51
|
Arcuri S, Pennarossa G, Gandolfi F, Brevini TAL. Generation of Trophoblast-Like Cells From Hypomethylated Porcine Adult Dermal Fibroblasts. Front Vet Sci 2021; 8:706106. [PMID: 34350230 PMCID: PMC8326560 DOI: 10.3389/fvets.2021.706106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
The first differentiation event in mammalian embryos is the formation of the trophectoderm, which is the progenitor of the outer epithelial components of the placenta, and which supports the fetus during the intrauterine life. However, the epigenetic and paracrine controls at work in trophectoderm differentiation are still to be fully elucidated and the creation of dedicated in vitro models is desirable to increase our understanding. Here we propose a novel approach based on the epigenetic conversion of adult dermal fibroblasts into trophoblast-like cells. The method combines the use of epigenetic erasing with an ad hoc differentiation protocol. Dermal fibroblasts are erased with 5-azacytidine (5-aza-CR) that confers cells a transient high plasticity state. They are then readdressed toward the trophoblast (TR) phenotype, using MEF conditioned medium, supplemented with bone morphogenetic protein 4 (BMP4) and inhibitors of the Activin/Nodal and FGF2 signaling pathways in low O2 conditions. The method here described allows the generation of TR-like cells from easily accessible material, such as dermal fibroblasts, that are very simply propagated in vitro. Furthermore, the strategy proposed is free of genetic modifications that make cells prone to instability and transformation. The TR model obtained may also find useful application in order to better characterize embryo implantation mechanisms and developmental disorders based on TR defects.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
52
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
53
|
Irvin-Choy NS, Nelson KM, Dang MN, Gleghorn JP, Day ES. Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102412. [PMID: 34147664 DOI: 10.1016/j.nano.2021.102412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
The use of nanoparticles (NPs) to deliver therapeutics to reproductive organs is an emerging approach to safely and effectively treat mothers and babies facing pregnancy complications. This study investigates the biodistribution of two different sized gold-based NPs in pregnant mice following systemic delivery as a function of gestational age. Poly(ethylene glycol)-coated 15 nm gold nanoparticles or 150 nm diameter silica core/gold nanoshells were intravenously administered to pregnant mice at gestational days (E)9.5 or 14.5. NP distribution was analyzed twenty-four hours later by inductively coupled plasma-mass spectrometry and silver staining of histological specimens. More NPs accumulated in placentas than embryos and delivery to these tissues was greater at E9.5 than E14.5. Neither NP type affected fetal weight or placental weight, indicating minimal short-term toxicity in early to mid-stage pregnancy. These findings warrant continued development of NPs as tools to deliver therapeutics to reproductive tissues safely.
Collapse
Affiliation(s)
- N'Dea S Irvin-Choy
- Department of Biomedical Engineering, University of Delaware, Newark, USA
| | - Katherine M Nelson
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA.
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Materials Science and Engineering, University of Delaware, Newark, USA; Helen F. Cancer Research & Research Institute, University of Delaware, Newark, USA.
| |
Collapse
|
54
|
Zeng L, Luo T, He L, Tan Y, Zhang Q. New insights into the roles of CUL1 in mouse placenta development. Biochem Biophys Res Commun 2021; 559:70-77. [PMID: 33933992 DOI: 10.1016/j.bbrc.2021.04.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
CULLIN1 (CUL1) protein, as a scaffold protein in Skp1-CUL1-F box (SCF) E3 ligases complex, was reported involved in different cellular functions to regulate the early embryonic development. In our previous study, we have demonstrated that CUL1 promote trophoblast cell invasion at the maternal-fetal interface in human and the CUL1 protein significantly decreased in preeclampsia (PE) placenta, but how CUL1 involved in placentation is still obscure. Due to the embryo lethal in CUL1 knockout mice, the lentivirus mediated placenta-specific CUL1 knockdown mice model was constructed to uncover the potential role of CUL1 in placentation. In this study, CUL1 was first detected in mouse placenta. CUL1 mainly expressed in trophoblast giant cell at E9.5, and spongiotrophoblast at E11.5 and E13.5 by using immunohistochemistry and int situ hybridization. In lentivirus mediated placenta specific mouse model, the number of implanted embryos was reduced in CUL1 shRNA group at E13.5 and E18.5 compared to control group. Based on the morphological analysis of histologic staining, we observed that spongiotrophoblast layer is expanded, fetal angiogenesis in labyrinth was obstructed and fetus blood cells were accumulated in vessels. These results indicated that decreased expression of CUL1 affect placentation of mice, which give new insights into the cause of gestational diseases, but the exactly mechanism still needs further study.
Collapse
Affiliation(s)
- Li Zeng
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Tengling Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Liwen He
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.
| | - Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
55
|
Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166131. [PMID: 33766738 DOI: 10.1016/j.bbadis.2021.166131] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Pregnant women often have to take medication either for pregnancy-related diseases or for previously existing medical conditions. Current maternal medications pose fetal risks due to off target accumulation in the fetus. Nanoparticles, engineered particles in the nanometer scale, have been used for targeted drug delivery to the site of action without off-target effects. This has opened new avenues for treatment of pregnancy-associated diseases while minimizing risks on the fetus. It is therefore instrumental to study the potential transfer of nanoparticles from the mother to the fetus. Due to limitations of in vivo and ex vivo models, an in vitro model mimicking the in vivo situation is essential. Placenta-on-a-chip provides a microphysiological recapitulation of the human placenta. Here, we reviewed the fetal risks associated with current therapeutic approaches during pregnancy, analyzed the advantages and limitations of current models used for nanoparticle assessment, and highlighted the current need for using dynamic placenta-on-a-chip models for assessing the safety of novel nanoparticle-based therapies during pregnancy.
Collapse
Affiliation(s)
- Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Moustafa S Ali
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.
| | - Madhumita Suresh
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Tushar Upreti
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Victoria Mogourian
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Canada.
| | - Hagar I Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Biomedical Engineering, University of Manitoba, Winnipeg, Canada; Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
56
|
de Alwis N, Beard S, Binder NK, Pritchard N, Kaitu'u-Lino TJ, Walker SP, Stock O, Groom K, Petersen S, Henry A, Said JM, Seeho S, Kane SC, Hui L, Tong S, Hannan NJ. DAAM2 is elevated in the circulation and placenta in pregnancies complicated by fetal growth restriction and is regulated by hypoxia. Sci Rep 2021; 11:5540. [PMID: 33692394 PMCID: PMC7946951 DOI: 10.1038/s41598-021-84785-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Previously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway is expressed in human placenta and associated with dysfunction and FGR. We performed linear regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78–0.89)]. Placental DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may have cytoprotective effects, but further research is required to elucidate its role in healthy and dysfunctional placentas.
Collapse
Affiliation(s)
- Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Northern Health, Epping, VIC, 3076, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Northern Health, Epping, VIC, 3076, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Susan P Walker
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Owen Stock
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Katie Groom
- Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
| | - Scott Petersen
- Centre for Maternal Fetal Medicine, Mater Mothers' Hospital, South Brisbane, QLD, 4101, Australia
| | - Amanda Henry
- School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Joanne M Said
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, St Albans, VIC, 3021, Australia
| | - Sean Seeho
- The University of Sydney Northern Clinical School, Women and Babies Research, St Leonards, NSW, 2065, Australia
| | - Stefan C Kane
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Department of Maternal Fetal Medicine, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Lisa Hui
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Northern Health, Epping, VIC, 3076, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Tong
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia. .,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia. .,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia. .,Northern Health, Epping, VIC, 3076, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
57
|
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA, Ponsuksili S. MicroRNA-mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int J Mol Sci 2021; 22:2313. [PMID: 33669156 PMCID: PMC7956714 DOI: 10.3390/ijms22052313] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad W Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
58
|
Quercetin improved histological structure and upregulated adiponectin and adiponectin receptors in the placenta of rats with gestational diabetes mellitus. Placenta 2021; 106:49-57. [PMID: 33640737 DOI: 10.1016/j.placenta.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is a metabolic syndrome among pregnant mothers that increases the risk of developing growth disorders in the fetus and the placenta. Adiponectin is an adipokine, which plays a central role in the regulation of glucose and lipid metabolism, energy homeostasis, and insulin resistance in various tissues. Quercetin is a natural flavonoid with beneficial effects in the diabetic animal model, but data related to its effect on histological change and adiponectin system in the placenta of GDM are limited. In the current study, some histological changes and expression of adiponectin and its two receptors in the placenta of rats with GDM were investigated. METHODS This study was carried out on placentas from the rodent model. To induce GDM, female rats were treated with a single dose of STZ. Placenta tissue was harvested and stained by PAS method. Protein and mRNA levels of adiponectin and its two receptors were assessed by immunohistochemistry and Real time PCR analysis, respectively. RESULTS The results showed the increased number of glycogen cells and thickness of the labyrinth interhemal membrane (LIM) in the embryonic part of the placenta in diabetic rats, while the use of quercetin significantly prevented their increase in diabetic rats. Treatment of the diabetic group with quercetin caused significantly increased adiponectin expression and decreased its receptors.The immunohistochemical study revealed the expression of AdipoR2 in the cytoplasm of syncytiotrophoblast and cytotrophoblast cells. DISCUSSION The results indicated that quercetin in pregnant diabetic rats could attenuate the histological abnormalities and improved adiponectin system dysregulation in the placenta.
Collapse
|
59
|
Lu M, Sferruzzi-Perri AN. Placental mitochondrial function in response to gestational exposures. Placenta 2021; 104:124-137. [PMID: 33338764 DOI: 10.1016/j.placenta.2020.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Poor environmental conditions, including malnutrition, hypoxia and obesity in the mother increase the risk of pregnancy complications, such as pre-eclampsia and gestational diabetes mellitus, which impacts the lifelong health of the mother and her offspring. The placenta plays an important role in determining pregnancy outcome by acting as an exchange interface and endocrine hub to support fetal growth. Mitochondria are energy powerhouses of cells that fuel placental physiology throughout pregnancy, including placental development, substrate exchange and hormone secretion. They are responsive to environmental cues and changes in mitochondrial function may serve to mediate or mitigate the impacts of poor gestational environments on placental physiology and hence, the risks of pregnancy complications. Thus, a more integrated understanding about the role of placental mitochondria in orchestrating changes in relation to environmental conditions and pregnancy outcome is paramount. This review summarises the functions of mitochondria in the placenta and findings from humans and experimental animals that demonstrate how mitochondrial structure and function are altered in different gestational environments (namely complicated pregnancies and adverse environmental conditions). Together the available data suggest that mitochondria in the placenta play a major role in determining placental physiology, fetal growth and pregnancy outcome.
Collapse
Affiliation(s)
- Minhui Lu
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
60
|
Alekar A. The outcomes of fetal cell microchimerism in the mother. BIOMEDICAL RESEARCH JOURNAL 2021. [DOI: 10.4103/bmrj.bmrj_9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
61
|
Bangma JT, Hartwell H, Santos HP, O'Shea TM, Fry RC. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res 2021; 89:326-335. [PMID: 33184498 PMCID: PMC7658618 DOI: 10.1038/s41390-020-01236-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Individuals born extremely preterm are at significant risk for impaired neurodevelopment. After discharge from the neonatal intensive care, associations between the child's well-being and factors in the home and social environment become increasingly apparent. Mothers' prenatal health and socioeconomic status are associated with neurodevelopmental outcomes, and emotional and behavioral problems. Research on early life risk factors and on mechanisms underlying inter-individual differences in neurodevelopment later in life can inform the design of personalized approaches to prevention. Here, we review early life predictors of inter-individual differences in later life neurodevelopment among those born extremely preterm. Among biological mechanisms that mediate relationships between early life predictors and later neurodevelopmental outcomes, we highlight evidence for disrupted placental processes and regulated at least in part via epigenetic mechanisms, as well as perinatal inflammation. In relation to these mechanisms, we focus on four prenatal antecedents of impaired neurodevelopment, namely, (1) fetal growth restriction, (2) maternal obesity, (3) placental microorganisms, and (4) socioeconomic adversity. In the future, this knowledge may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm. IMPACT: This review highlights early life risk factors and mechanisms underlying inter-individual differences in neurodevelopment later in life. The review emphasizes research on early life risk factors (fetal growth restriction, maternal obesity, placental microorganisms, and socioeconomic adversity) and on mechanisms (disrupted placental processes and perinatal inflammation) underlying inter-individual differences in neurodevelopment later in life. The findings highlighted here may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm.
Collapse
Affiliation(s)
- Jacqueline T Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Fisher MA, Lloyd ML. A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease-Do Mice Lie? Int J Mol Sci 2020; 22:ijms22010214. [PMID: 33379272 PMCID: PMC7795257 DOI: 10.3390/ijms22010214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since murine cytomegalovirus (MCMV) was first described in 1954, it has been used to model human cytomegalovirus (HCMV) diseases. MCMV is a natural pathogen of mice that is present in wild mice populations and has been associated with diseases such as myocarditis. The species-specific nature of HCMV restricts most research to cell culture-based studies or to the investigation of non-invasive clinical samples, which may not be ideal for the study of disseminated disease. Initial MCMV research used a salivary gland-propagated virus administered via different routes of inoculation into a variety of mouse strains. This revealed that the genetic background of the laboratory mice affected the severity of disease and altered the extent of subsequent pathology. The advent of genetically modified mice and viruses has allowed new aspects of disease to be modeled and the opportunistic nature of HCMV infection to be confirmed. This review describes the different ways that MCMV has been used to model HCMV diseases and explores the continuing difficulty faced by researchers attempting to model HCMV congenital cytomegalovirus disease using the mouse model.
Collapse
Affiliation(s)
- Michelle A. Fisher
- Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia;
| | - Megan L. Lloyd
- Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia;
- Marshall Centre for Infectious Diseases Research and Training, Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
63
|
Io S, Kondoh E, Chigusa Y, Kawasaki K, Mandai M, Yamada AS. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26:611-633. [PMID: 32728695 DOI: 10.1093/humupd/dmaa020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many pregnancy complications are the result of dysfunction in the placenta. The pathogenic mechanisms of placenta-mediated pregnancy complications, however, are unclear. Abnormal placental development in these conditions begins in the first trimester, but no symptoms are observed during this period. To elucidate effective preventative treatments, understanding the differentiation and development of human placenta is crucial. This review elucidates the uniqueness of the human placenta in early development from the aspect of structural characteristics and molecular markers. We summarise the morphogenesis of human placenta based on human specimens and then compile molecular markers that have been clarified by immunostaining and RNA-sequencing data across species. Relevant studies were identified using the PubMed database and Google Scholar search engines up to March 2020. All articles were independently screened for eligibility by the authors based on titles and abstracts. In particular, the authors carefully examined literature on human placentation. This review integrates the development of human placentation from morphological approaches in comparison with other species and provides new insights into trophoblast molecular markers. The morphological features of human early placentation are described in Carnegie stages (CS), from CS3 (floating blastocyst) to CS9 (emerging point of tertiary villi). Molecular markers are described for each type of trophoblast involved in human placental development. We summarise the character of human trophoblast cell lines and explain how long-term culture system of human cytotrophoblast, both monolayer and spheroid, established in recent studies allows for the generation of human trophoblast cell lines. Due to differences in developmental features among species, it is desirable to understand early placentation in humans. In addition, reliable molecular markers that reflect normal human trophoblast are needed to advance trophoblast research. In the clinical setting, these markers can be valuable means for morphologically and functionally assessing placenta-mediated pregnancy complications and provide early prediction and management of these diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, Center for iPS Cell Research & Application, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - And Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
64
|
Marsh B, Blelloch R. Single nuclei RNA-seq of mouse placental labyrinth development. eLife 2020; 9:e60266. [PMID: 33141023 PMCID: PMC7669270 DOI: 10.7554/elife.60266] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
The placenta is the interface between mother and fetus in all eutherian species. However, our understanding of this essential organ remains incomplete. A substantial challenge has been the syncytial cells of the placenta, which have made dissociation and independent evaluation of the different cell types of this organ difficult. Here, we address questions concerning the ontogeny, specification, and function of the cell types of a representative hemochorial placenta by performing single nuclei RNA sequencing (snRNA-seq) at multiple stages of mouse embryonic development focusing on the exchange interface, the labyrinth. Timepoints extended from progenitor-driven expansion through terminal differentiation. Analysis by snRNA-seq identified transcript profiles and inferred functions, cell trajectories, signaling interactions, and transcriptional drivers of all but the most highly polyploid cell types of the placenta. These data profile placental development at an unprecedented resolution, provide insights into differentiation and function across time, and provide a resource for future study.
Collapse
Affiliation(s)
- Bryan Marsh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
65
|
Male Factors: the Role of Sperm in Preimplantation Embryo Quality. Reprod Sci 2020; 28:1788-1811. [DOI: 10.1007/s43032-020-00334-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
|
66
|
Martinez ME, Niewiesk S, La Perle KMD. Cotton Rat Placenta Anatomy and Fc Receptor Expression and Their Roles in Maternal Antibody Transfer. Comp Med 2020; 70:510-519. [PMID: 33121562 DOI: 10.30802/aalas-cm-20-000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children worldwide. Currently no vaccine is available to prevent RSV infection, but virus-neutralizing monoclonal antibodies can be given prophylactically, emphasizing the protective potential of antibodies. One concept of RSV vaccinology is mothers' immunization to induce high antibody titers, leading to passive transfer of high levels of maternal antibody to the fetus through the placenta and to the neonate through colostrum. Cotton rats are an excellent small animal model for RSV infection and have been used to test maternal immunization. To mechanistically understand antibody transfer in the cotton rat model, we characterized the cotton rat placenta and Fc receptor localization. Placentas from cotton rats at midgestation (approximately day 14) and at late gestation (approximately day 25) and neonatal (younger than 1 wk) gastrointestinal tracts were collected for light microscopy, immunohistochemistry, and transmission electron microscopy. The cotton rat placenta is hemotrichorial and has 5 distinct layers: decidua, junctional zone, labyrinth, chorionic plate, and yolk sac. Consistent with the transfer of maternal antibodies, the majority of the Fc receptors are present in the yolk sac endoderm and fetal capillary endothelium of the chorionic plate, involving 10% of the cells within the labyrinth. In addition, Fc receptors are present on duodenal and jejunal enterocytes in cotton rats, similar to humans, mice, and rats. These findings provide the structural basis for the pre- and postnatal transfer of maternal antibodies described in cotton rats.
Collapse
Affiliation(s)
- Margaret E Martinez
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio;,
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio; Comparative Pathology and Mouse Phenotyping Shared Resource, Ohio State University, Columbus, Ohio
| |
Collapse
|
67
|
Bidne KL, Rister AL, McCain AR, Hitt BD, Dodds ED, Wood JR. Maternal obesity alters placental lysophosphatidylcholines, lipid storage, and the expression of genes associated with lipid metabolism‡. Biol Reprod 2020; 104:197-210. [PMID: 33048132 DOI: 10.1093/biolre/ioaa191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Dyslipidemia is a characteristic of maternal obesity and previous studies have demonstrated abnormalities in fatty acid oxidation and storage in term placentas. However, there is little information about the effect of pre-pregnancy obesity on placental lipid metabolism during early pregnancy. The objective of this study was to determine the relationship between lipid profiles and markers of metabolism in placentas from obese and lean dams at midgestation. Mice were fed a western diet (WD) or normal diet (ND) and lysophosphatidylcholines (LPCs) and/or phosphatidylcholines (PCs) were measured in dam circulation and placenta sections using liquid chromatography-tandem mass spectrometry and mass spectrometry imaging, respectively. In WD dam, circulating LPCs containing 16:1, 18:1, 20:0, and 20:3 fatty acids were increased and 18:2 and 20:4 were decreased. In WD placenta from both sexes, LPC 18:1 and PC 36:1 and 38:3 were increased. Furthermore, there were moderate to strong correlations between LPC 18:1, PC 36:1, and PC 38:3. Treatment-, spatial-, and sex-dependent differences in LPC 20:1 and 20:3 were also detected. To identify genes that may regulate diet-dependent differences in placenta lipid profiles, the expression of genes associated with lipid metabolism and nutrient transport was measured in whole placenta and isolated labyrinth using droplet digital PCR and Nanostring nCounter assays. Several apolipoproteins were increased in WD placentas. However, no differences in nutrient transport or fatty acid metabolism were detected. Together, these data indicate that lipid storage is increased in midgestation WD placentas, which may lead to lipotoxicity, altered lipid metabolism and transport to the fetus later in gestation.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alana L Rister
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea R McCain
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brianna D Hitt
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
68
|
Albrecht ED, Pepe GJ. Regulation of Uterine Spiral Artery Remodeling: a Review. Reprod Sci 2020; 27:1932-1942. [PMID: 32548805 PMCID: PMC7452941 DOI: 10.1007/s43032-020-00212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro, clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to study the regulation of vessel remodeling.
Collapse
Affiliation(s)
- Eugene D Albrecht
- Bressler Research Laboratories, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
69
|
Sexually dimorphic effects of forkhead box a2 (FOXA2) and uterine glands on decidualization and fetoplacental development. Proc Natl Acad Sci U S A 2020; 117:23952-23959. [PMID: 32900950 DOI: 10.1073/pnas.2014272117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glands of the uterus are essential for pregnancy establishment. Forkhead box A2 (FOXA2) is expressed specifically in the glands of the uterus and a critical regulator of glandular epithelium (GE) differentiation, development, and function. Mice with a conditional deletion of FOXA2 in the adult uterus, created using the lactotransferrin iCre (Ltf-iCre) model, have a morphologically normal uterus with glands, but lack FOXA2-dependent GE-expressed genes, such as leukemia inhibitory factor (LIF). Adult FOXA2 conditional knockout (cKO; Ltf iCre/+ Foxa2 f/f ) mice are infertile due to defective embryo implantation arising from a lack of LIF, a critical implantation factor of uterine gland origin. However, intraperitoneal injections of LIF can initiate embryo implantation in the uterus of adult FOXA2 cKO mice with pregnancies maintained to term. Here, we tested the hypothesis that FOXA2-regulated genes in the uterine glands impact development of the decidua, placenta, and fetus. On gestational day 8.5, the antimesometrial and mesometrial decidua transcriptome was noticeably altered in LIF-replaced FOXA2 cKO mice. Viable fetuses were reduced in FOXA2 cKO mice on gestational days 12.5 and 17.5. Sex-dependent differences in fetal weight, placenta histoarchitecture, and the placenta and metrial gland transcriptome were observed between control and FOXA2 cKO mice. The transcriptome of the placenta with a female fetus was considerably more altered than the placenta with a male fetus in FOXA2 cKO dams. These studies reveal previously unrecognized sexually dimorphic effects of FOXA2 and uterine glands on fetoplacental development with potential impacts on offspring health into adulthood.
Collapse
|
70
|
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev 2020; 161-162:161-175. [PMID: 32858104 DOI: 10.1016/j.addr.2020.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Methods to evaluate maternal-fetal transport across the placental barrier have generally involved clinical observations after-the-fact, ex vivo perfused placenta studies, or in vitro Transwell assays. Given the ethical and technical limitations in these approaches, and the drive to understand fetal development through the lens of transport-induced injury, such as with the examples of thalidomide and Zika Virus, efforts to develop novel approaches to study these phenomena have expanded in recent years. Notably, within the past 10 years, placental barrier models have been developed using hydrogel, bioreactor, organ-on-a-chip, and bioprinting approaches. In this review, we discuss the biology of the placental barrier and endeavors to recapitulate this barrier in vitro using these approaches. We also provide analysis of current limitations to drug discovery in this context, and end with a future outlook.
Collapse
|
71
|
Alfaifi AA, Heyder RS, Bielski ER, Almuqbil RM, Kavdia M, Gerk PM, da Rocha SRP. Megalin-targeting liposomes for placental drug delivery. J Control Release 2020; 324:366-378. [PMID: 32461116 PMCID: PMC8247794 DOI: 10.1016/j.jconrel.2020.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Every year, complications during pregnancy affect more than 26 million women. Some of those diseases are associated with significant morbidity and mortality, as is the case of preeclampsia, the main cause of maternal deaths globally. The ability to improve the delivery of drugs to the placenta upon administration to the mother may offer new opportunities in the treatment of diseases of pregnancy. The objective of this study was to develop megalin-targeting liposome nanocarriers for placental drug delivery. Megalin is a transmembrane protein involved in clathrin-mediated endocytic processes, and is expressed in the syncytiotrophoblast (SynT), an epithelial layer at maternal-fetal interface. Targeting megalin thus offers an opportunity for the liposomes to hitchhike into the SynT, thus enriching the concentration of any associated therapeutic cargo in the placental tissue. PEGylated (2 KDa) lipids were modified with gentamicin (GM), a substrate to megalin receptors as we have shown in earlier studies, and used to prepare placental-targeting liposomes. The ability of the targeting liposomes to enhance accumulation of a fluorescence probe was assessed in an in vivo placental model - timed-pregnant Balb/c mice at gestational day (GD) 18.5. The targeting liposomes containing 10 mol% GM-modified lipids increased the accumulation of the conjugated fluorescence probe in the placenta with a total accumulation of 2.8% of the initial dose, which corresponds to a 94 fold increase in accumulation compared to the free probe (p < .0001), and 2-4 fold accumulation compared to the non-targeting control liposomes (p < .0001), as measured by both tissue extraction assay and ex vivo imaging. Furthermore, confocal images of placental SynT cross-sections show a 3-fold increase of the targeting liposomes compared with the non-targeting liposomes. The rate and extent of uptake of a fluorescent probe encapsulated within targeting liposomes was also probed in an in vitro model of the human placental barrier (polarized BeWo monolayers) using flow cytometry. Targeting liposomes containing 5 mol% GM-modified lipids enhanced the uptake of the probe by 1.5 fold compared to the non-targeting control. An increase to 10 mol% of the modified lipid resulted in further enhancement in uptake, which was 2 fold greater compared to control. In a competition assay, inhibition of the megalin receptors resulted in a significant reduction in uptake of the fluorescence probe encapsulated in GM-modified liposomes compared to the uptake without free inhibitor (p < .0001), implicating the involvement of megalin receptor in the internalization of the liposomes. Taken together, these results demonstrate that megalin-targeted liposomes may offer an opportunity to enhance the delivery of therapeutics to the placenta for the treatment of diseases of pregnancy.
Collapse
Affiliation(s)
- Ali A Alfaifi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America; Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rodrigo S Heyder
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Elizabeth R Bielski
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Phillip M Gerk
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America.
| |
Collapse
|
72
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
73
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
74
|
Anghel N, Winzer PA, Imhof D, Müller J, Langa X, Rieder J, Barrett LK, Vidadala RSR, Huang W, Choi R, Hulverson MA, Whitman GR, Arnold SL, Van Voorhis WC, Ojo KK, Maly DJ, Fan E, Hemphill A. Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. Int J Antimicrob Agents 2020; 56:106099. [PMID: 32707170 DOI: 10.1016/j.ijantimicag.2020.106099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 μM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 μM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Pablo A Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Mathew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Samuel L Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
75
|
Singh VP, McKinney S, Gerton JL. Persistent DNA Damage and Senescence in the Placenta Impacts Developmental Outcomes of Embryos. Dev Cell 2020; 54:333-347.e7. [PMID: 32800293 DOI: 10.1016/j.devcel.2020.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cohesin is an evolutionarily conserved chromosome-associated protein complex essential for chromosome segregation, gene expression, and repair of DNA damage. Mutations that affect this complex cause the human developmental disorder Cornelia de Lange syndrome (CdLS), thought to arise from defective embryonic transcription. We establish a significant role for placental defects in the development of CdLS mouse embryos (Nipbl and Hdac8). Placenta is a naturally senescent tissue; we demonstrate that persistent DNA damage potentiates senescence and activates cytokine signaling. Mutant embryo developmental outcomes are significantly improved in the context of a wild-type placenta or by genetically restricting cytokine signaling. Our study highlights that cohesin is required for maintaining ploidy and the repair of spontaneous DNA damage in placental cells, suggesting that genotoxic stress and ensuing placental senescence and cytokine production could represent a broad theme in embryo health and viability.
Collapse
Affiliation(s)
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
76
|
Jansen W, Demars A, Nicaise C, Godfroid J, de Bolle X, Reboul A, Al Dahouk S. Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci Rep 2020; 10:9421. [PMID: 32523093 PMCID: PMC7287137 DOI: 10.1038/s41598-020-65760-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
Although shedding of zoonotic brucellae in milk has been demonstrated in natural hosts, these data are still missing for the standard murine infection model. We therefore analysed shedding kinetics and the niche of B. melitensis in murine milk. Pregnant Balb/cByJ mice were intraperitoneally infected with 105 CFU of the 16 M reference strain, a 16 M mCherry mutant or a human isolate. Milk was collected over the course of lactation, and subjected to culture and immunofluorescence assays. Bacteria were also quantified in spleen and mammary glands of maternal mice and in spleen of the litter. The shedding of the three strains did not differ significantly (p = 0.301), ranging from log10 1.5 to 4.04 CFU/ml. A total of 73% of the mice excreted B. melitensis into the milk with peak values at mid-lactation; up to 30 bacteria/cell were found in macrophages and neutrophils. While the bacterial counts in the spleen of lactating females confirmed a well-established infection, only 50% of the pups harboured brucellae in their spleen, including the spleen of an uninfected pup fed by an infected foster mother. In conclusion, the murine model of infection may contribute to a better understanding of the zoonotic transmission of brucellosis.
Collapse
Affiliation(s)
- Wiebke Jansen
- NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - Aurore Demars
- NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Charles Nicaise
- NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Xavier de Bolle
- NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Angéline Reboul
- NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277, Berlin, Germany.,RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
77
|
Protection of Lycopene against Embryonic Anomalies and Yolk Sac Placental Vasculogenic Disorders Induced by Nicotine Exposure. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7957045. [PMID: 32596374 PMCID: PMC7298257 DOI: 10.1155/2020/7957045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022]
Abstract
Identification of a new agent from natural products for the protection of embryonic anomalies is potentially valuable. To investigate the protective effect exerted by lycopene against nicotine-induced malformations, mouse embryos in embryonic day 8.5 with yolk sac placentas were cocultured with 1 mM nicotine and/or lycopene (1 × 10-6, 1 × 10-5 μM) for 48 h. The morphological defects and apoptotic cell deaths in the embryo and yolk sac placenta of the nicotine group were significantly increased. Exposure to nicotine resulted in reduced superoxide dismutase (SOD) activity and cytoplasmic SOD and cytoplasmic glutathione peroxidase mRNA levels, but increased lipid peroxidation level in embryos. Moreover, treatment with nicotine resulted in aggravated expressions of the mRNA or protein level of antiapoptotic (BCL2-associated X protein, B-cell lymphoma-extralarge, and caspase 3), anti-inflammatory (nuclear factor kappa-light-chain-enhancer of activated B cells and tumor necrosis factor-alpha), and vasculogenic (vascular endothelial growth factor-alpha, insulin-like growth factor-1, alpha smooth muscle actin, transforming growth factor-beta 1, and hypoxia inducible factor-1 alpha) factors in the embryo and yolk sac placenta. However, all the parameters were significantly improved by treatment with lycopene, as compared to the nicotine group. These findings indicate the potential of lycopene as a protective agent against embryonic anomalies and yolk sac vasculogenic and placenta-forming defects induced by nicotine through modulations of oxidative, apoptotic, vasculogenic, and inflammatory activities.
Collapse
|
78
|
Kim HJ, Park JS, Yi SW, Go M, Kim HR, Lee SJ, Park JM, Cha DH, Shim SH, Park KH. A transport system based on a quantum dot-modified nanotracer is genetically and developmentally stable in pregnant mice. Biomater Sci 2020; 8:3392-3403. [PMID: 32377654 DOI: 10.1039/d0bm00311e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of nanoscale materials (NMs) could cause problems such as cytotoxicity, genomic aberration, and effects on human health, but the impacts of NM exposure during pregnancy remain uncharacterized in the context of clinical applications. It was sought to determine whether nanomaterials pass through the maternal-fetal junction at any stage of pregnancy. Quantum dots (QDs) coated with heparinized Pluronic 127 nanogels and polyethyleneimine (PEI) were administered to pregnant mice. The biodistribution of QDs, as well as their biological impacts on maternal and fetal health, was evaluated. Encapsulation of QDs with a nanogel coating produces a petal-like nanotracer (PNt), which could serve as a nano-carrier of genes or drugs. PNts were injected through the tail vein and accumulated in the liver, kidneys, and lungs. QD accumulation in reproductive organs (uterus, placenta, and fetus) differed among phases of pregnancy. In phase I (7 days of pregnancy), the QDs did not accumulate in the placenta or fetus, but by phase III (19 days) they had accumulated at high levels in both tissues. Karyotype analysis revealed that the PNt-treated pups did not have genetic abnormalities when dams were treated at any phase of pregnancy. PNts have the potential to serve as carriers of therapeutic agents for the treatment of the mother or fetus and these results have a significant impact on the development and application of QD-based NPs in pregnancy.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhong H, Geng Y, Chen J, Gao R, Yu C, Yang Z, Chen X, Mu X, Liu X, He J. Maternal exposure to CeO 2NPs during early pregnancy impairs pregnancy by inducing placental abnormalities. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121830. [PMID: 31836366 DOI: 10.1016/j.jhazmat.2019.121830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 05/05/2023]
Abstract
Cerium dioxide nanoparticles (CeO2NPs) has been widely used in many fields, and also recommended as a promising carrier for cancer targeted drugs in human medicine for its excellent properties. However, its biological safety to human health remains controversial. In this study, we propose a mouse model exposed to CeO2NPs during early pregnancy, to clarify the effect of maternal CeO2NPs exposure and related molecular mechanism. Pregnant mice are injected intravenously with CeO2NPs by once a day on D5, D6, and D7. The effects of CeO2NPs exposure on pregnancy outcomes are observed on D8, D9, D10 and D12. The results show that CeO2NPs exposure during early pregnancy would lead to poor pregnancy outcomes. Further study find that low-quality decidualization, including the imbalance of trophoblast invasion regulators secreted by decidual cells and abnormal recruitment and differentiation of uNK cells, leads to subsequent biological negative "ripple effects", including placental dysfunction, fetal loss or growth restriction. This study broadens the understanding of the biological safety of CeO2NPs, and provide clues for the prevention of its negative biological effects. Improving the function of uNK cells can be used as one of the therapeutic targets to prevent negative effects of CeO2NPs on pregnancy.
Collapse
Affiliation(s)
- Hangtian Zhong
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Yanqing Geng
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xinyi Mu
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xueqing Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
80
|
Bumped Kinase Inhibitors as therapy for apicomplexan parasitic diseases: lessons learned. Int J Parasitol 2020; 50:413-422. [PMID: 32224121 DOI: 10.1016/j.ijpara.2020.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
Abstract
Bumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.
Collapse
|
81
|
de Barros Mucci D, Kusinski LC, Wilsmore P, Loche E, Pantaleão LC, Ashmore TJ, Blackmore HL, Fernandez-Twinn DS, Carmo MDGTD, Ozanne SE. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes (Lond) 2020; 44:1087-1096. [PMID: 32203108 PMCID: PMC7188669 DOI: 10.1038/s41366-020-0561-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.
Collapse
Affiliation(s)
- Daniela de Barros Mucci
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK. .,Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Nutritional Epidemiology Observatory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Laura C Kusinski
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Phoebe Wilsmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Maria das Graças T do Carmo
- Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
82
|
Hosseini MS, Ali-Hassanzadeh M, Nadimi E, Karbalay-Doust S, Noorafshan A, Gharesi-Fard B. Stereological study of the placental structure in abortion-prone mice model (CBA/J×DBA/2J). Ann Anat 2020; 230:151508. [PMID: 32173562 DOI: 10.1016/j.aanat.2020.151508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Recurrent spontaneous abortion (RSA) is an important reproductive health issue defined as the loss of two or more consecutive pregnancies before the 20th week of gestation, affecting 2-5% of couples. This study aimed to evaluate the volume, number of cells, and length of the vessels in the placenta in normal and abortion-prone (AP) pregnant mice on gestational day (gd) 13.5. Fetal and placental tissues of female CBA/J mated DBA/2J (AP group) and BALB/c (normal pregnant group) were collected and prepared for stereological assessments on gd13.5. The volumes of the placenta and its main layers decidua basalis (Db), junctional zone (Jz), and labyrinth zone (Lz) were investigated. The number of spongiotrophoblast cells, glycogen cells, giant cells, trophoblast cells, lymphocytes, and neutrophils were estimated as well. The AP group showed a reduction in the volume of the placenta (48.7%) and its components. Moreover, the number of spongiotrophoblast cells (66.7%), glycogen cells (76.2%), giant cells (73.3%), and trophoblast cells (81.4%) was decreased in AP compared to normal pregnant (NP) mice. Also, in AP group recognized a 10-fold increase in the number of lymphocytes and a four-fold increase in the number of neutrophils in comparison to the NP group (p < 0.05). Activation of different immune cell types might induce systemic inflammation at the feto-maternal interface, resulting in impaired placenta formation and abortion.
Collapse
Affiliation(s)
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
83
|
Mao J, Jain A, Denslow ND, Nouri MZ, Chen S, Wang T, Zhu N, Koh J, Sarma SJ, Sumner BW, Lei Z, Sumner LW, Bivens NJ, Roberts RM, Tuteja G, Rosenfeld CS. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc Natl Acad Sci U S A 2020; 117:4642-4652. [PMID: 32071231 PMCID: PMC7060676 DOI: 10.1073/pnas.1919563117] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.
Collapse
Affiliation(s)
- Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
| | - Ashish Jain
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Nancy D Denslow
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Mohammad-Zaman Nouri
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Tingting Wang
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Ning Zhu
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Barbara W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biochemistry, University of Missouri, Columbia, MO 65211
- Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Geetu Tuteja
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011;
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211
- University of Missouri Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
84
|
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res 2020; 99:271-283. [PMID: 32108381 DOI: 10.1002/jnr.24603] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA.,Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
85
|
Sojka DK. Uterine Natural Killer Cell Heterogeneity: Lessons From Mouse Models. Front Immunol 2020; 11:290. [PMID: 32153593 PMCID: PMC7046796 DOI: 10.3389/fimmu.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the most abundant lymphocytes at the maternal-fetal interface. Epidemiological data implicate NK cells in human pregnancy outcomes. Discoveries using mouse NK cells have guided subsequent advances in human NK cell biology. However, it remains challenging to identify mouse and human uterine NK (uNK) cell function(s) because of the dynamic changes in the systemic-endocrinological and local uterine structural microenvironments during pregnancy. This review discusses functional similarities and differences between mouse and human NK cells at the maternal-fetal interface.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
86
|
da Silva FC, Magaldi FM, Sato HK, Bevilacqua E. Yellow Fever Vaccination in a Mouse Model Is Associated With Uninterrupted Pregnancies and Viable Neonates Except When Administered at Implantation Period. Front Microbiol 2020; 11:245. [PMID: 32153534 PMCID: PMC7044120 DOI: 10.3389/fmicb.2020.00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
The potential risk of yellow fever (YF) infection in unvaccinated pregnant women has aroused serious concerns. In this study, we evaluated the effect of the YF vaccine during gestation using a mouse model, analyzing placental structure, immunolocalization of the virus antigen, and viral activity at the maternal-fetal barrier and in the maternal liver and fetus. The YF vaccine (17DD) was administered subcutaneously at a dose of 2.0 log10 PFU to CD-1 mice on gestational days (gd) 0.5, 5.5, and 11.5 (n = 5–10/group). The control group received sterile saline (n = 5–10/group). Maternal liver, implantation sites with fetus, and placentas were collected on gd18.5. The numbers of implantation sites, reabsorbed embryos, and stillborn fetuses were counted, and placentas and live fetuses were weighed. Tissues (placenta, fetuses, and liver) of vaccinated pregnant mice on gd5.5 (n = 15) were paraffin-embedded in 10% buffered-formalin and collected in TRIzol for immunolocalization of YF vaccine virus and PCR, respectively. PCR products were also subjected to automated sequence analysis. Fetal growth restriction (p < 0.0001) and a significant decrease in fetal viability (p < 0.0001) occurred only when the vaccine was administered on gd5.5. In stillbirths, the viral antigen was consistently immunolocalized at the maternal-fetal barrier and in fetal organs, suggesting a transplacental transfer. In stillbirths, RNA of the vaccine virus was also detected by reverse transcriptase-PCR indicating viral activity in the maternal liver and fetal tissues. In conclusion, the findings of this study in the mouse suggest that vaccination did not cause adverse outcomes with respect to fetal development except when administered during the early gestational stage, indicating the implantation period as a susceptible period in which the YF vaccine virus might interfere with pregnancy.
Collapse
Affiliation(s)
- Fernanda C da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda M Magaldi
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helena K Sato
- Secretaria do Estado de São Paulo, Epidemiological Surveillance Center, Department of Health, São Paulo, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
87
|
Johns EC, Denison FC, Reynolds RM. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165374. [PMID: 30684643 DOI: 10.1016/j.bbadis.2018.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Maternal obesity is the most common metabolic disturbance in pregnancy affecting >1 in 5 women in some countries. Babies born to obese women are heavier with more adiposity at birth, and are vulnerable to obesity and metabolic disease across the lifespan suggesting offspring health is 'programmed' by fetal exposure to an obese intra-uterine environment. The placenta plays a major role in dictating the impact of maternal health on prenatal development. Maternal obesity impacts the function of integral placental receptors and transporters for glucocorticoids and nutrients, key drivers of fetal growth, though mechanisms remain poorly understood. This review aims to summarise current knowledge in this area, and considers the impact of obesity on the epigenetic machinery of the placenta at this vital juncture in offspring development. Further research is required to advance understanding of these areas in the hope that the trans-generational cycle of obesity can be alleviated.
Collapse
Affiliation(s)
- Emma C Johns
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Fiona C Denison
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Rebecca M Reynolds
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
88
|
Forster D, Schwarz JH, Brosinski K, Kalinke U, Sutter G, Volz A. Obstetric Ultrasonography to Detect Fetal Abnormalities in a Mouse Model for Zika Virus Infection. Viruses 2020; 12:v12010072. [PMID: 31936159 PMCID: PMC7019633 DOI: 10.3390/v12010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023] Open
Abstract
In 2015 Zika virus (ZIKV) emerged for the first time in South America. The following ZIKV epidemic resulted in the appearance of a clinical phenotype with microcephaly and other severe malformations in newborns. So far, mechanisms of ZIKV induced damage to the fetus are not completely understood. Previous data suggest that ZIKV may bypass the placenta to reach the fetus. Thus, animal models for ZIKV infection are important to facilitate studies about ZIKV infection during pregnancy. Here, we used ultrasound based imaging (USI) to characterize ZIKV induced pathogenesis in the pregnant Type I interferon receptor-deficient (IFNAR-/-) mouse model. Based on USI we suggest the placenta to be a primary target organ of ZIKV infection enabling ZIKV spreading to the fetus. Moreover, in addition to direct infection of the fetus, the placental ZIKV infection may cause an indirect damage to the fetus through reduced uteroplacental perfusion leading to intrauterine growth retardation (IUGR) and fetal complications as early as embryonic day (ED) 12.5. Our data confirmed the capability of USI to characterize ZIKV induced modifications in mouse fetuses. Data from further studies using USI to monitor ZIKV infections will contribute to a better understanding of ZIKV infection in pregnant IFNAR-/- mice.
Collapse
Affiliation(s)
- Dominik Forster
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Jan Hendrik Schwarz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Katrin Brosinski
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research Braunschweig and the Hannover Medical School, 30625 Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany
- Correspondence: ; Tel.: +49-89-2180-2612
| |
Collapse
|
89
|
Mocker A, Schmidt M, Huebner H, Wachtveitl R, Cordasic N, Menendez-Castro C, Hartner A, Fahlbusch FB. Expression of Retinoid Acid Receptor-Responsive Genes in Rodent Models of Placental Pathology. Int J Mol Sci 2019; 21:ijms21010242. [PMID: 31905805 PMCID: PMC6981780 DOI: 10.3390/ijms21010242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023] Open
Abstract
In humans, retinoic acid receptor responders (RARRES) have been shown to be altered in third trimester placentas complicated by the pathologies preeclampsia (PE) and PE with intrauterine growth restriction (IUGR). Currently, little is known about the role of placental Rarres in rodents. Therefore, we examined the localization and expression of Rarres1 and 2 in placentas obtained from a Wistar rat model of isocaloric maternal protein restriction (E18.5, IUGR-like features) and from an eNOS-knockout mouse model (E15 and E18.5, PE-like features). In both rodent models, Rarres1 and 2 were mainly localized in the placental spongiotrophoblast and giant cells. Their placental expression, as well as the expression of the Rarres2 receptor chemokine-like receptor 1 (CmklR1), was largely unaltered at the examined gestational ages in both animal models. Our results have shown that RARRES1 and 2 may have different expression and roles in human and rodent placentas, thereby underlining immanent limitations of comparative interspecies placentology. Further functional studies are required to elucidate the potential involvement of these proteins in early placentogenesis.
Collapse
Affiliation(s)
- Alexander Mocker
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Rainer Wachtveitl
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (R.W.); (N.C.)
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (R.W.); (N.C.)
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
- Correspondence: ; Tel.: +49-9131-853-3118; Fax: +49-9131-853-3714
| |
Collapse
|
90
|
Lee JK, Oh SJ, Park H, Shin OS. Recent Updates on Research Models and Tools to Study Virus-Host Interactions at the Placenta. Viruses 2019; 12:E5. [PMID: 31861492 PMCID: PMC7020004 DOI: 10.3390/v12010005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The placenta is a unique mixed organ, composed of both maternal and fetal tissues, that is formed only during pregnancy and serves as the key physiological and immunological barrier preventing maternal-fetal transmission of pathogens. Several viruses can circumvent this physical barrier and enter the fetal compartment, resulting in miscarriage, preterm birth, and birth defects, including microcephaly. The mechanisms underlying viral strategies to evade the protective role of placenta are poorly understood. Here, we reviewed the role of trophoblasts and Hofbauer cells in the placenta and have highlighted characteristics of vertical and perinatal infections caused by a wide range of viruses. Moreover, we explored current progress and future opportunities in cellular targets, pathogenesis, and underlying biological mechanisms of congenital viral infections, as well as novel research models and tools to study the placenta.
Collapse
Affiliation(s)
- Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| | - Soo-Jin Oh
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| |
Collapse
|
91
|
Abstract
The placenta is essential for normal in utero development in mammals. In humans, defective placental formation underpins common pregnancy disorders such as pre-eclampsia and fetal growth restriction. The great variation in placental types across mammals means that animal models have been of limited use in understanding human placental development. However, new tools for studying human placental development, including 3D organoids, stem cell culture systems and single cell RNA sequencing, have brought new insights into this field. Here, we review the morphological, molecular and functional aspects of human placental formation, with a focus on the defining cell of the placenta - the trophoblast.
Collapse
Affiliation(s)
- Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
92
|
Behura SK, Dhakal P, Kelleher AM, Balboula A, Patterson A, Spencer TE. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol Res 2019; 149:104468. [PMID: 31600597 PMCID: PMC6944055 DOI: 10.1016/j.phrs.2019.104468] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
The placenta plays a critical role in mammalian reproduction. Although it is a transient organ, its function is indispensable to communication between the mother and fetus, and supply of nutrients and oxygen to the growing fetus. During pregnancy, the placenta is vulnerable to various intrinsic and extrinsic conditions which can result in increased risk of fetal neurodevelopmental disorders as well as fetal death. The placenta controls the neuroendocrine secretion in the brain as a means of adaptive processes to safeguard the fetus from adverse programs, to optimize fetal development and other physiological changes necessary for reproductive success. Although a wealth of information is available on neuroendocrine functions in pregnancy, they are largely limited to the regulation of hypothalamus-pituitary-adrenal/gonad (HPA/ HPG) axis, particularly the oxytocin and prolactin system. There is a major gap in knowledge on systems-level functional interaction between the brain and placenta. In this review, we aim to outline the current state of knowledge about the brain-placental axis with description of the functional interactions between the placenta and the maternal and fetal brain. While describing the brain-placental interactions, a special emphasis has been given on the therapeutics and pharmacology of the placental receptors to neuroligands expressed in the brain during gestation. As a key feature of this review, we outline the prospects of integrated pharmacogenomics, single-cell sequencing and organ-on-chip systems to foster priority areas in this field of research. Finally, we remark on the application of precision genomics approaches to study the brain-placental axis in order to accelerate personalized medicine and therapeutics to treat placental and fetal brain disorders.
Collapse
Affiliation(s)
- Susanta K Behura
- Division of Animal Sciences, University of Missouri, United States; Informatics Institute, University of Missouri, United States.
| | - Pramod Dhakal
- Division of Animal Sciences, University of Missouri, United States
| | | | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, United States
| | - Amanda Patterson
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| |
Collapse
|
93
|
Downs KM, Rodriguez AM. The mouse fetal-placental arterial connection: A paradigm involving the primitive streak and visceral endoderm with implications for human development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e362. [PMID: 31622045 DOI: 10.1002/wdev.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/02/2019] [Accepted: 08/24/2019] [Indexed: 01/12/2023]
Abstract
In Placentalia, the fetus depends upon an organized vascular connection with its mother for survival and development. Yet, this connection was, until recently, obscure. Here, we summarize how two unrelated tissues, the primitive streak, or body axis, and extraembryonic visceral endoderm collaborate to create and organize the fetal-placental arterial connection in the mouse gastrula. The primitive streak reaches into the extraembryonic space, where it marks the site of arterial union and creates a progenitor cell pool. Through contact with the streak, associated visceral endoderm undergoes an epithelial-to-mesenchymal transition, contributing extraembryonic mesoderm to the placental arterial vasculature, and to the allantois, or pre-umbilical tissue. In addition, visceral endoderm bifurcates into the allantois where, with the primitive streak, it organizes the nascent umbilical artery and promotes allantoic elongation to the chorion, the site of fetal-maternal exchange. Brachyury mediates streak extension and vascular patterning, while Hedgehog is involved in visceral endoderm's conversion to mesoderm. A unique CASPASE-3-positive cell separates streak- and non-streak-associated domains in visceral endoderm. Based on these new insights at the posterior embryonic-extraembryonic interface, we conclude by asking whether so-called primordial germ cells are truly antecedents to the germ line that segregate within the allantois, or whether they are placental progenitor cells. Incorporating these new working hypotheses into mutational analyses in which the placentae are affected will aid understanding a spectrum of disorders, including orphan diseases, which often include abnormalities of the umbilical cord, yolk sac, and hindgut, whose developmental relationship to each other has, until now, been poorly understood. This article is categorized under: Birth Defects > Associated with Preimplantation and Gastrulation Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
94
|
Gal H, Lysenko M, Stroganov S, Vadai E, Youssef SA, Tzadikevitch‐Geffen K, Rotkopf R, Biron‐Shental T, de Bruin A, Neeman M, Krizhanovsky V. Molecular pathways of senescence regulate placental structure and function. EMBO J 2019; 38:e100849. [PMID: 31424120 PMCID: PMC6745498 DOI: 10.15252/embj.2018100849] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
The placenta is an autonomous organ that maintains fetal growth and development. Its multinucleated syncytiotrophoblast layer, providing fetal nourishment during gestation, exhibits characteristics of cellular senescence. We show that in human placentas from pregnancies with intrauterine growth restriction, these characteristics are decreased. To elucidate the functions of pathways regulating senescence in syncytiotrophoblast, we used dynamic contrast-enhanced MRI in mice with attenuated senescence programs. This approach revealed an altered dynamics in placentas of p53-/- , Cdkn2a-/- , and Cdkn2a-/- ;p53-/- mice, accompanied by histopathological changes in placental labyrinths. Human primary syncytiotrophoblast upregulated senescence markers and molecular pathways associated with cell-cycle inhibition and senescence-associated secretory phenotype. The pathways and components of the secretory phenotype were compromised in mouse placentas with attenuated senescence and in human placentas from pregnancies with intrauterine growth restriction. We propose that molecular mediators of senescence regulate placental structure and function, through both cell-autonomous and non-autonomous mechanisms.
Collapse
Affiliation(s)
- Hilah Gal
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Marina Lysenko
- Department of Biological RegulationThe Weizmann Institute of ScienceRehovotIsrael
| | - Sima Stroganov
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Ezra Vadai
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sameh A Youssef
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtThe Netherlands
- Division of Molecular GeneticsDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Ron Rotkopf
- Bioinformatics and Biological Computing UnitDepartment of Biological ServicesThe Weizmann Institute of ScienceRehovotIsrael
| | - Tal Biron‐Shental
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Alain de Bruin
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtThe Netherlands
- Division of Molecular GeneticsDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Michal Neeman
- Department of Biological RegulationThe Weizmann Institute of ScienceRehovotIsrael
| | - Valery Krizhanovsky
- Department of Molecular Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
95
|
Mortensen NP, Johnson LM, Grieger KD, Ambroso JL, Fennell TR. Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod Toxicol 2019; 90:150-165. [PMID: 31476381 DOI: 10.1016/j.reprotox.2019.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
We summarize the literature involving the deposition of nanomaterials within the placenta following oral exposure and the biological interactions between nanomaterials and placental development and function. The review focuses on the oral exposure of metal and metal oxide engineered nanomaterials (ENMs), carbon-based ENMs, and nanoplastics in animal models, with a minor discussion of intravenous injections. Although the literature suggests that the placenta is an efficient barrier in preventing nanomaterials from reaching the fetus, nanomaterials that accumulate in the placenta may interfere with its development and function. Furthermore, some studies have demonstrated a decrease in placental weight and association with adverse fetal health outcomes following oral exposure to nanomaterials. Since nanomaterials are increasingly used in food, food packaging, and have been discovered in drinking water, the risk for adverse impacts on placental development and functions, with secondary effects on embryo-fetal development, following unintentional maternal ingestion of nanomaterials requires further investigation.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA.
| | - Leah M Johnson
- Engineered Systems, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Khara D Grieger
- Health and Environmental Risk Analysis Program, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA; Genetic Engineering and Society Center, North Carolina State University, 1070 Partners Way, Raleigh, NC, 27695, USA
| | - Jeffrey L Ambroso
- Center for Global Health, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| |
Collapse
|
96
|
McIntyre KR, Hayward CE, Sibley CP, Greenwood SL, Dilworth MR. Evidence of adaptation of maternofetal transport of glutamine relative to placental size in normal mice, and in those with fetal growth restriction. J Physiol 2019; 597:4975-4990. [PMID: 31400764 PMCID: PMC6790568 DOI: 10.1113/jp278226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Key points Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Abstract Fetal growth restriction (FGR), a major risk factor for stillbirth, and neonatal and adulthood morbidity, is associated with reduced placental size and decreased placental nutrient transport. In mice, a small, normal placenta increases its nutrient transport, thus compensating for its reduced size and maintaining normal fetal growth. Whether this adaptation occurs for glutamine and glutamate, two key amino acids for placental metabolism and fetal growth, is unknown. Additionally, an assessment of placental transport of glutamine and glutamate between FGR and normal pregnancy is currently lacking. We thus tested the hypothesis that the transport of glutamine and glutamate would be increased (per gram of tissue) in a small normal placenta [C57BL6/J (wild‐type, WT) mice], but that this adaptation fails in the small dysfunctional placenta in FGR [insulin‐like growth factor 2 knockout (P0) mouse model of FGR]. In WT mice, comparing the lightest versus heaviest placenta in a litter, unidirectional maternofetal clearance (Kmf) of 14C‐glutamine and 14C‐glutamate (glutamineKmf and glutamateKmf) was significantly higher at embryonic day (E) 18.5, in line with increased expression of LAT1, a glutamine transporter protein. In P0 mice, glutamineKmf and glutamateKmf were higher (P0 versus wild‐type littermates, WTL) at E15.5. At E18.5, glutamineKmf remained elevated whereas glutamateKmf was similar between groups. In summary, we provide evidence that glutamineKmf and glutamateKmf adapt according to placental size in WT mice. The placenta of the growth‐restricted P0 fetus also elevates transport capacity to compensate for size at E15.5, but this adaptation is insufficient at E18.5; this may contribute to decreased fetal growth. Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Collapse
Affiliation(s)
- Kirsty R McIntyre
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina E Hayward
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
97
|
Fontes KN, Reginatto MW, Silva NL, Andrade CBV, Bloise FF, Monteiro VRS, Silva-Filho JL, Imperio GE, Pimentel-Coelho PM, Pinheiro AAS, Matthews SG, Bloise E, Ortiga-Carvalho TM. Dysregulation of placental ABC transporters in a murine model of malaria-induced preterm labor. Sci Rep 2019; 9:11488. [PMID: 31391498 PMCID: PMC6685947 DOI: 10.1038/s41598-019-47865-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023] Open
Abstract
Malaria in Pregnancy (MiP) is characterized by placental accumulation of Plasmodium-infected erythrocytes, intrauterine growth restriction (IUGR) and preterm delivery (PTD). Placental ATP-binding cassette (ABC) transporters mediate the efflux of nutrients, cytokines and xenobiotics. The expression and activity of these transporters are highly responsive to infection. We hypothesized that MiP would perturb the expression of placental ABC transporters, promoting PTD. Peripheral blood, spleens, livers and placentas of pregnant mice, infected with Plasmodium berghei ANKA on gestational day (GD) 13.5, were collected and analyzed on GD18.5. The primary consequences of human MiP, including IUGR, PTD (20%) and placental inflammation, were recapitulated in our mouse model. Electron microscopy revealed attenuated presence of labyrinthine microvilli and dilated spongiotrophoblasts -granular endoplasmic reticulum cisternae. Additionally, a decrease in placental Abca1 (ABCA1), Abcb1b (P-glycoprotein), Abcb9 and Abcg2 (BCRP) expression was observed in MiP mice. In conclusion, MiP associated with PTD impairs placental ABC transporters' expression, potentially modulating placental nutrient, environmental toxin and xenobiotic biodistribution within the fetal compartment, and may, at some degree, be involved with pregnancy outcome in MiP.
Collapse
Affiliation(s)
- K N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - N L Silva
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J L Silva-Filho
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - G E Imperio
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - P M Pimentel-Coelho
- Laboratory of Cellular and Molecular Neurobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A A S Pinheiro
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - E Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
98
|
Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2019; 99:196-211. [PMID: 29481584 DOI: 10.1093/biolre/ioy049] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA and the Center for Perinatal Research, Children΄s Research Institute, Children΄s Mercy, Kansas City, Missouri, USA
| | - Kaela M Varberg
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
99
|
Placental cell death patterns exhibit differences throughout gestation in two strains of laboratory mice. Cell Tissue Res 2019; 378:341-358. [PMID: 31227907 DOI: 10.1007/s00441-019-03055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Cell death is an essential physiological process required for the proper development and function of the human placenta. Although the mouse is a commonly used animal model for development studies, little is known about the extent and distribution of cell death in the mouse placenta throughout development and its physiological relevance. In the present study, we report the results of a systematic and quantitative assessment of cell death patterns in the placentae of two strains of laboratory mice commonly used for developmental studies-ICR and C57Bl/6. TUNEL staining revealed that ICR and C57Bl/6 placentae exhibited similar cell death patterns to those reported in human placentae during pregnancy, with comparatively infrequent death observed during early gestation, which increased and became more organized towards term. Interestingly, when comparing strain differences, increased cell death was observed in almost all regions of the inbred C57Bl/6 placentae compared to the outbred ICR strain. Finally, since Bcl-2 ovarian killer (Bok) has been reported to be a key player in human placental cell death, we examined its expression in murine placentae throughout gestation. Bok protein expression was observed in all placental regions and increased towards term in both strains. The results of this study indicate that although strain-specific differences in placental cell death exist, the overall rates and patterns of cell death during murine placentation parallel those previously described in humans. Thus, the murine placenta is a useful model to investigate molecular pathways involved in cell death signaling during human placentation.
Collapse
|
100
|
Barateiro A, Pereira MLM, Epiphanio S, Marinho CRF. Contribution of Murine Models to the Study of Malaria During Pregnancy. Front Microbiol 2019; 10:1369. [PMID: 31275284 PMCID: PMC6594417 DOI: 10.3389/fmicb.2019.01369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Annually, many pregnancies occur in areas of Plasmodium spp. transmission, particularly in underdeveloped countries with widespread poverty. Estimations have suggested that several million women are at risk of developing malaria during pregnancy. In particular cases, systemic infection caused by Plasmodium spp. may extend to the placenta, dysregulating local homeostasis and promoting the onset of placental malaria; these processes are often associated with increased maternal and fetal mortality, intrauterine growth restriction, preterm delivery, and reduced birth weight. The endeavor to understand and characterize the mechanisms underlying disease onset and placental pathology face several ethical and logistical obstacles due to explicit difficulties in assessing human gestation and biological material. Consequently, the advent of murine experimental models for the study of malaria during pregnancy has substantially contributed to our understanding of this complex pathology. Herein, we summarize research conducted during recent decades using murine models of malaria during pregnancy and highlight the most relevant findings, as well as discuss similarities to humans and the translational capacity of achieved results.
Collapse
Affiliation(s)
- André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo L M Pereira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute of Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sabrina Epiphanio
- Department of Clinical Analysis and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|