51
|
Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-Donne I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol Med 2017; 112:360-375. [PMID: 28807817 DOI: 10.1016/j.freeradbiomed.2017.08.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is the major non-protein thiol in humans and other mammals, which is present in millimolar concentrations within cells, but at much lower concentrations in the blood plasma. GSH and GSH-related enzymes act both to prevent oxidative damage and to detoxify electrophiles. Under oxidative stress, two GSH molecules become linked by a disulphide bridge to form glutathione disulphide (GSSG). Therefore, assessment of the GSH/GSSG ratio may provide an estimation of cellular redox metabolism. Current evidence resulting from studies in human blood, solid tissues, and cultured cells suggests that GSH also plays a prominent role in protein redox regulation via S -glutathionylation, i.e., the conjugation of GSH to reactive protein cysteine residues. A number of methodologies that enable quantitative analysis of GSH/GSSG ratio and S-glutathionylated proteins (PSSG), as well as identification and visualization of PSSG in tissue sections or cultured cells are currently available. Here, we have considered the main methodologies applied for GSH, GSSG and PSSG detection in biological samples. This review paper provides an up-to-date critical overview of the application of the most relevant analytical, morphological, and proteomics approaches to detect and analyse GSH, GSSG and PSSG in mammalian samples as well as discusses their current limitations.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Emanuela Astori
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicola Marcello Portinaro
- Clinica ortopedica e traumatologica, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
52
|
Kalim M, Chen J, Wang S, Lin C, Ullah S, Liang K, Ding Q, Chen S, Zhan J. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2265-2276. [PMID: 28814834 PMCID: PMC5546728 DOI: 10.2147/dddt.s135571] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry and Genetics, School of Medicine
| | - Jie Chen
- Department of Biochemistry and Genetics, School of Medicine
| | - Shenghao Wang
- Department of Biochemistry and Genetics, School of Medicine
| | - Caiyao Lin
- Department of Biochemistry and Genetics, School of Medicine
| | - Saif Ullah
- Department of Biochemistry and Genetics, School of Medicine
| | - Keying Liang
- Department of Biochemistry and Genetics, School of Medicine
| | - Qian Ding
- Department of Biochemistry and Genetics, School of Medicine
| | - Shuqing Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinbiao Zhan
- Department of Biochemistry and Genetics, School of Medicine
| |
Collapse
|
53
|
Abiria SA, Krapivinsky G, Sah R, Santa-Cruz AG, Chaudhuri D, Zhang J, Adstamongkonkul P, DeCaen PG, Clapham DE. TRPM7 senses oxidative stress to release Zn 2+ from unique intracellular vesicles. Proc Natl Acad Sci U S A 2017; 114:E6079-E6088. [PMID: 28696294 PMCID: PMC5544332 DOI: 10.1073/pnas.1707380114] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles. M7Vs accumulate Zn2+ in a glutathione-enriched, reduced lumen when cytosolic Zn2+ concentrations are elevated. Treatments that increase reactive oxygen species (ROS) trigger TRPM7-dependent Zn2+ release from the vesicles, whereas reduced glutathione prevents TRPM7-dependent cytosolic Zn2+ influx. These observations strongly support the notion that ROS-mediated TRPM7 activation releases Zn2+ from intracellular vesicles after Zn2+ overload. Like the endoplasmic reticulum, these vesicles are a distributed system for divalent cation uptake and release, but in this case the primary divalent ion is Zn2+ rather than Ca2.
Collapse
Affiliation(s)
- Sunday A Abiria
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Grigory Krapivinsky
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Rajan Sah
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Ana G Santa-Cruz
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | - Jin Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Chicago, IL 60611
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115;
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
54
|
Sadowsky JD, Pillow TH, Chen J, Fan F, He C, Wang Y, Yan G, Yao H, Xu Z, Martin S, Zhang D, Chu P, dela Cruz-Chuh J, O’Donohue A, Li G, Del Rosario G, He J, Liu L, Ng C, Su D, Lewis Phillips GD, Kozak KR, Yu SF, Xu K, Leipold D, Wai J. Development of Efficient Chemistry to Generate Site-Specific Disulfide-Linked Protein– and Peptide–Payload Conjugates: Application to THIOMAB Antibody–Drug Conjugates. Bioconjug Chem 2017. [DOI: 10.1021/acs.bioconjchem.7b00258] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jack D. Sadowsky
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Fang Fan
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Changrong He
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yanli Wang
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Gang Yan
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Hui Yao
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Zijin Xu
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Shanique Martin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Phillip Chu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Aimee O’Donohue
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoffrey Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luna Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dian Su
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Katherine R. Kozak
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas Leipold
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| |
Collapse
|
55
|
Rincon-Restrepo M, Mayer A, Hauert S, Bonner DK, Phelps EA, Hubbell JA, Swartz MA, Hirosue S. Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses. Biomaterials 2017; 132:48-58. [PMID: 28407494 DOI: 10.1016/j.biomaterials.2017.03.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Nanoparticle delivery systems are known to enhance the immune response to soluble antigens (Ags) and are thus a promising tool for the development of new vaccines. Our laboratory has engineered two different nanoparticulate systems in which Ag is either encapsulated within the core of polymersomes (PSs) or decorated onto the surface of nanoparticles (NPs). Previous studies showed that PSs are better at enhancing CD4 T cells and antibody titers, while NPs preferentially augment cytotoxic CD8 T cells. Herein, we demonstrate that the differential activation of T cell immunity reflects differences in the modes of intracellular trafficking and distinct biodistribution of the Ag in lymphoid organs, which are both driven by the properties of each nanocarrier. Furthermore, we found that Ags within PSs promoted better CD4 T cell activation and induced a higher frequency of CD4 T follicular helper (Tfh) cells. These differences correlated with changes in the frequency of germinal center B cells and plasma cell formation, which reflects the previously observed antibody titers. Our results show that PSs are a promising vector for the delivery of Ags for B cell vaccine development. This study demonstrates that nanocarrier design has a large impact on the quality of the induced adaptive immune response.
Collapse
Affiliation(s)
- Marcela Rincon-Restrepo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aaron Mayer
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sylvie Hauert
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel K Bonner
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edward A Phelps
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Melody A Swartz
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
56
|
Long MJC, Poganik JR, Ghosh S, Aye Y. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology. ACS Chem Biol 2017; 12:586-600. [PMID: 28068059 DOI: 10.1021/acschembio.6b01148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.
Collapse
Affiliation(s)
- Marcus J. C. Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Jesse R. Poganik
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Souradyuti Ghosh
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
57
|
Cianciola NL, Chung S, Manor D, Carlin CR. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol 2017; 91:e01904-16. [PMID: 28077646 PMCID: PMC5331795 DOI: 10.1128/jvi.01904-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich "lipid rafts." Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes.IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune-mediated pathology have been a particularly rich source of information regarding intracellular protein trafficking. Our studies with the early region 3-encoded RIDα protein also provided fundamental new information regarding mechanisms of nonvesicular lipid transport and the flow of molecular information at membrane contacts between different organelles. We describe a new pathway that delivers cholesterol from endosomes to the endoplasmic reticulum, where it is esterified and stored in lipid droplets. Although lipid droplets are attracting renewed interest from the standpoint of normal physiology and human diseases, including those resulting from viral infections, experimental model systems for evaluating how and why they accumulate are still limited. Our studies also revealed an intriguing relationship between lipid droplets and innate immunity that may represent a new paradigm for viruses utilizing these organelles.
Collapse
Affiliation(s)
- Nicholas L Cianciola
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stacey Chung
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cathleen R Carlin
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
58
|
Pillow TH, Sadowsky JD, Zhang D, Yu SF, Del Rosario G, Xu K, He J, Bhakta S, Ohri R, Kozak KR, Ha E, Junutula JR, Flygare JA. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci 2017; 8:366-370. [PMID: 28451181 PMCID: PMC5365059 DOI: 10.1039/c6sc01831a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
Disulfide bonds provide a bioactivatable connection with applications in imaging and therapy. The circulation stability and intracellular release of disulfides are problematically coupled in that increasing stability causes a corresponding decrease in cleavage and payload release. However, an antibody offers the potential for a reversible stabilization. We examined this by attaching a small molecule directly to engineered cysteines in an antibody. At certain sites this unhindered disulfide was stable in circulation yet cellular internalization and antibody catabolism generated a disulfide catabolite that was rapidly reduced. We demonstrated that this stable connection and facile release is applicable to a variety of payloads. The ability to reversibly stabilize a labile functional group with an antibody may offer a way to improve targeted probes and therapeutics.
Collapse
Affiliation(s)
- Thomas H Pillow
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Jack D Sadowsky
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Donglu Zhang
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Shang-Fan Yu
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Geoffrey Del Rosario
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Keyang Xu
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Jintang He
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Sunil Bhakta
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Rachana Ohri
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Katherine R Kozak
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Edward Ha
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Jagath R Junutula
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - John A Flygare
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| |
Collapse
|
59
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016; 56:1319-1323. [PMID: 27981718 DOI: 10.1002/anie.201610302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/19/2022]
Abstract
Efficient delivery of biomacromolecules (e.g., proteins, nucleic acids) into cell cytosol remains a critical challenge for the development of macromolecular therapeutics or diagnostics. To date, most common approaches to assess cytosolic delivery rely on fluorescent labeling of macromolecules with an "always on" reporter and subcellular imaging of endolysosomal escape by confocal microscopy. This strategy is limited by poor signal-to-noise ratio and only offers low throughput, qualitative information. Herein we describe a quantitative redox-activatable sensor (qRAS) for the real-time monitoring of cytosolic delivery of macromolecules. qRAS-labeled macromolecules are silent (off) inside the intact endocytic organelles, but can be turned on by redox activation after endolysosomal disruption and delivery into the cytosol, thereby greatly improving the detection accuracy. In addition to confocal microscopy, this quantitative sensing technology allowed for a high-throughput screening of a panel of polymer carriers toward efficient cytosolic delivery of model proteins on a plate reader. The simple and versatile qRAS design offers a useful tool for the investigation of new strategies for endolysosomal escape of biomacromolecules to facilitate the development of macromolecular therapeutics for a variety of disease indications.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Min Luo
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Chengqiong Mao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Qi Wei
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Yang Li
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
60
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox‐Activatable Fluorescent Sensor for the High‐Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Min Luo
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Chengqiong Mao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Qi Wei
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Tian Zhao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Yang Li
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Gang Huang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jinming Gao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| |
Collapse
|
61
|
Valeur E, Knerr L, Ölwegård-Halvarsson M, Lemurell M. Targeted delivery for regenerative medicines: an untapped opportunity for drug conjugates. Drug Discov Today 2016; 22:841-847. [PMID: 27988360 DOI: 10.1016/j.drudis.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
Regenerative approaches are promising avenues to effectively cure diseases rather than merely treating symptoms, but are associated with concerns around proliferation in other organs. Given that targeted delivery holds the promise of delivering a drug precisely to its desired site of action, usually with the prospect of increasing the therapeutic index, it can be considered as an essential enabler of regenerative medicines. Although significant progress has been made predominantly in oncology for the delivery of cytotoxic drugs using antibody-drug conjugates (ADCs), the physiological conditions and safety requirements for regenerative medicines are very different. Drug conjugates need to be approached differently and, we herein suggest using a broader range of homing modalities and a specific framework to develop safe linkers.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden.
| | - Laurent Knerr
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Maria Ölwegård-Halvarsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| |
Collapse
|
62
|
Huang X, Hu Q, Lai Y, Morales DP, Clegg DO, Reich NO. Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10732-10737. [PMID: 27787919 DOI: 10.1002/adma.201603318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Qirui Hu
- Center for Stem Cell Biology and Engineering, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Yifan Lai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Demosthenes P Morales
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
63
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|
64
|
Kelly L, Kratschmer C, Maier KE, Yan AC, Levy M. Improved Synthesis and In Vitro Evaluation of an Aptamer Ribosomal Toxin Conjugate. Nucleic Acid Ther 2016; 26:156-65. [PMID: 27228412 DOI: 10.1089/nat.2015.0599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Delivery of toxins, such as the ricin A chain, Pseudomonas exotoxin, and gelonin, using antibodies has had some success in inducing specific toxicity in cancer treatments. However, these antibody-toxin conjugates, called immunotoxins, can be bulky, difficult to express, and may induce an immune response upon in vivo administration. We previously reported delivery of a recombinant variant of gelonin (rGel) by the full-length prostate-specific membrane antigen (PSMA) binding aptamer, A9, to potentially circumvent some of these problems. Here, we report a streamlined approach to generating aptamer-rGel conjugates utilizing a chemically synthesized minimized form of the A9 aptamer. Unlike the full-length A9 aptamer, this minimized variant can be chemically synthesized with a 5' terminal thiol. This facilitates the large scale synthesis and generation of aptamer toxin conjugates linked by a reducible disulfide linkage. Using this approach, we generated aptamer-toxin conjugates and evaluated their binding specificity and toxicity. On PSMA(+) LNCaP prostate cancer cells, the A9.min-rGel conjugate demonstrated an IC50 of ∼60 nM. Additionally, we performed a stability analysis of this conjugate in mouse serum where the conjugate displayed a t1/2 of ∼4 h, paving the way for future in vivo experiments.
Collapse
Affiliation(s)
- Linsley Kelly
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York City, New York
| | - Christina Kratschmer
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York City, New York
| | - Keith E Maier
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York City, New York
| | - Amy C Yan
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York City, New York
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York City, New York
| |
Collapse
|
65
|
Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands. Eur J Med Chem 2016; 121:132-142. [PMID: 27236069 DOI: 10.1016/j.ejmech.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022]
Abstract
Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application.
Collapse
|
66
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
67
|
Ku M, Hong Y, Heo D, Lee E, Hwang S, Suh JS, Yang J. In vivo sensing of proteolytic activity with an NSET-based NIR fluorogenic nanosensor. Biosens Bioelectron 2016; 77:471-7. [DOI: 10.1016/j.bios.2015.09.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
|
68
|
Ma B, Ma Q, Wang H, Zhang G, Zhang H, Wang X. Clinical efficacy and safety of T-DM1 for patients with HER2-positive breast cancer. Onco Targets Ther 2016; 9:959-76. [PMID: 27013890 PMCID: PMC4778787 DOI: 10.2147/ott.s100499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to evaluate the therapeutic efficacy and safety of trastuzumab emtansine (T-DM1) for the treatment of patients with human epidermal growth factor receptor 2-positive breast cancer. Methods We performed a systemic review and meta-analysis of the relevant published clinical studies. A computerized search was performed for controlled clinical trials of T-DM1 in targeted treatment. Overall survival, progression-free survival, objective response rate, symptom progression free, and adverse events (AEs) were evaluated. Results Eight eligible trials with a total of 2,016 patients with breast cancer were included in the present meta-analysis. The treatment of patients with breast cancer with T-DM1 was associated with significantly increased overall and progression-free survival when compared with controls (P<0.0001). An analysis of the objective response rate and symptom progression free also demonstrated favorable results for T-DM1 treatment (P≤0.0001). There was no significant difference between the T-DM1 and control groups with respect to nonhematologic or hematologic AEs (P=0.99 and P=0.30, respectively). Conclusion Overall, T-DM1 is efficacious in the treatment of patients with human epidermal growth factor receptor 2-positive breast cancer and low rates of AEs compared with controls.
Collapse
Affiliation(s)
- Bo Ma
- Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, People's Republic of China
| | - Qianqian Ma
- University Hospital of Tuebingen, Tuebingen, Germany
| | - Hongqiang Wang
- Department of Oncology, Hospital of Zhoushan, Zhoushan, Zhejiang, People's Republic of China
| | - Guolei Zhang
- Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, People's Republic of China
| | - Huiying Zhang
- Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, People's Republic of China
| | - Xiaohong Wang
- Affiliated Central Hospital of Huzhou Teachers College, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
69
|
Wang Y, Lv S, Deng M, Tang Z, Chen X. A charge-conversional intracellular-activated polymeric prodrug for tumor therapy. Polym Chem 2016. [DOI: 10.1039/c5py01618e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH and redox dual responsive polymer–PTX conjugate with a prolonged circulation time, enhanced cellular internalization and timely intracellular drug release, is reported.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
- Key Laboratory of Polymer Ecomaterials
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Mingxiao Deng
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
70
|
GFP-complementation assay to detect functional CPP and protein delivery into living cells. Sci Rep 2015; 5:18329. [PMID: 26671759 PMCID: PMC4680871 DOI: 10.1038/srep18329] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023] Open
Abstract
Efficient cargo uptake is essential for cell-penetrating peptide (CPP) therapeutics, which deliver widely diverse cargoes by exploiting natural cell processes to penetrate the cell’s membranes. Yet most current CPP activity assays are hampered by limitations in assessing uptake, including confounding effects of conjugated fluorophores or ligands, indirect read-outs requiring secondary processing, and difficulty in discriminating internalization from endosomally trapped cargo. Split-complementation Endosomal Escape (SEE) provides the first direct assay visualizing true cytoplasmic-delivery of proteins at biologically relevant concentrations. The SEE assay has minimal background, is amenable to high-throughput processes, and adaptable to different transient and stable cell lines. This split-GFP-based platform can be useful to study transduction mechanisms, cellular imaging, and characterizing novel CPPs as pharmaceutical delivery agents in the treatment of disease.
Collapse
|
71
|
Van den Mooter T, Teuwen LA, Rutten A, Dirix L. Trastuzumab emtansine in advanced human epidermal growth factor receptor 2-positive breast cancer. Expert Opin Biol Ther 2015; 15:749-60. [PMID: 25865453 DOI: 10.1517/14712598.2015.1036026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ado- trastuzumab emtansine (T-DM1) is a human epidermal growth factor receptor 2 (HER2)-targeted antibody-drug conjugate composed of trastuzumab, a stable linker (MCC), and the cytotoxic agent DM1 (derivative of maytansine; mertansine). T-DM1 retains the mechanisms of action of trastuzumab, but also acts as a, selectively delivered, tubulin inhibitor. Following antigen-mediated binding to the tumor cell, T-DM1 is endocytosed and intracellularly catabolized resulting in the release of its cytotoxic moiety. AREAS COVERED T-DM1 has completed Phase III development and compared favorably with the lapatinib/capecitabine combination with a superior response rate (objective response rate [ORR]) and duration of response, longer duration of disease control (progression-free survival [PFS]), prolonged overall survival and improved tolerability and quality of life in patients with prior treatment with trastuzumab and a taxane. In a separate Phase III, T-DM1 was compared with any other chosen regimen in patients who had at least received two prior HER2-directed therapies. T-DM1 nearly doubled PFS. EXPERT OPINION T-DM1 (Kadcyla) has become the treatment of choice in second-line and beyond for patients with advanced HER2-expressing breast cancer.
Collapse
Affiliation(s)
- Tom Van den Mooter
- Sint-Augustinus Cancer Center, Department of Medical Oncology , Sint-Augustinus, Oosterveldlaan 24, 2610 Wilrijk-Antwerp , Belgium +003234433737 ;
| | | | | | | |
Collapse
|
72
|
Bagalkot V, Badgeley MA, Kampfrath T, Deiuliis JA, Rajagopalan S, Maiseyeu A. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals. J Control Release 2015; 217:243-55. [PMID: 26386437 PMCID: PMC4874242 DOI: 10.1016/j.jconrel.2015.09.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/27/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022]
Abstract
Macrophages are innate immune cells with great phenotypic plasticity, which allows them to regulate an array of physiological processes such as host defense, tissue repair, and lipid/lipoprotein metabolism. In this proof-of-principle study, we report that macrophages of the M1 inflammatory phenotype can be selectively targeted by model hybrid lipid-latex (LiLa) nanoparticles bearing phagocytic signals. We demonstrate a simple and robust route to fabricate nanoparticles and then show their efficacy through imaging and drug delivery in inflammatory disease models of atherosclerosis and obesity. Self-assembled LiLa nanoparticles can be modified with a variety of hydrophobic entities such as drug cargos, signaling lipids, and imaging reporters resulting in sub-100nm nanoparticles with low polydispersities. The optimized theranostic LiLa formulation with gadolinium, fluorescein and "eat-me" phagocytic signals (Gd-FITC-LiLa) a) demonstrates high relaxivity that improves magnetic resonance imaging (MRI) sensitivity, b) encapsulates hydrophobic drugs at up to 60% by weight, and c) selectively targets inflammatory M1 macrophages concomitant with controlled release of the payload of anti-inflammatory drug. The mechanism and kinetics of the payload discharge appeared to be phospholipase A2 activity-dependent, as determined by means of intracellular Förster resonance energy transfer (FRET). In vivo, LiLa targets M1 macrophages in a mouse model of atherosclerosis, allowing noninvasive imaging of atherosclerotic plaque by MRI. In the context of obesity, LiLa particles were selectively deposited to M1 macrophages within inflamed adipose tissue, as demonstrated by single-photon intravital imaging in mice. Collectively, our results suggest that phagocytic signals can preferentially target inflammatory macrophages in experimental models of atherosclerosis and obesity, thus opening the possibility of future clinical applications that diagnose/treat these conditions. Tunable LiLa nanoparticles reported here can serve as a model theranostic platform with application in various types of imaging of the diseases such as cardiovascular disorders, obesity, and cancer where macrophages play a pathogenic role.
Collapse
Affiliation(s)
- Vaishali Bagalkot
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Marcus A Badgeley
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, United States
| | - Thomas Kampfrath
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, United States
| | - Jeffrey A Deiuliis
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD 21201, United States; Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, United States
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD 21201, United States; Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, United States
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD 21201, United States; Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
73
|
Abstract
INTRODUCTION Trastuzumab emtansine (T-DM1) is a human epidermal growth factor receptor 2 (HER2)-targeted antibody-drug conjugate (ADC) composed of trastuzumab, a stable linker (MCC), and the cytotoxic agent DM1 (derivative of maytansine). Administration of T-DM1 leads to limited systemic exposure of free DM1, with no evidence of DM1 accumulation after repeated dosing. AREAS COVERED Phase I and Phase II clinical trials with T-DM1 as a single agent and in combination with paclitaxel, docetaxel, and pertuzumab have shown substantial clinical activity and a favorable safety profile. A randomized, open-label, first-line trial comparing trastuzumab and docetaxel with single agent T-DM1 showed a significant improved progression-free survival for T-DM1. EXPERT OPINION T-DM1 has successfully completed second-line Phase III development for advanced HER2-positive breast cancer. The Phase III EMILIA study demonstrated an overall survival benefit for T-DM1 compared to the combination of lapatinib and capecitabine in taxane-trastuzumab pretreated patients. T-DM1 may offer delivery on a personalized basis of very potent cytotoxic agents in a cellular selective manner.
Collapse
Affiliation(s)
- Luc Y Dirix
- St Augustinus Hospital, Translational Cancer Research Group Antwerp, Oosterveldlaan 24, Wilrijk-Antwerp, 2610, Belgium
| | | | | | | |
Collapse
|
74
|
Stolzoff M, Ekladious I, Colby AH, Colson YL, Porter TM, Grinstaff MW. Synthesis and Characterization of Hybrid Polymer/Lipid Expansile Nanoparticles: Imparting Surface Functionality for Targeting and Stability. Biomacromolecules 2015; 16:1958-66. [PMID: 26053219 DOI: 10.1021/acs.biomac.5b00336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The size, drug loading, drug release kinetics, localization, biodistribution, and stability of a given polymeric nanoparticle (NP) system depend on the composition of the NP core as well as its surface properties. In this study, novel, pH-responsive, and lipid-coated NPs, which expand in size from a diameter of approximately 100 to 1000 nm in the presence of a mildly acidic pH environment, are synthesized and characterized. Specifically, a combined miniemulsion and free-radical polymerization method is used to prepare the NPs in the presence of PEGylated lipids. These PEGylated-lipid expansile NPs (PEG-L-eNPs) combine the swelling behavior of the polymeric core of expansile NPs with the improved colloidal stability and surface functionality of PEGylated liposomes. The surface functionality of PEG-L-eNPs allows for the incorporation of folic acid (FA) and folate receptor-targeting. The resulting hybrid polymer/lipid nanocarriers, FA-PEG-L-eNPs, exhibit greater in vitro uptake and potency when loaded with paclitaxel compared to nontargeted PEG-L-eNPs.
Collapse
Affiliation(s)
| | | | | | - Yolonda L Colson
- §Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
75
|
Walde P, Umakoshi H, Stano P, Mavelli F. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem Commun (Camb) 2015; 50:10177-97. [PMID: 24921467 DOI: 10.1039/c4cc02812k] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article deals with artificial vesicles and their membranes as reaction promoters and regulators. Among the various molecular assemblies which can form in an aqueous medium from amphiphilic molecules, vesicle systems are unique. Vesicles compartmentalize the aqueous solution in which they exist, independent on whether the vesicles are biological vesicles (existing in living systems) or whether they are artificial vesicles (formed in vitro from natural or synthetic amphiphiles). After the formation of artificial vesicles, their aqueous interior (the endovesicular volume) may become - or may be made - chemically different from the external medium (the exovesicular solution), depending on how the vesicles are prepared. The existence of differences between endo- and exovesicular composition is one of the features on the basis of which biological vesicles contribute to the complex functioning of living organisms. Furthermore, artificial vesicles can be formed from mixtures of amphiphiles in such a way that the vesicle membranes become molecularly, compositionally and organizationally highly complex, similarly to the lipidic matrix of biological membranes. All the various properties of artificial vesicles as membranous compartment systems emerge from molecular assembly as these properties are not present in the individual molecules the system is composed of. One particular emergent property of vesicle membranes is their possible functioning as promoters and regulators of chemical reactions caused by the localization of reaction components, and possibly catalysts, within or on the surface of the membranes. This specific feature is reviewed and highlighted with a few selected examples which range from the promotion of decarboxylation reactions, the selective binding of DNA or RNA to suitable vesicle membranes, and the reactivation of fragmented enzymes to the regulation of the enzymatic synthesis of polymers. Such type of emergent properties of vesicle membranes may have been important for the prebiological evolution of protocells, the hypothetical compartment systems preceding the first cells in those chemical and physico-chemical processes that led to the origin of life.
Collapse
Affiliation(s)
- Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
76
|
Abstract
The efficient folding, assembly and secretion of proteins from mammalian cells is a critically important process for normal cell physiology. Breakdown of the ability of cells to secrete functional proteins leads to disease pathologies caused by a lack of protein function or by cell death resulting from an aggravated stress response. Central to the folding of secreted proteins is the formation of disulfides which both aid folding and provide stability to the protein structure. For disulfides to form correctly necessitates the appropriate redox environment within the endoplasmic reticulum: too reducing and disulfides will not form, too oxidizing and non-native disulfides will not be resolved. How the endoplasmic reticulum maintains the correct redox balance is unknown. Although we have a good appreciation of the processes leading to a more oxidizing environment, our understanding of how any counterbalancing reductive pathway operates is limited. The present review looks at potential mechanisms for introducing reducing equivalents into the endoplasmic reticulum and discusses an approach to test these hypotheses.
Collapse
|
77
|
Wang S, Kaltashov IA. Identification of reduction-susceptible disulfide bonds in transferrin by differential alkylation using O(16)/O(18) labeled iodoacetic acid. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:800-807. [PMID: 25716754 PMCID: PMC4401651 DOI: 10.1007/s13361-015-1082-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Stabilization of native three-dimensional structure has been considered for decades to be the main function of disulfide bonds in proteins. More recently, it was becoming increasingly clear that in addition to this static role, disulfide bonds are also important for many other aspects of protein behavior, such as regulating protein function in a redox-sensitive fashion. Dynamic disulfide bonds can be taken advantage of as candidate anchor sites for site-specific modification (such as PEGylation of conjugation to a drug molecule), but are also frequently implicated in protein aggregation (through disulfide bond scrambling leading to formation of intermolecular covalent linkages). A common feature of all these labile disulfide bonds is their high susceptibility to reduction, as they need to be selectively regulated by either specific local redox conditions in vivo or well-controlled experimental conditions in vitro. The ability to identify labile disulfide bonds in a cysteine-rich protein can be extremely beneficial for a variety of tasks ranging from understanding the mechanistic aspects of protein function to identification of troublesome "hot spots" in biopharmaceutical products. Herein, we describe a mass spectrometry (MS)-based method for reliable identification of labile disulfide bonds, which consists of limited reduction, differential alkylation with an O(18)-labeled reagent, and LC-MS/MS analysis. Application of this method to a cysteine-rich protein transferrin allows the majority of its native disulfide bonds to be measured for their reduction susceptibility, which appears to reflect both solvent accessibility and bond strain energy.
Collapse
Affiliation(s)
| | - Igor A. Kaltashov
- address correspondence to: Igor A. Kaltashov, Department of Chemistry, University of Massachusetts-Amherst, 140 Thatcher Drive, LSL N369, Amherst, MA 01003, Tel: (413) 545-1460, Fax: (413) 545-4490,
| |
Collapse
|
78
|
Thomson PIT, Camus VL, Hu Y, Campbell CJ. Series of Quinone-Containing Nanosensors for Biologically Relevant Redox Potential Determination by Surface-Enhanced Raman Spectroscopy. Anal Chem 2015; 87:4719-25. [DOI: 10.1021/ac504795s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Patrick I. T. Thomson
- School of Chemistry, University of Edinburgh, Joseph
Black Building, David Brewster Road, Edinburgh, United Kingdom EH9 3FJ
| | - Victoria L. Camus
- School of Chemistry, University of Edinburgh, Joseph
Black Building, David Brewster Road, Edinburgh, United Kingdom EH9 3FJ
| | - Yuyu Hu
- School of Chemistry, University of Edinburgh, Joseph
Black Building, David Brewster Road, Edinburgh, United Kingdom EH9 3FJ
| | - Colin J. Campbell
- School of Chemistry, University of Edinburgh, Joseph
Black Building, David Brewster Road, Edinburgh, United Kingdom EH9 3FJ
| |
Collapse
|
79
|
Böhme D, Beck-Sickinger AG. Drug delivery and release systems for targeted tumor therapy. J Pept Sci 2015; 21:186-200. [PMID: 25703117 DOI: 10.1002/psc.2753] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022]
Abstract
Most toxic agents currently used for chemotherapy show a narrow therapeutic window, because of their inability to distinguish between healthy and cancer cells. Targeted drug delivery offers the possibility to overcome this issue by selectively addressing structures on the surface of cancer cells, therefore reducing undesired side effects. In this broad field, peptide-drug conjugates linked by intracellular cleavable structures have evolved as highly promising agents. They can specifically deliver toxophores to tumor cells by targeting distinct receptors overexpressed in cancer. In this review, we focus on these compounds and describe important factors to develop a highly efficient peptide-drug conjugate. The necessary properties of tumor-targeting peptides are described, and the different options for cleavable linkers used to connect toxic agents and peptides are discussed, and synthetic considerations for the introduction of these structures are reported. Furthermore, recent examples and current developments of peptide-drug conjugates are critically evaluated with a special focus on the applied linker structures and their future use in cancer therapy.
Collapse
Affiliation(s)
- David Böhme
- Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, 04103, Leipzig, Germany
| | | |
Collapse
|
80
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
81
|
Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release 2014; 195:147-54. [DOI: 10.1016/j.jconrel.2014.06.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
|
82
|
Yen HC, Cabral H, Mi P, Toh K, Matsumoto Y, Liu X, Koori H, Kim A, Miyazaki K, Miura Y, Nishiyama N, Kataoka K. Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy. ACS NANO 2014; 8:11591-11602. [PMID: 25333568 DOI: 10.1021/nn504836s] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanomedicines capable of smart operation at the targeted site have the potential to achieve the utmost therapeutic benefits. Providing nanomedicines that respond to endogenous stimuli with an additional external trigger may improve the spatiotemporal control of their functions, while avoiding drawbacks from their inherent tissue distribution. Herein, by exploiting the permeabilization of endosomes induced by photosensitizer agents upon light irradiation, we complemented the intracellular action of polymeric micelles incorporating camptothecin (CPT), which can sharply release the loaded drug in response to the reductive conditions of the cytosol, as an effective strategy for precisely controlling the function of these nanomedicines in vivo, while advancing toward a light-activated chemotherapy. These camptothecin-loaded micelles (CPT/m) were stable in the bloodstream, with minimal drug release in extracellular conditions, leading to prolonged blood circulation and high accumulation in xenografts of rat urothelial carcinoma. With the induction of endosomal permeabilization with the clinically approved photosensitizer, Photofrin, the CPT/m escaped from the endocytic vesicles of cancer cells into the cytosol, as confirmed both in vitro and in vivo by real-time confocal laser microscopies, accelerating the drug release from the micelles only in the irradiated tissues. This spatiotemporal switch significantly enhanced the in vivo antitumor efficacy of CPT/m without eliciting any toxicity, even at a dose 10-fold higher than the maximum tolerated dose of free CPT. Our results indicate the potential of reduction-sensitive drug-loaded polymeric micelles for developing safe chemotherapies after activation by remote triggers, such as light, which are capable of permeabilizing endosomal compartments.
Collapse
Affiliation(s)
- Hung-Chi Yen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 2014; 12:319-37. [PMID: 25421898 DOI: 10.1517/17425247.2014.953051] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNPs) are one of the most promising inorganic drug delivery systems (DDSs). The design and development of tumour-targeted MSNPs with stimuli-responsive drug release capability aim at enhancing the efficiency and minimising the side effects of anti-tumour drugs for cancer therapy. AREAS COVERED This review provides an overview of the scientific advances in MSNPs for tumour-targeted stimuli-responsive drug delivery. The key factors that govern the passive accumulation of MSNPs within solid tumours such as size, shape and surface functionalisation are roughly described. The different active targeting strategies for the specific retention and uptake of MSNPs by tumour cells are also outlined. The approaches developed so far for the synthesis of smart MSNPs capable of releasing the trapped drugs in response to internal or external stimuli and their applications are reviewed. Critical considerations in the use of MSNPs for the treatment of cancer treatment are discussed. The future prospects and key factors concerning the clinical application of MSNPs are considered throughout the manuscript. EXPERT OPINION MSNPs are promising nanocarriers to efficiently transport and site-specifically deliver highly toxic drugs, such as chemotherapeutic agents for cancer treatment. However, there are certain issues that should be overcome to improve the suitability of MSNPs for clinical applications. Increasing the penetration capability of MSNPs within tumour tissues, providing them of appropriate colloidal stability in physiological fluids and ensuring that their active targeting capability and stimuli-responsive performance are preserved in complex biological media are of foremost significance. Few in vivo evaluation tests of MSNPs have been reported and much research effort into this field is mandatory to be able to move from bench to bedside.
Collapse
Affiliation(s)
- Alejandro Baeza
- Departamento Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital , 12 de Octubre i+12. Pza. Ramón y Cajal s/n, 28040 Madrid , Spain
| | | | | |
Collapse
|
84
|
Lv S, Tang Z, Zhang D, Song W, Li M, Lin J, Liu H, Chen X. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J Control Release 2014; 194:220-7. [DOI: 10.1016/j.jconrel.2014.09.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/30/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
85
|
Weller J, Kizina KM, Can K, Bao G, Müller M. Response properties of the genetically encoded optical H2O2 sensor HyPer. Free Radic Biol Med 2014; 76:227-41. [PMID: 25179473 DOI: 10.1016/j.freeradbiomed.2014.07.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/20/2023]
Abstract
Reactive oxygen species mediate cellular signaling and neuropathologies. Hence, there is tremendous interest in monitoring (sub)cellular redox conditions. We evaluated the genetically engineered redox sensor HyPer in mouse hippocampal cell cultures. Two days after lipofection, neurons and glia showed sufficient expression levels, and H2O2 reversibly and dose-dependently increased the fluorescence ratio of cytosolic HyPer. Yet, repeated H2O2 treatment caused progressively declining responses, and with millimolar doses an apparent recovery started while H2O2 was still present. Although HyPer should be H2O2 specific, it seemingly responded also to other oxidants and altered cell-endogenous superoxide production. Control experiments with the SypHer pH sensor confirmed that the HyPer ratio responds to pH changes, decreasing with acidosis and increasing during alkalosis. Anoxia/reoxygenation evoked biphasic HyPer responses reporting apparent reduction/oxidation; replacing Cl(-) exerted only negligible effects. Mitochondria-targeted HyPer readily responded to H2O2-albeit less intensely than cytosolic HyPer. With ratiometric two-photon excitation, H2O2 increased the cytosolic HyPer ratio. Time-correlated fluorescence-lifetime imaging microscopy (FLIM) revealed a monoexponential decay of HyPer fluorescence, and H2O2 decreased fluorescence lifetimes. Dithiothreitol failed to further reduce HyPer or to induce reasonable FLIM and two-photon responses. By enabling dynamic recordings, HyPer is superior to synthetic redox-sensitive dyes. Its feasibility for two-photon excitation also enables studies in more complex preparations. Based on FLIM, quantitative analyses might be possible independent of switching excitation wavelengths. Yet, because of its pronounced pH sensitivity, adaptation to repeated oxidation, and insensitivity to reducing stimuli, HyPer responses have to be interpreted carefully. For reliable data, side-by-side pH monitoring with SypHer is essential.
Collapse
Affiliation(s)
- Jonathan Weller
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Kathrin M Kizina
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Karolina Can
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Guobin Bao
- Institut für Neurophysiologie und Zelluläre Biophysik, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany.
| |
Collapse
|
86
|
Sadeghi S, Olevsky O, Hurvitz SA. Profiling and targeting HER2-positive breast cancer using trastuzumab emtansine. Pharmgenomics Pers Med 2014; 7:329-38. [PMID: 25378946 PMCID: PMC4207068 DOI: 10.2147/pgpm.s47524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE This article reviews the mechanism of action of trastuzumab emtansine (T-DM1), existing clinical data relating to its use for human growth factor receptor 2 (HER2)-positive breast cancer, potential pathways of resistance, and ongoing studies evaluating this novel agent. BACKGROUND The development of HER2-targeted therapies has dramatically improved clinical outcomes for patients with any stage of HER2-positive breast cancer. Although the positive effect of these treatments cannot be overstated, treatment resistance develops in the vast majority of those diagnosed with stage IV HER2-positive breast cancer. Moreover, HER2-directed therapies are most effective when combined with cytotoxic chemotherapy. The need for chemotherapy leads to significant adverse effects and a clear decrease in quality of life for those dealing with a chronic incurable disease. T-DM1 is a recently developed, novel antibody-drug conjugate in which highly potent maytanisinoid chemotherapy is stably linked to the HER2-targeted monoclonal antibody, trastuzumab. RESULTS Preclinical and phase 1-3 clinical data support the significant antitumor activity of T-DM1. Importantly, several randomized studies also now demonstrate its clear superiority in terms of tolerability compared with standard chemotherapy-containing regimens. Its role in the treatment of trastuzumab-resistant metastatic breast cancer has now been established on the basis of the results of two phase 3 randomized studies, EMILIA (An Open-label Study of Trastuzumab Emtansine (T-DM1) vs Capecitabine + Lapatinib in Patients With HER2-positive Locally Advanced or Metastatic Breast Cancer) and TH3RESA (A Study of Trastuzumab Emtansine in Comparison With Treatment of Physician's Choice in Patients With HER2-positive Breast Cancer Who Have Received at Least Two Prior Regimens of HER2-directed Therapy). The most common toxicities seen with T-DM1 are thrombocytopenia and an elevation in liver transaminases. Significant cardiac toxicity has not been demonstrated. Both in vitro cell line-based studies as well as exploratory analyses of archived tumor samples from the clinical trials are seeking to understand potential mechanisms of resistance to T-DM1. Ongoing studies are also evaluating the use of T-DM1 in the first-line metastatic, neoadjuvant, and adjuvant settings, as well as in combination with other targeted therapies. CONCLUSION T-DM1 represents the first successfully developed antibody drug conjugate for the treatment of HER2-positive advanced breast cancer.
Collapse
Affiliation(s)
- Saeed Sadeghi
- Division of Hematology & Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Olga Olevsky
- Division of Hematology & Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sara A Hurvitz
- Division of Hematology & Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
87
|
Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol J 2014; 9:282-93. [PMID: 24497389 DOI: 10.1002/biot.201300199] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
88
|
Bao Y, Guo Y, Zhuang X, Li D, Cheng B, Tan S, Zhang Z. d-α-Tocopherol Polyethylene Glycol Succinate-Based Redox-Sensitive Paclitaxel Prodrug for Overcoming Multidrug Resistance in Cancer Cells. Mol Pharm 2014; 11:3196-209. [DOI: 10.1021/mp500384d] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuling Bao
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| | - Yuanyuan Guo
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| | - Xiangting Zhuang
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| | - Dan Li
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| | - Bolin Cheng
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| | - Songwei Tan
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy, ‡National Engineering Research Center
for Nanomedicine, Huazhong University of Science and Technology Wuhan 430030, P.R. China
| |
Collapse
|
89
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
90
|
Phillips DJ, Gibson MI. Redox-sensitive materials for drug delivery: targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems. Antioxid Redox Signal 2014; 21:786-803. [PMID: 24219144 DOI: 10.1089/ars.2013.5728] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SIGNIFICANCE The development of responsive drug delivery systems (DDS) holds great promise as a tool for improving the pharmacokinetic properties of drug compounds. Redox-sensitive systems are particularly attractive given the rich variety of redox gradients present in vivo. These gradients, where the circulation is generally considered oxidizing and the cellular environment is substantially more reducing, provide attractive options for targeted, specific cargo delivery. RECENT ADVANCES Experimental evidence suggests that a "one size fits all" redox gradient does not exist. Rather, there are subtle differences in redox potential within a cell, while the chemical nature of reducing agents in these microenvironments varies. Recent works have demonstrated an ability to modulate the degradation rate of redox-susceptible groups and, hence, provide new tools to engineer precision-targeted DDS. CRITICAL ISSUES Modern synthetic and macromolecular chemistry provides access to a wide range of redox-susceptible architectures. However, in order to utilize these in real applications, the actual chemical nature of the redox-susceptible group, the sub-cellular location being targeted, and the redox microenvironment being encountered should be considered in detail. This is critical to avoid the over-simplification possible when using non-biological reducing agents, which may provide inaccurate kinetic information, and to ensure these materials can be advanced beyond simple "on/off" systems. Furthermore, a strong case can be made for the use of biorelevant reducing agents such as glutathione when demonstrating a materials redox response. FUTURE DIRECTIONS A further understanding of the complexities of the extra- and intracellular microenvironments would greatly assist with the design and application of DDS.
Collapse
Affiliation(s)
- Daniel J Phillips
- Department of Chemistry, University of Warwick , Coventry, United Kingdom
| | | |
Collapse
|
91
|
Erazo-Oliveras A, Najjar K, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein delivery into live cells by incubation with an endosomolytic agent. Nat Methods 2014; 11:861-7. [PMID: 24930129 PMCID: PMC4131206 DOI: 10.1038/nmeth.2998] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Abstract
We report that a tetramethylrhodamine-labeled dimer of the cell-penetrating peptide TAT, dfTAT, penetrates live cells by escaping from endosomes with high efficiency. By mediating endosomal leakage, dfTAT also delivers proteins into cultured cells after a simple co-incubation procedure. We achieved cytosolic delivery in several cell lines and primary cells and observed that only a relatively small amount of material remained trapped inside endosomes. Delivery did not require a binding interaction between dfTAT and a protein, multiple molecules could be delivered simultaneously, and delivery could be repeated. dfTAT-mediated delivery did not noticeably affect cell viability, cell proliferation or gene expression. dfTAT-based intracellular delivery should be useful for cell-based assays, cellular imaging applications and the ex vivo manipulation of cells.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Laila Dayani
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Gregory A. Johnson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
92
|
Rahbek-Clemmensen T, Bay T, Eriksen J, Gether U, Jørgensen TN. The serotonin transporter undergoes constitutive internalization and is primarily sorted to late endosomes and lysosomal degradation. J Biol Chem 2014; 289:23004-23019. [PMID: 24973209 DOI: 10.1074/jbc.m113.495754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the "long loop" recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation.
Collapse
Affiliation(s)
- Troels Rahbek-Clemmensen
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, and University of Copenhagen, DK-2200 Copenhagen, Denmark; Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Bay
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, and University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob Eriksen
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, and University of Copenhagen, DK-2200 Copenhagen, Denmark; Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, and University of Copenhagen, DK-2200 Copenhagen, Denmark; Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Trine Nygaard Jørgensen
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, and University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
93
|
Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 2014; 187:133-44. [PMID: 24874289 DOI: 10.1016/j.jconrel.2014.05.036] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 12/14/2022]
Abstract
The ability to efficiently deliver a drug to a tumor site is dependent on a wide range of physiologically imposed design constraints. Nanotechnology provides the possibility of creating delivery vehicles where these design constraints can be decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing targeting efficiency and efficacy. Here we review the design strategies of the two FDA-approved antibody-drug conjugates (Brentuximab vedotin and Trastuzumab emtansine) and the four FDA-approved nanoparticle-based drug delivery platforms (Doxil, DaunoXome, Marqibo, and Abraxane) in the context of the challenges associated with systemic targeted delivery of a drug to a solid tumor. The lessons learned from these nanomedicines provide an important insight into the key challenges associated with the development of new platforms for systemic delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Charlene M Dawidczyk
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Chloe Kim
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jea Ho Park
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Luisa M Russell
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kwan Hyi Lee
- KIST Biomedical Research Institute, 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Martin G Pomper
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
94
|
Abstract
ABSTRACT
During infection,
Mycobacterium tuberculosis
is exposed to a diverse array of microenvironments in the human host, each with its own unique set of redox conditions. Imbalances in the redox environment of the bacillus or the host environment serve as stimuli, which could regulate virulence. The ability of
M. tuberculosis
to evade the host immune response and cause disease is largely owing to the capacity of the mycobacterium to sense changes in its environment, such as host-generated gases, carbon sources, and pathological conditions, and alter its metabolism and redox balance accordingly for survival. In this article we discuss the redox sensors that are, to date, known to be present in
M. tuberculosis
, such as the Dos dormancy regulon, WhiB family, anti-σ factors, and MosR, in addition to the strategies present in the bacillus to neutralize free radicals, such as superoxide dismutases, catalase-peroxidase, thioredoxins, and methionine sulfoxide reductases, among others.
M. tuberculosis
is peculiar in that it appears to have a hierarchy of redox buffers, namely, mycothiol and ergothioneine. We discuss the current knowledge of their biosynthesis, function, and regulation. Ergothioneine is still an enigma, although it appears to have distinct and overlapping functions with mycothiol, which enable it to protect against a wide range of toxic metabolites and free radicals generated by the host. Developing approaches to quantify the intracellular redox status of the mycobacterium will enable us to determine how the redox balance is altered in response to signals and environments that mimic those encountered in the host.
Collapse
|
95
|
Hiller C, Nissen A, Benítez D, Comini MA, Krauth-Siegel RL. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage. PLoS Pathog 2014; 10:e1004075. [PMID: 24722489 PMCID: PMC3983053 DOI: 10.1371/journal.ppat.1004075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/02/2014] [Indexed: 01/23/2023] Open
Abstract
African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px)-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I–II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I–II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective stage of T. brucei. The respective knockout of the cytosolic px I–II in the procyclic insect form resulted in cells that were fully viable in Trolox-free medium. In many cell types, mitochondria are the main source of intracellular reactive oxygen species but iron-induced oxidative lysosomal damage has been described as well. African trypanosomes are the causative agents of human sleeping sickness and the cattle disease Nagana. The parasites are obligate extracellular pathogens that multiply in the bloodstream and body fluids of their mammalian hosts and as procyclic forms in their insect vector, the tsetse fly. Bloodstream Trypanosoma brucei in which the genes for cytosolic lipid hydroperoxide-detoxifying peroxidases have been knocked out undergo an extremely rapid membrane peroxidation and lyse within less than two hours when they are cultured without an exogenous antioxidant. Here we show that the primary site of intracellular damage is the single terminal lysosome of the parasites. Disintegration of the lysosome clearly precedes damage of the mitochondrion and parasite death. Iron, acquired by the endocytosis of iron-loaded host transferrin, induces cell lysis. Contrary to the cytosolic enzymes, the respective mitochondrial peroxidase is dispensable for both in vitro proliferation and mouse infectivity. This is the first report demonstrating that cytosolic thiol peroxidases are responsible for protecting the lysosome of a cell.
Collapse
Affiliation(s)
- Corinna Hiller
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Amrei Nissen
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A. Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
96
|
Ma Y, Wu C. Revisiting the complexation between DNA and polyethylenimine – when and where –S–S– linked PEI is cleaved inside the cell. J Mater Chem B 2014; 2:3282-3291. [DOI: 10.1039/c4tb00031e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Carlini L, Manley S. Live intracellular super-resolution imaging using site-specific stains. ACS Chem Biol 2013; 8:2643-8. [PMID: 24079385 DOI: 10.1021/cb400467x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Point localization super-resolution imaging (SR) requires dyes that can cycle between fluorescent and dark states, in order for their molecular positions to be localized and create a reconstructed image. Dyes should also densely decorate biological features of interest to fully reveal structures being imaged. We tested site-specific dyes in several live-cell compatible imaging media and evaluated their performance in situ. We identify a number of new dyes and imaging medium-dye combinations for live staining, that densely highlight intracellular structures with excellent photophysical performance for SR.
Collapse
Affiliation(s)
- Lina Carlini
- Laboratory
of Experimental
Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Suliana Manley
- Laboratory
of Experimental
Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
98
|
Balce DR, Yates RM. Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells. Redox Biol 2013; 1:467-74. [PMID: 24191242 PMCID: PMC3814946 DOI: 10.1016/j.redox.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023] Open
Abstract
There is currently much interest in factors that affect redox chemistries within phagosomes of macrophages and dendritic cells. In addition to the antimicrobial role of reactive oxygen species generation within phagosomes, accumulating evidence suggests that phagosomal redox chemistries influence other phagosomal functions such as macromolecular degradation and antigen processing. Whilst the redox chemistries within many sub-cellular compartments are being heavily scrutinized with the increasing use of fluorescent probe technologies, there is a paucity of tools to assess redox conditions within phagosomes. Hence the systems that control redox homeostasis in these unique environments remain poorly defined. This review highlights current redox-sensitive probes that can measure oxidative or reductive activity in phagosomes and discusses their suitability and limitations of use. Probes that are easily targeted to the phagosome by using established approaches are emphasized. A review of redox probes and their use in macrophage and dendritic cell phagosomes. Techniques that allow for phagosomal-specific redox measurements are highlighted. Advantages and caveats of the most commonly used redox probes are included.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, AB, Canada T2N 4N1 ; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
99
|
Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Urruticoechea A, Martin-Castillo B, Menendez JA. Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget 2013; 3:1600-14. [PMID: 23307622 PMCID: PMC3681498 DOI: 10.18632/oncotarget.742] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The autophagic process, which can facilitate breast cancer resistance to endocrine, cytotoxic,
and molecularly targeted agents, is mainly regulated at the post-translational level. Although
recent studies have suggested a possible transcriptome regulation of the autophagic genes, little is
known about either the analysis tools that can be applied or the functional importance of putative
candidate genes emerging from autophagy-dedicated transcriptome studies. In this context, we
evaluated whether the constitutive activation of the autophagy machinery, as revealed by a
transcriptome analysis using an autophagy-focused polymerase chain reaction (PCR) array, might allow
for the identification of novel autophagy-specific biomarkers for intrinsic (primary) resistance to
HER2-targeted therapies. Quantitative real-time PCR (qRT-PCR)-based profiling of 84 genes involved
in autophagy revealed that, when compared to trastuzumab-sensitive SKBR3 cells, the positive
regulator of autophagic vesicle formation ATG12 (autophagy-related gene 12) was the
most differentially up-regulated gene in JIMT1 cells, a model of intrinsic cross-resistance to
trastuzumab and other HER1/2-targeting drugs. An analysis of the transcriptional status of
ATG12 in > 50 breast cancer cell lines suggested that the
ATG12 transcript is commonly upregulated in trastuzumab-unresponsive
HER2-overexpressing breast cancer cells. A lentiviral-delivered small hairpin RNA stable knockdown
of the ATG12 gene fully suppressed the refractoriness of JIMT1 cells to
trastuzumab, erlotinib, gefitinib, and lapatinib in vitro. ATG12 silencing
significantly reduced JIMT1 tumor growth induced by subcutaneous injection in nude mice. Remarkably,
the outgrowth of trastuzumab-unresponsive tumors was prevented completely when trastuzumab treatment
was administered in an ATG12-silenced genetic background. We demonstrate for the
first time the usefulness of low-density, autophagy-dedicated qRT-PCR-based platforms for monitoring
primary resistance to HER2-targeted therapies by transcriptionally screening the autophagy
interactome. The degree of predictive accuracy warrants further investigation in the clinical
situation.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology-Girona, ICO-Girona
| | | | | | | | | | | | | |
Collapse
|
100
|
Wang J, Sun X, Mao W, Sun W, Tang J, Sui M, Shen Y, Gu Z. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3670-6. [PMID: 23740675 DOI: 10.1002/adma.201300929] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/07/2013] [Indexed: 05/20/2023]
Abstract
A prodrug forms nanocapsules responsive to tumor GSH/ROS heterogeneity releasing the parent drug SN38 via thiolysis in the presence of GSH (glutathione) or via enhanced hydrolysis due to ROS (reactive oxygen species)-oxidation of the linker, giving rise to high in vitro cytotoxicity and in vivo anticancer therapeutic activity. The nanocapsules are a suitable size for tumor targeting by means of the EPR effect and have a fixed SN38 loading content of 35 wt%, ideal for translational nanomedicine.
Collapse
Affiliation(s)
- Jinqiang Wang
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|