysed using high-throughput RNA sequencing techniques (RNA-Seq). Results Comparison between time points revealed that 2422 genes were expressed at significantly higher levels and 2191 genes at significantly lower levels 3 h post inoculation in oestrus in comparison to pre-inoculation levels. In dioestrus, the expression of 1476 genes was up-regulated and 383 genes were down-regulated post inoculation. Many immune related genes were found to be up-regulated after the introduction of E. coli. These include pathogen recognition receptors, particularly toll-like receptors TLR2 and 4 and NOD-like receptor NLRC5. In addition, several interleukins including IL1B, IL6, IL8 and IL1ra were significantly up-regulated. Genes for chemokines, including CCL 2, CXCL 6, 9, 10, 11 and 16 and those for antimicrobial peptides, including secretory phospholipase sPLA2, lipocalin 2, lysozyme and equine β-defensin 1, as well as the gene for tissue inhibitor for metalloproteinases TIMP-1 were also up-regulated post inoculation. Conclusion The results of this study emphasize the complexity of an effective uterine immune response during acute endometritis and the tight balance between pro- and anti-inflammatory factors required for efficient elimination of bacteria. It is one of the first high-throughput analyses of the uterine inflammatory response in any species and several new potential targets for treatment of inflammatory diseases of the equine uterus have been identified. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina D Marth
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Neil D Young
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Lisa Y Glenton
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853-6401, USA.
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Natali Krekeler
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| |
Collapse
|
78
|
Urbach C, Gordon NC, Strickland I, Lowne D, Joberty-Candotti C, May R, Herath A, Hijnen D, Thijs JL, Bruijnzeel-Koomen CA, Minter RR, Hollfelder F, Jermutus L. Combinatorial Screening Identifies Novel Promiscuous Matrix Metalloproteinase Activities that Lead to Inhibition of the Therapeutic Target IL-13. ACTA ACUST UNITED AC 2015; 22:1442-1452. [PMID: 26548614 DOI: 10.1016/j.chembiol.2015.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
The practical realization of disease modulation by catalytic degradation of a therapeutic target protein suffers from the difficulty to identify candidate proteases, or to engineer their specificity. We identified 23 measurable, specific, and new protease activities using combinatorial screening of 27 human proteases against 24 therapeutic protein targets. We investigate the cleavage of monocyte chemoattractant protein 1, interleukin-6 (IL-6), and IL-13 by matrix metalloproteinases (MMPs) and serine proteases, and demonstrate that cleavage of IL-13 leads to potent inhibition of its biological activity in vitro. MMP-8 degraded human IL-13 most efficiently in vitro and ex vivo in human IL-13 transgenic mouse bronchoalveolar lavage. Hence, MMP-8 is a therapeutic protease lead against IL-13 for inflammatory conditions whereby reported genetic and genomics data suggest an involvement of MMP-8. This work describes the first exploitation of human enzyme promiscuity for therapeutic applications, and reveals both starting points for protease-based therapies and potential new regulatory networks in inflammatory disease.
Collapse
Affiliation(s)
- Carole Urbach
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK.
| | - Nathaniel C Gordon
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ian Strickland
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - David Lowne
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | | | - Richard May
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - Athula Herath
- Non Clinical Biostatistics, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - DirkJan Hijnen
- Department of Dermatology, University Medical Center, 3508 GA Utrecht, the Netherlands
| | - Judith L Thijs
- Department of Dermatology, University Medical Center, 3508 GA Utrecht, the Netherlands
| | | | - Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Lutz Jermutus
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
79
|
Dezutter-Dambuyant C, Durand I, Alberti L, Bendriss-Vermare N, Valladeau-Guilemond J, Duc A, Magron A, Morel AP, Sisirak V, Rodriguez C, Cox D, Olive D, Caux C. A novel regulation of PD-1 ligands on mesenchymal stromal cells through MMP-mediated proteolytic cleavage. Oncoimmunology 2015; 5:e1091146. [PMID: 27141350 PMCID: PMC4839348 DOI: 10.1080/2162402x.2015.1091146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Whether fibroblasts regulate immune response is a crucial issue in the modulation of inflammatory responses. Herein, we demonstrate that foreskin fibroblasts (FFs) potently inhibit CD3+ T cell proliferation through a mechanism involving early apoptosis of activated T cells. Using blocking antibodies, we demonstrate that the inhibition of T cell proliferation occurs through cell-to-cell interactions implicating PD-1 receptor expressed on T cells and its ligands, PD-L1 and PD-L2, on fibroblasts. Dual PD-1 ligand neutralization is required to abrogate (i) binding of the PD-1-Fc fusion protein, (ii) early apoptosis of T cells, and (iii) inhibition of T cell proliferation. Of utmost importance, we provide the first evidence that PD-1 ligand expression is regulated through proteolytic cleavage by endogenous matrix metalloproteinases (MMPs) without transcriptional alteration during culture-time. Using (i) different purified enzymatic activities, (ii) MMP-specific inhibitors, and (iii) recombinant human MMP-9 and MMP-13, we demonstrated that in contrast to CD80/CD86, PD-L1 was selectively cleaved by MMP-13, while PD-L2 was sensitive to broader MMP activities. Their cleavage by exogenous MMP-9 and MMP-13 with loss of PD-1 binding domain resulted in the reversion of apoptotic signals on mitogen-activated CD3+ T cells. We suggest that MMP-dependent cleavage of PD-1 ligands on fibroblasts may limit their immunosuppressive capacity and thus contribute to the exacerbation of inflammation in tissues. In contrast, carcinoma-associated fibroblasts appear PD-1 ligand-depleted through MMP activity that may impair physical deletion of exhausted defective memory T cells through apoptosis and facilitate their regulatory functions. These observations should be considered when using the powerful PD-1/PD-L1 blocking immunotherapies.
Collapse
Affiliation(s)
- Colette Dezutter-Dambuyant
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Isabelle Durand
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laurent Alberti
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Nathalie Bendriss-Vermare
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jenny Valladeau-Guilemond
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Adeline Duc
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Audrey Magron
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Anne-Pierre Morel
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Vanja Sisirak
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Céline Rodriguez
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - David Cox
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| | - Daniel Olive
- Aix-Marseille Université, Marseille, France, Inserm U1068, Center de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer Institut Paoli-Calmettes; Aix-Marseille Université UM 105, CNRS UMR 7258, IBiSA Cancer Immunomonitoring Platform, Marseilles, France
| | - Christophe Caux
- Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; INSERM U1052, Center de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Center de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
80
|
Park CW, Park JS, Jun JK, Yoon BH. The inflammatory milieu of amniotic fluid in acute-chorioamnionitis decreases with increasing gestational age. Placenta 2015; 36:1283-90. [PMID: 26462905 DOI: 10.1016/j.placenta.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/06/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The inflammatory milieu decreases in the placenta and amniotic fluid (AF) with gestational age (GA). However, there is no information about whether the inflammatory milieu of AF in the setting of the same placental inflammatory condition decreases with GA. We hypothesized that the inflammatory milieu of AF in acute chorioamnionitis would decrease with increasing GA. METHODS The inflammatory milieu of AF was examined in 617 singleton preterm pregnancies (<36 weeks) delivered within 5 days of amniocentesis. Study population was divided into GA at delivery ≤30 weeks (n = 148), 30-34 weeks (n = 226), and 34-36 weeks (n = 226). Acute-chorioamnionitis was classified according to the severity (i.e., mild, total grade 1; moderate, total grade 2; and severe, total grade 3-6) or involved compartment (i.e., chorionic plate, amnion and chorio-decidua). The inflammatory milieu of AF was determined by matrix metalloproteinase-8 (MMP-8) concentration. RESULTS 1) AF MMP-8 concentrations decreased in patients with acute-chorioamnionitis (P < 0.001), but not inflammation-free placenta, with increasing GA; 2) AF MMP-8 concentrations were less intense at higher GA in patients with moderate and severe (each-for P < 0.005), but not mild, acute-chorioamnionitis; 3) AF MMP-8 concentrations decreased in the context of the same involved compartment (i.e., chorionic plate inflammation, amnionitis, or chorio-deciduitis) of acute-chorioamnionitis (each-for P < 0.001) with increasing GA; 4) Moreover, there was a significant inverse relationship between GA and AF MMP-8 concentrations in patients with acute-chorioamnionitis (r = -0.453, P < 0.0000001), but not inflammation-free placenta (r = -0.071, P = 0.170). DISCUSSION AF MMP-8 concentrations in acute-chorioamnionitis distinctly decrease throughout preterm-gestation. This finding suggests that the inflammatory milieu of AF decrease in acute-chorioamnionitis with GA.
Collapse
Affiliation(s)
- Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
81
|
Dabo AJ, Cummins N, Eden E, Geraghty P. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus. PLoS One 2015; 10:e0135970. [PMID: 26284919 PMCID: PMC4540458 DOI: 10.1371/journal.pone.0135970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023] Open
Abstract
Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.
Collapse
Affiliation(s)
- Abdoulaye J. Dabo
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Neville Cummins
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Edward Eden
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Patrick Geraghty
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
82
|
Deleon-Pennell KY, Altara R, Yabluchanskiy A, Modesti A, Lindsey ML. The circular relationship between matrix metalloproteinase-9 and inflammation following myocardial infarction. IUBMB Life 2015; 67:611-8. [PMID: 26269290 DOI: 10.1002/iub.1408] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/16/2015] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) regulates remodeling of the left ventricle after myocardial infarction (MI) and is tightly linked to the inflammatory response. The inflammatory response serves to recruit leukocytes as part of the wound healing reaction to the MI injury, and infiltrated leukocytes produce cytokines and chemokines that stimulate MMP-9 production and release. In turn, MMP-9 proteolyzes cytokines and chemokines. Although in most cases, MMP-9 cleavage of the cytokine or chemokine substrate serves to increase activity, there are cases where cleavage results in reduced activity. Global MMP-9 deletion in mouse MI models has proven beneficial, suggesting inhibition of some aspects of MMP-9 activity may be valuable for clinical use. At the same time, overexpression of MMP-9 in macrophages has also proven beneficial, indicating that we still do not fully understand the complexity of MMP-9 mechanisms of action. In this review, we summarize the cycle of MMP-9 effects on cytokine production and cleavage to regulate leukocyte functions. Although we use MI as the example process, similar events occur in other inflammatory and wound healing conditions.
Collapse
Affiliation(s)
- Kristine Y Deleon-Pennell
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Raffaele Altara
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andriy Yabluchanskiy
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alessandra Modesti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Firenze, Italy
| | - Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| |
Collapse
|
83
|
Wen G, Zhang C, Chen Q, Luong LA, Mustafa A, Ye S, Xiao Q. A Novel Role of Matrix Metalloproteinase-8 in Macrophage Differentiation and Polarization. J Biol Chem 2015; 290:19158-72. [PMID: 26092731 DOI: 10.1074/jbc.m114.634022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/10/2023] Open
Abstract
Matrix metalloproteinase-8 (MMP8) has been shown to influence various cellular functions. As monocytes and macrophages (Mφ) express MMP8, we investigated if MMP8 played a role in macrophage differentiation and polarization. MMP8 expression was significantly increased during monocyte differentiation into Mφ. Monocyte-derived Mφ from MMP8-deficient mice expressed higher levels of M1-Mφ markers but lower levels of M2-Mφ markers than monocyte-derived Mφ from wild-type mice. Although Mφ from either MMP8-deficient or wild-type mice were inducible by interferon-γ into M1-Mφ, only wild-type Mφ but not MMP8-deficient Mφ could be induced into M2-Mφ by interleukin-4. However, MMP8-deficient Mφ exposed to conditioned culture media of wild-type Mφ developed a M2-Mφ phenotype. Compared with conditioned culture media of wild-type Mφ, conditioned culture media of MMP8-deficient Mφ contained a lower concentration of active transforming growth factor-β (TGF-β), an M2-Mφ inducer. Moreover, evidence also showed that the degradation of the TGF-β sequester, fibromodulin, was modulated by MMP8. The data indicate a previously unknown role of MMP8 in M2-Mφ polarization by cleaving fibromodulin and therefore increasing the bioavailability of the M2-Mφ inducer TGF-β.
Collapse
Affiliation(s)
- Guanmei Wen
- From the Centre for Clinical Pharmacology and the Department of Pathophysiology, Guangzhou Medical University, 510182 Guangzhou, China, and
| | - Cheng Zhang
- From the Centre for Clinical Pharmacology and the Department of Thoracic Surgery and Cardio Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Qishan Chen
- From the Centre for Clinical Pharmacology and
| | | | - Arif Mustafa
- Biological Service Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Shu Ye
- From the Centre for Clinical Pharmacology and
| | | |
Collapse
|
84
|
Yuan Y, Lau WB, Su H, Sun Y, Yi W, Du Y, Christopher T, Lopez B, Wang Y, Ma XL. C1q-TNF-related protein-9, a novel cardioprotetcive cardiokine, requires proteolytic cleavage to generate a biologically active globular domain isoform. Am J Physiol Endocrinol Metab 2015; 308:E891-8. [PMID: 25783894 PMCID: PMC4436995 DOI: 10.1152/ajpendo.00450.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
Prevalence and severity of postmyocardial infarction heart failure continually escalate in type 2 diabetes via incompletely understood mechanisms. The discovery of the cardiac secretomes, collectively known as "cardiokines", has significantly enhanced appreciation of the local microenvironment's influence on disease development. Recent studies demonstrated that C1q-TNF-related protein-9 (CTRP9), a newly discovered adiponectin (APN) paralog, is highly expressed in the heart. However, its relationship with APN (concerning diabetic cardiovascular injury in particular) remains unknown. Plasma CTRP9 levels are elevated in APN knockout and reduced in diabetic mice. In contrast to APN, which circulates as full-length multimers, CTRP9 circulates in the plasma primarily in the globular domain isoform (gCTRP9). Recombinant full-length CTRP9 (fCTRP9) was cleaved when incubated with cardiac tissue extracts, generating gCTRP9, a process inhibited by protease inhibitor cocktail. gCTRP9 rapidly activates cardiac survival kinases, including AMPK, Akt, and endothelial NOS. However, fCTRP9-mediated kinase activation is much less potent and significantly delayed. Kinase activation by fCTRP9, but not gCTRP9, is inhibited by protease inhibitor cocktail. These results demonstrate for the first time that the novel cardiokine CTRP9 undergoes proteolytic cleavage to generate gCTRP9, the dominant circulatory and actively cardioprotective isoform. Enhancing cardiac CTRP9 production and/or its proteolytic posttranslational modification are of therapeutic potential, attenuating diabetic cardiac injury.
Collapse
Affiliation(s)
- Yuexing Yuan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Zhejiang Provincial Hospital of Chinese Traditional Medicine, Hangzhou, Zhejiang Province, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yunhui Du
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theodore Christopher
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Bernard Lopez
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
85
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf) 2015; 213:539-53. [PMID: 25515699 DOI: 10.1111/apha.12438] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/13/2014] [Accepted: 12/10/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a continuous pathological process that starts early in life and progresses frequently to unstable plaques. Plaque rupture leads to deleterious consequences such as acute coronary syndrome, stroke and atherothrombosis. The vulnerable lesion has several structural and functional hallmarks that distinguish it from the stable plaque. The unstable plaque has large necrotic core (over 40% plaque volume) composed of cholesterol crystals, cholesterol esters, oxidized lipids, fibrin, erythrocytes and their remnants (haeme, iron, haemoglobin), and dying macrophages. The fibrous cap is thin, depleted of smooth muscle cells and collagen, and is infiltrated with proinflammatory cells. In unstable lesion, formation of neomicrovessels is increased. These neovessels have weak integrity and leak thereby leading to recurrent haemorrhages. Haemorrhages deliver erythrocytes to the necrotic core where they degrade promoting inflammation and oxidative stress. Inflammatory cells mostly presented by monocytes/macrophages, neutrophils and mast cells extravagate from bleeding neovessels and infiltrate adventitia where they support chronic inflammation. Plaque destabilization is an evolutionary process that could start at early atherosclerotic stages and whose progression is influenced by many factors including neovascularization, intraplaque haemorrhages, formation of cholesterol crystals, inflammation, oxidative stress and intraplaque protease activity.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
- Research Center for Children's Health; Moscow Russia
| | - A. N. Orekhov
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Skolkovo Innovative Center; Institute for Atherosclerosis Research; Moscow Russia
| | - Y. V. Bobryshev
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research; University of New South Wales; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
86
|
Basu RK, Donaworth E, Siroky B, Devarajan P, Wong HR. Loss of matrix metalloproteinase-8 is associated with worsened recovery after ischemic kidney injury. Ren Fail 2015; 37:469-75. [PMID: 25578815 DOI: 10.3109/0886022x.2014.996842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute kidney injury (AKI) leads to chronic kidney disease. The mechanisms involved with recovery from AKI are poorly understood and molecular mediators responsible for healing and restoration of kidney function are understudied. We previously discovered differential expression of matrix metalloproteinase-8 (MMP-8) mRNA and protein in patients with severe sepsis associated AKI versus sepsis without AKI. Here, we demonstrate the involvement of MMP-8 in purely ischemic AKI. Mice subjected to 30 min of bilateral renal ischemia developed increased plasma creatinine and MMP-8 expression within 24 h versus sham controls. After an initial surge and subsequent return toward baseline, both kidney MMP-8 expression and activity exhibited a late increase (Days 5-7 post-ischemia reperfusion) in mice subjected to AKI. Neutrophil infiltration of the kidney was significantly higher after AKI in wild-type mice than in MMP-8 null mice, starting at 4 days. Additionally, MMP-8 null mice subjected to AKI demonstrated a persistent histopathologic and functional injury and worsened health (greater overall weight loss) versus wild-type cohorts after seven days. Taken together, our findings suggest that MMP-8 is involved with restoration of baseline kidney health after ischemic kidney injury and that a potential mechanism involves the interaction of MMP-8 and neutrophil recruitment to the site of injury.
Collapse
|
87
|
Ahmed Haji Omar A, Haglund C, Virolainen S, Häyry V, Atula T, Kontio R, Salo T, Sorsa T, Hagström J. MMP-7, MMP-8, and MMP-9 in oral and cutaneous squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:459-67. [PMID: 25697929 DOI: 10.1016/j.oooo.2014.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) and cutaneous squamous cell carcinoma (CSCC) are epithelial neoplasms, of which OSCC has a worse prognosis. Matrix metalloproteinases (MMPs) are involved in the initiation, invasion, metastasis, and defense of cancer. This study aimed to compare differences in MMP expression in these cancers. STUDY DESIGN Sixty-one patients with early-stage (T1-T2 N0 M0) cancers, of which 36 were OSCC and 25 CSCC, were enrolled into this study. Immunohistochemical staining was performed with MMP-7, MMP-8, and MMP-9 antibodies. RESULTS MMP-7 expression was stronger in OSCC than in CSCC, mainly in the invasive front. MMP-8 was absent and MMP-9 was mildly expressed in OSCC and CSCC cells. However, MMP-8 and MMP-9 were positive in peritumoral inflammatory cells in both cancers. In addition, MMP-7, MMP-8, and MMP-9 were not associated with the overall survival of patients with OSCC and CSCC patients. CONCLUSIONS The increased expression of MMP-7 in the invasive front may partly explain the aggressiveness of OSCC.
Collapse
Affiliation(s)
| | - Caj Haglund
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Susanna Virolainen
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Valtteri Häyry
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Atula
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Risto Kontio
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Tuula Salo
- Institute of Dentistry, University of Helsinki, Helsinki, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Timo Sorsa
- Institute of Dentistry, University of Helsinki, Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Jaana Hagström
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland; Department of Oral Pathology, Institute of Dentistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
88
|
Abstract
Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.
Collapse
Affiliation(s)
- Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| |
Collapse
|
89
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
90
|
Bahrehmand F, Vaisi-Raygani A, Kiani A, Rahimi Z, Tavilani H, Ardalan M, Vaisi-Raygani H, Shakiba E, Pourmotabbed T. Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: correlation with systemic inflammatory markers and oxidative stress. Lupus 2014; 24:597-605. [DOI: 10.1177/0961203314559085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs and is characterized by persistent systemic inflammation. Among the effects of inflammatory mediators, the induction of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and oxidative stress has been demonstrated to be important in the development of SLE. In this study, the possible association between MMP-9 and MMP-2 functional promoter polymorphism, stress, and inflammatory markers with development of severe cardiovascular disease (CVD), high blood pressure (HBP), and lupus nephropathy (LN) in SLE patients was investigated. The present case-control study consisted of 109 SLE patients with and without CVD, HBP and LN and 101 gender- and age-matched unrelated healthy controls from a population in western Iran. MMP-2 –G1575A and MMP-9 –C1562T polymorphisms were detected by PCR-RFLP, serum MMP-2 and MMP-9, neopterin, malondialdehyde (MDA) and lipid levels were determined by ELISA, HPLC and enzyme assay, respectively. We found that MMP-9 –C1562 T and MMP-2 –G1575A alleles act synergistically to increase the risk of SLE by 2.98 times ( p = 0.015). Findings of this study also demonstrated that there is a significant increase in the serum levels of MMP-2, neopterin and MDA and a significant decrease in serum level of MMP-9 in the presence of MMP-9-C1562 T and MMP-2 –G1575A alleles in SLE patients compared to controls. Further, SLE patients with MMP-9 (C/T + T/T) genotype had significantly higher serum concentrations of MMP-2, neopterin, MDA and LDL-C, but lower serum MMP-9 and HDL-C levels than corresponding members of the control group. MMP-9 (C/T + T/T) genotype increased risk of hypertension in SLE patients 2.71-fold. This study for the first time not only suggests that MMP-9 –C1562 T and MMP-2 –G1575A alleles synergistically increase the risk of SLE but also high serum levels of MDA, neopterin, and circulatory levels of MMP-2 and lower MMP-9 in SLE patients. This information may be important in the evaluation of SLE progression and in the elucidation of the mechanisms of the disease pathogenesis.
Collapse
Affiliation(s)
- F Bahrehmand
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Molecular Diagnostic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Vaisi-Raygani
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Molecular Diagnostic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Kiani
- Molecular Diagnostic Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Toxicology and Pharmacology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Z Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - H Tavilani
- Department of Clinical Biochemistry, Hamedan University of Medical Sciences, Kermanshah, Iran
| | - M Ardalan
- Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Vaisi-Raygani
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - E Shakiba
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - T Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Science Center, USA
| |
Collapse
|
91
|
Barker CE, Ali S, O'Boyle G, Kirby JA. Transplantation and inflammation: implications for the modification of chemokine function. Immunology 2014; 143:138-45. [PMID: 24912917 PMCID: PMC4172130 DOI: 10.1111/imm.12332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is a major and recurring cause of damage during inflammation, especially following organ transplantation. Initial ischaemia–reperfusion injury causes the production of many reactive oxygen and nitrogen species, and subsequent recruitment and activation of inflammatory cells can lead to further oxidative stress. This stress is well known to cause damage at the cellular level, for example by induction of senescence leading to the production of a characteristic senescence-associated secretory phenotype. Chemokines are an important component of the senescence-associated secretory phenotype, recruiting further leucocytes and reinforcing the stress and senescence responses. As well as inducing the production of proteins, including chemokines, oxidative stress can alter proteins themselves, both directly and by induction of enzymes capable of modification. These alterations can lead to important modifications to their biological activity and also alter detection by some antibodies, potentially limiting the biological relevance of some immunochemical and proteomic biomarkers. Peroxynitrite, a reactive nitrogen species generated during inflammation and ischaemia, can cause such modifications by nitrating chemokines. Matrix metalloproteinases, released by many stressed cells, can cleave chemokines, altering function, while peptidylarginine deiminases can inactivate certain chemokines by citrullination. This review discusses the relationship between inflammation and post-translational modification, focusing on the functional modulation of transplant-relevant pro-inflammatory chemokines.
Collapse
Affiliation(s)
- Catriona E Barker
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
92
|
Monin L, Khader SA. Chemokines in tuberculosis: the good, the bad and the ugly. Semin Immunol 2014; 26:552-8. [PMID: 25444549 DOI: 10.1016/j.smim.2014.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infects about one-third of the world's population, with a majority of infected individuals exhibiting latent asymptomatic infection, while 5-10% of infected individuals progress to active pulmonary disease. Research in the past two decades has elucidated critical host immune mechanisms that mediate Mtb control. Among these, chemokines have been associated with numerous key processes that lead to Mtb containment, from recruitment of myeloid cells into the lung to activation of adaptive immunity, formation of protective granulomas and vaccine recall responses. However, imbalances in several key chemokine mediators can alter the delicate balance of cytokines and cellular responses that promote mycobacterial containment, instead precipitating terminal tissue destruction and spread of Mtb infection. In this review, we will describe recent insights in the involvement of chemokines in host responses to Mtb infection and Mtb containment (the good), chemokines contributing to inflammation during TB (the bad), and the role of chemokines in driving cavitation and lung pathology (the ugly).
Collapse
Affiliation(s)
- Leticia Monin
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
93
|
Lim R, Lappas M. Slit2 exerts anti-inflammatory actions in human placenta and is decreased with maternal obesity. Am J Reprod Immunol 2014; 73:66-78. [PMID: 25329354 DOI: 10.1111/aji.12334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Obese pregnancies are characterised by increased inflammation. Members of the Slit/Roundabout (Robo) family are key regulators of the inflammatory response. The aim of this study was to determine the effect of (i) pre-existing maternal obesity on Slit-Robo expression in human placenta and (ii) Slit2 knockdown by siRNA in primary trophoblast cells on markers of inflammation. METHOD OF STUDY The expression of Slit-Robo protiens was assessed in human placenta from lean (n = 15) and obese (n = 16) patients by qRT-PCR and Western blotting. Primary trophoblast cells were used to determine the effect of pro-inflammatory mediators on Slit2 expression, and the effect of Slit2 siRNA on pro-inflammatory mediators. RESULTS While there was no change in Slit3, Robo1 or Robo4 expression, Slit2 expression was significantly lower in obese placenta compared to lean placenta. Human primary trophoblast cells treated with pro-inflammatory mediators IL-1β, TNF-α and LPS significantly decreased Slit2 expression. Slit2 silencing by siRNA augmented IL-6 expression and secretion in cells stimulated with TNF-α, LPS and TNF-α; IL-8 gene expression and/or release in cells stimulated with IL-1β and LPS; TNF-α gene expression and secretion in cells stimulated with LPS; and MMP-9 gene expression and pro MMP-9 levels in cells stimulated with TNF-α. CONCLUSION The anti-inflammatory effects of Slit2 in human placenta is a novel finding, and suggests that inflammatory mediators, which are increased with obesity, downregulates Slit2 to enhance placental inflammation. Given the central role of pro-inflammatory cytokines in placental nutrient transport, our findings suggest Slit2 may play a role in fetal growth and development.
Collapse
Affiliation(s)
- Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia
| | | |
Collapse
|
94
|
Steingräber AK, Schelhaas S, Faust A, Jacobs AH, Schäfers M, Goerge T. Molecular imaging reveals time course of matrix metalloproteinase activity in acute cutaneous vasculitis in vivo. Exp Dermatol 2014; 22:730-5. [PMID: 24112050 DOI: 10.1111/exd.12253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) play a critical role in various pathological conditions including cutaneous inflammation. Thus far, serial assessment of MMP activity in ongoing inflammation is hampered due to technical limitations. Here, we present an innovative method for longitudinal detection of MMP activity by in vivo imaging. First, we analysed skin sections from patients suffering from leucocytoclastic vasculitis (LcV) and detected a significant MMP signal via immunofluorescence staining. Then, we mimicked LcV in mice in a well-studied model of immune complex-mediated vasculitis (ICV). This acute inflammatory process was serially visualized in vivo using the fluorescence-labelled MMP tracer Cy5.5-AF443. The deposition of fluorescence-labelled immune complexes and MMP tracer distribution was visualized repeatedly and non-invasively by fluorescence reflectance imaging. In correlation with the presence of MMP-2 and MMP-9 in immunofluorescence stainings, Cy5.5-AF443 accumulated in ICV spots in the skin of C57BL/6 mice. This tracer accumulation could also be observed in mice equipped with a dorsal skinfold chamber, where microscopic observations revealed an increased recruitment of fluorescence-labelled leucocytes during ICV. The specificity of the MMP tracer was supported by (i) analysis of mice deficient in functional β2 -integrins (CD18(-/-) ) and (ii) subsequent MMP immunofluorescence staining. These findings let us conclude that MMP accumulation in the acute phase of ICV depends on β2 -mediated leucocyte recruitment. In summary, we show that MMPs are involved in ICV as determined by Cy5.5-AF443, a new optical marker to longitudinally and non-invasively follow MMP activity in acute skin inflammation in vivo.
Collapse
|
95
|
Cellular inhibitors of apoptosis (cIAP) 1 and 2 are increased in placenta from obese pregnant women. Placenta 2014; 35:831-8. [DOI: 10.1016/j.placenta.2014.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
|
96
|
Functional characterization of Anopheles matrix metalloprotease 1 reveals its agonistic role during sporogonic development of malaria parasites. Infect Immun 2014; 82:4865-77. [PMID: 25183733 DOI: 10.1128/iai.02080-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to invade tissues is a unique characteristic of the malaria stages that develop/differentiate within the mosquitoes (ookinetes and sporozoites). On the other hand, tissue invasion by many pathogens has often been associated with increased matrix metalloprotease (MMP) activity in the invaded tissues. By employing cell biology and reverse genetics, we studied the expression and explored putative functions of one of the three MMPs encoded in the genome of the malaria vector Anopheles gambiae, namely, the Anopheles gambiae MMP1 (AgMMP1) gene, during the processes of blood digestion, midgut epithelium invasion by Plasmodium ookinetes, and oocyst development. We show that AgMMP1 exists in two alternative isoforms resulting from alternative splicing; one secreted (S-MMP1) and associated with hemocytes, and one membrane type (MT-MMP1) enriched in the cell attachment sites of the midgut epithelium. MT-MMP1 showed a remarkable response to ookinete midgut invasion manifested by increased expression, enhanced zymogen maturation, and subcellular redistribution, all indicative of an implication in the midgut epithelial healing that accompanies ookinete invasion. Importantly, RNA interference (RNAi)-mediated silencing of the AgMMP1 gene revealed a postinvasion protective function of AgMMP1 during oocyst development. The combined results link for the first time an MMP with vector competence and mosquito-Plasmodium interactions.
Collapse
|
97
|
Tan CW, Lee YH, Tan HH, Lau MSK, Choolani M, Griffith L, Chan JKY. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil Steril 2014; 102:167-177.e9. [PMID: 24825423 DOI: 10.1016/j.fertnstert.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To test the hypothesis that endometrial stromal cells (ESCs) in endometriosis exhibit increased cell motility under hypoxia. DESIGN Prospective case-control study. SETTING University research laboratory. PATIENT(S) Women with endometriosis (n = 18) or benign gynecological disease (n=19). INTERVENTION(S) Eutopic ESCs were cultured under normoxia (20% O2) or hypoxia (6.5% O2), and migration and invasion capacity assayed, with pathway-focused polymerase chain reaction (PCR) array and ELISAs performed. CD26/dipeptidyl peptidase IV (DPPIV) expression was determined by flow cytometric analysis and enzymatic activity assay. The ESCs supplemented with Diprotin A (CD26 inhibitor), stromal cell-derived factor-1α, or AMD3100 (C-X-C motif receptor 4; CXCR4 blocker) were assayed for their migratory potential. MAIN OUTCOME MEASURE(S) Endometrial stromal cell migration and invasion under hypoxia. RESULT(S) Endometriotic ESCs showed significantly higher migration and invasion through collagen gels under hypoxia compared with nonendometriotic ESCs. The PCR array revealed down-regulation of the migration inhibitor CD26/DPPIV and up-regulation of angiogenic factors (vascular endothelial growth factor A, C-X-C motif Ligand 6; CXCL6) in endometriotic ESCs under hypoxia. The CD26/DPPIV surface expression and activity as well as angiogenic protein secretions suggested that the molecular mechanisms underlying aberrant migratory and angiogenic behavior in endometriotic ESCs. A combinatorial treatment with diprotin A and stromal cell-derived factor-1α effectively enhanced migration and invasion preferentially in endometriotic ESCs cultured hypoxically. CONCLUSION(S) Loss of CD26/DPPIV under hypoxia and the subsequent increase in migratory and angiogenic factors may favor conditions for lesion development in endometriosis.
Collapse
Affiliation(s)
- Chin Wen Tan
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore; Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | - Yie Hou Lee
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore
| | - Heng Hao Tan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Matthew Sie Kuei Lau
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | - Linda Griffith
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore; Department of Biological and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jerry Kok Yen Chan
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore; Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Cancer & Stem Cell Biology Program, Duke NUS Graduate Medical School, Singapore.
| |
Collapse
|
98
|
Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda) 2014; 28:391-403. [PMID: 24186934 DOI: 10.1152/physiol.00029.2013] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinase (MMP)-9, one of the most widely investigated MMPs, regulates pathological remodeling processes that involve inflammation and fibrosis in cardiovascular disease. MMP-9 directly degrades extracellular matrix (ECM) proteins and activates cytokines and chemokines to regulate tissue remodeling. MMP-9 deletion or inhibition has proven overall beneficial in multiple animal models of cardiovascular disease. As such, MMP-9 expression and activity is a common end point measured. MMP-9 cell-specific overexpression, however, has also proven beneficial and highlights the fact that little information is available on the underlying mechanisms of MMP-9 function. In this review, we summarize our current understanding of MMP-9 physiology, including structure, regulation, activation, and downstream effects of increased MMP-9. We discuss MMP-9 roles during inflammation and fibrosis in cardiovascular disease. By concentrating on the substrates of MMP-9 and their roles in cardiovascular disease, we explore the overall function and discuss future directions on the translational potential of MMP-9 based therapies.
Collapse
|
99
|
Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, Bracey JW, Akel NS, Margulies AG, Skinner RA, Swain FL, Hogue WR, Montgomery CO, Lahiji P, Maher JJ, Leitzel KE, Ali SM, Lipton A, Nicholas RW, Gaddy D, Suva LJ. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone 2014; 61:176-85. [PMID: 24486955 PMCID: PMC3967592 DOI: 10.1016/j.bone.2014.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p<0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p<0.05), as measured by NTx levels. In a total of 22 ER+ and 15 ER- primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1-77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6-77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Manali S Bendre
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charity L Washam
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tristan W Fowler
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adam Carver
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua D Dilley
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John W Bracey
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nisreen S Akel
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Robert A Skinner
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frances L Swain
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William R Hogue
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Corey O Montgomery
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Parshawn Lahiji
- Division of Gastroenterology, San Francisco General Hospital, University of California San Francisco Liver Center, San Francisco, CA, USA
| | - Jacqueline J Maher
- Division of Gastroenterology, San Francisco General Hospital, University of California San Francisco Liver Center, San Francisco, CA, USA
| | - Kim E Leitzel
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Suhail M Ali
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Alan Lipton
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Richard W Nicholas
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dana Gaddy
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
100
|
Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta Gen Subj 2014; 1840:2571-80. [PMID: 24631662 DOI: 10.1016/j.bbagen.2014.03.007] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of ubiquitously expressed zinc-dependent endopeptidases with broad substrate specificity and strictly regulated tissue specific expression. They are expressed in physiological situations and pathological conditions involving inflammation. MMPs regulate several functions related to inflammation including bioavailability and activity of inflammatory cytokines and chemokines. There is also evidence that MMPs regulate inflammation in tumor microenvironment, which plays an important role in cancer progression. SCOPE OF REVIEW Here, we discuss the current view on the role of MMPs in the regulation of inflammation. MAJOR CONCLUSIONS MMPs modulate inflammation by regulating bioavailability and activity of cytokines, chemokines, and growth factors, as well as integrity of physical tissue barriers. MMPs are also involved in immune evasion of tumor cells and in regulation of inflammation in tumor microenvironment. GENERAL SIGNIFICANCE There is increasing evidence for non-matrix substrates of MMPs that are related to regulation of inflammatory processes. New methods have been employed for identification of the substrates of MMPs in inflammatory processes in vivo. Detailed information on the substrates of MMPs may offer more specific and effective ways of inhibiting MMP function by blocking the cleavage site in substrate or by inhibition of the bioactivity of the substrate. It is expected, that more precise information on the MMP-substrate interaction may offer novel strategies for therapeutic intervention in inflammatory diseases and cancer without blocking beneficial actions of MMPs. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland.
| |
Collapse
|