51
|
Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int 2022; 42:1999-2014. [PMID: 35353431 DOI: 10.1111/liv.15262] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
The epidemiology and aetiology of drug-induced liver injury (DILI) vary across different countries and populations. Overall, DILI is rare in the general population but has become more prevalent in hospitalized patients, especially among patients with unexplained liver conditions. In addition, drugs implicated in DILI differ between Western and Eastern countries. Antibiotics are the leading drugs implicated in DILI in the West, whereas traditional Chinese medicine is the primary cause implicated in DILI in the East. The incidence of herbal and dietary supplements-induced hepatotoxicity is increasing globally. Several genetic and nongenetic risk factors associated with DILI have been described in the literature; however, there are no confirmed risk factors for all-cause DILI. Some factors may contribute to the risk of DILI in a drug-specific manner.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
52
|
Cui J, Chasman DI, Raychaudhuri S, Xu C, Ridker PM, Solomon DH, Karlson EW. Genetics are not likely to offer clinically useful predictions for elevated liver enzyme levels in patients using low dose methotrexate. Semin Arthritis Rheum 2022; 55:152036. [PMID: 35671649 PMCID: PMC10782828 DOI: 10.1016/j.semarthrit.2022.152036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine genetic influence on the risk of elevations in liver function tests (AST and ALT) among patients using low-dose methotrexate (LD-MTX). METHODS We examined data from the LD-MTX arm of a randomized double-blind placebo-controlled trial conducted among subjects without rheumatic disease. Genome wide association studies (GWAS) were performed in subjects of European ancestry to test the association between single nucleotide polymorphisms (SNPs) and the log transformed maximum values of AST, ALT, and dichotomized outcome with AST or ALT > 2 times upper limit of normal (ULN). The association between variants in MTX metabolism candidate genes and the outcomes was also tested. Furthermore, associations between a drug induced liver injury (DILI) weighted genetic risk score (wGRS) and the outcomes were tested, combining 10 SNPs and 11 classical HLA alleles associated with DILI. RESULTS In genome-wide genetic analyses among 1,429 subjects of European ancestry who were randomized to receive LD-MTX, two SNPs reached genome wide significance for association with log transformed maximum ALT. We observed associations between established candidate genes in MTX pharmacogenetics and log transformed maximum AST and ALT, as well as in dichotomized outcome with AST or ALT > 2 x ULN. There was no association between DILI wGRS or candidate variants and AST, ALT, or DILI response. CONCLUSIONS Modest evidence was observed that common variants affected AST and ALT levels in subjects of European ancestry on LD-MTX, but this genetic effect is not useful as a clinical predictor of MTX toxicity.
Collapse
Affiliation(s)
- Jing Cui
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA.
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA USA
| | - Chang Xu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital USA
| | - Daniel H Solomon
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA
| |
Collapse
|
53
|
Alshabeeb M, Alomar FA, Khan A. Impact of SLCO1B1*5 on Flucloxacillin and Co-Amoxiclav-Related Liver Injury. Front Pharmacol 2022; 13:882962. [PMID: 35754504 PMCID: PMC9214039 DOI: 10.3389/fphar.2022.882962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiosyncratic drug-induced liver injury (DILI) is a serious uncommon disease that may develop as a result of the intake of certain drugs such as the antimicrobials flucloxacillin and co-amoxiclav. The reported cases showed significant associations between DILI and various human leukocyte (HLA) markers. The solute carrier organic anion transporter 1B1 (SLCO1B1), a non-HLA candidate gene, was previously reported as a risk factor for liver injury induced by rifampin and methimazole. This study presumed that SLCO1B1 may play a general role in the DILI susceptibility and therefore investigated the association of rs4149056 (SLCO1B1*5, T521C) polymorphism with flucloxacillin- and co-amoxiclav-induced liver injury. Methodology: We recruited 155 and 165 DILI cases of white ancestral origin from various European countries but mainly from the United Kingdom owing to flucloxacillin and co-amoxiclav, respectively. Only adult patients (≥18 years) who were diagnosed with liver injury and who showed i) clinical jaundice or bilirubin >2x the upper limit of normal (ULN), ii) alanine aminotransferase (ALT) >5x ULN or iii) alkaline phosphatase (ALP) >2x ULN and bilirubin > ULN were selected. The population reference sample (POPRES), a European control group (n = 282), was used in comparison with the investigated cases. TaqMan SNP genotyping custom assay designed by Applied Biosystems was used to genotype both DILI cohorts for SLCO1B1 polymorphism (rs4149056). Allelic discrimination analysis was performed using a step one real-time PCR machine. Genotype differences between cases and controls were examined using Fisher's exact test. GraphPad Prism version 5.0 was used to determine the p-value, odds ratio, and 95% confidence interval. Compliance of the control group with Hardy-Weinberg equilibrium was proven using a web-based calculator available at https://wpcalc.com/en/equilibrium-hardy-weinberg/. Results: A small number of cases failed genotyping in each cohort. Thus, only 149 flucloxacillin and 162 co-amoxiclav DILI cases were analyzed. Genotyping of both DILI cohorts did not show evidence of association with the variant rs4149056 (T521C) (OR = 0.71, 95% CI = 0.46-1.12; p = 0.17 for flucloxacillin cases and OR = 0.87, 95% CI = 0.56-1.33; p = 0.58 for co-amoxiclav), although slightly lower frequency (22.8%) of positive flucloxacillin cases was noticed than that of POPRES controls (29.4%). Conclusion: Carriage of the examined allele SLCO1B1*5 is not considered a risk factor for flucloxacillin DILI or co-amoxiclav DILI as presumed. Testing a different allele (SLCO1B1*1B) and another family member gene (SLCO1B3) may still be needed to provide a clearer role of SLCO1B drug transporters in DILI development-related to the chosen antimicrobials.
Collapse
Affiliation(s)
- Mohammad Alshabeeb
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amjad Khan
- Department of Biological Sciences (Zoology), Faculty of Science, University of Lakki Marwat, Lakki Marwat, Pakistan
| |
Collapse
|
54
|
Weber S, Gerbes AL. Challenges and Future of Drug-Induced Liver Injury Research-Laboratory Tests. Int J Mol Sci 2022; 23:ijms23116049. [PMID: 35682731 PMCID: PMC9181520 DOI: 10.3390/ijms23116049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Drug-induced liver injury (DILI) is a rare but potentially severe adverse drug event, which is also a major cause of study cessation and market withdrawal during drug development. Since no acknowledged diagnostic tests are available, DILI diagnosis poses a major challenge both in clinical practice as well as in pharmacovigilance. Differentiation from other liver diseases and the identification of the causative agent in the case of polymedication are the main issues that clinicians and drug developers face in this regard. Thus, efforts have been made to establish diagnostic testing methods and biomarkers in order to safely diagnose DILI and ensure a distinguishment from alternative liver pathologies. This review provides an overview of the diagnostic methods used in differential diagnosis, especially with regards to autoimmune hepatitis (AIH) and drug-induced autoimmune hepatitis (DI-AIH), in vitro causality methods using individual blood samples, biomarkers for diagnosis and severity prediction, as well as experimental predictive models utilized in pre-clinical settings during drug development regimes.
Collapse
|
55
|
Wang CW, Preclaro IAC, Lin WH, Chung WH. An Updated Review of Genetic Associations With Severe Adverse Drug Reactions: Translation and Implementation of Pharmacogenomic Testing in Clinical Practice. Front Pharmacol 2022; 13:886377. [PMID: 35548363 PMCID: PMC9081981 DOI: 10.3389/fphar.2022.886377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADR) remain the major problems in healthcare. Most severe ADR are unpredictable, dose-independent and termed as type B idiosyncratic reactions. Recent pharmacogenomic studies have demonstrated the strong associations between severe ADR and genetic markers, including specific HLA alleles (e.g., HLA-B*15:02/HLA-B*57:01/HLA-A*31:01 for carbamazepine-induced severe cutaneous adverse drug reactions [SCAR], HLA-B*58:01 for allopurinol-SCAR, HLA-B*57:01 for abacavir-hypersensitivity, HLA-B*13:01 for dapsone/co-trimoxazole-induced SCAR, and HLA-A*33:01 for terbinafine-induced liver injury), drug metabolism enzymes (such as CYP2C9*3 for phenytoin-induced SCAR and missense variant of TPMT/NUDT15 for thiopurine-induced leukopenia), drug transporters (e.g., SLCO1B1 polymorphism for statin-induced myopathy), and T cell receptors (Sulfanilamide binding into the CDR3/Vα of the TCR 1.3). This mini review article aims to summarize the current knowledge of pharmacogenomics of severe ADR, and the potentially clinical use of these genetic markers for avoidance of ADR.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ivan Arni C Preclaro
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
| | - Wei-Hsiang Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Datasets of well characterized drug or herbal and dietary supplement-associated liver injury has provided a rich resource to identify genetic variants associated with hepatic injury that further supports the role of immune activation in drug-induced liver injury (DILI). RECENT FINDINGS Using DNA microarrays, whole genome sequencing, HLA-restricted DNA sequencing with appropriate ethnically matched population controls have identified HLA-specific genetic variants for drugs or botanical compounds with the same HLA variant associated with different agents. In addition to HLAs, two genes involved with immune signaling were also identified: a functional PTPN22 variant associated with increased DILI risk to any agent or clinical presentation and a variant in ERAP2 hepatic gene expression that trims peptide in preparation for presentation in the HLA cleft increased the risk for DILI in amoxicillin-clavulanate DILI when present with known HLA risk alleles. SUMMARY Variants in HLA and other genes involved in immune regulations further supports immune system activation in DILI. In the future, identifying these variants before exposure may minimize the risk for DILI events, help with assessment of drug causality for causing DILI and with greater understanding of DILI mechanisms, has important implication for future drug development.
Collapse
Affiliation(s)
- Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
57
|
Chen Y, Guan S, Guan Y, Tang S, Zhou Y, Wang X, Bi H, Huang M. Novel Clinical Biomarkers for Drug-Induced Liver Injury. Drug Metab Dispos 2022; 50:671-684. [PMID: 34903588 DOI: 10.1124/dmd.121.000732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a critical clinical issue and has been a treatment challenge today as it was in the past. However, the traditional biomarkers or indicators are insufficient to predict the risks and outcome of patients with DILI due to its poor specificity and sensitivity. Recently, the development of high-throughput technologies, especially omics and multiomics has sparked growing interests in identification of novel clinical DILI biomarkers, many of which also provide a mechanistic insight. Accordingly, in this minireview, we summarize recent advances in novel clinical biomarkers for DILI prediction, diagnosis, and prognosis and highlight the limitations or challenges involved in biomarker discovery or its clinical translation. Although huge work has been done, most reported biomarkers lack comprehensive information and more specific DILI biomarkers are still needed to complement the traditional biomarkers such as alanine aminotransferase (ALT) or aspartate transaminase (AST) in clinical decision-making. SIGNIFICANCE STATEMENT: This current review outlines an overview of novel clinical biomarkers for drug-induced liver injury (DILI) identified in clinical retrospective or prospective clinical analysis. Many of these biomarkers provide a mechanistic insight and are promising to complement the traditional DILI biomarkers. This work also highlights the limitations or challenges involved in biomarker discovery or its clinical translation.
Collapse
Affiliation(s)
- Youhao Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Shaoxing Guan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Yanping Guan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Siyuan Tang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Xueding Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Huichang Bi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Min Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| |
Collapse
|
58
|
Moyer AM, Gandhi MJ. Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics. Methods Mol Biol 2022; 2547:21-45. [PMID: 36068459 DOI: 10.1007/978-1-0716-2573-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genetic region on the short arm of chromosome 6 where the human leukocyte antigen (HLA) genes are located is the major histocompatibility complex. The genes in this region are highly polymorphic, and some loci have a high degree of homology with other genes and pseudogenes. Histocompatibility testing has traditionally been performed in the setting of transplantation and involves determining which specific alleles are present. Several HLA alleles have been associated with disease risk or increased risk of adverse drug reaction (ADR) when treated with certain medications. Testing for these applications differs from traditional histocompatibility in that the desired result is simply presence or absence of the allele of interest, rather than determining which allele is present. At present, the majority of HLA typing is done by molecular methods using commercially available kits. A subset of pharmacogenomics laboratories has developed their own methods, and in some cases, query single nucleotide variants associated with certain HLA alleles rather than directly testing for the allele. In this chapter, a brief introduction to the HLA system is provided, followed by an overview of a variety of testing technologies including those specifically used in pharmacogenomics, and the chapter concludes with details regarding specific HLA alleles associated with ADR.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Manish J Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
59
|
Sangwan SK, Khanna N, Sharma N, Agarwal T, Sharma A, Vajpayee RB. Clinical, Biochemical, Genetic, and Therapeutic Profile of Patients with Epidermal Necrolysis: A Descriptive Study. Indian J Dermatol 2022; 67:479. [PMID: 36578727 PMCID: PMC9792050 DOI: 10.4103/ijd.ijd_1089_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Epidermal necrolysis (SJS/TEN) is a rare but acute severe drug reaction associated with high morbidity and mortality rates. Aims To describe the clinical, molecular, biochemical, and therapeutic profile of these patients. Methods A total of 24 acute SJS/TEN patients were recruited during their hospital stay and detailed clinical history and treatment course recorded. Blood samples collected were subjected to DNA and serum separation for molecular and biochemical analysis. Results Of 24 patients, 18 (75%) were females and six (25%) were males with six SJS, six SJS-TEN overlap, and 12 TEN cases. The inciting drugs were non-steroidal anti-inflammatory (87.50%; n = 21) followed by antibiotics (66.67%; n = 16), antiepileptics (37.50%; n = 9), and others (37.50%; n = 9). Seventeen patients (77.2%) showed skin eruptions within 7 days after drug intake. Different co-morbidities were observed in 22 (91.6%) and 20 (83.3%) patients showed ocular manifestations. Length of hospital stay ranged from 8 to 55 days, 20 (83.3%) patients were treated with corticosteroids, and four (16.6%) received antimicrobial therapy. Interleukin polymorphisms revealed significantly low frequency of IL-4 in the patients, HLA-A locus typing revealed higher frequency of HLA-A*3301 (20.8%), HLA-A*02 (25%), HLA-A*2402 (14.6%), and sera showed raised levels of granulysin and sFas L in the patients compared to controls. Conclusions The preliminary study illustrates the clinical, molecular, and biochemical features of acute SJS/TEN and provides a better understanding that helps to improve patient care at an earlier stage. It also highlights the use of corticosteroids and antimicrobial therapy for effective treatment of patients.
Collapse
Affiliation(s)
- Sushil K. Sangwan
- From the Department of Anatomy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neena Khanna
- Department of Dermat ology and Venereology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Sharma
- Cornea, Cataract and Refractive Surgery Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar Agarwal
- Cornea, Cataract and Refractive Surgery Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Arundhati Sharma
- From the Department of Anatomy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India,Address for correspondence: Prof. Arundhati Sharma, Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi - 110 029, India. E-mail:
| | - Rasik B. Vajpayee
- Royal Victorian Eye and Ear Hospital, Melbourne, University of Melbourne, Vision Eye Institute, Melbourne, Australia
| |
Collapse
|
60
|
Novembre E, Barni S, Saretta F, Castagnoli R, Arasi S, Mastrorilli C, Pecoraro L, Liotti L, Caminiti L, Giovannini M, Mori F. The history of the drug-induced enterocolitis syndrome. Pediatr Allergy Immunol 2022; 33 Suppl 27:54-57. [PMID: 35080322 DOI: 10.1111/pai.13630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
The diagnosis of drug-induced enterocolitis syndrome (DIES), resembling the typical findings of a well-known disease, the food protein-induced enterocolitis syndrome (FPIES), was acknowledged in the first publication on the topic in 2014. Ten cases of DIES have been described so far. Unanswered questions concerning DIES include its pathogenetic mechanism, natural history, the possible presence of predisposing genetic factors, and the potential existence of its atypical forms. DIES is a recently defined and intriguing clinical entity, similar to FPIES but triggered by drugs. It seems well-defined from the clinical point of view, but its pathogenetic mechanisms are not known. DIES deserves more attention among allergists, especially among the professionals who work with children, and all efforts should be conceived to improve its correct recognition and accurate management.
Collapse
Affiliation(s)
- Elio Novembre
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's Research Hospital (IRCCS, Rome, Italy
| | - Carla Mastrorilli
- Pediatric Unit and Emergency, University Hospital Consortium Corporation Polyclinic of Bari, Pediatric Hospital Giovanni XXIII, Bari, Italy
| | - Luca Pecoraro
- Department of Medicine, University of Verona, Policlinico GB Rossi, Verona, Italy.,Pediatric Unit, ASST Mantua, Mantua, Italy
| | - Lucia Liotti
- Department of Pediatrics, Salesi Children's Hospital, AOU Ospedali Riuniti Ancona, Ancona, Italy
| | - Lucia Caminiti
- Department of Human Pathology in Adult and Development Age "Gaetano Barresi," Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, Messina, Italy
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | | |
Collapse
|
61
|
Chen VL, Fontana RJ. Are herbals more hepatotoxic than prescription medications? Hepatol Int 2021; 15:1301-1304. [PMID: 34609679 PMCID: PMC10184055 DOI: 10.1007/s12072-021-10256-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Robert J Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Health System, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
62
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
63
|
Minaldi E, Phillips EJ, Norton A. Immediate and Delayed Hypersensitivity Reactions to Beta-Lactam Antibiotics. Clin Rev Allergy Immunol 2021; 62:449-462. [PMID: 34767158 DOI: 10.1007/s12016-021-08903-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/16/2022]
Abstract
Beta-lactam antibiotics are the most commonly reported drug allergy in adults and children. More than 95% of those with reported allergy labels to beta lactams are not confirmed when subjected to allergy testing. Beta lactam antibiotics are associated with a wide spectrum of immediate and delayed drug hypersensitivity reactions. The latency period to symptoms and clinical presentation aids in the causality assessment. Risk stratification based on diagnosis and timing then allows for appropriate management and evaluation. Skin prick testing, intradermal testing and oral challenge are well established for evaluation of immediate reactions. Delayed intradermal testing, patch testing and oral challenge can also be considered for evaluation of mild to moderate delayed reactions. Cross-reactivity between beta-lactams appears to be driven most commonly by a shared R1 side-chain. Standardized algorithms, protocols and pathways are needed for widespread implementation of a pragmatic and effective approach to patients reporting beta lactam allergy.
Collapse
Affiliation(s)
- Ellen Minaldi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Allison Norton
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
64
|
Petrov PD, Soluyanova P, Sánchez-Campos S, Castell JV, Jover R. Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol 2021; 158:112664. [PMID: 34767876 DOI: 10.1016/j.fct.2021.112664] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Treatment of β-lactamase positive bacterial infections with a combination of amoxicillin (AMOX) and clavulanic acid (CLAV) causes idiosyncratic drug-induced liver injury (iDILI) in a relevant number of patients, often with features of intrahepatic cholestasis. This study aims to determine serum bile acid (BA) levels in amoxicillin/clavulanate (A+C)-iDILI patients and to investigate the mechanism of cholestasis by A+C in human in vitro hepatic models. In six A+C-iDILI patients, significant elevations of serum primary conjugated BA definitely demonstrated A+C-induced cholestasis. In cultured human Upcyte hepatocytes and HepG2 cells, CLAV was more cytotoxic than AMOX, and, at subcytotoxic concentrations, it altered the expression of more than 1,300 genes. CLAV, but not AMOX, downregulated the expression of key genes for BA transport (BSEP, NTCP, OSTα and MDR2) and synthesis (CYP7A1 and CYP8B1). CLAV also caused early oxidative stress, with reduced GSH/GSSG ratio, along with induction of antioxidant nuclear factor erythroid 2-related factor 2 (NRF2) target genes. Activation of NRF2 by sulforaphane also resulted in downregulation of NTCP, OSTα, ABCG5, CYP7A1 and CYP8B1. CLAV also inhibited the BA-sensor farnesoid X receptor (FXR), in agreement with the downregulation of FXR targets BSEP, OSTα and ABCG5. We conclude that CLAV, the culprit molecule in A+C, downregulates several key biliary transporters by modulating NRF2 and FXR signaling, thus likely promoting intrahepatic cholestasis. On top of that, increased ROS production and GSH depletion may aggravate the cholestatic injury by A+C.
Collapse
Affiliation(s)
- Petar D Petrov
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain; CIBERehd, ISCIII, Madrid, Spain
| | | | - Sonia Sánchez-Campos
- CIBERehd, ISCIII, Madrid, Spain; Biomedicine Institute (IBIOMED), University of León, Spain
| | - José V Castell
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain; CIBERehd, ISCIII, Madrid, Spain; Dep. Biochemistry & Molecular Biology, University of Valencia, Spain
| | - Ramiro Jover
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain; CIBERehd, ISCIII, Madrid, Spain; Dep. Biochemistry & Molecular Biology, University of Valencia, Spain.
| |
Collapse
|
65
|
Liu W, Zeng X, Liu Y, Liu J, Li C, Chen L, Chen H, Ouyang D. The Immunological Mechanisms and Immune-Based Biomarkers of Drug-Induced Liver Injury. Front Pharmacol 2021; 12:723940. [PMID: 34721020 PMCID: PMC8554067 DOI: 10.3389/fphar.2021.723940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
66
|
Machine Learning to Identify Interaction of Single-Nucleotide Polymorphisms as a Risk Factor for Chronic Drug-Induced Liver Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010603. [PMID: 34682349 PMCID: PMC8535865 DOI: 10.3390/ijerph182010603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022]
Abstract
Drug-induced liver injury (DILI) is a major cause of drug development failure and drug withdrawal from the market after approval. The identification of human risk factors associated with susceptibility to DILI is of paramount importance. Increasing evidence suggests that genetic variants may lead to inter-individual differences in drug response; however, individual single-nucleotide polymorphisms (SNPs) usually have limited power to predict human phenotypes such as DILI. In this study, we aim to identify appropriate statistical methods to investigate gene-gene and/or gene-environment interactions that impact DILI susceptibility. Three machine learning approaches, including Multivariate Adaptive Regression Splines (MARS), Multifactor Dimensionality Reduction (MDR), and logistic regression, were used. The simulation study suggested that all three methods were robust and could identify the known SNP-SNP interaction when up to 4% of genotypes were randomly permutated. When applied to a real-life DILI chronicity dataset, both MARS and MDR, but not logistic regression, identified combined genetic variants having better associations with DILI chronicity in comparison to the use of individual SNPs. Furthermore, a simple decision tree model using the SNPs identified by MARS and MDR was developed to predict DILI chronicity, with fair performance. Our study suggests that machine learning approaches may help identify gene-gene interactions as potential risk factors for better assessing complicated diseases such as DILI chronicity.
Collapse
|
67
|
Shao Q, Mao X, Zhou Z, Huai C, Li Z. Research Progress of Pharmacogenomics in Drug-Induced Liver Injury. Front Pharmacol 2021; 12:735260. [PMID: 34552491 PMCID: PMC8450320 DOI: 10.3389/fphar.2021.735260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Drug-induced liver injury (DILI) is a common and serious adverse drug reaction with insufficient clinical diagnostic strategies and treatment methods. The only clinically well-received method is the Roussel UCLAF Causality Assessment Method scale, which can be applied to both individuals and prospective or retrospective studies. However, in severe cases, patients with DILI still would develop acute liver failure or even death. Pharmacogenomics, a powerful tool to achieve precision medicine, has been used to study the polymorphism of DILI related genes. Summary: We summarized the pathogenesis of DILI and findings on associated genes and variations with DILI, including but not limited to HLA genes, drug metabolizing enzymes, and transporters genes, and pointed out further fields for DILI related pharmacogenomics study to provide references for DILI clinical diagnosis and treatment. Key Messages: At present, most of the studies are mainly limited to CGS and GWAS, and there is still a long way to achieve clinical transformation. DNA methylation could be a new consideration, and ethnic differences and special populations also deserve attention.
Collapse
Affiliation(s)
- Qihui Shao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Mao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixuan Zhou
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
68
|
Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annu Rev Pharmacol Toxicol 2021; 62:509-529. [PMID: 34516290 DOI: 10.1146/annurev-pharmtox-052120-014115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Chonlaphat Sukasem
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, and Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
69
|
Bessone F, Hernandez N, Tagle M, Arrese M, Parana R, Méndez-Sánchez N, Ridruejo E, Mendizabal M, Dagher L, Contreras F, Fassio E, Pessoa M, Brahm J, Silva M. Drug-induced liver injury: A management position paper from the Latin American Association for Study of the liver. Ann Hepatol 2021; 24:100321. [PMID: 33609753 DOI: 10.1016/j.aohep.2021.100321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Idiosyncratic drug-induced liver injury (DILI) caused by xenobiotics (drugs, herbals and dietary supplements) is an uncommon cause of liver disease presenting with a wide range of phenotypes and disease severity, acute hepatitis mimicking viral hepatitis to autoimmune hepatitis, steatosis, fibrosis or rare chronic vascular syndromes. Disease severity ranges from asymptomatic liver test abnormalities to acute liver failure. DILI has been traditionally classified in predictable or intrinsic (dose-related) or unpredictable (not dose-related) mechanisms. Few prospective studies are assessing the real prevalence and incidence of hepatotoxicity in the general population. DILI registries represent useful networks used for the study of liver toxicity, aimed at improving the understanding of causes, phenotypes, natural history, and standardized definitions of hepatotoxicity. Although most of the registries do not carry out population-based studies, they may provide important data related to the prevalence of DILI, and also may be useful to compare features from different countries. With the support of the Spanish Registry of Hepatotoxicity, our Latin American Registry (LATINDILI) was created in 2011, and more than 350 DILI patients have been recruited to date. This position paper describes the more frequent drugs and herbs-induced DILI in Latin America, mainly focusing on several features of responsible medicaments. Also, we highlighted the most critical points on the management of hepatotoxicity in general and those based on findings from our Latin American experience in particular.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Medicina, Universidad Nacional de Rosario, Rosario, Argentina.
| | | | - Martin Tagle
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marco Arrese
- Pontificia Universidad Católica de chile, Santiago de Chile, Chile
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Ezequiel Ridruejo
- Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | | | - Lucy Dagher
- Policlínica Metropolitana y CMDLT, Caracas, Venezuela
| | | | - Eduardo Fassio
- Hospital Nacional Prof. Alejandro Posadas, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
70
|
Kralj T, Brouwer KLR, Creek DJ. Analytical and Omics-Based Advances in the Study of Drug-Induced Liver Injury. Toxicol Sci 2021; 183:1-13. [PMID: 34086958 PMCID: PMC8502468 DOI: 10.1093/toxsci/kfab069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a significant clinical issue, affecting 1-1.5 million patients annually, and remains a major challenge during drug development-toxicity and safety concerns are the second-highest reason for drug candidate failure. The future prevalence of DILI can be minimized by developing a greater understanding of the biological mechanisms behind DILI. Both qualitative and quantitative analytical techniques are vital to characterizing and investigating DILI. In vitro assays are capable of characterizing specific aspects of a drug's hepatotoxic nature and multiplexed assays are capable of characterizing and scoring a drug's association with DILI. However, an even deeper insight into the perturbations to biological pathways involved in the mechanisms of DILI can be gained through the use of omics-based analytical techniques: genomics, transcriptomics, proteomics, and metabolomics. These omics analytical techniques can offer qualitative and quantitative insight into genetic susceptibilities to DILI, the impact of drug treatment on gene expression, and the effect on protein and metabolite abundance. This review will discuss the analytical techniques that can be applied to characterize and investigate the biological mechanisms of DILI and potential predictive biomarkers.
Collapse
Affiliation(s)
- Thomas Kralj
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
71
|
Hammond S, Gibson A, Jaruthamsophon K, Roth S, Mosedale M, Naisbitt DJ. Shedding Light on Drug-Induced Liver Injury: Activation of T Cells From Drug Naive Human Donors With Tolvaptan and a Hydroxybutyric Acid Metabolite. Toxicol Sci 2021; 179:95-107. [PMID: 33078835 DOI: 10.1093/toxsci/kfaa157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to tolvaptan is associated with a significant risk of liver injury in a small fraction of patients with autosomal dominant polycystic kidney disease. The observed delayed onset of liver injury of between 3 and 18 months after commencing tolvaptan treatment, along with rapid recurrence of symptoms following re-challenge is indicative of an adaptive immune attack. This study set out to assess the intrinsic immunogenicity of tolvaptan and pathways of drug-specific T-cell activation using in vitro cell culture platforms. Tolvaptan (n = 7), as well as oxybutyric (DM-4103, n = 1) and hydroxybutyric acid (DM-4107, n = 18) metabolite-specific T-cell clones were generated from tolvaptan naive healthy donor peripheral blood mononuclear cells. Tolvaptan and DM-4103 T-cell clones could also be activated with DM-4107, whereas T-cell clones originally primed with DM-4107 were highly specific to this compound. A signature cytokine profile (IFN-γ, IL-13, granzyme B, and perforin) for almost all T-cell clones was identified. Mechanistically, compound-specific T-cell clone activation was dependent on the presence of soluble drug and could occur within 4 h of drug exposure, ruling out a classical hapten mechanism. However, antigen processing dependence drug presentation was indicated in many T-cell clones. Collectively these data show that tolvaptan-associated liver injury may be attributable to an adaptive immune attack upon the liver, with tolvaptan- and metabolite-specific T cells identified as candidate effector cells in such etiology.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK.,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sharin Roth
- Otsuka Pharmaceutical Dev. & Comm., Inc., Research Blvd, Rockville, Maryland 20882
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
72
|
Tailor A, Meng X, Adair K, Farrell J, Waddington JC, Daly A, Pirmohamed M, Dear G, Park BK, Naisbitt DJ. HLA DRB1*15:01-DQB1*06:02-Restricted Human CD4+ T Cells Are Selectively Activated With Amoxicillin-Peptide Adducts. Toxicol Sci 2021; 178:115-126. [PMID: 32777075 DOI: 10.1093/toxsci/kfaa128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Amoxicillin-clavulanate is the most common cause of idiosyncratic drug-induced liver injury (DILI). Drug-specific CD4+ T cells have been detected in patients with DILI, suggestive of an immune etiology. Furthermore, genetic associations including the human leucocyte antigen (HLA) DRB1*15:01-DQB1*06:02 haplotype influence susceptibility. Amoxicillin forms protein adducts that are postulated to activate T cells, by conjugating with lysine residues. However, a role for such adducts has not been described. This study aimed to (1) investigate whether amoxicillin-modified HLA-DRB1*15:01-DQB1*06:02 binding peptides selectively activate DILI patient T cells and (2) define the nature of the T-cell response with respective to antigen structure. Peptides carrying lysine residues for amoxicillin binding in positions (KP) 2-6 and anchors for the HLA-DRB1*15:01-DQB1*06:02 haplotype were designed. The amoxicillin-modified peptides were characterized by mass spectrometry prior to culturing with patient peripheral blood mononuclear cell. T-cell clones were then tested for specificity with amoxicillin, unmodified- and amoxicillin-modified peptides, and structural variants. Amoxicillin-modified KP-2 and KP-3 peptide-specific CD4+ clones proliferated and secreted interferon gamma (IFN-γ), interleukin (IL)-10, perforin and/or IL-17/IL-22 in a dose-dependent manner and displayed no cross-reactivity with amoxicillin, unmodified peptide or with positional derivatives. The T cells response was HLA class II restricted and the amoxicillin-modified peptides bound selectively to HLA-DRB1*15:01 and/or DQB1*06:02. To conclude, we show that amoxicillin-modified peptides bind to both components of the risk haplotype to stimulate DILI patient T cells and describe the importance of the position of nucleophilic lysine residue in the HLA binding peptide sequence.
Collapse
Affiliation(s)
- Arun Tailor
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Xiaoli Meng
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Kareena Adair
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - John Farrell
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - James C Waddington
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Ann Daly
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | | | - B Kevin Park
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Dean J Naisbitt
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| |
Collapse
|
73
|
Bessone F, Hernández N, Tanno M, Roma MG. Drug-Induced Vanishing Bile Duct Syndrome: From Pathogenesis to Diagnosis and Therapeutics. Semin Liver Dis 2021; 41:331-348. [PMID: 34130334 DOI: 10.1055/s-0041-1729972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most concerned issue in the context of drug/herb-induced chronic cholestasis is vanishing bile duct syndrome. The progressive destruction of intrahepatic bile ducts leading to ductopenia is usually not dose dependent, and has a delayed onset that should be suspected when abnormal serum cholestasis enzyme levels persist despite drug withdrawal. Immune-mediated cholangiocyte injury, direct cholangiocyte damage by drugs or their metabolites once in bile, and sustained exposure to toxic bile salts when biliary epithelium protective defenses are impaired are the main mechanisms of cholangiolar damage. Current therapeutic alternatives are scarce and have not shown consistent beneficial effects so far. This review will summarize the current literature on the main diagnostic tools of ductopenia and its histological features, and the differential diagnostic with other ductopenic diseases. In addition, pathomechanisms will be addressed, as well as the connection between them and the supportive and curative strategies for ductopenia management.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nelia Hernández
- Clínica de Gastroenterología, Hospital de Clínicas y Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mario Tanno
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
74
|
Kumar N, Surani S, Udeani G, Mathew S, John S, Sajan S, Mishra J. Drug-induced liver injury and prospect of cytokine based therapy; A focus on IL-2 based therapies. Life Sci 2021; 278:119544. [PMID: 33945827 DOI: 10.1016/j.lfs.2021.119544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is one of the most frequent sources of liver failure and the leading cause of liver transplant. Common non-prescription medications such as non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and other prescription drugs when taken at more than the recommended doses may lead to DILI. The severity of DILI is affected by factors such as age, ethnicity, race, gender, nutritional status, on-going liver diseases, renal function, pregnancy, alcohol consumption, and drug-drug interactions. Characteristics of DILI-associated inflammation include apoptosis and necrosis of hepatocytes and hepatic infiltration of pro-inflammatory immune cells. If untreated or if the inflammation continues, DILI and associated hepatic inflammation may lead to development of hepatocarcinoma. The therapeutic approach for DILI-associated hepatic inflammation depends on whether the inflammation is acute or chronic. Discontinuing the causative medication, vaccination, and special dietary supplementation are some of the conventional approaches to treat DILI. In this review, we discuss a concise overview of DILI-associated liver complications, and current therapeutic options with special emphasis on biologics including the scope of cytokine therapy in hepatic repair and resolution of inflammation caused by over- the-counter (OTC) or prescription drugs.
Collapse
Affiliation(s)
- Narendra Kumar
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America.
| | - Salim Surani
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - George Udeani
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Sara Mathew
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Sharon John
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Soniya Sajan
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Jayshree Mishra
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America.
| |
Collapse
|
75
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
76
|
Kulkeaw K, Pengsart W. Progress and Challenges in the Use of a Liver-on-a-Chip for Hepatotropic Infectious Diseases. MICROMACHINES 2021; 12:mi12070842. [PMID: 34357252 PMCID: PMC8306537 DOI: 10.3390/mi12070842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
The liver is a target organ of life-threatening pathogens and prominently contributes to the variation in drug responses and drug-induced liver injury among patients. Currently available drugs significantly decrease the morbidity and mortality of liver-dwelling pathogens worldwide; however, emerging clinical evidence reveals the importance of host factors in the design of safe and effective therapies for individuals, known as personalized medicine. Given the primary adherence of cells in conventional two-dimensional culture, the use of these one-size-fit-to-all models in preclinical drug development can lead to substantial failures in assessing therapeutic safety and efficacy. Advances in stem cell biology, bioengineering and material sciences allow us to develop a more physiologically relevant model that is capable of recapitulating the human liver. This report reviews the current use of liver-on-a-chip models of hepatotropic infectious diseases in the context of precision medicine including hepatitis virus and malaria parasites, assesses patient-specific responses to antiviral drugs, and designs personalized therapeutic treatments to address the need for a personalized liver-like model. Second, most organs-on-chips lack a monitoring system for cell functions in real time; thus, the review discusses recent advances and challenges in combining liver-on-a-chip technology with biosensors for assessing hepatocyte viability and functions. Prospectively, the biosensor-integrated liver-on-a-chip device would provide novel biological insights that could accelerate the development of novel therapeutic compounds.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-6468 (ext. 96484)
| | - Worakamol Pengsart
- Faculty of Graduate Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
77
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
78
|
Thomson PJ, Kafu L, Meng X, Snoeys J, De Bondt A, De Maeyer D, Wils H, Leclercq L, Vinken P, Naisbitt DJ. Drug-specific T-cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy 2021; 76:1825-1835. [PMID: 33150583 DOI: 10.1111/all.14652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Collapse
Affiliation(s)
- Paul J. Thomson
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Laila Kafu
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics Janssen R&D Beerse Belgium
| | - An De Bondt
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | - Hans Wils
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | | | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| |
Collapse
|
79
|
Gui MZ, Ni M, Yin XD, Zhang T, Li ZL. Ibuprofen induced Stevens-Johnson syndrome and liver injury in children: a case report. Transl Pediatr 2021; 10:1737-1742. [PMID: 34295789 PMCID: PMC8261580 DOI: 10.21037/tp-21-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023] Open
Abstract
Stevens-Johnson syndrome (SJS) is a disorder that causes severe damage to the skin and mucous membranes with bullous and erosive properties. Drug-induced liver injury (DILI) is closely related to non-steroidal anti-inflammatory drugs (such as ibuprofen). Liver injury caused by ibuprofen is often related to overdose, and liver injury caused by normal dose is rare, and there are individual differences in different situations. In this case, a child developed SJS and acute liver injury after treatment with ibuprofen suspension. We described the characteristics of related adverse reactions induced by ibuprofen, and analyzed the relationship between SJS caused by the drug and related drug genes. Glucocorticoids and antihistamines were used to treat dermatitis, reduced glutathione (GSH) to protect the liver and plasma exchange detoxification. Finally, the patient's dermatitis healed and the liver injury was significantly improved. Many studies have suggested that DILI may be related to human leukocyte antigen (HLA) genotyping. The detection of drug-related genes revealed that the SJS and liver damage caused by ibuprofen might have been related to the positive HLA-B*5801. This article suggests that attention should be paid to checking liver function indicators after taking ibuprofen, and genetic screening can be used to reduce the risk of gene-related adverse reactions when necessary.
Collapse
Affiliation(s)
- Ming-Zhu Gui
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatrics, Luodian Hospital, Shanghai, China
| | - Ming Ni
- Department of Pediatrics, Luodian Hospital, Shanghai, China.,Department of Clinical Pharmacy, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Xue-Dong Yin
- Department of Pediatrics, Luodian Hospital, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Ling Li
- Department of Pediatrics, Luodian Hospital, Shanghai, China
| |
Collapse
|
80
|
Elzagallaai AA, Rieder MJ. Model Based Evaluation of Hypersensitivity Adverse Drug Reactions to Antimicrobial Agents in Children. Front Pharmacol 2021; 12:638881. [PMID: 33995043 PMCID: PMC8120305 DOI: 10.3389/fphar.2021.638881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Drug use in children is-in most cases-supported by extrapolation of data generated from clinical trials in adult populations. This puts children at higher risk of developing adverse drug reactions (ADRs) due to "off-label" use of drugs and dosing issues. Major types of ADRs are drug hypersensitivity reactions, an idiosyncratic type of ADRs that are largely unpredictable and can cause high morbidity and mortality in a hard-to-identify specific population of patients. Lack of a complete understanding of the pathophysiology of DHRs and their unpredictive nature make them problematic in clinical practice and in drug development. In addition, ethical and legal obstacles hinder conducting large clinical trials in children, which in turn make children a "therapeutic orphan" where clear clinical guidelines are lacking, and practice is based largely on the personal experience of the clinician, hence making modeling desirable. This brief review summarizes the current knowledge of model-based evaluation of diagnosis and management of drug hypersensitivity reactions (DHRs) to antimicrobial drugs in the pediatric population. Ethical and legal aspects of drug research in children and the effect of different stages of child development and other factors on the risk of DHRs are discussed. The role of animal models, in vitro models and oral provocation test in management of DHRs are examined in the context of the current understanding of the pathophysiology of DHRs. Finally, recent changes in drug development legislations have been put forward to encourage drug developers to conduct trials in children clearly indicate the urgent need for evidence to support drug safety in children and for modeling to guide these clinical trials.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics, London, ON, Canada.,Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Paediatrics, London, ON, Canada.,Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
81
|
Liu Y, Zeng X, Ouyang D. Progress in study on the association between HLA genetic variation and adverse drug reactions. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:404-413. [PMID: 33967088 PMCID: PMC10930308 DOI: 10.11817/j.issn.1672-7347.2021.200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 11/03/2022]
Abstract
The human leukocyte antigen (HLA) molecules encoded within the human major histocompatibility complex are a group of highly conserved cell surface proteins, which are related to antigen recognition. HLA genes display a high degree of genetic polymorphism, which is the basis of individual differences in immunity. Specific HLA genotypes have been highly associated with typical adverse drug reactions. HLA-A*31:01 and HLA-B*15:02 are associated with carbamazepine-induced severe cutaneous adverse reactions, HLA-B*57:01 is related to abacavir-induced drug-induced hypersensitivity syndrome and flucloxacillin/pazopanib-induced drug-induced liver injury, while HLA-B*35:01 is a potential biomarker for predicting polygonum multiflorum-induced liver injury. It is not clear how small drug molecules to interact with HLA molecules and T cell receptors (TCR). There are four mechanistic hypotheses, including the hapten/prohapten theory, the pharmacological interaction concept, the altered peptide repertoire model, and the altered TCR repertoire model.
Collapse
Affiliation(s)
- Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China.
| |
Collapse
|
82
|
Li Y, Deshpande P, Hertzman RJ, Palubinsky AM, Gibson A, Phillips EJ. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front Genet 2021; 12:641905. [PMID: 33936169 PMCID: PMC8085493 DOI: 10.3389/fgene.2021.641905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions (ADRs) remain associated with significant mortality. Delayed hypersensitivity reactions (DHRs) that occur greater than 6 h following drug administration are T-cell mediated with many severe DHRs now associated with human leukocyte antigen (HLA) risk alleles, opening pathways for clinical prediction and prevention. However, incomplete negative predictive value (NPV), low positive predictive value (PPV), and a large number needed to test (NNT) to prevent one case have practically prevented large-scale and cost-effective screening implementation. Additional factors outside of HLA contributing to risk of severe T-cell-mediated DHRs include variation in drug metabolism, T-cell receptor (TCR) specificity, and, most recently, HLA-presented immunopeptidome-processing efficiencies via endoplasmic reticulum aminopeptidase (ERAP). Active research continues toward identification of other highly polymorphic factors likely to impose risk. These include those previously associated with T-cell-mediated HLA-associated infectious or auto-immune disease such as Killer cell immunoglobulin-like receptors (KIR), epistatically linked with HLA class I to regulate NK- and T-cell-mediated cytotoxic degranulation, and co-inhibitory signaling pathways for which therapeutic blockade in cancer immunotherapy is now associated with an increased incidence of DHRs. As such, the field now recognizes that susceptibility is not simply a static product of genetics but that individuals may experience dynamic risk, skewed toward immune activation through therapeutic interventions and epigenetic modifications driven by ecological exposures. This review provides an updated overview of current and proposed genetic factors thought to predispose risk for severe T-cell-mediated DHRs.
Collapse
Affiliation(s)
- Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rebecca J. Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Amy M. Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
83
|
Lee BT, Odin JA, Grewal P. An Approach to Drug-Induced Liver Injury from the Geriatric Perspective. Curr Gastroenterol Rep 2021; 23:6. [PMID: 33846832 DOI: 10.1007/s11894-021-00804-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW With its high variability in both presentation and severity, drug-induced liver injury (DILI) is a complex condition increasingly confronting all providers. DILI has an even more muddled presentation among the geriatric population due to age-related changes in liver physiology and biochemistry as well as polypharmacy common in the geriatric population. RECENT FINDINGS Most cases of DILI are idiosyncratic and unpredictable. DILI, especially related to herbal and dietary supplement (HDS) use, is increasingly recognized as a leading cause of acute liver failure and need for liver transplantation. Unfortunately, liver transplantation is a limited option for the elderly, a population that exhibits significant HDS use. One recent study suggests that early use of N-acetylcysteine may be useful in preventing progression to acute liver failure in non-acetaminophen DILI. In the future, a personalized medicine approach using genomic signatures may be feasible to prevent DILI. This review serves to raise recognition of the unique aspects of DILI in the geriatric population to promote rapid diagnosis and early intervention to prevent progression to liver failure and death. For now, DILI remains a diagnosis of exclusion, and care providers for the elderly must focus on obtaining a thorough history that includes HDS use and intervening early in suspected DILI cases.
Collapse
Affiliation(s)
- Brian T Lee
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph A Odin
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA.
| | - Priya Grewal
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
84
|
Devarbhavi H, Aithal G, Treeprasertsuk S, Takikawa H, Mao Y, Shasthry SM, Hamid S, Tan SS, Philips CA, George J, Jafri W, Sarin SK. Drug-induced liver injury: Asia Pacific Association of Study of Liver consensus guidelines. Hepatol Int 2021; 15:258-282. [PMID: 33641080 DOI: 10.1007/s12072-021-10144-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Idiosyncratic drug-induced liver injury mimics acute and chronic liver disease. It is under recognized and underrecognised because of the lack of pathognomonic diagnostic serological markers. Its consequences may vary from being asymptomatic to self-limiting illness to severe liver injury leading to acute liver failure. Its incidence is likely to be more common in Asia than other parts of the world, mainly because of hepatotoxicity resulting from the treatment of tuberculosis disease and the ubiquitous use of traditional and complimentary medicines in Asian countries. This APASL consensus guidelines on DILI is a concise account of the various aspects including current evidence-based information on DILI with special emphasis on DILI due to antituberculosis agents and traditional and complementary medicine use in Asia.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St John's Medical College Hospital, Bangalore, India.
| | - Guruprasad Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | | | - Hajime Takikawa
- Faculty of Medical Technology, Emeritus Professor, School of Medicine, Tokyo, Japan
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saggere M Shasthry
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Saeed Hamid
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Soek Siam Tan
- Department of Medicine, Hospital Selayang, Bata Caves, Selangor, Malaysia
| | - Cyriac Abby Philips
- The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Jacob George
- Department of Gastroenterology and Hepatology, Westmead Hospital and Sydney West Local Health District, Sydney, Australia
| | - Wasim Jafri
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
85
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
86
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
87
|
Goh SJR, Tuomisto JEE, Purcell AW, Mifsud NA, Illing PT. The complexity of T cell-mediated penicillin hypersensitivity reactions. Allergy 2021; 76:150-167. [PMID: 32383256 DOI: 10.1111/all.14355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Penicillin refers to a group of beta-lactam antibiotics that are the first-line treatment for a range of infections. However, they also possess the ability to form novel antigens, or neoantigens, through haptenation of proteins and can stimulate a range of immune-mediated adverse reactions-collectively known as drug hypersensitivity reactions (DHRs). IgE-mediated reactions towards these neoantigens are well studied; however, IgE-independent reactions are less well understood. These reactions usually manifest in a delayed manner as different forms of cutaneous eruptions or liver injury consistent with priming of an immune response. Ex vivo studies have confirmed the infiltration of T cells into the site of inflammation, and the subsets of T cells involved appear dependent on the nature of the reaction. Here, we review the evidence that has led to our current understanding of these immune-mediated reactions, discussing the nature of the lesional T cells, the characterization of drug-responsive T cells isolated from patient blood, and the potential mechanisms by which penicillins enter the antigen processing and presentation pathway to stimulate these deleterious responses. Thus, we highlight the need for a more comprehensive understanding of the underlying genetic and molecular basis of penicillin-induced DHRs.
Collapse
Affiliation(s)
- Shawn J. R. Goh
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Johanna E. E. Tuomisto
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Anthony W. Purcell
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Patricia T. Illing
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| |
Collapse
|
88
|
Li YJ, Phillips E, Dellinger A, Nicoletti P, Schutte R, Li D, Ostrov DA, Fontana RJ, Watkins PB, Stolz A, Daly AK, Aithal GP, Barnhart H, Chalasani N, the Drug-induced Liver Injury Network (DILIN). Human Leukocyte Antigen B*14:01 and B*35:01 Are Associated With Trimethoprim-Sulfamethoxazole Induced Liver Injury. Hepatology 2021; 73:268-281. [PMID: 32270503 PMCID: PMC7544638 DOI: 10.1002/hep.31258] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Trimethoprim (TMP)-sulfamethoxazole (SMX) is an important cause of idiosyncratic drug-induced liver injury (DILI), but its genetic risk factors are not well understood. This study investigated the relationship between variants in the human leukocyte antigen (HLA) class 1 and 2 genes and well-characterized cases of TMP-SMX DILI. APPROACH AND RESULTS European American and African American persons with TMP-SMX DILI were compared with respective population controls. HLA sequencing was performed by Illumina MiSeq (Illumina, San Diego, CA) for cases. The HLA genotype imputation with attribute bagging program was used to impute HLA alleles for controls. The allele frequency difference between case patients and controls was tested by Fisher's exact tests for each ethnic group. For European Americans, multivariable logistic regression with Firth penalization was used to test the HLA allelic effect after adjusting for age and the top two principal components. Molecular docking was performed to assess HLA binding with TMP and SMX. The European American subset had 51 case patients and 12,156 controls, whereas the African American subset had 10 case patients and 5,439 controls. Four HLA alleles were significantly associated in the European American subset, with HLA-B*14:01 ranking at the top (odds ratio, 9.20; 95% confidence interval, 3.16, 22.35; P = 0.0003) after covariate adjustment. All carriers of HLA-B*14:01 with TMP-SMX DILI possessed HLA-C*08:02, another significant allele (P = 0.0026). This pattern was supported by HLA-B*14:01-HLA-C*08:02 haplotype association (P = 1.33 × 10-5 ). For the African American patients, HLA-B*35:01 had 2.8-fold higher frequency in case patients than in controls, with 5 of 10 patients carrying this allele. Molecular docking showed cysteine at position 67 in HLA-B*14:01 and phenylalanine at position 67 in HLA-B*35:01 to be the predictive binding sites for SMX metabolites. CONCLUSIONS HLA-B*14:01 is associated with TMP-SMX DILI in European Americans, and HLA-B*35:01 may be a potential genetic risk factor for African Americans.
Collapse
Affiliation(s)
- Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | | | - Andrew Dellinger
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Paola Nicoletti
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ryan Schutte
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Danmeng Li
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | | | - Paul B. Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - Andrew Stolz
- University of Southern California, Los Angeles, CA
| | - Ann K Daly
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre at the Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - Huiman Barnhart
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC,Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | | |
Collapse
|
89
|
Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol 2020; 17:153-169. [DOI: 10.1080/17425255.2021.1854726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| |
Collapse
|
90
|
Hassan R, Allali I, Agamah FE, Elsheikh SSM, Thomford NE, Dandara C, Chimusa ER. Drug response in association with pharmacogenomics and pharmacomicrobiomics: towards a better personalized medicine. Brief Bioinform 2020; 22:6012864. [PMID: 33253350 DOI: 10.1093/bib/bbaa292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/19/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Researchers have long been presented with the challenge imposed by the role of genetic heterogeneity in drug response. For many years, Pharmacogenomics and pharmacomicrobiomics has been investigating the influence of an individual's genetic background to drug response and disposition. More recently, the human gut microbiome has proven to play a crucial role in the way patients respond to different therapeutic drugs and it has been shown that by understanding the composition of the human microbiome, we can improve the drug efficacy and effectively identify drug targets. However, our knowledge on the effect of host genetics on specific gut microbes related to variation in drug metabolizing enzymes, the drug remains limited and therefore limits the application of joint host-microbiome genome-wide association studies. In this paper, we provide a historical overview of the complex interactions between the host, human microbiome and drugs. While discussing applications, challenges and opportunities of these studies, we draw attention to the critical need for inclusion of diverse populations and the development of an innovative and combined pharmacogenomics and pharmacomicrobiomics approach, that may provide an important basis in personalized medicine.
Collapse
Affiliation(s)
- Radia Hassan
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | - Imane Allali
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Francis E Agamah
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | | | - Nicholas E Thomford
- Lecturers at the Department of Medical Biochemistry School of Medical Sciences, University of Cape Coast, Ghana
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town
| |
Collapse
|
91
|
Nicoletti P, Carr DF, Barrett S, McEvoy L, Friedmann PS, Shear NH, Nelson MR, Chiriac AM, Blanca-López N, Cornejo-García JA, Gaeta F, Nakonechna A, Torres MJ, Caruso C, Valluzzi RL, Floratos A, Shen Y, Pavlos RK, Phillips EJ, Demoly P, Romano A, Blanca M, Pirmohamed M. Beta-lactam-induced immediate hypersensitivity reactions: A genome-wide association study of a deeply phenotyped cohort. J Allergy Clin Immunol 2020; 147:1830-1837.e15. [PMID: 33058932 PMCID: PMC8100096 DOI: 10.1016/j.jaci.2020.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND β-lactam antibiotics are associated with a variety of immune-mediated or hypersensitivity reactions, including immediate (type I) reactions mediated by antigen-specific IgE. OBJECTIVE We sought to identify genetic predisposing factors for immediate reactions to β-lactam antibiotics. METHODS Patients with a clinical history of immediate hypersensitivity reactions to either penicillins or cephalosporins, which were immunologically confirmed, were recruited from allergy clinics. A genome-wide association study was conducted on 662 patients (the discovery cohort) with a diagnosis of immediate hypersensitivity and the main finding was replicated in a cohort of 98 Spanish cases, recruited using the same diagnostic criteria as the discovery cohort. RESULTS Genome-wide association study identified rs71542416 within the Class II HLA region as the top hit (P = 2 × 10-14); this was in linkage disequilibrium with HLA-DRB1∗10:01 (odds ratio, 2.93; P = 5.4 × 10-7) and HLA-DQA1∗01:05 (odds ratio, 2.93, P = 5.4 × 10-7). Haplotype analysis identified that HLA-DRB1∗10:01 was a risk factor even without the HLA-DQA1∗01:05 allele. The association with HLA-DRB1∗10:01 was replicated in another cohort, with the meta-analysis of the discovery and replication cohorts showing that HLA-DRB1∗10:01 increased the risk of immediate hypersensitivity at a genome-wide level (odds ratio, 2.96; P = 4.1 × 10-9). No association with HLA-DRB1∗10:01 was identified in 268 patients with delayed hypersensitivity reactions to β-lactams. CONCLUSIONS HLA-DRB1∗10:01 predisposed to immediate hypersensitivity reactions to penicillins. Further work to identify other predisposing HLA and non-HLA loci is required.
Collapse
Affiliation(s)
- Paola Nicoletti
- Icahn School of Medicine at Mount Sinai, New York, NY; Sema4, Stamford, Conn
| | - Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Barrett
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Laurence McEvoy
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Peter S Friedmann
- Dermatology Unit, Sir Henry Wellcome Research Laboratories, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Neil H Shear
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Anca M Chiriac
- Division of Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | | | - José A Cornejo-García
- Allergy Research Group, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain
| | - Francesco Gaeta
- Allergy Unit, Columbus Hospital, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Alla Nakonechna
- Liverpool University Hospitals Foundation National Health Service Trust, Liverpool, United Kingdom
| | - Maria J Torres
- Allergy Research Group, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Cristiano Caruso
- Allergy Unit, Columbus Hospital, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rocco L Valluzzi
- Division of Allergy, University Department of Pediatrics, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Aris Floratos
- Department of Systems Biology, New York, NY; Department of Biomedical Informatics, Columbia University, New York, NY
| | | | - Rebecca K Pavlos
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Centre for Clinical Pharmacology and Infectious Diseases, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Pascal Demoly
- Division of Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France; Unité Mixte de Recherche en Santé (UMR-S) 1136 Institut National de la Santé et de la Recherche Médicale-Sorbonne Université, Equipe Epidemiology of allergic and respiratory diseases (EPAR)- Louis d'Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Antonino Romano
- Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria SS, Troina, Italy; Fondazione Mediterranea GB Morgagni, Catania, Italy
| | - Miguel Blanca
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals Foundation National Health Service Trust, Liverpool, United Kingdom.
| |
Collapse
|
92
|
Teschke R, Danan G. Worldwide Use of RUCAM for Causality Assessment in 81,856 Idiosyncratic DILI and 14,029 HILI Cases Published 1993-Mid 2020: A Comprehensive Analysis. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E62. [PMID: 33003400 PMCID: PMC7600114 DOI: 10.3390/medicines7100062] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 04/12/2023]
Abstract
Background: A large number of idiosyncratic drug induced liver injury (iDILI) and herb induced liver injury(HILI) cases of variable quality has been published but some are a matter of concern if the cases were not evaluated for causality using a robust causality assessment method (CAM) such as RUCAM (Roussel Uclaf Causality Assessment Method) as diagnostiinjuryc algorithm. The purpose of this analysis was to evaluate the worldwide use of RUCAM in iDILI and HILI cases. Methods: The PubMed database (1993-30 June 2020) was searched for articles by using the following key terms: Roussel Uclaf Causality Assessment Method; RUCAM; Idiosyncratic drug induced liver injury; iDILI; Herb induced liver injury; HILI. Results: Considering reports published worldwide since 1993, our analysis showed the use of RUCAM for causality assessment in 95,885 cases of liver injury including 81,856 cases of idiosyncratic DILI and 14,029 cases of HILI. Among the top countries providing RUCAM based DILI cases were, in decreasing order, China, the US, Germany, Korea, and Italy, with China, Korea, Germany, India, and the US as the top countries for HILI. Conclusion: Since 1993 RUCAM is certainly the most widely used method to assess causality in IDILI and HILI. This should encourage practitioner, experts, and regulatory agencies to use it in order to reinforce their diagnosis and to take sound decisions.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-60590 Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
93
|
Koido M, Kawakami E, Fukumura J, Noguchi Y, Ohori M, Nio Y, Nicoletti P, Aithal GP, Daly AK, Watkins PB, Anayama H, Dragan Y, Shinozawa T, Takebe T. Polygenic architecture informs potential vulnerability to drug-induced liver injury. Nat Med 2020; 26:1541-1548. [DOI: 10.1038/s41591-020-1023-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
|
94
|
Lucena MI, Sanabria J, García-Cortes M, Stephens C, Andrade RJ. Drug-induced liver injury in older people. Lancet Gastroenterol Hepatol 2020; 5:862-874. [DOI: 10.1016/s2468-1253(20)30006-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
95
|
Abstract
Drug induced liver injury (DILI) is a relatively rare hepatic condition in response to the use of medications, illegal drugs, herbal products or dietary supplements. It occurs in susceptible individuals through a combination of genetic and environmental risk factors believed to modify drug metabolism and/or excretion leading to a cascade of cellular events, including oxidative stress formation, apoptosis/necrosis, haptenization, immune response activation and a failure to adapt. The resultant liver damage can present with an array of phenotypes, which mimic almost every other liver disorder, and varies in severity from asymptomatic elevation of liver tests to fulminant hepatic failure. Despite recent research efforts specific biomarkers are not still available for routine use in clinical practice, which makes the diagnosis of DILI uncertain and relying on a high degree of awareness of this condition and the exclusion of other causes of liver disease. Diagnostic scales such as the CIOMS/RUCAM can support the causality assessment of a DILI suspicion, but need refinement as some criteria are not evidence-based. Prospective collection of well-vetted DILI cases in established DILI registries has allowed the identification and validation of a number of clinical variables, and to predict a more severe DILI outcome. DILI is also in need of properly designed clinical trials to evaluate the efficacy of new DILI treatments as well as older drugs such as ursodeoxycholic acid traditionally used to ameliorate cholestasis or corticosteroids now widely tried in the oncology field to manage the emergent type of hepatotoxicity related to immune checkpoint inhibitors.
Collapse
|
96
|
Cismaru AL, Grimm L, Rudin D, Ibañez L, Liakoni E, Bonadies N, Kreutz R, Hallberg P, Wadelius M, Haschke M, Largiadèr CR, Amstutz U. High-Throughput Sequencing to Investigate Associations Between HLA Genes and Metamizole-Induced Agranulocytosis. Front Genet 2020; 11:951. [PMID: 32973882 PMCID: PMC7473498 DOI: 10.3389/fgene.2020.00951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objective: Agranulocytosis is a rare and potentially life-threatening complication of metamizole (dipyrone) intake that is characterized by a loss of circulating neutrophil granulocytes. While the mechanism underlying this adverse drug reaction is not well understood, involvement of the immune system has been suggested. In addition, associations between genetic variants in the Human Leukocyte Antigen (HLA) region and agranulocytosis induced by other drugs have been reported. The aim of the present study was to assess whether genetic variants in classical HLA genes are associated with the susceptibility to metamizole-induced agranulocytosis (MIA) in a European population by targeted resequencing of eight HLA genes. Design: A case-control cohort of Swiss patients with a history of neutropenia or agranulocytosis associated with metamizole exposure (n = 53), metamizole-tolerant (n = 39) and unexposed controls (n = 161) was recruited for this study. A high-throughput resequencing (HTS) and high-resolution typing method was used to sequence and analyze eight HLA loci in a discovery subset of this cohort (n = 31 cases, n = 38 controls). Identified candidate alleles were investigated in the full Swiss cohort as well as in two independent cohorts from Germany and Spain using HLA imputation from genome-wide SNP array data. In addition, variant calling based on HTS data was performed in the discovery subset for the class I genes HLA-A, -B, and -C using the HLA-specific mapper hla-mapper. Results: Eight candidate alleles (p < 0.05) were identified in the discovery subset, of which HLA-C∗04:01 was associated with MIA in the full Swiss cohort (p < 0.01) restricted to agranulocytosis (ANC < 0.5 × 109/L) cases. However, no candidate allele showed a consistent association in the Swiss, German and Spanish cohorts. Analysis of individual sequence variants in class I genes produced consistent results with HLA typing but did not reveal additional small nucleotide variants associated with MIA. Conclusion: Our results do not support an HLA-restricted T cell-mediated immune mechanism for MIA. However, we established an efficient high-resolution (three-field) eight-locus HTS HLA resequencing method to interrogate the HLA region and demonstrated the feasibility of its application to pharmacogenetic studies.
Collapse
Affiliation(s)
- Anca Liliana Cismaru
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Livia Grimm
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Rudin
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Luisa Ibañez
- Clinical Pharmacology Service, Hospital Universitari Vall d'Hebron, Department of Pharmacology, Therapeutics and Toxicology, Fundació Institut Català de Farmacologia, Autonomous University of Barcelona, Barcelona, Spain
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
97
|
Stocco G, Lucafò M, Decorti G. Pharmacogenomics of Antibiotics. Int J Mol Sci 2020; 21:5975. [PMID: 32825180 PMCID: PMC7504675 DOI: 10.3390/ijms21175975] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Although the introduction of antibiotics in medicine has resulted in one of the most successful events and in a major breakthrough to reduce morbidity and mortality caused by infectious disease, response to these agents is not always predictable, leading to differences in their efficacy, and sometimes to the occurrence of adverse effects. Genetic variability, resulting in differences in the pharmacokinetics and pharmacodynamics of antibiotics, is often involved in the variable response, of particular importance are polymorphisms in genes encoding for drug metabolizing enzymes and membrane transporters. In addition, variations in the human leukocyte antigen (HLA) class I and class II genes have been associated with different immune mediated reactions induced by antibiotics. In recent years, the importance of pharmacogenetics in the personalization of therapies has been recognized in various clinical fields, although not clearly in the context of antibiotic therapy. In this review, we make an overview of antibiotic pharmacogenomics and of its potential role in optimizing drug therapy and reducing adverse reactions.
Collapse
Affiliation(s)
- Gabriele Stocco
- Department of Life Sciences, University of Trieste, I-34128 Trieste, Italy;
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, I-34137 Trieste, Italy;
| | - Giuliana Decorti
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, I-34137 Trieste, Italy;
- Department of Medicine, Surgery and Health Sciences, University of Trieste, I-34149 Trieste, Italy
| |
Collapse
|
98
|
Chang CJ, Chen CB, Hung SI, Ji C, Chung WH. Pharmacogenetic Testing for Prevention of Severe Cutaneous Adverse Drug Reactions. Front Pharmacol 2020; 11:969. [PMID: 32714190 PMCID: PMC7346738 DOI: 10.3389/fphar.2020.00969] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Severe cutaneous adverse reactions (SCAR), such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS), are idiosyncratic and unpredictable drug-hypersensitivity reactions with a high-mortality rate ranging from 10% to over 30%, thus causing a major burden on the healthcare system. Recent pharmacogenomic studies have revealed strong associations between SCAR and the genes encoding human-leukocyte antigens (HLAs) or drug-metabolizing enzymes. Some of pharmacogenetic markers have been successfully applied in clinical practice to protect patients from SCAR, such as HLA-B*15:02 and HLA-A*31:01 for new users of carbamazepine, HLA-B*58:01 for allopurinol, and HLA-B*57:01 for abacavir. This article aims to update the current knowledge in the field of pharmacogenomics of drug hypersensitivities or SCAR, and its implementation in the clinical practice.
Collapse
Affiliation(s)
- Chih-Jung Chang
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan.,Central Research Laboratory, Department of Dermatology and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, School of Medicine, Huaqiao University, Xiamen, China
| | - Chun-Bing Chen
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan.,Central Research Laboratory, Department of Dermatology and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, School of Medicine, Huaqiao University, Xiamen, China.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wen-Hung Chung
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan.,Central Research Laboratory, Department of Dermatology and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, School of Medicine, Huaqiao University, Xiamen, China.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
99
|
Sanabria-Cabrera J, Medina-Cáliz I, Stankevičiūtė S, Rodríguez-Nicolás A, Almarza-Torres M, Lucena MI, Andrade RJ. Drug-Induced liver Injury Associated with Severe Cutaneous Hypersensitivity Reactions: A Complex Entity in Need of a Multidisciplinary Approach. Curr Pharm Des 2020; 25:3855-3871. [PMID: 31696806 DOI: 10.2174/1381612825666191107161912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) occasionally occurs in the setting of severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). This strengthens the proposed immunologic mechanism associated with this adverse reaction. DRESS exhibits the most common association with DILI. SCARs have a wide spectrum of heterogeneous clinical presentations and severity, and genetic predisposition has been identified. In the context of SCARs, DILI present a different clinical picture, ranging from mild injury to acute liver failure. Elucidating the role of DILI in the clinical presentation and outcome of SCARs represents a challenge due to limited information from published studies and the lack of consensus on definitions. The cholestatic and mixed pattern of liver damage typically predominates in the case of DILI associated with SCARs, which is different from DILI without SCARs where hepatocellular is the most common injury pattern. Only a few drugs have been associated with both DILI and SCARs. Is this article, the criteria used for DILI recognition among SCARS have been revised and discussed, along with the drugs most commonly involved in these syndromes as well as the outcome, prognostic factors and the need for a multidisciplinary approach to improve the management of DILI in the context of SCARs.
Collapse
Affiliation(s)
- Judith Sanabria-Cabrera
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain.,UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Madrid, Spain
| | - Inmaculada Medina-Cáliz
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | | | - Marina Almarza-Torres
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - M Isabel Lucena
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain.,UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
100
|
Roth RA, Ganey PE. What have we learned from animal models of idiosyncratic, drug-induced liver injury? Expert Opin Drug Metab Toxicol 2020; 16:475-491. [PMID: 32324077 DOI: 10.1080/17425255.2020.1760246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Idiosyncratic, drug-induced liver injury (IDILI) continues to plague patients and restrict the use of drugs that are pharmacologically effective. Mechanisms of IDILI are incompletely understood, and a better understanding would reduce speculation and could help to identify safer drug candidates preclinically. Animal models have the potential to enhance knowledge of mechanisms of IDILI. AREAS COVERED Numerous hypotheses have emerged to explain IDILI pathogenesis, many of which center on the roles of the innate and/or adaptive immune systems. Animal models based on these hypotheses are reviewed in the context of their contributions to understanding of IDILI and their limitations. EXPERT OPINION Animal models of IDILI based on an activated adaptive immune system have to date failed to reproduce major liver injury that is of most concern clinically. The only models that have so far resulted in pronounced liver injury are based on the multiple determinant hypothesis or the inflammatory stress hypothesis. The liver pathogenesis in IDILI animal models involves various leukocytes and immune mediators such as cytokines. Insights from animal models are changing the way we view IDILI pathogenesis and are leading to better approaches to preclinical prediction of IDILI potential of new drug candidates.
Collapse
Affiliation(s)
- Robert A Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| |
Collapse
|