51
|
Ballaz SJ, Akil H, Watson SJ. Analysis of 5-HT6 and 5-HT7 receptor gene expression in rats showing differences in novelty-seeking behavior. Neuroscience 2007; 147:428-38. [PMID: 17543469 DOI: 10.1016/j.neuroscience.2007.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/14/2007] [Accepted: 04/16/2007] [Indexed: 11/22/2022]
Abstract
Sensation-seeking is a human personality trait associated with a greater propensity to use psychoactive substances. A rat model showing face validity of this human trait has been developed. The model is based on the variety of behavioral responses that rats exhibit in a novel and inescapable environment, with some animals (high-responders, HR) being highly active, and others (low-responders, LR) showing less exploration. More active rats (HR) also show increased drug-taking and decreased anxiety-like behavior. There is evidence that response to novelty may rely on differential 5-HT-mediated neurotransmission. This research focuses on the recently discovered 5-HT6 and 5-HT7 receptors which share affinity for neuroleptic drugs and hallucinogens. To date, emerging evidence suggests that 5-HT6 and 5-HT7 may be involved in cognition and mood regulation, respectively. To further our knowledge of their behavioral attributes, we compared patterns of gene expression for these receptors in the brains of HR and LR rats. As a control, gene expression for the 5-HT3 receptor was investigated because its contribution to anxiety and addiction is only weakly demonstrated. Transcript levels for 5-HT6 in the olfactory tubercle inversely correlated with the level of locomotion in a novel environment. Phenotype differences in mRNA signal for 5-HT6 showed a complex pattern in the dentate gyrus. LR rats were statistically higher in the most anterior region of the dentate gyrus, while HR rats were higher in median areas of the dentate gyrus. Levels of 5-HT7 transcript in HR rats were significantly lower than LR rats in pivotal areas for information trafficking, such as thalamo-cortical projection areas and dorsal hippocampus. By contrast, phenotype differences in 5-HT3 expression were not found in areas of the limbic cortex and mesolimbic system. Taken together, these results provide new insight into the potential contribution of 5-HT to novelty-seeking behavior and associated behaviors such as substance abuse.
Collapse
MESH Headings
- Animals
- Autoradiography
- Brain Chemistry/genetics
- Brain Chemistry/physiology
- Dentate Gyrus/metabolism
- Dentate Gyrus/physiology
- Emotions/physiology
- Exploratory Behavior/physiology
- Gene Expression/physiology
- Image Processing, Computer-Assisted
- In Situ Hybridization
- Male
- Motor Activity/physiology
- Olfactory Bulb/metabolism
- Olfactory Bulb/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin/biosynthesis
- Receptors, Serotonin/genetics
- Receptors, Serotonin, 5-HT3/biosynthesis
- Receptors, Serotonin, 5-HT3/genetics
- Thalamus/metabolism
- Thalamus/physiology
Collapse
Affiliation(s)
- S J Ballaz
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-0720, USA.
| | | | | |
Collapse
|
52
|
Drapeau E, Montaron MF, Aguerre S, Abrous DN. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci 2007; 27:6037-44. [PMID: 17537975 PMCID: PMC6672254 DOI: 10.1523/jneurosci.1031-07.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 01/23/2023] Open
Abstract
Aging is accompanied by an alteration of spatial memory, which has been related to an alteration in hippocampal plasticity. Within the dentate gyrus, new neurons are generated throughout the entire life of an individual. This neurogenesis seems to play a role in hippocampal-mediated learning and learning-induced changes in neurogenesis have been proposed to be involved in memory. However, in aged rats, little is known on the influence of learning on the early development of the adult-born neurons and on the possible involvement of learning-induced changes in neurogenesis in age-related memory deficits. To address this issue, we took advantage of the existence of spontaneous individual differences for performances observed in aged subjects in the water maze. In this task, learning can be divided into two phases, an early phase during which performances quickly improve, and a late phase during which asymptotic levels of performances are reached. We show that the influence of spatial learning on the survival of the newly born cells depends on their birth date and the memory abilities of the aged rats. In aged rats with preserved spatial memory, learning increases the survival of cells generated before learning whereas it decreases survival of cells produced during the early phase of learning. These results highlight the importance of learning-induced changes in adult-born cell survival in memory. Furthermore, they provide new insights on the possible neural mechanisms of aging of cognitive functions and show that an alteration to the steps leading to neurogenesis may be involved in the determination of individual memory abilities.
Collapse
Affiliation(s)
- Elodie Drapeau
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| | - Marie-Françoise Montaron
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| | - Sylvie Aguerre
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| | - Djoher Nora Abrous
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| |
Collapse
|
53
|
Stead JDH, Clinton S, Neal C, Schneider J, Jama A, Miller S, Vazquez DM, Watson SJ, Akil H. Selective breeding for divergence in novelty-seeking traits: heritability and enrichment in spontaneous anxiety-related behaviors. Behav Genet 2007; 36:697-712. [PMID: 16502134 DOI: 10.1007/s10519-006-9058-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 01/12/2006] [Indexed: 11/24/2022]
Abstract
Outbred Sprague-Dawley rats can be classified as high responders (HR) or low responders (LR) based on their levels of exploratory locomotion in a novel environment. While this novelty-seeking dimension was originally related to differential vulnerability to substance abuse, behavioral, neuroendocrine and gene expression studies suggest a fundamental difference in emotional reactivity between these animals. Here, we report the first study to selectively breed rats based on this novelty-seeking dimension. Response to novelty was clearly heritable, with a > 2-fold difference in behavior seen after eight generations of selection. Three tests of anxiety-like behavior consistently showed significantly greater anxiety in LR-bred rats compared to HR-bred animals, and this difference was diminished in the open field test by administration of the anxiolytic benzodiazepine drug, chlordiazepoxide. Cross-fostering revealed that responses to novelty were largely unaffected by maternal interactions, though there was an effect on anxiety-like behavior. These selected lines will enable future research on the interplay of genetic, environmental and developmental variables in controlling drug seeking behavior, stress and emotional reactivity.
Collapse
Affiliation(s)
- John D H Stead
- Institute for Neuroscience, Carleton University, Ottawa, ON, KIS 5B6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bredy TW, Brown RE, Meaney MJ. Effect of resource availability on biparental care, and offspring neural and behavioral development in the California mouse (Peromyscus californicus). Eur J Neurosci 2007; 25:567-75. [PMID: 17284199 DOI: 10.1111/j.1460-9568.2006.05266.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Maternal care influences cognitive function in humans, primates and rodents; however, little is known about the effect of biparental care. Environmental factors such as resource availability play an important role in modulating parental investment strategies with subsequent effects on the offspring. Thus, we examined the interaction between foraging demand and biparental care on hippocampal development and novel object recognition in the monogamous, biparental California mouse. We characterized biparental behavior for 15 days in families exposed to either control (ad libitum feeding) or a high-foraging demand across the weaning period. Adult male offspring were then tested in the open field, and for novel object and place recognition, as well as for hippocampal synaptic density and the expression of genes encoding for subunits of the N-methyl-D-aspartate (NMDA) receptor complex, and the postsynaptic density (PSD)-95 scaffolding protein. Under high-foraging demand, the mothers' body weight was decreased at weaning and fathers spent significantly less time in contact with pups. Offspring reared under high-foraging demand weighed less at weaning and, as adults, were more fearful in the open field and showed profound deficits in both novel object and place recognition. While synaptic density and NR1 mRNA expression were unaffected, offspring reared under high-foraging demand showed increased NR2A and decreased NR2B mRNA expression. Further, PSD-95 protein expression was decreased in mice reared under high-foraging demand. Together, the results suggest that resource availability affects biparental investment strategies, with subsequent effects on hippocampal development and novel object recognition in the offspring.
Collapse
Affiliation(s)
- Timothy W Bredy
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
55
|
Chambers RA, Conroy SK. Network modeling of adult neurogenesis: shifting rates of neuronal turnover optimally gears network learning according to novelty gradient. J Cogn Neurosci 2007; 19:1-12. [PMID: 17214558 PMCID: PMC2887709 DOI: 10.1162/jocn.2007.19.1.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apoptotic and neurogenic events in the adult hippocampus are hypothesized to play a role in cognitive responses to new contexts. Corticosteroid-mediated stress responses and other neural processes invoked by substantially novel contextual changes may regulate these processes. Using elementary three-layer neural networks that learn by incremental synaptic plasticity, we explored whether the cognitive effects of differential regimens of neuronal turnover depend on the environmental context in terms of the degree of novelty in the new information to be learned. In "adult" networks that had achieved mature synaptic connectivity upon prior learning of the Roman alphabet, imposition of apoptosis/neurogenesis before learning increasingly novel information (alternate Roman < Russian < Hebrew) reveals optimality of informatic cost benefits when rates of turnover are geared in proportion to the degree of novelty. These findings predict that flexible control of rates of apoptosis-neurogenesis within plastic, mature neural systems optimizes learning attributes under varying degrees of contextual change, and that failures in this regulation may define a role for adult hippocampal neurogenesis in novelty- and stress-responsive psychiatric disorders.
Collapse
|
56
|
Abstract
CONTEXT Bipolar/panic comorbidity has been observed in clinical, community and familial samples. As both are episodic disorders of affect regulation, the common pathophysiological mechanism is likely to involve deficits in amygdala-mediated, plasticity-dependent emotional conditioning. EVIDENCE Neuronal genesis and synaptic remodeling occur in the amygdala; bipolar and panic disorders have both been associated with abnormality in the amygdala and related structures, as well as in molecules that modulate plasticity, such as serotonin, norepinephrine, brain-derived neurotrophic factor (BDNF) and corticotrophin releasing factor (CRF). These biological elements are involved in behavioral conditioning to threat and reward. MODEL Panic attacks resemble the normal acute fear response, but are abnormally dissociated from any relevant threat. Abnormal reward-seeking behavior is central to both manic and depressive syndromes. Appetites can be elevated or depressed; satisfaction of a drive may fail to condition future behavior. These dissociations may be the result of deficits in plasticity-dependent processes of conditioning within different amygdala subregions. CONCLUSIONS This speculative model may be a useful framework with which to connect molecular, cellular, anatomic and behavioral processes in panic and bipolar disorders. The primary clinical implication is that behavioral treatment may be critical to restore function in some bipolar patients who respond only partially to medications.
Collapse
Affiliation(s)
- Dean F MacKinnon
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Meyer 3-181, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|
57
|
Lagace DC, Yee JK, Bolaños CA, Eisch AJ. Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis. Biol Psychiatry 2006; 60:1121-30. [PMID: 16893528 DOI: 10.1016/j.biopsych.2006.04.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND The neural consequences of early-life exposure to methylphenidate (MPH; Ritalin) are of great interest given the widespread, and sometimes inappropriate, use in children. Here we examine the impact of juvenile MPH exposure on adult hippocampal neurogenesis. METHODS Rats received MPH (2.0 mg/kg, intraperitoneal, twice daily) or saline (SAL) during preadolescence (postnatal days 20-35). Hippocampal cell proliferation (Experiment 1), neurogenesis (Experiment 2), and stress-induced changes in cell proliferation (Experiment 3) were assessed at several developmental stages including adulthood. RESULTS Juvenile exposure to MPH did not alter proliferation at any developmental time point relative to control rats; however, exposure to MPH significantly decreased the long-term survival of newborn cells in adult rats, particularly in the temporal hippocampus. Although MPH-treated rats had higher levels of corticosterone after restraint stress, they did not show the expected greater decrease in hippocampal cell proliferation relative to control animals. CONCLUSIONS Early-life exposure to MPH inhibits the survival of adult-generated neurons in the temporal hippocampus and may reduce progenitor sensitivity to corticosterone-induced decreases in proliferation. These findings suggest that decreased adult neurogenesis is an enduring consequence of early-life exposure to MPH and are discussed for their relevance to humans.
Collapse
Affiliation(s)
- Diane C Lagace
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
58
|
Morellini F, Schachner M. Enhanced novelty-induced activity, reduced anxiety, delayed resynchronization to daylight reversal and weaker muscle strength in tenascin-C-deficient mice. Eur J Neurosci 2006; 23:1255-68. [PMID: 16553788 DOI: 10.1111/j.1460-9568.2006.04657.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tenascin-C (TNC) is an extracellular matrix protein with multiple and important functions during development and in the adult. We here present a study on the behaviour of TNC-deficient (knockout, KO) mice. Longitudinal experiments including tests for circadian activity, exploration, state and trait anxiety, motor coordination and cognition were performed. KO mice showed increased reactivity to explore a novel environment and decreased anxiety. Spontaneous circadian activity was unaffected, but KO mice showed delayed resynchronization to daylight reversal. TNC deficiency caused weaker muscle strength, whereas gait, coordination and motor learning were unaltered. Short- and long-term memory in the fear conditioning task and working memory in the spontaneous alternation test were normal in KO mice. KO mice showed impaired memory recall in the step-down, but not in the step-through, passive avoidance task. Ethological observation of mice behaviour and principal component analyses indicated that the higher novelty- and stress-induced active responses of KO mice account for their poorer performance in passive avoidance tasks, whereas cognitive abilities are unaltered. The present study extends and corrects previous results, and is an example of how an ethological approach allows a precise description and interpretation of the behavioural alterations of mutant mice.
Collapse
Affiliation(s)
- Fabio Morellini
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Germany
| | | |
Collapse
|
59
|
Abstract
The low tactile threshold in preterm infants when they are in the neonatal intensive care unit (NICU), while their physiological systems are unstable and immature, potentially renders them more vulnerable to the effects of repeated invasive procedures. There is a small but growing literature on pain and tactile responsivity following procedural pain in the NICU, or early surgery. Long-term effects of repeated pain in the neonatal period on neurodevelopment await further research. However, there are multiple sources of stress in the NICU, which contribute to inducing high overall 'allostatic load', therefore determining specific effects of neonatal pain in human infants is challenging.
Collapse
Affiliation(s)
- Ruth E Grunau
- Centre for Community Child Health Research, Child and Family Research Institute, Vancouver, Canada.
| | | | | |
Collapse
|
60
|
Abstract
During the past several years, evidence has accumulated suggesting a relationship between newly born cells in the hippocampus and various types of learning and memory. However, most of the evidence is correlational and some of it does not agree. This review discusses both sides of this issue, considering the effects of learning on the production of new neurons in the dentate gyrus and the question of whether newly born cells participate in learning and memory.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
61
|
Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 2006; 7:179-93. [PMID: 16495940 DOI: 10.1038/nrn1867] [Citation(s) in RCA: 1017] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain - the olfactory bulb and the dentate gyrus - new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.
Collapse
Affiliation(s)
- Pierre-Marie Lledo
- Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associée 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | |
Collapse
|
62
|
Zhang TY, Bagot R, Parent C, Nesbitt C, Bredy TW, Caldji C, Fish E, Anisman H, Szyf M, Meaney MJ. Maternal programming of defensive responses through sustained effects on gene expression. Biol Psychol 2006; 73:72-89. [PMID: 16513241 DOI: 10.1016/j.biopsycho.2006.01.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2005] [Indexed: 11/21/2022]
Abstract
There are profound maternal effects on individual differences in defensive responses and reproductive strategies in species ranging literally from plants to insects to birds. Maternal effects commonly reflect the quality of the environment and are most likely mediated by the quality of the maternal provision (egg, propagule, etc.), which in turn determines growth rates and adult phenotype. In this paper we review data from the rat that suggest comparable forms of maternal effects on defensive responses stress, which are mediated by the effects of variations in maternal behavior on gene expression. Under conditions of environmental adversity maternal effects enhance the capacity for defensive responses in the offspring. In mammals, these effects appear to 'program' emotional, cognitive and endocrine systems towards increased sensitivity to adversity. In environments with an increased level of adversity, such effects can be considered adaptive, enhancing the probability of offspring survival to sexual maturity; the cost is that of an increased risk for multiple forms of pathology in later life.
Collapse
Affiliation(s)
- Tie-Yuan Zhang
- McGill Program for the Study of Behavior, Genes and Environment, McGill University, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Mahncke HW, Bronstone A, Merzenich MM. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. PROGRESS IN BRAIN RESEARCH 2006; 157:81-109. [PMID: 17046669 DOI: 10.1016/s0079-6123(06)57006-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.
Collapse
|
64
|
Choi IY, Allan AM, Cunningham LA. Moderate Fetal Alcohol Exposure Impairs the Neurogenic Response to an Enriched Environment in Adult Mice. Alcohol Clin Exp Res 2005; 29:2053-62. [PMID: 16340464 DOI: 10.1097/01.alc.0000187037.02670.59] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Prenatal ethanol exposure results in a spectrum of cognitive and behavioral deficits and affects an estimated thirteen percent of children born in the United States. The basis of prenatal ethanol-induced impairment of brain function has been widely studied in animal models, where significant changes in the physiological and structural plasticity of hippocampal function have been documented. Here, we explored the possibility that exposure to moderate levels of alcohol in utero might also result in long-lasting impairment of adult hippocampal neurogenesis, a novel form of plasticity that occurs throughout adulthood. METHODS Female mice were trained to voluntarily consume 10% EtOH throughout pregnancy using the two-bottle choice paradigm, which results in moderate blood alcohol levels of approximately 121 mg/dl, as previously described (Allan et al., 2003). Offspring were exposed to standard or enriched living conditions for 8-12 weeks post-weaning. BrdU was administered at 50 mg/kg for 12 consecutive days. Mice in each housing condition were sacrificed at either 24 hrs or four weeks following the final BrdU injection, and BrdU cells within the dentate gyrus were evaluated using immuno-histochemical methods. RESULTS Neither fetal alcohol exposure (FAE) nor enriched environment affected the number of proliferating progenitors within the subgranular zone (SGZ) of the dentate gyrus. However, FAE severely impaired the neurogenic response to enriched environment. Control mice housed in enriched environment displayed a two-fold increase in hippocampal neurogenesis, whereas FAE mice responded to enriched environment with neither enhanced progenitor survival nor enhanced neuronal differentiation. CONCLUSIONS These observations indicate that moderate FAE results in a long-term, persistent defect in neurogenic responses to behavioral challenge.
Collapse
Affiliation(s)
- Irene Y Choi
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|
65
|
Alves R, Barbosa de Carvalho JG, Benedito MAC. High and low rearing subgroups of rats selected in the open field differ in the activity of K+-stimulated p-nitrophenylphosphatase in the hippocampus. Brain Res 2005; 1058:178-82. [PMID: 16153614 DOI: 10.1016/j.brainres.2005.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/01/2005] [Accepted: 08/05/2005] [Indexed: 11/19/2022]
Abstract
Na(+)/K(+)-adenosinetriphosphatase (Na(+)/K(+)-ATPase) is of paramount importance for the proper functioning of the organism. The enzyme is involved in several aspects of brain function, such as the repolarization of the neuronal membranes and neurotransmitters uptake/release. Therefore, individual differences in the activity of brain Na(+)/K(+)-ATPase may result in differences in the functioning of the brain, which, in consequence, could lead to behavioral divergences. Individual differences in rearing, an exploratory behavior, have been shown to be genetically determined. In rats, the inhibition of the activity of Na(+)/K(+)-ATPase was reported to induce changes in the exploratory behavior. The aim of this work was to verify if subgroups of rats selected according to the number of rearings (high and low rearing subgroups) in the open field test differ in the activity of Na(+)/K(+)-ATPase in brain regions. Adult, male outbred Wistar rats were selected in the open field test according to the number of rearings in subgroups of high (HR) and low (LR) rearing responders. After a rest of about 20 days after the open field session, HR and LR rats were sacrificed. In the first experiment, frontal cortex, striatum, brainstem, hippocampus and the amygdala (including the overlying limbic cortex) were dissected. The reaction of dephosphorylation of Na(+)/K(+)-ATPase (K(+) stimulated p-nitrophenylphosphatase) was assayed in homogenates rich in synaptosomes. The results obtained showed a statistically significant higher activity of K(+)p-nitrophenylphosphatase only in the hippocampus of HR subgroup of rats. This result was replicated in two other subsequent experiments with different HR and LR subgroups of rats selected at different times of the year. Our data suggest that the difference in the activity of Na(+)/K(+)-ATPase in the hippocampus is innate and is involved in the expression of the rearing behavior.
Collapse
Affiliation(s)
- Rosana Alves
- Departamento de Psicobiologia, Universidade Federal de São Paulo, SP, Brazil
| | | | | |
Collapse
|
66
|
Rabat A, Bouyer JJ, Aran JM, Le Moal M, Mayo W. Chronic exposure to an environmental noise permanently disturbs sleep in rats: Inter-individual vulnerability. Brain Res 2005; 1059:72-82. [PMID: 16168393 DOI: 10.1016/j.brainres.2005.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 11/21/2022]
Abstract
Chronic exposure to an environmental noise (EN) induces sleep disturbances. However, discrepancies exist in the literature since many contradictory conclusions have been reported. These disagreements are largely due to inappropriate evaluation of sleep and also to uncontrolled and confounding factors such as sex, age and also inter-individual vulnerability. Based on a recently validated animal model, aims of the present study were (i) to determine the effects of a chronic exposure to EN on sleep and (ii) to evaluate the inter-individual vulnerability of sleep to EN. For this purpose, rats were exposed during 9 days to EN. Results show that a chronic exposure to EN restricts continually amounts of slow wave sleep (SWS) and paradoxical sleep (PS) and fragments these two sleep stages with no habituation effect. Results also evidence the existence of subpopulations of rats that are either resistant or vulnerable to these deleterious effects of EN on sleep and especially on SWS amounts, bouts number and bout duration. Furthermore, importance of SWS debt and daily decrease of SWS bout duration are correlated to each others and both correlate to the amplitude of the locomotor reactivity to novelty, a behavioral measure of reactivity to stress. This last result suggests that this psychobiological profile of subjects, known to induce profound differences in neural and endocrine systems, could be responsible for their SWS vulnerability under a chronic EN exposure.
Collapse
Affiliation(s)
- A Rabat
- INSERM Unité 588, Physiopathologie du Comportement, Institut François Magendie, Université Bordeaux II, 1 rue Camille St Saëns, 33077 Bordeaux Cedex, France.
| | | | | | | | | |
Collapse
|
67
|
Guidi S, Ciani E, Severi S, Contestabile A, Bartesaghi R. Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus 2005; 15:285-301. [PMID: 15515010 DOI: 10.1002/hipo.20050] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In all species examined, the dentate gyrus develops over an extended period that begins during gestation and continues up to adulthood. The aim of this study was to investigate the pattern of postnatal cell production in the dentate gyrus of the guinea pig, a rodent whose brain development has features more closely resembling the human condition than the most commonly used rodents (rat and mouse). Animals of different postnatal (P) ages received one or multiple injections of bromodeoxyuridine (BrdU), and the number of labeled cells in the dentate gyrus was counted after time intervals of 24 h or longer. The total granule cell number and the volume of the granule cell layer were evaluated in Nissl-stained brain sections from P1 and P30 animals. P1-P5 animals were treated with MK-801 to analyze the effect of NMDA receptor blockade on cell proliferation. Cell production occurred at a high rate (9,000-13,000 labeled cells 24 h after one injection) from P1 to P20, with a peak at 3-6 days of age, and then slowly declined from P20 to P30. The production of new cells continued in adult animals, although at a much-reduced rate (400 cells 24 h after one injection). About 20% of the labeled cells survived after a 17-day period and most (60%) of these cells had a neuronal phenotype. The total number of granule cells increased over the first postnatal month; in 30-day-old animals, it was 20% greater than in 1-day-old animals. Administration of MK-801 to P1-P5 animals caused an increase in cell proliferation restricted to the dorsal dentate gyrus. The present data show that, although the guinea pig dentate gyrus develops largely before birth, the production of new neurons continues at a high rate during the first postnatal month, leading to a considerable increase in cell number. This developmental pattern, resembling the human and nonhuman primate condition, may make the guinea pig a useful rodent model in developmental studies on dentate gyrus neurogenesis.
Collapse
Affiliation(s)
- Sandra Guidi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
68
|
Van der Borght K, Meerlo P, Luiten PGM, Eggen BJL, Van der Zee EA. Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone. Behav Brain Res 2005; 157:23-30. [PMID: 15617767 DOI: 10.1016/j.bbr.2004.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/04/2004] [Accepted: 06/06/2004] [Indexed: 10/26/2022]
Abstract
Hippocampal granule neurons that are newly formed during adulthood might be involved in learning and memory processes. Experimental data suggest that only hippocampus-dependent learning tasks stimulate neurogenesis. To further address this issue, the effects of active shock avoidance (ASA) learning on hippocampal progenitor proliferation and survival of newly formed cells were investigated. ASA training, although considered as hippocampus-independent, is known to induce several neurobiological alterations in the hippocampus. Adult Wistar rats were trained in a shuttle box using a 1-day or 4-day paradigm and brains were analyzed for the mitotic marker Ki-67. Effects on survival of newly generated cells were examined by immunocytochemistry for 5-bromo-2-deoxyuridine (BrdU), which was injected 1 week before the training. Neither proliferation nor survival was affected by the ASA learning task. Because elevated glucocorticoid levels have a negative impact on hippocampal neurogenesis, blood samples were taken throughout the 4-day training paradigm. Both trained animals and control rats that were only placed in the shuttle box without receiving foot shocks showed a similar rise in corticosterone, enabling us to exclusively investigate the effects of ASA learning on neurogenesis without differential interference of stress between groups. On the other hand, the finding that ASA induced elevations in plasma corticosterone, but did not influence proliferation or survival of newly formed cells, indicates that this type of stress does not affect neurogenesis. The present study shows that, in line with the existing data on other hippocampus-independent learning tasks, ASA training has no effect on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Karin Van der Borght
- Department of Molecular Neurobiology, Graduate school of Behavioral and Cognitive Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
69
|
Abstract
The discovery that the adult mammalian brain creates new neurons from pools of stemlike cells was a breakthrough in neuroscience. Interestingly, this particular new form of structural brain plasticity seems specific to discrete brain regions, and most investigations concern the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation (HF). Overall, two main lines of research have emerged over the last two decades: the first aims to understand the fundamental biological properties of neural stemlike cells (and their progeny) and the integration of the newly born neurons into preexisting networks, while the second focuses on understanding its relevance in brain functioning, which has been more extensively approached in the DG. Here, we propose an overview of the current knowledge on adult neurogenesis and its functional relevance for the adult brain. We first present an analysis of the methodological issues that have hampered progress in this field and describe the main neurogenic sites with their specificities. We will see that despite considerable progress, the levels of anatomic and functional integration of the newly born neurons within the host circuitry have yet to be elucidated. Then the intracellular mechanisms controlling neuronal fate are presented briefly, along with the extrinsic factors that regulate adult neurogenesis. We will see that a growing list of epigenetic factors that display a specificity of action depending on the neurogenic site under consideration has been identified. Finally, we review the progress accomplished in implicating neurogenesis in hippocampal functioning under physiological conditions and in the development of hippocampal-related pathologies such as epilepsy, mood disorders, and addiction. This constitutes a necessary step in promoting the development of therapeutic strategies.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Laboratoire de Physiopathologie des Comportements, Institut National de la Sané et de la Recherche Médicale, U588, Université de Bordeaux, France.
| | | | | |
Collapse
|
70
|
Abstract
According to our suggested hypothesis, long-term memory is a collection of "gnostic units," selectively tuned to past events. The formation of long-term memory occurs with the involvement of constantly appearing new neurons which differentiate from stem cells during the process of neurogenesis, in particular in adults. Conversion of precursor neurons into "gnostic units" selective in relation to ongoing events, supplemented by the involvement of hippocampal "novelty neurons," which increase the flow of information needing to be fixed in long-term memory. "Gnostic units" form before the informational processes occurring in the ventral ("what?") and dorsal ("where?") systems. Formation of new "gnostic units" selectively tuned to a particular event results from the combination of excitation of the detector for stimulus characteristics and the novelty signal generated by "novelty neurons" in the hippocampus.
Collapse
|
71
|
Diamond DM, Park CR, Campbell AM, Woodson JC. Competitive interactions between endogenous LTD and LTP in the hippocampus underlie the storage of emotional memories and stress-induced amnesia. Hippocampus 2005; 15:1006-25. [PMID: 16086429 DOI: 10.1002/hipo.20107] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This speculative review serves two purposes. First, it as an extension of the ideas we developed in a previous review (Diamond et al., Hippocampus, 2004;14:281-291), and second, it is a rebuttal to Abraham's (Hippocampus, 2004;14:675-676) critique of that review. We had speculated on the functional significance of the finding that post-training LTP induction produces retrograde amnesia. We noted the similarities between the findings that strong tetanizing stimulation can produce LTP and retrograde amnesia, and that a strong emotional experience can produce a long-lasting memory and retrograde amnesia, as well. The commonalities between LTP induction and emotional learning provided the basis of our hypothesis that an emotional experience generates endogenous LTD/depotentiation, which reverses synaptic plasticity formed during previous learning experiences, and endogenous LTP, which underlies the storage of new information. Abraham raised several concerns with our review, including the criticism that our speculation "falters because there is no evidence that stress causes LTD or depotentiation," and that research on stress and hippocampus has "failed to report any LTP-like changes." Abraham's points are well-taken because stress, in isolation, does not appear to generate long-lasting changes in baseline measures of hippocampal excitability. Here, within the context of a reply to Abraham's critique, we have provided a review of the literature on the influence of stress, novelty, fear conditioning, and the retrieval of emotional memories on cognitive and physiological measures of hippocampal functioning. An emphasis of this review is our hypothesis that endogenous forms of depotentiation, LTD and LTP are generated only when arousing experiences occur in conjunction with memory-related activation of the hippocampus and amygdala. We conclude with speculation that interactions among the different forms of endogenous plasticity underlie a form of competition by synapses and memories for access to retrieval resources.
Collapse
Affiliation(s)
- David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | |
Collapse
|
72
|
Steckler T. The neuropsychology of stress. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
73
|
Kabbaj M, Evans S, Watson SJ, Akil H. The search for the neurobiological basis of vulnerability to drug abuse: using microarrays to investigate the role of stress and individual differences. Neuropharmacology 2004; 47 Suppl 1:111-22. [PMID: 15464130 DOI: 10.1016/j.neuropharm.2004.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 07/14/2004] [Accepted: 07/21/2004] [Indexed: 11/19/2022]
Abstract
Basic neurobiological studies have led to great progress in our understanding of the mechanisms of action of drugs of abuse. Much has been learned about the brain response from the moment a psychoactive drug enters the organism onwards, including the psychological, neurobiological and peripheral effects of repeated drug administration, withdrawal and re-exposure. However, to relate this knowledge to the human experience requires further research on the antecedents of drug-taking behavior and the factors that predispose particular individuals to drug seeking and drug abuse. Thus, it is important to address several issues at the fundamental level: (1) Why are some individuals more vulnerable to drugs of abuse more than others? Is there a broader dimension or dimensions of emotional reactivity that contribute to this difference in vulnerability? (2) What is the effect of psychosocial stress on drug-seeking and drug-taking behavior, and are the effects distinct across individuals? (3) Since both drug-taking behavior and stress have sustained and pervasive effects on the brain, can we use microarrays to discern the "neural signature" or "neural phenotype" associated with these processes, and can we distinguish this signature across individuals with differing propensities to taking drugs? In the present paper, we summarize some of our early attempts at addressing these questions. We rely on animal studies aimed at characterizing the emotional and stress reactivity of rats with different propensities to self-administer drugs (high responders and low responders); we briefly describe the effect of a psychosocial stressor on these animals; we then detail a study using microarray technology aimed at investigating the "neural phenotype" associated with social defeat stress in the high vs. low responder animals. This "discovery" approach is used as a starting place for identifying novel mechanisms that might alter the vulnerability of different individuals to drug-seeking behavior. The power and limits of this approach, and its future directions, are discussed within this general framework.
Collapse
Affiliation(s)
- M Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 520 Building 127, Tallahassee, FL 32306-4300, USA.
| | | | | | | |
Collapse
|
74
|
Hansen A, Schmidt M. Influence of season and environment on adult neurogenesis in the central olfactory pathway of the shore crab, Carcinus maenas. Brain Res 2004; 1025:85-97. [PMID: 15464748 DOI: 10.1016/j.brainres.2004.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 12/01/2022]
Abstract
In most vertebrates hitherto examined including humans, certain brain areas retain the capacity to build new neurons during adult life. In some arthropods, above all in crustaceans, continuous genesis of brain neurons has also been shown, namely for soma clusters of the olfactory brain. Several factors as, e.g., sensory input, living conditions, or stress, are known to influence the rate of cell proliferation, survival, and cell differentiation. The present study was undertaken to test whether seasonal changes and/or captivity would influence the proliferation of cells in the lateral cluster (LC) of the olfactory lobe (OL) and in the cluster of the hemiellipsoid body (HB) of the eyestalk of shore crabs. During a period of more than a year, 5-bromo-deoxyuridine (BrdU) injections were administered to freshly caught animals and to animals kept for 12 weeks after capture under artificial conditions. Counts of BrdU-labeled cells showed that animal size, seasonal changes as well as captivity had an influence on the number of proliferating cells. Further, in the lateral soma cluster and the soma cluster of the hemiellipsoid body, cell proliferation is most likely regulated independently. While the lateral soma cluster showed two peaks of cell proliferation (spring and late summer), the soma cluster of the hemiellipsoid body had only one peak in early summer. Furthermore, proliferation decreased with size and hence age of the animal only in the lateral soma cluster but not in the soma cluster of the hemiellipsoid body. Although captivity reduced the number of newborn cells in general, cell proliferation remained synchronous with the seasons of the year, indicating that an endogenous circannual rhythm regulates neurogenesis.
Collapse
Affiliation(s)
- Anne Hansen
- Cell and Developmental Biology, University of Colorado Health Sciences Center at Fitzsimons, Mailstop 8108, P.O.B. 6511, Aurora, CO, USA.
| | | |
Collapse
|
75
|
Isgor C, Slomianka L, Watson SJ. Hippocampal mossy fibre terminal field size is differentially affected in a rat model of risk-taking behaviour. Behav Brain Res 2004; 153:7-14. [PMID: 15219701 DOI: 10.1016/j.bbr.2003.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
Individual differences in novelty-induced exploratory activity identify rats which can serve as a model of human sensation-seeking, risk-taking behaviour. Experimentally naïve rats, when exposed to mild stress of a novel environment, exhibit variability in their exploratory activity. Some rats display high rates of locomotor reactivity to novelty (high responders (HR)), and others display low rates (low responders (LR)). The LRHR phenotype is a reliable predictor of drug-taking behaviour and is linked to differences in hippocampal glucocorticoid receptor mRNA expression. In this study, we investigated whether the LRHR phenotype is associated with differences in the quantitative morphology of the hippocampal field CA3, dentate gyrus molecular layer, granule cell layer and mossy fibres. LRs and HRs showed no significant differences in the volumes of CA3 and dentate molecular layer volume or the number of dentate granule cells. However, LRs had a significantly larger suprapyramidal mossy fibre terminal field volume when compared to HRs. The infrapyramidal mossy fibres did not differ between phenotypes. Also, we found a LRHR phenotype-independent significant negative correlation between molecular layer volume per granule cell and the total number of granule cells. These findings implicate the SP-MF in vulnerability for risk-taking behaviour, and we propose that LR and HR hippocampi may differ in the way novelty information is processed.
Collapse
Affiliation(s)
- Ceylan Isgor
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI 48109-0720, USA
| | | | | |
Collapse
|
76
|
Perrin D, Mamet J, Scarna H, Roux JC, Bérod A, Dalmaz Y. Long-term prenatal hypoxia alters maturation of brain catecholaminergic systems and motor behavior in rats. Synapse 2004; 54:92-101. [PMID: 15352134 DOI: 10.1002/syn.20065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to determine the influence of long-term prenatal hypoxia on the maturation of the brain catecholaminergic structures involved in motor and cognitive functions, pregnant rats were subjected to hypoxia (10% O2) from the 5th to 20th day of gestation. The in vivo activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, was assessed, by accumulation of L-DOPA after i.p. administration of NSD-1015, in the motor cortex areas, the hippocampus, and the striatum at birth and at the 3rd, 7th, 14th, 21st, and 68th postnatal days. The motor reactivity to novelty and the circadian motor activity were measured at the 21st and 68th postnatal days. Exposure to prenatal hypoxia strongly altered the developmental pattern of in vivo TH activity in restricted noradrenergic terminals of the brain. In the 21-day-old prenatal hypoxic rats, the TH activity was reduced by 80% in the motor cortex areas and by 43% in the hippocampus, compared to control rats, while no differences could be detected in the striatum. Compared to control rats, the prenatal hypoxic pups exhibited a higher motor reactivity to novelty and a nocturnal motor hypoactivity at the 21st postnatal day. The neurochemical and behavioral alterations were no longer observed at the 68th postnatal day. The altered in vivo TH activity in the young rats might be part of the neural mechanisms contributing to the motor behavioral impairments induced by prenatal hypoxia. Long-term prenatal hypoxia could be linked to the development of psychopathologies that can be detected in infancy.
Collapse
Affiliation(s)
- David Perrin
- Laboratoire de Physiologie Intégrative, Cellulaire et Moléculaire UMR CNRS 5123, Université Claude Bernard, Lyon, France.
| | | | | | | | | | | |
Collapse
|
77
|
Heine VM, Maslam S, Joëls M, Lucassen PJ. Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 2004; 25:361-75. [PMID: 15123342 DOI: 10.1016/s0197-4580(03)00090-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Revised: 03/13/2003] [Accepted: 03/25/2003] [Indexed: 11/27/2022]
Abstract
Neurogenesis and apoptosis in the hippocampal dentate gyrus (DG) occur during development and adulthood. However, little is known about how these two processes relate to each other during aging. In this study, we examined apoptosis, proliferation, migration, and survival of newborn cells in the young (2 weeks), young-adult (6 weeks), middle-aged (12 months), and old (24 months) rat DG. We also measured dentate volume and cell numbers, along with basal corticosterone and stress response parameters. We show that new cell proliferation and apoptosis slow down profoundly over this time period. Moreover, migration and differentiation into a neuronal or glial phenotype was strongly reduced from 6 weeks of age onwards; it was hardly present in middle-aged and old rats as confirmed by confocal analysis. Surprisingly, we found no correlation between cell birth and corticosterone levels or stress response parameters in any age group.
Collapse
Affiliation(s)
- Vivi M Heine
- Institute for Neurobiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
78
|
Hebda-Bauer EK, Watson SJ, Akil H. CREBalphadelta- deficient mice show inhibition and low activity in novel environments without changes in stress reactivity. Eur J Neurosci 2004; 20:503-13. [PMID: 15233759 DOI: 10.1111/j.1460-9568.2004.03487.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ability to respond to unexpected or novel stimuli is critical for survival. Determining that a stimulus is indeed novel requires memory to ascertain its lack of familiarity. As the long-term synaptic changes involved in memory formation require the cAMP response element binding protein (CREB), we examined the extent to which CREB is involved in responses to novel environments. These environments typically trigger an endocrine stress response. Thus, we measured behavioural and stress hormone responses to three novel and one familiar environment in mice with a targeted disruption of the alpha and delta isoforms of the CREB gene (CREB(alphadelta-) deficient mice). We found CREB(alphadelta-) deficient mice to be less active and more inhibited in the elevated plus maze, open field, and light/dark box, without showing differences in anxiety-like behaviour. This inhibition is unique to novel environments because these mice display a normal phenotype in the home cage, a familiar environment. Although CREB(alphadelta-) deficient mice exhibit altered behaviour in novel environments, they show normal reactivity to mild and moderate stress as both basal and stress levels of corticosterone are similar to those of wild-type controls. This is the first report of CREB(alphadelta-) deficient mice to: (i) show altered behaviour, not related to learning and memory-associated behaviours, upon initial exposure to environments and (ii) serve as an animal model that can dissociate locomotor activity from anxiety-like behaviour in novel environments.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Mental Health Research Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
79
|
Chambers RA, Potenza MN, Hoffman RE, Miranker W. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology 2004; 29:747-58. [PMID: 14702022 DOI: 10.1038/sj.npp.1300358] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Characterization of neuronal death and neurogenesis in the adult brain of birds, humans, and other mammals raises the possibility that neuronal turnover represents a special form of neuroplasticity associated with stress responses, cognition, and the pathophysiology and treatment of psychiatric disorders. Multilayer neural network models capable of learning alphabetic character representations via incremental synaptic connection strength changes were used to assess additional learning and memory effects incurred by simulation of coordinated apoptotic and neurogenic events in the middle layer. Using a consistent incremental learning capability across all neurons and experimental conditions, increasing the number of middle layer neurons undergoing turnover increased network learning capacity for new information, and increased forgetting of old information. Simulations also showed that specific patterns of neural turnover based on individual neuronal connection characteristics, or the temporal-spatial pattern of neurons chosen for turnover during new learning impacts new learning performance. These simulations predict that apoptotic and neurogenic events could act together to produce specific learning and memory effects beyond those provided by ongoing mechanisms of connection plasticity in neuronal populations. Regulation of rates as well as patterns of neuronal turnover may serve an important function in tuning the informatic properties of plastic networks according to novel informational demands. Analogous regulation in the hippocampus may provide for adaptive cognitive and emotional responses to novel and stressful contexts, or operate suboptimally as a basis for psychiatric disorders. The implications of these elementary simulations for future biological and neural modeling research on apoptosis and neurogenesis are discussed.
Collapse
Affiliation(s)
- R Andrew Chambers
- Division of Substance Abuse, Connecticut Mental Health Center, Yale University School of Medicine, USA.
| | | | | | | |
Collapse
|
80
|
Bredy TW, Grant RJ, Champagne DL, Meaney MJ. Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 2004; 18:2903-9. [PMID: 14656341 DOI: 10.1111/j.1460-9568.2003.02965.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Maternal care during the first week of postnatal life influences hippocampal development and function (Liu et al., 2000; Nature Neurosci., 3, 799-806). Offspring reared by mothers who exhibit increased levels of pup licking/grooming (LG) show increased hippocampal synaptic density and enhanced spatial learning and memory. Using 5-bromo-2'-deoxyuridine (BrdU), a thymidine analogue incorporated into cells during DNA synthesis, we examined the effects of early maternal care on hippocampal cell proliferation and neuronal survival in the rat. Twenty-four hours following injection on day 7 of life (P7) there were no differences in BrdU labelling in the offspring of high- compared with low-LG mothers, suggesting no maternal effect on the rate of proliferation at this age. However, 14 and 83 days following injection (P21 and P90), the offspring of high-LG mothers had significantly more surviving BrdU-labelled cells and BrdU-NeuN+-colabelled neurons in the dentate gyrus subgranular zone and granule cell layer. At P21, the offspring of high-LG mothers showed increased protein expression of basic fibroblast growth factor and significantly decreased levels of pyknosis. These findings suggest an influence of maternal care on neuronal survival in the hippocampus. Conversely, at the same time point there was a significantly higher level of hippocampal glial fibrillary acidic protein expression in the offspring of low-LG mothers. These findings emphasize the importance of early maternal care for hippocampal development.
Collapse
Affiliation(s)
- Timothy W Bredy
- Developmental Neuroendocrinology Laboratory and McGill Program for the Study of Behaviour, Genes and Environment, Douglas Hospital Research Centre, 6875 Boul. LaSalle Blvd, Montréal, Canada, H4H 1R3
| | | | | | | |
Collapse
|
81
|
Montaron MF, Koehl M, Lemaire V, Drapeau E, Abrous DN, Le Moal M. Environmentally induced long-term structural changes: cues for functional orientation and vulnerabilities. Neurotox Res 2004; 6:571-80. [PMID: 15639789 DOI: 10.1007/bf03033453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Environmental challenges profoundly modify phenotypes and disrupt inherent developmental programs both at functional and structural levels. As an example, we have studied the impact of these environmental influences on adult neurogenesis in the dentate gyrus. Neurogenesis results from an inherent program, participates to hippocampal network organization and, as a consequence, to the various functional abilities depending on this region, including memories. In preclinical studies of aging we have shown that phenotypes vulnerable to the development of spatial memory disorders are characterized by lower hippocampal neurogenesis. We have hypothesized that these interindividual variations in functional expression of neurogenesis in senescent subjects could be predicted early in life. Indeed, a behavioral response (novelty-induced locomotor reactivity) and a biological trait (hypothalamo-pituitary-adrenal axis activity), which are predictive of cognitive impairments later in life, are related to neurogenesis in young adult rats. This suggests that subjects starting off with an impaired neurogenesis, here rats that are high reactive to stress, are predisposed for the development of age-related cognitive disorders. We have further shown that these inter-individual differences result from early deleterious life events. Indeed, prenatal stress orients neurogenesis in pathological ways for the entire life, and precipitates age-related cognitive impairments. Altogether these data suggest first that hippocampal neurogenesis plays a pivotal role in environmentally-induced vulnerability to the development of pathological aging, and second that environmental challenges and life events orient structural developments, leading to different phenotypes.
Collapse
Affiliation(s)
- M F Montaron
- INSERM U588, Domaine de Carreire, Rue Camille Saint Saëns, University of Bordeaux II Bordeaux Cedex 33077, France
| | | | | | | | | | | |
Collapse
|
82
|
Meeter M, Murre JMJ, Talamini LM. Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus 2004; 14:722-41. [PMID: 15318331 DOI: 10.1002/hipo.10214] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been suggested that hippocampal mode shifting between a storage and a retrieval state might be under the control of acetylcholine (ACh) levels, as set by an autoregulatory hippocampo-septo-hippocampal loop. The present study investigates how such a mechanism might operate in a large-scale connectionist model of this circuitry that takes into account the major hippocampal subdivisions, oscillatory population dynamics and the time scale on which ACh exerts its effects in the hippocampus. The model assumes that hippocampal mode shifting is regulated by a novelty signal generated in the hippocampus. The simulations suggest that this signal originates in the dentate. Novel patterns presented to this structure lead to brief periods of depressed firing in the hippocampal circuitry. During these periods, an inhibitory influence of the hippocampus on the septum is lifted, leading to increased firing of cholinergic neurons. The resulting increase in ACh release in the hippocampus produces network dynamics that favor learning over retrieval. Resumption of activity in the hippocampus leads to the reinstatement of inhibition. Despite theta-locked rhythmic firing of ACh neurons in the septum, ACh modulation in the model fluctuates smoothly on a time scale of seconds. It is shown that this is compatible with the time scale on which memory processes take place. A number of strong predictions regarding memory function are derived from the model.
Collapse
Affiliation(s)
- M Meeter
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
83
|
Döbrössy MD, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry 2003; 8:974-82. [PMID: 14647395 DOI: 10.1038/sj.mp.4001419] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampal formation, to which new neurons are added on a daily basis throughout life, is important in spatial learning. Surviving de novo produced cells integrate into the functional circuitry, where they can influence both normal and pathological behaviors. In this study, we examined the effect of the water-maze (a hippocampal-dependent spatial task) on neurogenesis. Learning in this task can be divided into two phases, an early phase during which performance improves rapidly, and a late phase during which asymptotic levels of performance are reached. Here we demonstrate that the late phase of learning has a multifaceted effect on neurogenesis depending on the birth date of new neurons. The number of newly born cells increased contingently with the late phase and a large proportion of these cells survived for at least 4 weeks and differentiated into neurons. In contrast, late-phase learning decreased the number of newly born cells produced during the early phase. This decline in neurogenesis was positively correlated with performance in the water-maze. Thus, rats with the highest de novo cell number were less able to acquire and use spatial information than those with low numbers of new cells. These results show that learning has a complex effect on hippocampal neurogenesis, and reveals a novel mechanism through which neurogenesis may influence normal and pathological behaviors.
Collapse
Affiliation(s)
- M D Döbrössy
- INSERM U259, University of Bordeaux, Domaine de Carreire, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
84
|
Gozal D, Row BW, Gozal E, Kheirandish L, Neville JJ, Brittian KR, Sachleben LR, Guo SZ. Temporal aspects of spatial task performance during intermittent hypoxia in the rat: evidence for neurogenesis. Eur J Neurosci 2003; 18:2335-42. [PMID: 14622195 DOI: 10.1046/j.1460-9568.2003.02947.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea, leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in the adult rat. We report that in Sprague-Dawley rats the initial IH-induced impairments in spatial learning are followed by a partial functional recovery over time, despite continuing IH exposure. These functional changes coincide with initial decreases in basal neurogenesis as shown by the number of positively colabelled cells for BrdU and neurofilament in the dentate gyrus of the hippocampus, and are followed by increased expression of neuronal progenitors and mature neurons (nestin and BrdU-neurofilament positively labelled cells, respectively). In contrast, no changes occurred during the course of IH exposures in the expression of the synaptic proteins synaptophysin, SNAP25, and drebrin. Collectively, these findings indicate that the occurrence of IH during the lights on period results in a biphasic pattern of neurogenesis in the hippocampus of adult rats, and may account for the observed partial recovery of spatial function.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, 570 South Preston St., Louisville, KY 40202 USA.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Gerber J, Böttcher T, Bering J, Bunkowski S, Brück W, Kuhnt U, Nau R. Increased neurogenesis after experimental Streptococcus pneumoniae meningitis. J Neurosci Res 2003; 73:441-6. [PMID: 12898528 DOI: 10.1002/jnr.10682] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuronal damage in the hippocampal formation is a common feature in animal models of bacterial meningitis and human disease. In mouse and rabbit models of Streptococcus pneumoniae meningitis, proliferation of neural progenitor cells quantified by bromodeoxyuridine (BrdU) incorporation was enhanced in the subgranular layer of the dentate gyrus. In mice, the density of BrdU-labeled cells was maximal on Day 2 after infection. Approximately 60% of the cells labeled by BrdU between Days 7 and 10 after infection that remained present 28 days later had migrated into deeper layers of the dentate gyrus and differentiated into neurons, as evidenced by immunohistochemical staining for TUC-4, MAP-2 and beta-tubulin. This suggests that endogenous repair mechanisms may limit consequences of neuronal destruction after meningitis.
Collapse
Affiliation(s)
- Joachim Gerber
- Department of Neurology, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
86
|
Carey RJ, DePalma G, Damianopoulos E. Cocaine-conditioned behavioral effects: a role for habituation processes. Pharmacol Biochem Behav 2003; 74:701-12. [PMID: 12543237 DOI: 10.1016/s0091-3057(02)01072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocaine has potent locomotor stimulant effects in rodents, which seemingly can become conditioned to test environment cues. In two experimental protocols, we measured the effects of cocaine on locomotor activity and grooming behavior, and subsequently tested whether these cocaine effects became conditioned to contextual cues. In the first experiment, three groups of rats received 14 injections of either saline or cocaine (10 mg/kg) paired or unpaired to the test environment. Cocaine increased locomotion and decreased grooming during treatment and on the conditioning test. Over the course of the treatment phase, however, the saline- and cocaine-unpaired groups but not the cocaine paired group developed progressively lower locomotion and higher grooming scores indicative of substantial habituation effects. To examine whether the cocaine may have impaired the acquisition of habituation effects rather than induce a Pavlovian cocaine conditioned response, an additional experiment was conducted in which two additional non-habituation saline and cocaine control groups were added to the experimental design. On a conditioning test, the two non-habituation control groups were equivalent in activity and grooming behavior to the cocaine-paired group. The findings were consistent with a failure by cocaine-paired animals to acquire habituation effects, which could transfer to the non-cocaine state. The connection between cocaine and novelty/habituation may have substantial importance for understanding cocaine effects.
Collapse
Affiliation(s)
- Robert J Carey
- VA Medical Center and SUNY Upstate Medical University, Syracuse, NY, USA.
| | | | | |
Collapse
|
87
|
Montag-Sallaz M, Schachner M, Montag D. Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol 2002; 22:7967-81. [PMID: 12391163 PMCID: PMC134725 DOI: 10.1128/mcb.22.22.7967-7981.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Revised: 06/04/2002] [Accepted: 08/15/2002] [Indexed: 11/20/2022] Open
Abstract
Cell recognition molecules are involved in nervous system development and participate in synaptic plasticity in the adult brain. The close homolog of L1 (CHL1), a recently identified member of the L1 family of cell adhesion molecules, is expressed by neurons and glia in the central nervous system and by Schwann cells in the peripheral nervous system in a pattern overlapping, but distinct from, the other members of the L1 family. In humans, CHL1 (also referred to as CALL) is a candidate gene for 3p- syndrome-associated mental impairment. In the present study, we generated and analyzed CHL1-deficient mice. At the morphological level, these mice showed alterations of hippocampal mossy fiber organization and of olfactory axon projections. Expression of the mRNA of the synapse-specific neural cell adhesion molecule 180 isoform was upregulated in adult CHL1-deficient mice, but the mRNA levels of several other recognition molecules were not changed. The behavior of CHL1-deficient mice in the open field, the elevated plus maze, and the Morris water maze indicated that the mutant animals reacted differently to their environment. Our data show that the permanent absence of CHL1 results in misguided axonal projections and aberrant axonal connectivity and alters the exploratory behavior in novel environments, suggesting deficits in information processing in CHL1-deficient mice.
Collapse
Affiliation(s)
- M Montag-Sallaz
- Neurogenetics Research Group, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | | | | |
Collapse
|
88
|
Dermon CR, Zikopoulos B, Panagis L, Harrison E, Lancashire CL, Mileusnic R, Stewart MG. Passive avoidance training enhances cell proliferation in 1-day-old chicks. Eur J Neurosci 2002; 16:1267-74. [PMID: 12405987 DOI: 10.1046/j.1460-9568.2002.02177.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One-day-old domestic chicks were injected i.p. with bromodeoxyuridine (BrdU) before training on a one-trial passive avoidance task where the aversive experience was a bead coated with a bitter tasting substance, methyl anthranilate (MeA). Animals were tested 24 h later; those avoiding (if MeA-trained) or pecking if water (W)-trained (which they peck appetitively), along with a group of untrained naïve chicks, were used to determine cell proliferation either 24 h or 9 days post BrdU injection. In all three groups, BrdU positive cells were identified sparsely throughout the forebrain but labelling was pronounced around ventricular zone (VZ) surfaces at both 24 h and 9 days post-BrdU-injection. Double immunolabelling with neuronal specific antibodies, to either NeuN, or beta-tubulin III, confirmed that most BrdU labelled cells appeared to be neurons. Unbiased stereological analysis of labelled cells in selected forebrain areas 24 h post BrdU injection showed a significant MeA-training induced increase in labelled cells in both the dorsal VZ surface bordering the intermediate and medial hyperstriatum ventrale (IMHV) and the tuberculum olfactorium (TO). By 9 days post-BrdU-injection, there was a significantly greater number of BrdU labelled cells in MeA-trained birds within the IMHV, lobus parolfactorius (LPO) and TO. These results demonstrate that avoidance training in 1-day-old chicks has a marked effect on cell proliferation, in the LPO and IMHV, regions of the chick previously identified as a key loci of memory formation, and in a second region (TO), which has olfactory functions, but has not been previously investigated in relation to avoidance learning.
Collapse
Affiliation(s)
- C R Dermon
- Department of Biology, University of Crete, 71409, Greece
| | | | | | | | | | | | | |
Collapse
|
89
|
Turlejski K, Djavadian R. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. PROGRESS IN BRAIN RESEARCH 2002; 136:39-65. [PMID: 12143397 DOI: 10.1016/s0079-6123(02)36006-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.
Collapse
Affiliation(s)
- Kris Turlejski
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | |
Collapse
|
90
|
Mostafa RM, Mostafa YM, Ennaceur A. Effects of exposure to extremely low-frequency magnetic field of 2 G intensity on memory and corticosterone level in rats. Physiol Behav 2002; 76:589-95. [PMID: 12126997 DOI: 10.1016/s0031-9384(02)00730-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In the present study, we examined the effects of chronic exposure (1 and 2 weeks) to an extremely low-frequency magnetic field (ELFMF) of 2 G intensity on memory in rats using an object recognition task. Comparable groups of rats were exposed for 1, 2 or 4 weeks to ELFMF and the following day blood samples were collected from each rat for the measurement of corticosterone level. Our results demonstrate that exposure to ELFMF induces a significant increase in the level of corticosterone in blood plasma and is associated with impairment in discrimination between familiar and novel objects.
Collapse
Affiliation(s)
- Randa M Mostafa
- Zagazig University, Banha School of Medicine, Department of Physiology, Banha, Egypt
| | | | | |
Collapse
|
91
|
Kempermann G, Gage FH. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16:129-36. [PMID: 12153537 DOI: 10.1046/j.1460-9568.2002.02042.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A number of reports have indicated that adult neurogenesis might be involved in hippocampal function. While increases in adult neurogenesis are paralleled by improvements on learning tasks and learning itself can promote the survival of newly generated neurons in the hippocampus, a causal link between learning processes and adult hippocampal neurogenesis is difficult to prove. Here, we addressed the related question of whether the baseline level of adult neurogenesis is predictive of performance on the water maze task as a test of hippocampal function. We used ten strains of recombinant inbred mice, based on C57BL/6, which are good learners and show high baseline levels of neurogenesis, and DBA/2, which are known to be poor learners and which exhibit low levels of adult neurogenesis. Two of these strains, BXD-2 and BXD-8, showed a 26-fold difference in the number of newly generated neurons per hippocampus. Over all strains, including the parental strains, there was a significant correlation between the number of new neurons generated in the dentate gyrus and parameters describing the acquisition of the water maze task (slope of the learning curves). Similar results were seen when the parental strains were not included in the analysis. There was no correlation between adult hippocampal neurogenesis and probe trial performance, performance on the rotarod, overall locomotor activity, and baseline serum corticosterone levels. This result supports the hypothesis that adult neurogenesis is involved in specific aspects of hippocampal function, particularly the acquisition of new information.
Collapse
Affiliation(s)
- G Kempermann
- Max Delbrück Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany.
| | | |
Collapse
|
92
|
Cayre M, Malaterre J, Scotto-Lomassese S, Strambi C, Strambi A. The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:1-15. [PMID: 11997205 DOI: 10.1016/s1096-4959(01)00525-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Until recently, it was believed that adult brains were unable to generate any new neurons. However, it is now commonly known that stem cells remain in the adult central nervous system and that adult vertebrates as well as adult invertebrates are currently adding new neurons in some specialized structures of their central nervous system. In vertebrates, the subventricular zone and the dentate gyrus of the hippocampus are the sites of neuronal precursor proliferation. In some insects, persistent neurogenesis occurs in the mushroom bodies, which are brain structures involved in learning and memory and considered as functional analogues of the hippocampus. In both vertebrates and invertebrates, secondary neurogenesis (including neuroblast proliferation and neuron differentiation) appears to be regulated by hormones, transmitters, growth factors and environmental cues. The functional implications of adult neurogenesis have not yet been clearly demonstrated and comparative study of the various model systems could contribute to better understand this phenomenon. Here, we review and discuss the common characteristics of adult neurogenesis in the various animal models studied so far.
Collapse
Affiliation(s)
- Myriam Cayre
- CNRS, Laboratoire de Neurobiologie, Marseille, France.
| | | | | | | | | |
Collapse
|
93
|
Abstract
Major depression, whose biological origins have been difficult to grasp for decades, might result from a disturbance in neuronal plasticity. New theories begin to consider a fundamental role of adult hippocampal neurogenesis in this loss of plasticity. Could depression and other mood disorders therefore be 'stem cell disorders'? In this review, the potential role of adult hippocampal neurogenesis and of neuronal stem or progenitor cells in depression is discussed with regard to those aspects that are brought up by recent research on how adult hippocampal neurogenesis is regulated. What is known about this regulation today are mosaic pieces and indicates that regulation is complex and is modulated on several levels. Accordingly, emphasis is here laid on those regulatory feedback mechanisms and interdependencies that could help to explain how the pathogenic progression from a hypothesized disruptive cause can occur and lead to the complex clinical picture in mood disorders. While the 'neurogenic theory' of depression remains highly speculative today, it might stimulate the generation of sophisticated working hypotheses, useful animal experiments and the first step towards new therapeutic approaches.
Collapse
Affiliation(s)
- Gerd Kempermann
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, and Department of Neurology, Charité University Hospital, Humboldt University Berlin, Berlin, Germany.
| |
Collapse
|
94
|
Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 2002; 12:578-84. [PMID: 12440573 PMCID: PMC3289536 DOI: 10.1002/hipo.10103] [Citation(s) in RCA: 641] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The hippocampal formation generates new neurons throughout adulthood. Recent studies indicate that these cells possess the morphology and physiological properties of more established neurons. However, the function of adult generated neurons is still a matter of debate. We previously demonstrated that certain forms of associative learning can enhance the survival of new neurons and a reduction in neurogenesis coincides with impaired learning of the hippocampal-dependent task of trace eyeblink conditioning. Using the toxin methylazoxymethanol acetate (MAM) for proliferating cells, we tested whether reduction of neurogenesis affected learning and performance associated with different hippocampal dependent tasks: spatial navigation learning in a Morris water maze, fear responses to context and an explicit cue after training with a trace fear paradigm. We also examined exploratory behavior in an elevated plus maze. Rats were injected with MAM (7 mg/kg) or saline for 14 days, concurrent with BrdU, to label new neurons on days 10, 12, and 14. After treatment, groups of rats were tested in the various tasks. A significant reduction in new neurons in the adult hippocampus was associated with impaired performance in some tasks, but not with others. Specifically, treatment with the antimitotic agent reduced the amount of fear acquired after exposure to a trace fear conditioning paradigm but did not affect contextual fear conditioning or spatial navigation learning in the Morris water maze. Nor did MAM treatment affect exploration in the elevated plus maze. These results combined with previous ones suggest that neurogenesis may be associated with the formation of some but not all types of hippocampal-dependent memories.
Collapse
Affiliation(s)
- Tracey J Shors
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| | | | | | | | | |
Collapse
|
95
|
Abstract
Knowledge of the genetic and molecular events underlying the neuroendocrine and behavioural sequelae of the response to stress has advanced rapidly over recent years. The response of an individual to a stressful experience is a polygenic trait, but also involves non-genetic sources of variance. Using a combination of top-down (quantitative trait locus [QTL] and microarray analysis) and bottom-up (gene targeting, transgenesis, antisense technology and random mutagenesis) strategies, we are beginning to dissect the molecular players in the mediation of the stress response. Given the wealth of the data obtained from mouse mutants, this review will primarily focus on the contributions made by transgenesis and knockout studies, but the relative contribution of QTL studies and microarray studies will also be briefly addressed. From these studies it is evident that several neuroendocrine and behavioural alterations induced by stress can be modelled in mouse mutants with alterations in hypothalamic-pituitary-adrenal axis activity or other, extrahypothalamic, neurotransmitter systems known to be involved in the stress response. The relative contribution of these models to understanding the stress response and their limitations will be discussed.
Collapse
Affiliation(s)
- T Steckler
- CNS Discovery, Janssen Research Foundation, Turnhioutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
96
|
Zimmermann A, Stauffacher M, Langhans W, Würbel H. Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 2001; 121:11-20. [PMID: 11275280 DOI: 10.1016/s0166-4328(00)00377-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In rats, exploratory activity and emotional reactivity towards novel stimuli reflect independent biological functions that are modulated differently by rearing experiences. Environmental enrichment is known to improve performance in exploratory tasks, while having inconsistent effects on emotionality. This study examined the effect of environmental enrichment on the behaviour of rats in two exploratory tasks. Male rats were reared under one of four conditions, differing in social and non-social complexity. At 9 weeks of age, exploration of a novel open field, and exploration of novel objects in the same open field following 24 h habituation, was assessed. Differences in social and non-social complexity of the rearing environment had inconsistent effects on exploration in the novel open field. In contrast, when rats were faced with novel objects in an otherwise familiar environment, exploration habituated faster with increasing stimulus complexity of the non-social environment. The social environment had no effect on this latter test. These findings indicate that environmental enrichment affects exploratory activity primarily through its effect on habituation to novelty. This effect depends on relative stimulus complexity of the rearing environment, but is independent of social factors. The present results further suggest that aversive tasks can obscure the expression of enrichment-dependent differences in habituation to novelty.
Collapse
Affiliation(s)
- A Zimmermann
- Institut für Nutztierwissenschaften, Physiologie und Tierhaltung, ETH Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
97
|
Abstract
Assessments of cortisol levels in saliva have been widely used by both researchers and clinicians as an index of adrenal functioning. Quarterly measurements of morning and evening cortisol levels were determined in a longitudinal study of 147 participants (72 women and 75 men) followed for 1 year each. The analysis of salivary cortisol revealed no significant gender or age differences in the sample. There was a sequence effect in quarterly cortisol values with a progressive decrease in serial measurements, especially notable in the morning values; as well as a seasonal variation in cortisol levels with significantly higher levels found in winter and fall, compared with spring and summer. The findings in this study suggest that repeated saliva sampling and seasonal variation in cortisol levels may independently affect adrenal response and, therefore, need to be accounted for in longitudinal studies.
Collapse
Affiliation(s)
- J A King
- Behavioral Neuroscience Program of the Department of Psychiatry, University of Massachusetts Medical School, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq M. Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 2001; 13:845-56. [PMID: 11264658 DOI: 10.1046/j.0953-816x.2000.01451.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stromal cell-derived factor 1 (SDF-1) is an alpha-chemokine that stimulates migration of haematopoietic progenitor cells and development of the immune system. SDF-1 is also abundantly and selectively expressed in the developing and mature CNS, as we show here. At embryonic day 15, SDF-1 transcripts were detected in the germinal periventricular zone and in the deep layer of the forming cerebral cortex. At birth, granule cells in the cerebellum and glial cells of the olfactory bulb outer layer showed an SDF-1 in situ hybridization signal that decreased progressively within the next 2 weeks. In other regions such as cortex, thalamus and hippocampus, SDF-1 transcripts detected at birth progressively increased in abundance during the postnatal period. SDF-1 protein was identified by immunoblot and/or immunocytochemistry in most brain regions where these transcripts were detected. SDF-1 was selectively localized in some thalamic nuclei and neurons of the fifth cortical layer as well as in pontine and brainstem nuclei which relay the nociceptive response. The presence of SDF-1 transcripts in cerebellar granule cells was correlated with their migration from the external to the inner granular layers with disappearance of the signal when migration was completed. In contrast, SDF1 mRNA signal increased during formation of the hippocampal dentate gyrus and stayed high in this region throughout life. The selective and regulated expression of SDF-1 in these regions suggests a role in precursor migration, neurogenesis and, possibly, synaptogenesis. Thus this alpha chemokine may be as essential to nervous system function as it is to the immune system.
Collapse
Affiliation(s)
- T N Tham
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Neuron production, migration and differentiation are major developmental events that continue, on a smaller scale, into adult life in a wide range of species from insects to mammals. Recent reports of adult neurogenesis in primates, including humans, have led to explosive scientific and public attention. During the last two years, significant discoveries have revealed that the generation, recruitment and survival of new neurons in adult brains are governed by principles similar to those that shape the developing brain, such as neuronal death, sensory experience, activity levels, and learning. Similarly, many factors implicated in embryonic neurogenesis are increasingly found to regulate adult neurogenesis and survival as well. These findings now allow the first manipulations of the numbers of adult-generated neurons to address their potential behavioral function.
Collapse
Affiliation(s)
- C Scharff
- The Rockefeller University, 1230 York Avenue Box 137, New York, NY 10021, USA.
| |
Collapse
|
100
|
Abstract
Given the constraints of the prevailing mental health system in the United States, it has become very challenging for psychiatrists to offer psychotherapy services to patients in need of this modality of treatment. In spite of this situation, the profession has made a consistent effort not only to retain this type of psychiatric care but also to train psychiatric residents in this psychiatric intervention technique and its appropriate indications. In this article, the authors highlight a very important aspect of psychotherapy treatment-the termination phase. They review relevant literature on this subject, discuss some of the most common problems faced by psychiatrists, especially psychiatric residents, when addressing the termination phase of psychotherapy, and then present two cases to illustrate these issues.
Collapse
Affiliation(s)
- V Kapoor
- University of Texas Medical School at Houston, USA
| | | | | |
Collapse
|