51
|
Block A, Christensen SA, Hunter CT, Alborn HT. Herbivore-derived fatty-acid amides elicit reactive oxygen species burst in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1235-1245. [PMID: 29301018 DOI: 10.1093/jxb/erx449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 05/07/2023]
Abstract
Reactive oxygen species (ROS) can be elicited by many forms of stress, including pathogen attack, abiotic stress, damage and insect infestation. Perception of microbe- or damage-associated elicitors triggers an ROS burst in many plant species; however, the impact of herbivore fatty-acid amides on ROS elicitation remains largely unexplored. In this study we show that the lepidopteran-derived fatty-acid amide elicitor N-linolenoyl-L-glutamine (GLN18:3) can induce a ROS burst in multiple plant species. Furthermore, in Arabidopsis this ROS burst is partially dependent on the plasma membrane localized NADPH oxidases RBOHD and RBOHF, and an Arabidopsis rbohD/F double mutant produces enhanced GLN18:3-induced jasmonic acid. Quantification of GLN18:3-induced ROS in phytohormone-deficient lines revealed that in Arabidopsis reduced levels of jasmonic acid resulted in a larger elicitor-induced ROS burst, while in tomato reduction of either jasmonic acid or salicylic acid led to higher induced ROS production. These data indicate that GLN18:3-induced ROS is antagonistic to jasmonic acid production in these species. In biological assays, rbohD/F mutant plants were more resistant to the generalist herbivores Spodoptera exigua and Trichoplusia ni but not to the specialist Plutella xylostella. Collectively, these results demonstrate that in Arabidopsis herbivore-induced ROS may negatively regulate plant defense responses to herbivory.
Collapse
Affiliation(s)
- Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Shawn A Christensen
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Charles T Hunter
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Hans T Alborn
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| |
Collapse
|
52
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
53
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
54
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
55
|
Basu S, Varsani S, Louis J. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:13-21. [PMID: 28840787 DOI: 10.1094/mpmi-07-17-0183-fi] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chewing herbivores, such as caterpillars and beetles, while feeding on the host plant, cause extensive tissue damage and release a wide array of cues to alter plant defenses. Consequently, the cues can have both beneficial and detrimental impacts on the chewing herbivores. Herbivore-associated molecular patterns (HAMPs) are molecules produced by herbivorous insects that aid them to elicit plant defenses leading to impairment of insect growth, while effectors suppress plant defenses and contribute to increased susceptibility to subsequent feeding by chewing herbivores. Besides secretions that originate from glands (e.g., saliva) and fore- and midgut regions (e.g., oral secretions) of chewing herbivores, recent studies have shown that insect frass and herbivore-associated endosymbionts also play a critical role in modulating plant defenses. In this review, we provide an update on a growing body of literature that discusses the chewing insect HAMPs and effectors and the mechanisms by which they modulate host defenses. Novel "omic" approaches and availability of new tools will help researchers to move forward this discipline by identifying and characterizing novel insect HAMPs and effectors and how these herbivore-associated cues are perceived by host plant receptors.
Collapse
Affiliation(s)
| | | | - Joe Louis
- 1 Department of Entomology; and
- 2 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
56
|
Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses. INSECT SCIENCE 2017; 24:947-960. [PMID: 28374534 DOI: 10.1111/1744-7917.12464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 05/04/2023]
Abstract
Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.
Collapse
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alison Bennett
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Arjen Biere
- Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Alison Karley
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| |
Collapse
|
57
|
Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, Lipka AE, Schmelz EA. Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance. PLANT PHYSIOLOGY 2017; 175:1455-1468. [PMID: 28931629 PMCID: PMC5664469 DOI: 10.1104/pp.17.00879] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/21/2023]
Abstract
To ensure food security, maize (Zea mays) is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand belowground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile β-selinene and the corresponding nonvolatile antibiotic derivative β-costic acid. The application of metabolite-based quantitative trait locus mapping using biparental populations, genome-wide association studies, and near-isogenic lines enabled the identification of terpene synthase21 (ZmTps21) on chromosome 9 as a β-costic acid pathway candidate gene. Numerous closely examined β-costic acid-deficient inbred lines were found to harbor Zmtps21 pseudogenes lacking conserved motifs required for farnesyl diphosphate cyclase activity. For biochemical validation, a full-length ZmTps21 was cloned, heterologously expressed in Escherichia coli, and demonstrated to cyclize farnesyl diphosphate, yielding β-selinene as the dominant product. Consistent with microbial defense pathways, ZmTps21 transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional ZmTps21 alleles displayed β-costic acid levels over 100 μg g-1 fresh weight, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (Diabrotica balteata). In vivo disease resistance assays, using ZmTps21 and Zmtps21 near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of nonvolatile antibiotics, ZmTps21 exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.
Collapse
Affiliation(s)
- Yezhang Ding
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Philipp Weckwerth
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| | | | - Joseph L Spencer
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| |
Collapse
|
58
|
Cheng Q, Gu S, Liu Z, Wang CZ, Li X. Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (L-ACY-1) in Helicoverpa armigera and Helicoverpa assulta. Sci Rep 2017; 7:8721. [PMID: 28821781 PMCID: PMC5562920 DOI: 10.1038/s41598-017-09185-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
How FACs-producing generalist and specialist herbivores regulate their FACs-hydrolyzing enzyme L-ACY-1 to balance FACs’ beneficial vs. detrimental effects remains unknown. To address this question, we compared L-ACY-1 expression in Helicoverpa armigera and Helicoverpa assulta, a pair of closely related sibling species differing mainly in their host range, by the same sets of hostplants, protein to digestible carbohydrate (P:C) ratios, or allelochemical. L-ACY-1 expression remained low/unchanged in H. armigera, but was induced by hot pepper fruits and repressed by cotton bolls in H. assulta. The representative allelochemicals of the tested hostplants significantly (capsaicin) or insignificantly (gossypol and nicotine) induced L-ACY-1 expression in H. armigera, but insignificantly inhibited (capsaicin and gossypol) or induced (nicotine) it in H. assulta. L-ACY-1 expression remained low/unaltered on balanced (P50:C50 and P53:C47) or protein-biased diets and induced on carbohydrate-biased diets in H. armigera, but was at the highest level on balanced diets and reduced on either protein- or carbohydrate-biased diets in H. assulta. Furthermore, L-ACY-1 expression was significantly higher in H. assulta than in H. armigera for most of feeding treatments. Such expressional divergences suggest that FACs are utilized mainly for removal of excessive nitrogen in generalists but for nitrogen assimilation in specialists.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Department of Entomology and BIO5 Institute, The University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
59
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
60
|
Li P, Shu YN, Fu S, Liu YQ, Zhou XP, Liu SS, Wang XW. Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. THE NEW PHYTOLOGIST 2017; 215:699-710. [PMID: 28382644 DOI: 10.1111/nph.14550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
The interactions of vector-virus-plant have important ecological and evolutionary implications. While the tripartite interactions have received some attention, little is known about whether vector infestation affects subsequent viral transmission and infection. Working with the whitefly Bemisia tabaci, begomovirus and tobacco/tomato, we demonstrate that pre-infestation of plants by the whitefly vector reduced subsequent plant susceptibility to viral transmission. Pre-infestation by the cotton bollworm, a nonvector of the virus, likewise repressed subsequent viral transmission. The two types of insects, with piercing and chewing mouthparts, respectively, activated different plant signaling pathways in the interactions. Whitefly pre-infestation activated the salicylic acid (SA) signaling pathway, leading to deposition of callose that inhibited begomovirus replication/movement. Although cotton bollworm infestation elicited the jasmonic acid (JA) defense pathway and was beneficial to virus replication, the pre-infested plants repelled whiteflies from feeding and so decreased virus transmission. Experiments using a pharmaceutical approach with plant hormones or a genetic approach using hormone transgenic or mutant plants further showed that SA played a negative but JA played a positive role in begomovirus infection. These novel findings indicate that both vector and nonvector insect feeding of a plant may have substantial negative consequences for ensuing viral transmission and infection.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Ni Shu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Fu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
61
|
Wang H, Li S, Teng S, Liang H, Xin H, Gao H, Huang D, Lang Z. Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid. PLoS One 2017; 12:e0177739. [PMID: 28520800 PMCID: PMC5433750 DOI: 10.1371/journal.pone.0177739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Chewing insects cause severe yield losses in crop production worldwide. Crop plants counteract chewing insects by transcriptionally promoting a repertoire of defense gene products that are either toxic to, or attractive to the natural enemies of, pest insects. However, the complexity of the transcriptional reprogramming in plant defense response against chewing insects is still not well understood. In this study, the genome-wide early responses in maize seedlings to Asian corn borer (ACB, Ostrinia furnacalis) and also to jasmonic acid(JA), the pivotal phytohormone controlling plant defense response against herbivory, were transcriptionally profiled by RNA-Seq. Clustering of differentially expressed genes (DEGs) along with functional enrichment analysis revealed important biological processes regulated in response to ACB infestation and/or jasmonic acid. Moreover, DEGs with distinct expression patterns were differentially enriched with diverse families of cis-elements on their promoters. Multiple inventories of differentially expressed transcription factors (DETFs) in each DEG group were also analyzed. A transient expression assay using transfected maize protoplastswas established to examine the potential roles of DETFs in maize defense response and JA signaling, and this was used to show that ZmNAC60, an ACB- and JA-inducible DETF, represented a novel positive regulator of JA and defense pathway genes. This study provided a comprehensive transcriptional picture for the early dynamics of maize defense responses and JA signaling, and the identification of DETFs offered potential targets for further functional genomics investigation of master regulators in maize defense responses against herbivory.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Haisheng Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongjia Xin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongjiang Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
62
|
Wang J, Peiffer M, Hoover K, Rosa C, Zeng R, Felton GW. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). THE NEW PHYTOLOGIST 2017; 214:1294-1306. [PMID: 28170113 DOI: 10.1111/nph.14429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 05/10/2023]
Abstract
Insect gut-associated microbes modulating plant defenses have been observed in beetles and piercing-sucking insects, but the role of caterpillar-associated bacteria in regulating plant induced defenses has not been adequately examined. We identified bacteria from the regurgitant of field-collected Helicoverpa zea larvae using 16S ribosomal RNA (rRNA) gene sequencing and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. A combination of biochemical, molecular, and confocal electron microscopy methods were used to determine the role of caterpillar-associated bacteria in mediating defenses in Solanum lycopersicum (tomato). Laboratory-reared H. zea inoculated with one of the bacteria identified in field-collected H. zea, Enterobacter ludwigii, induced expression of the tomato defense-related enzyme polyphenol oxidase and genes regulated by jasmonic acid (JA), whereas the salicylic acid (SA)-responsive pathogenesis-related gene was suppressed. Additionally, saliva and its main component glucose oxidase from inoculated caterpillars played an important role in elevating tomato anti-herbivore defenses. However, there were only low detectable amounts of regurgitant or bacteria on H. zea-damaged tomato leaves. Our results suggest that H. zea gut-associated bacteria indirectly mediate plant-insect interactions by triggering salivary elicitors. These findings provide a proof of concept that introducing gut bacteria to a herbivore may provide a novel approach to pest management through indirect induction of plant resistance.
Collapse
Affiliation(s)
- Jie Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
63
|
Ye M, Song YY, Baerson SR, Long J, Wang J, Pan Z, Lin WX, Zeng RS. Ratoon rice generated from primed parent plants exhibit enhanced herbivore resistance. PLANT, CELL & ENVIRONMENT 2017; 40:779-787. [PMID: 28042888 DOI: 10.1111/pce.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Rice ratooning is practiced in many rice-growing countries for achieving increased rice production with limited labour input. Here, we report that attack by insect herbivores, or treatment with a defense signaling compound in parent plants, can prime anti-herbivore defense responses in subsequent ratoon plants. We compared the defense responses of rice ratoons generated from parent plants that had been either infested by Cnaphalocrocis medinalis (rice leaffolder, LF) caterpillars or treated with methyl jasmonate (MeJA) during vegetative growth, with ratoons generated from control parent plants. Ratoon plants generated from parents receiving prior LF infestation or MeJA treatment exhibited higher jasmonic acid (JA) levels, as well as elevated levels of transcripts of defense-related genes associated with JA signaling. In addition, elevated activities of peroxidase, polyphenol oxidase and trypsin protease inhibitor were observed, as well as enhanced resistance towards subsequent LF infestation. Pre-priming of ratoon defense responses was significantly reduced in plants where expression of OsAOS (allene oxide synthase, involved in JA biosynthesis) or OsCOI1 (CORONATINE INSENSITIVE1, involved in JA perception) was inhibited by RNA interference. Our results indicate that herbivore exposure or MeJA treatment in rice parent plants enhances anti-herbivore resistance in subsequently generated ratoons through priming of JA-mediated defenses.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yuan-Yuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Scott R Baerson
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS, 38677, USA
| | - Jun Long
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS, 38677, USA
| | - Wen-Xiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ren-Sen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
64
|
Jonckheere W, Dermauw W, Zhurov V, Wybouw N, Van den Bulcke J, Villarroel CA, Greenhalgh R, Grbić M, Schuurink RC, Tirry L, Baggerman G, Clark RM, Kant MR, Vanholme B, Menschaert G, Van Leeuwen T. The Salivary Protein Repertoire of the Polyphagous Spider Mite Tetranychus urticae: A Quest for Effectors. Mol Cell Proteomics 2016; 15:3594-3613. [PMID: 27703040 PMCID: PMC5141274 DOI: 10.1074/mcp.m116.058081] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
The two-spotted spider mite Tetranychus urticae is an extremely polyphagous crop pest. Alongside an unparalleled detoxification potential for plant secondary metabolites, it has recently been shown that spider mites can attenuate or even suppress plant defenses. Salivary constituents, notably effectors, have been proposed to play an important role in manipulating plant defenses and might determine the outcome of plant-mite interactions. Here, the proteomic composition of saliva from T. urticae lines adapted to various host plants-bean, maize, soy, and tomato-was analyzed using a custom-developed feeding assay coupled with nano-LC tandem mass spectrometry. About 90 putative T. urticae salivary proteins were identified. Many are of unknown function, and in numerous cases belonging to multimembered gene families. RNAseq expression analysis revealed that many genes coding for these salivary proteins were highly expressed in the proterosoma, the mite body region that includes the salivary glands. A subset of genes encoding putative salivary proteins was selected for whole-mount in situ hybridization, and were found to be expressed in the anterior and dorsal podocephalic glands. Strikingly, host plant dependent expression was evident for putative salivary proteins, and was further studied in detail by micro-array based genome-wide expression profiling. This meta-analysis revealed for the first time the salivary protein repertoire of a phytophagous chelicerate. The availability of this salivary proteome will assist in unraveling the molecular interface between phytophagous mites and their host plants, and may ultimately facilitate the development of mite-resistant crops. Furthermore, the technique used in this study is a time- and resource-efficient method to examine the salivary protein composition of other small arthropods for which saliva or salivary glands cannot be isolated easily.
Collapse
Affiliation(s)
- Wim Jonckheere
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Wannes Dermauw
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
| | - Vladimir Zhurov
- ¶Department of Biology, The University of Western Ontario, London, ON, Canada N6A5B7
| | - Nicky Wybouw
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Jan Van den Bulcke
- ‖UGCT - Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Carlos A Villarroel
- **Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- ‡‡Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Robert Greenhalgh
- §§Department of Biology, University of Utah, Salt Lake City 257 South 1400 East Utah 84112
| | - Mike Grbić
- ¶Department of Biology, The University of Western Ontario, London, ON, Canada N6A5B7
- ¶¶Instituto de Ciencias de la Vid y el Vino, 26006 Logrono, Spain
| | - Rob C Schuurink
- **Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Luc Tirry
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Geert Baggerman
- ‖‖Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Richard M Clark
- §§Department of Biology, University of Utah, Salt Lake City 257 South 1400 East Utah 84112
- Center for Cell and Genome Science, University of Utah, Salt Lake City 257 South 1400 East Utah 84122
| | - Merijn R Kant
- ‡‡Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Gerben Menschaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Thomas Van Leeuwen
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
65
|
Clavijo McCormick A. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 2016; 6:8569-8582. [PMID: 28031808 PMCID: PMC5167045 DOI: 10.1002/ece3.2567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022] Open
Abstract
The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.
Collapse
|
66
|
Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS. J Chem Ecol 2016; 42:1226-1236. [PMID: 27826811 DOI: 10.1007/s10886-016-0786-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Isoflavonoids are a characteristic family of natural products in legumes known to mediate a range of plant-biotic interactions. For example, in soybean (Glycine max: Fabaceae) multiple isoflavones are induced and accumulate in leaves following attack by Spodoptera litura (Lepidoptera: Noctuidae) larvae. To quantitatively examine patterns of activated de novo biosynthesis, soybean (Var. Enrei) leaves were treated with a combination of plant defense elicitors present in S. litura gut content extracts and L-α-[13C9, 15N]phenylalanine as a traceable isoflavonoid precursor. Combined treatments promoted significant increases in 13C-labeled isoflavone aglycones (daidzein, formononetin, and genistein), 13C-labeled isoflavone 7-O-glucosides (daidzin, ononin, and genistin), and 13C-labeled isoflavone 7-O-(6″-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin, and malonylgenistin). In contrast levels of 13C-labeled flavones and flavonol (4',7-dihydroxyflavone, kaempferol, and apigenin) were not significantly altered. Curiously, application of fatty acid-amino acid conjugate (FAC) elicitors present in S. litura gut contents, namely N-linolenoyl-L-glutamine and N-linoleoyl-L-glutamine, both promoted the induced accumulation of isoflavone 7-O-glucosides and isoflavone 7-O-(6″-O-malonyl-β-glucosides), but not isoflavone aglycones in the leaves. These results demonstrate that at least two separate reactions are involved in elicitor-induced soybean leaf responses to the S. litura gut contents: one is the de novo biosynthesis of isoflavone conjugates induced by FACs, and the other is the hydrolysis of the isoflavone conjugates to yield isoflavone aglycones. Gut content extracts alone displayed no hydrolytic activity. The quantitative analysis of isoflavone de novo biosynthesis, with respect to both aglycones and conjugates, affords a useful bioassay system for the discovery of additional plant defense elicitor(s) in S. litura gut contents that specifically promote hydrolysis of isoflavone conjugates.
Collapse
Affiliation(s)
- Ryu Nakata
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Yuki Kimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Kenta Aoki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0380, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0380, USA
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
67
|
Borrego EJ, Kolomiets MV. Synthesis and Functions of Jasmonates in Maize. PLANTS (BASEL, SWITZERLAND) 2016; 5:E41. [PMID: 27916835 PMCID: PMC5198101 DOI: 10.3390/plants5040041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize.
Collapse
Affiliation(s)
- Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
68
|
Klauser D, Flury P, Boller T, Merker S. Looking BAK again: Is an old acquaintance of innate immunity involved in the detection of herbivores? PLANT SIGNALING & BEHAVIOR 2016; 11:e1252014. [PMID: 27791461 PMCID: PMC5157939 DOI: 10.1080/15592324.2016.1252014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The membrane-based receptor-like kinase BAK1 has been reported to interact with a number of other membrane-based receptors to contribute to a variety of signaling responses to exogenous and endogenous cues. These include brassinosteroid hormones as well as conserved microbe-derived and endogenous patterns. More recently, several lines of evidence have been reported to expand this concept also to the detection and deterrence of insect herbivores. We hereby present results that further support this hypothesis as they show that in Arabidopsis thaliana, herbivore oral secretions trigger two hallmark responses of plant innate immunity and that these responses are significantly reduced in plants that lack functional BAK1 receptors.
Collapse
Affiliation(s)
- Dominik Klauser
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Basel, Switzerland
- CONTACT Dominik Klauser Department of Environmental Sciences, University of Basel, Hebelstrasse 1, Basel, Basel-Stadt, Switzerland, 4056
| | - Pascale Flury
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Thomas Boller
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Basel, Switzerland
| | - Sebastian Merker
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Basel, Switzerland
| |
Collapse
|
69
|
Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci Rep 2016; 6:32537. [PMID: 27581373 PMCID: PMC5007475 DOI: 10.1038/srep32537] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - John T. Christeller
- The New Zealand Institute for Plant & Food Research, Palmerston North 4442, New Zealand
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
70
|
Ohse B, Hammerbacher A, Seele C, Meldau S, Reichelt M, Ortmann S, Wirth C. Salivary cues: simulated roe deer browsing induces systemic changes in phytohormones and defence chemistry in wild‐grown maple and beech saplings. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bettina Ohse
- Department of Systematic Botany and Functional Biodiversity Institute of Biology University of Leipzig Johannisallee 21, 04103 Leipzig Germany
| | - Almuth Hammerbacher
- Department of Biochemistry Max Planck Institute for Chemical Ecology Hans‐Knoell‐Strasse 8, 07745 Jena Germany
| | - Carolin Seele
- Department of Systematic Botany and Functional Biodiversity Institute of Biology University of Leipzig Johannisallee 21, 04103 Leipzig Germany
| | - Stefan Meldau
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Hans‐Knoell‐Strasse 8, 07745 Jena Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e, 04103 Leipzig Germany
| | - Michael Reichelt
- Department of Biochemistry Max Planck Institute for Chemical Ecology Hans‐Knoell‐Strasse 8, 07745 Jena Germany
| | - Sylvia Ortmann
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Straβe 17, 10315 Berlin Germany
| | - Christian Wirth
- Department of Systematic Botany and Functional Biodiversity Institute of Biology University of Leipzig Johannisallee 21, 04103 Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e, 04103 Leipzig Germany
| |
Collapse
|
71
|
Qi J, Sun G, Wang L, Zhao C, Hettenhausen C, Schuman MC, Baldwin IT, Li J, Song J, Liu Z, Xu G, Lu X, Wu J. Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data. PLANT, CELL & ENVIRONMENT 2016; 39:1749-1766. [PMID: 26991784 PMCID: PMC5295635 DOI: 10.1111/pce.12735] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Attack from insect herbivores poses a major threat to plant survival, and accordingly, plants have evolved sophisticated defence systems. Maize is cultivated as a staple crop worldwide, and insect feeding causes large production losses. Despite its importance in agriculture, little is known about how maize reacts to insect herbivory. Taking advantage of advances in sequencing and mass spectrometry technology, we studied the response of maize to mechanical wounding and simulated Mythimna separata (a specialist insect) herbivory by applying its oral secretions (OS) to wounds. In comparison to the responses induced by mechanical wounding, OS elicited larger and longer-lasting changes in the maize transcriptome, proteome, metabolome and phytohormones. Specifically, many genes, proteins and metabolites were uniquely induced or repressed by OS. Nearly 290 transcription factor genes from 39 families were involved in OS-induced responses, and among these, more transcription factor genes were specifically regulated by OS than by wounding. This study provides a large-scale omics dataset for understanding maize response to chewing insects and highlights the essential role of OS in plant-insect interactions.
Collapse
Affiliation(s)
- Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chunxia Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhudong Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Corresponding author: Jianqiang Wu, Phone/Fax: +86-871-65229562,
| |
Collapse
|
72
|
Yoshinaga N. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects†. Biosci Biotechnol Biochem 2016; 80:1274-82. [DOI: 10.1080/09168451.2016.1153956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
73
|
Lortzing T, Steppuhn A. Jasmonate signalling in plants shapes plant-insect interaction ecology. CURRENT OPINION IN INSECT SCIENCE 2016; 14:32-39. [PMID: 27436644 DOI: 10.1016/j.cois.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 05/11/2023]
Abstract
The phytohormone jasmonic acid (JA) regulates the induction of direct and indirect defences against herbivores. By now, the biochemical pathway of JA-signalling has been well resolved, allowing the use of an interdisciplinary toolbox and spurring the mechanistic investigation of plant-insect interactions. Recent advances show that JA-mediated plant responses are involved in the competitive and trophic interactions between various organisms throughout at least four trophic levels and therefore likely shape natural communities. Moreover, JA-mediated responses can be primed or suppressed by various environmental factors that are related to herbivory or not. Yet, to integrate the complex interactions at the physiological and ecological levels into community ecology, an examination of the often onetime discoveries for general rules and new bioinformatic approaches are required.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Haderslebener Str. 9, Berlin 12163, Germany.
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Haderslebener Str. 9, Berlin 12163, Germany.
| |
Collapse
|
74
|
Li D, Baldwin IT, Gaquerel E. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions. PLANTS 2016; 5:plants5010014. [PMID: 27135234 PMCID: PMC4844416 DOI: 10.3390/plants5010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg 69120, Germany.
| |
Collapse
|
75
|
|
76
|
Hettenhausen C, Sun G, He Y, Zhuang H, Sun T, Qi J, Wu J. Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress. Sci Rep 2016; 6:18973. [PMID: 26733237 PMCID: PMC4702179 DOI: 10.1038/srep18973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/02/2015] [Indexed: 01/14/2023] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are plant-specific calcium sensors that play important roles in various aspects of plant physiology. Here, we investigated phylogenic relationships, chromosomal locations, gene structures, and tissue-specific, herbivory- and drought-induced expression profiles of soybean (Glycine max) GmCDPKs. Fifty GmCDPK genes were identified, which phylogenetically grouped into 4 distinct clusters and distributed across 13 sub-clusters. Individual classes of GmCDPKs harbor highly conserved mRNA splicing sites, and their exon numbers and lengths were consistent with the phylogenetic relationships, suggesting that at least 13 ancestral CDPK genes had emerged before the split of monocots and eudicots. Gene expression analysis indicated that several GmCDPKs were tissue-specific expressed. GmCDPKs' transcript levels changed after wounding, exhibited specific expression patterns after simulated Spodoptera exigua feeding or soybean aphid (Aphis glycines) herbivory, and were largely independent of the phytohormones jasmonic acid and salicylic acid. The most pronounced transcriptional responses were detected after drought and abscisic acid treatments with more than half of all GmCDPKs being upregulated, suggesting their important roles during abiotic stress responses in soybean. Our data provide an important foundation for further functional dissection of GmCDPKs, especially in the context of soybean-insect interactions and drought stress adaptation.
Collapse
Affiliation(s)
- Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yanbiao He
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifu Zhuang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ting Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
77
|
Christensen SA, Huffaker A, Hunter CT, Alborn HT, Schmelz EA. A maize death acid, 10-oxo-11-phytoenoic acid, is the predominant cyclopentenone signal present during multiple stress and developmental conditions. PLANT SIGNALING & BEHAVIOR 2016; 11:e1120395. [PMID: 26669723 PMCID: PMC4883972 DOI: 10.1080/15592324.2015.1120395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently we investigated the function of the 9-lipoxygenase (LOX) derived cyclopentenones 10-oxo-11-phytoenoic acid (10-OPEA) and 10-oxo-11,15-phytodienoic acid (10-OPDA) and identified their C-14 and C-12 derivatives. 10-OPEA accumulation is elicited by fungal and insect attack and acts as a strong inhibitor of microbial and herbivore growth. Although structurally similar, comparative analyses between 10-OPEA and its 13-LOX analog 12-oxo-phytodienoic acid (12-OPDA) demonstrate specificity in transcript accumulation linked to detoxification, secondary metabolism, jasmonate regulation, and protease inhibition. As a potent cell death signal, 10-OPEA activates cysteine protease activity leading to ion leakage and apoptotic-like DNA fragmentation. In this study we further elucidate the distribution, abundance, and functional roles of 10-OPEA, 10-OPDA, and 12-OPDA, in diverse organs under pathogen- and insect-related stress.
Collapse
Affiliation(s)
- Shawn A Christensen
- a Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service (USDA-ARS) , Gainesville , FL , USA
| | - Alisa Huffaker
- b Section of Cell and Developmental Biology, University of California at San Diego , La Jolla , CA , USA
| | - Charles T Hunter
- a Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service (USDA-ARS) , Gainesville , FL , USA
| | - Hans T Alborn
- a Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service (USDA-ARS) , Gainesville , FL , USA
| | - Eric A Schmelz
- b Section of Cell and Developmental Biology, University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
78
|
Abstract
Plants collectively produce hundreds of thousands of specialized metabolites that are not required for growth or development. Each species has a qualitatively unique profile, with variation among individuals, growth stages, and tissues. By the 1950s, entomologists began to recognize the supreme importance of these metabolites in shaping insect herbivore communities. Plant defense theories arose to address observed patterns of variation, but provided few testable hypotheses because they did not distinguish clearly among proximate and ultimate causes. Molecular plant-insect interaction research has since revealed the sophistication of plant metabolic, developmental, and signaling networks. This understanding at the molecular level, rather than theoretical predictions, has driven the development of new hypotheses and tools and pushed the field forward. We reflect on the utility of the functional perspective provided by the optimal defense theory, and propose a conceptual model of plant defense as a series of layers each at a different level of analysis, illustrated by advances in the molecular ecology of plant-insect interactions.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| |
Collapse
|
79
|
Liang J, Wang Y, Ding G, Li W, Yang G, He N. Biotic stress-induced expression of mulberry cystatins and identification of cystatin exhibiting stability to silkworm gut proteinases. PLANTA 2015; 242:1139-1151. [PMID: 26070440 DOI: 10.1007/s00425-015-2345-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Biotic stresses induce the expression of mulberry cystatins. MaCPI-4 protein is stable in silkworm digestive fluid and accumulates in gut food debris and frass. Plant cystatins are considered to be involved in defense responses to insect herbivores though little is known about how cystatins from the natural host respond to a specialist herbivory and the following postingestive interaction is also poorly understood. Here, we studied the biotic stress-mediated inductions of cystatins from mulberry tree, and examined the stability of mulberry cystatin proteins in the gut of silkworm, Bombyx mori, a specialist insect feeding on mulberry leaf. First, we cloned and characterized six cystatin genes from a mulberry cultivar, Morus atropurpurea Roxb., named as MaCPI-1 to MaCPI-6. The recombinant MaCPI-1, MaCPI-3 and MaCPI-4 proteins, which showed inhibitory effects against papain in vitro, were produced. Silkworm herbivory as well as methyl jasmonate (MeJA) treatment induced the expression of five mulberry cystatin genes, and the highest inductions were observed from MaCPI-1 and MaCPI-6. Mechanical wounding led to the inductions of four cystatin genes. The differential induction occurred in MaCPI-2. The induced protein changes were detected from three mulberry cystatins comprising MaCPI-1, MaCPI-3 and MaCPI-4. In vivo and in vitro assays showed that MaCPI-1 and MaCPI-3 proteins were susceptible to silkworm digestive fluid and MaCPI-4 had an antidigestive stability, and was detected in silkworm gut and frass. Collectively, our data indicated that biotic stresses resulted in the transcriptional inductions and protein changes of mulberry cystatins (MaCPIs), and identified MaCPI-4 with stability in the gut of its specialist herbivore.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Yupeng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangyu Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Wensheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangwei Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
80
|
Klauser D, Desurmont GA, Glauser G, Vallat A, Flury P, Boller T, Turlings TCJ, Bartels S. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5327-36. [PMID: 26034129 PMCID: PMC4526914 DOI: 10.1093/jxb/erv250] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A number of plant endogenous elicitors have been identified that induce pattern-triggered immunity upon perception. In Arabidopsis thaliana eight small precursor proteins, called PROPEPs, are thought to be cleaved upon danger to release eight peptides known as the plant elicitor peptides Peps. As the expression of some PROPEPs is induced upon biotic stress and perception of any of the eight Peps triggers a defence response, they are regarded as amplifiers of immunity. Besides the induction of defences directed against microbial colonization Peps have also been connected with herbivore deterrence as they share certain similarities to systemins, known mediators of defence signalling against herbivores in solanaceous plants, and they positively interact with the phytohormone jasmonic acid. A recent study using maize indicated that the application of ZmPep3, a maize AtPep-orthologue, elicits anti-herbivore responses. However, as this study only assessed the responses triggered by the exogenous application of Peps, the biological significance of these findings remained open. By using Arabidopsis GUS-reporter lines, it is now shown that the promoters of both Pep-receptors, PEPR1 and PEPR2, as well as PROPEP3 are strongly activated upon herbivore attack. Moreover, pepr1 pepr2 double mutant plants, which are insensitive to Peps, display a reduced resistance to feeding Spodoptera littoralis larvae and a reduced accumulation of jasmonic acid upon exposure to herbivore oral secretions. Taken together, these lines of evidence extend the role of the AtPep-PEPR system as a danger detection mechanism from microbial pathogens to herbivores and further underline its strong interaction with jasmonic acid signalling.
Collapse
Affiliation(s)
- Dominik Klauser
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Gaylord A Desurmont
- Université de Neuchâtel, Institute of Biology, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Gaétan Glauser
- Université de Neuchâtel, Institute of Biology, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Armelle Vallat
- Université de Neuchâtel, Institute of Biology, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Pascale Flury
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Thomas Boller
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Ted C J Turlings
- Université de Neuchâtel, Institute of Biology, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Sebastian Bartels
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland
| |
Collapse
|
81
|
Celorio-Mancera MDLP, Ytterberg AJ, Rutishauser D, Janz N, Zubarev RA. Effect of host plant and immune challenge on the levels of chemosensory and odorant-binding proteins in caterpillar salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:34-45. [PMID: 25934166 DOI: 10.1016/j.ibmb.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
More than half of the proteome from mandibular glands in caterpillars is represented by chemosensory proteins. Based on sequence similarity, these proteins are putative transporters of ligands to gustatory receptors in sensory organs of insects. We sought to determine whether these proteins are inducible by comparing, both qualitatively and quantitatively, the salivary (mandibular and labial) proteomes from caterpillars (Vanessa cardui) reared on different plants and artificial diet containing either bacteria or bacterial cell-walls. We included a treatment where the caterpillars were switched from feeding on artificial diet to plant material at some point in their development. Additionally, we evaluated the degree of overlap between the proteomes in the hemolymph-filled coelom and salivary glands of caterpillars reared on plant material. We found that the quality and quantity of the identified proteins differed clearly between hemolymph-filled coelome, labial and mandibular glands. Our results indicated that even after molting and two-day feeding on a new diet, protein production is affected by the previous food source used by the caterpillar. Candidate proteins involved in chemosensory perception by insects were detected: three chemosensory (CSPs) and two odorant-binding proteins (OBPs). Using the relative amounts of these proteins across tissues and treatments as criteria for their classification, we detected hemolymph- and mandibular gland-specific CSPs and observed that their levels were affected by caterpillar diet. Moreover, we could compare the protein and transcript levels across tissues and treatment for at least one CSP and one OBP. Therefore, we have identified specific isoforms for testing the role of CSPs and OBPs in plant and pathogen recognition. We detected catalase, immune-related protein and serine proteases and their inhibitors in high relative levels in the mandibular glands in comparison to the labial glands. These findings suggest that the mandibular glands of caterpillars may play an important role protecting the caterpillar from oxidative stress, pathogens and aiding in digestion. Contamination with hemolymph proteins during dissection of salivary glands from caterpillars may occur but it is not substantial since the proteomes from hemolymph, mandibular and labial glands were easily discriminated from each other by principal component analysis of proteomic data.
Collapse
Affiliation(s)
| | - A Jimmy Ytterberg
- Karolinska Institute, Department of Medicine, Solna, Stockholm, Sweden.
| | - Dorothea Rutishauser
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden; Science for Life Laboratory, Stockholm, Sweden.
| | - Niklas Janz
- Stockholm University, Department of Zoology Ecology, Svante Arrheniusväg 18 B, 106 91, Stockholm, Sweden.
| | - Roman A Zubarev
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden; Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
82
|
Schmelz EA. Impacts of insect oral secretions on defoliation-induced plant defense. CURRENT OPINION IN INSECT SCIENCE 2015; 9:7-15. [PMID: 32846712 DOI: 10.1016/j.cois.2015.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 05/24/2023]
Abstract
Plant responses to biotic stress involve non-self perception, signaling, and altered defense phenotypes. During attack, defoliating insects deposit gland secretions (GS) and complex foregut derived oral secretions (OS) that include GS and combined products of plant, insect, and microbial interactions. GS-derived and OS-derived biochemicals that trigger defense are termed Herbivore Associated Molecular Patterns (HAMPs) while those that promote susceptibility are termed effectors. These functions are highly context and species specific. The magnitude and direction of plant responses are orchestrated by the interaction of damage, OS/GS components, predicted receptor-ligand interactions, ion fluxes, protein kinase signaling cascades, phytohormone interactions, transcription factor activation, altered translation, and defense biosynthesis. Unlike plant-pathogen recognition, a remaining challenge is the discovery of plant receptors for defoliator-derived HAMPs.
Collapse
Affiliation(s)
- Eric A Schmelz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, United States.
| |
Collapse
|
83
|
Huffaker A. Plant elicitor peptides in induced defense against insects. CURRENT OPINION IN INSECT SCIENCE 2015; 9:44-50. [PMID: 32846707 DOI: 10.1016/j.cois.2015.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 05/22/2023]
Abstract
Over 20 years ago the peptide systemin was discovered to be an integral regulator of anti-herbivore defense responses in Solanaceous plants. However, other peptides of similar function have remained elusive. Plant Elicitor Peptides (Peps) were initially discovered in Arabidopsis as mediators of basal immune responses protective against invading pathogens. Recently a Pep from maize, ZmPep3, was demonstrated to be a potent regulator of anti-herbivore defenses. ZmPep3 was as active as the Lepidopteran elicitor N-linolenoyl-l-glutamine (Gln-18:3) in stimulating volatile emission and accumulation of defense transcripts and metabolites, resulting in both attraction of the parasitoid Cotesia marginiventris and suppressed growth of Spodoptera exigua larvae. Orthologues of Peps in Solanaceous and Fabaceous plants also trigger emission of herbivore-associated volatiles, indicating that Peps have a conserved role as regulators of plant defense against herbivores in diverse species. This conservation of a peptide signal and cognate receptor for activation of plant defense responses reveals a widespread regulatory motif and provides opportunities for manipulation of plant resistance.
Collapse
Affiliation(s)
- Alisa Huffaker
- University of California, San Diego, Section of Cell & Developmental Biology, 9500 Gilman Drive, #0116, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
84
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
85
|
Hettenhausen C, Schuman MC, Wu J. MAPK signaling: a key element in plant defense response to insects. INSECT SCIENCE 2015; 22:157-64. [PMID: 24753304 PMCID: PMC5295641 DOI: 10.1111/1744-7917.12128] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Insects have long been the most abundant herbivores, and plants have evolved sophisticated mechanisms to defend against their attack. In particular, plants can perceive specific patterns of tissue damage associated with insect herbivory. Some plant species can perceive certain elicitors in insect oral secretions (OS) that enter wounds during feeding, and rapidly activate a series of intertwined signaling pathways to orchestrate the biosynthesis of various defensive metabolites. Mitogen-activated protein kinases (MAPKs), common to all eukaryotes, are involved in the orchestration of many cellular processes, including development and stress responses. In plants, at least two MAPKs, salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), are rapidly activated by wounding or insect OS; importantly, genetic studies using transgenic or mutant plants impaired in MAPK signaling indicated that MAPKs play critical roles in regulating the herbivory-induced dynamics of phytohormones, such as jasmonic acid, ethylene and salicylic acid, and MAPKs are also required for transcriptional activation of herbivore defense-related genes and accumulation of defensive metabolites. In this review, we summarize recent developments in understanding the functions of MAPKs in plant resistance to insect herbivores.
Collapse
|
86
|
Raguso RA, Agrawal AA, Douglas AE, Jander G, Kessler A, Poveda K, Thaler JS. The raison d'être of chemical ecology. Ecology 2015; 96:617-30. [DOI: 10.1890/14-1474.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
87
|
Schäfer M, Meza-Canales ID, Navarro-Quezada A, Brütting C, Vanková R, Baldwin IT, Meldau S. Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:198-212. [PMID: 24924599 PMCID: PMC4286249 DOI: 10.1111/jipb.12227] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/11/2014] [Indexed: 05/21/2023]
Abstract
Nearly half a century ago insect herbivores were found to induce the formation of green islands by manipulating cytokinin (CK) levels. However, the response of the CK pathway to attack by chewing insect herbivores remains unclear. Here, we characterize the CK pathway of Nicotiana attenuata (Torr. ex S. Wats.) and its response to wounding and perception of herbivore-associated molecular patterns (HAMPs). We identified 44 genes involved in CK biosynthesis, inactivation, degradation, and signaling. Leaf wounding rapidly induced transcriptional changes in multiple genes throughout the pathway, as well as in the levels of CKs, including isopentenyladenosine and cis-zeatin riboside; perception of HAMPs present in the oral secretions (OS) of the specialist herbivore Manduca sexta amplified these responses. The jasmonate pathway, which triggers many herbivore-induced processes, was not required for these HAMP-triggered changes, but rather suppressed the CK responses. Interestingly CK pathway changes were observed also in systemic leaves in response to wounding and OS application indicating a role of CKs in mediating long distance systemic processes in response to herbivory. Since wounding and grasshopper OS elicited similar accumulations of CKs in Arabidopsis thaliana L., we propose that CKs are integral components of wounding and HAMP-triggered responses in many plant species.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Aura Navarro-Quezada
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR165 02 Prague 6-Lysolaje, Czech Republic
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
- German Centre for integrative Biodiversity Research (iDiv)04107, Leipzig, Germany
| |
Collapse
|
88
|
Xu S, Zhou W, Pottinger S, Baldwin IT. Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC PLANT BIOLOGY 2015; 15:2. [PMID: 25592329 PMCID: PMC4304619 DOI: 10.1186/s12870-014-0406-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/22/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Herbivore-induced defence responses are often specific - different herbivores induce different defence responses in plants - and their specificity is largely mediated by chemical cues (herbivore-associated elicitors: HAEs) in insect oral or oviposition secretions. However, the specificity and the mechanisms of HAE-induced defence have not been investigated in the context of the evolutionary relationships among plant species. Here we compare the responses of six closely related Nicotiana species to a synthetic elicitor, N-linolenoyl-glutamic acid (C18:3-Glu) and HAE of two insect herbivores (the Solanaceae specialist Manduca sexta and generalist Spodoptera littoralis). RESULTS HAE-induced defences are highly specific among closely related Nicotiana species at three perspectives. 1) A single Nicotiana species can elicit distinct responses to different HAEs. N. pauciflora elicited increased levels of JA and trypsin proteinase inhibitors (TPI) in response to C18:3-Glu and the oral secretions of M. sexta (OS Ms ) but not to oral secretions of S. littoralis (OS Sl ). In contrast, N. miersii only responded to OS Sl but not to the other two HAEs. The specific responses to different HAEs in Nicotiana species are likely due to the perception by the plant of each specific component of the HAE. 2) One HAE can induce different defence responses among closely related Nicotiana species. OS Ms and C18:3-Glu induced JA and TPI accumulations in N. linearis, N. attenuata, N. acuminata and N. pauciflora, but not in N. miersii and N. obtusifolia. 3) The effect of HAE-induced defences differ for the Solanaceae specialist M. sexta and the generalist S. littoralis. Among the four tested Nicotiana species, while the growth rate of M. sexta was only reduced by the induced defences elicited by C18:3-Glu; the growth rate of S. littoralis can be reduced by the induced defences elicited by all three HAEs. This is likely due to differences in the susceptibility of the specialist M. sexta and generalist S. littoralis to induced defences of their host. CONCLUSIONS Closely related Nicotiana species elicit highly specific defence responses to herbivore associated elicitors and provide an ideal framework for investigating the molecular mechanisms and evolutionary divergence of induced resistance in plants.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Sarah Pottinger
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
89
|
Whiteflies glycosylate salicylic acid and secrete the conjugate via their honeydew. J Chem Ecol 2015; 41:52-8. [PMID: 25563984 PMCID: PMC4303718 DOI: 10.1007/s10886-014-0543-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
During insect feeding, a complex interaction takes place at the feeding site, with plants deciphering molecular information associated with the feeding herbivore, resulting in the upregulation of the appropriate defenses, and the herbivore avoiding or preventing these defenses from taking effect. Whiteflies can feed on plants without causing significant damage to mesophyll cells, making their detection extra challenging for the plant. However, whiteflies secrete honeydew that ends up on the plant surface at the feeding site and on distal plant parts below the feeding site. We reasoned that this honeydew, since it is largely of plant origin, may contain molecular information that alerts the plant, and we focused on the defense hormone salicylic acid (SA). First, we analyzed phloem sap from tomato plants, on which the whiteflies are feeding, and found that it contained salicylic acid (SA). Subsequently, we determined that in honeydew more than 80 % of SA was converted to its glycoside (SAG). When whiteflies were allowed to feed from an artificial diet spiked with labeled SA, labeled SAG also was produced. However, manually depositing honeydew on undamaged plants resulted still in a significant increase in endogenous free SA. Accordingly, transcript levels of PR1a, an SA marker gene, increased whereas those of PI-II, a jasmonate marker gene, decreased. Our results indicate that whiteflies manipulate the SA levels within their secretions, thus influencing the defense responses in those plant parts that come into contact with honeydew.
Collapse
|
90
|
Xu S, Zhou W, Baldwin IT. The rapidly evolving associations among herbivore associated elicitor-induced phytohormones in Nicotiana. PLANT SIGNALING & BEHAVIOR 2015; 10:e1035850. [PMID: 26107988 PMCID: PMC4623057 DOI: 10.1080/15592324.2015.1035850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 05/25/2023]
Abstract
In response to herbivore attack, plants perceive herbivore associated elicitors (HAE) and rapidly accumulate jasmonic acid (JA) and other phytohormones, which interact in complex ways, such as the crosstalk between JA and salicylic acid (SA). Although recent studies have shown that HAE-induced individual phytohormones can be highly specific among closely related species, it remains unclear how conserved and specific the relationships among HAE-induced phytohormones are. Here we analyzed the correlations among 4 different phytohormones, JA, JA-isoleucine (JA-Ile), SA, and abscisic acid (ABA) in 6 closely related Nicotiana species that were induced by 3 different HAEs. Our results showed that while no clear association between ABA and other phytohormones were found, the positive association between JA and JA-Ile is mostly conserved among closely related Nicotiana species. Interestingly, the association between JA and SA are highly variable and can be regulated by different HAEs.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology; Max Planck Institute for Chemical Ecology; Jena, Germany
| | - Wenwu Zhou
- Department of Molecular Ecology; Max Planck Institute for Chemical Ecology; Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology; Max Planck Institute for Chemical Ecology; Jena, Germany
| |
Collapse
|
91
|
Vaughan MM, Huffaker A, Schmelz EA, Dafoe NJ, Christensen S, Sims J, Martins VF, Swerbilow J, Romero M, Alborn HT, Allen LH, Teal PEA. Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides. PLANT, CELL & ENVIRONMENT 2014; 37:2691-706. [PMID: 24689748 PMCID: PMC4278449 DOI: 10.1111/pce.12337] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2 ] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2 ]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2 ]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2 ]. Our findings suggest that elevated [CO2 ] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi.
Collapse
Affiliation(s)
- Martha M Vaughan
- Chemistry Research Unit, Center of Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture, Agricultural Research Service, Gainesville, FL, 32608, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hettenhausen C, Heinrich M, Baldwin IT, Wu J. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC PLANT BIOLOGY 2014; 14:326. [PMID: 25430398 PMCID: PMC4263023 DOI: 10.1186/s12870-014-0326-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/06/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. RESULTS Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. CONCLUSIONS Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.
Collapse
Affiliation(s)
| | - Maria Heinrich
- />Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Ian T Baldwin
- />Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Jianqiang Wu
- />Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
| |
Collapse
|
93
|
Christeller JT, Galis I. α-linolenic acid concentration and not wounding per se is the key regulator of octadecanoid (oxylipin) pathway activity in rice (Oryza sativa L.) leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:117-25. [PMID: 25129550 DOI: 10.1016/j.plaphy.2014.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/17/2014] [Indexed: 05/25/2023]
Abstract
Using an in vitro system composed of crushed leaf tissues to simulate the wounding response in rice leaves, we established that synthesis of jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) can only occur in unwounded tissue and, in wounded tissue, that only the chloroplast-located section of the octadecanoid pathway is active, resulting in the accumulation of 12-oxo-phytodienoic acid (OPDA). We further showed that OPDA accumulation in vitro was inhibited by 90% using the general lipase inhibitor, tetrahydrolipstatin, indicating that production of α-linolenic acid was the rate-limiting step in octadecanoid pathway activity in rice following wounding and the enzyme capacity for an active pathway was already present. We confirmed this result by showing that added α-linolenic acid stimulated OPDA synthesis in vitro and stimulated OPDA, JA and JA-Ile synthesis in vivo in unwounded tissue. Thus, the response to wounding can be mimicked by the provision of free α-linolenic acid. Our results draw attention to the key importance of lipase activity in initiation of JA and JA-Ile biosynthesis and our lack of knowledge of the cognate lipase(s), lipase substrate identity and mechanism(s) of activation in wounded and unwounded tissue.
Collapse
Affiliation(s)
- John T Christeller
- Institute of Plant Science and Resources, Okayama University, Chuo 2-10-1, Kurashiki, Okayama 710-0046, Japan.
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Chuo 2-10-1, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
94
|
Bosch M, Berger S, Schaller A, Stintzi A. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC PLANT BIOLOGY 2014; 14:257. [PMID: 25261073 PMCID: PMC4189532 DOI: 10.1186/s12870-014-0257-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Jasmonates are involved in plant defense, participating in the timely induction of defense responses against insect herbivores from different feeding guilds and with different degrees of host specialization. It is less clear to what extent the induction of plant defense is controlled by different members of the jasmonate family and how specificity of the response is achieved. Using transgenic plants blocked in jasmonic acid (JA) biosynthesis, we previously showed that JA is required for the formation of glandular trichomes and trichome-borne metabolites as constitutive defense traits in tomato, affecting oviposition and feeding behavior of the specialist Manduca sexta. In contrast, JA was not required for the local induction of defense gene expression after wounding. In JA-deficient plants, the JA precursor oxophytodienoic acid (OPDA) substituted as a regulator of defense gene expression maintaining considerable resistance against M. sexta larvae. In this study, we investigate the contribution of JA and OPDA to defense against the generalist herbivore Spodoptera exigua. RESULTS S. exigua preferred JA-deficient over wild-type tomato plants as a host for both oviposition and feeding. Feeding preference for JA-deficient plants was caused by constitutively reduced levels of repellent terpenes. Growth and development of the larvae, on the other hand, were controlled by additional JA-dependent defense traits, including the JA-mediated induction of foliar polyphenol oxidase (PPO) activity. PPO induction was more pronounced after S. exigua herbivory as compared to mechanical wounding or M. sexta feeding. The difference was attributed to an elicitor exclusively present in S. exigua oral secretions. CONCLUSIONS The behavior of M. sexta and S. exigua during oviposition and feeding is controlled by constitutive JA/JA-Ile-dependent defense traits involving mono- and sesquiterpenes in both species, and cis-3-hexenal as an additional chemical cue for M. sexta. The requirement of jasmonates for resistance of tomato plants against caterpillar feeding differs for the two species. While the OPDA-mediated induction of local defense is sufficient to restrict growth and development of M. sexta larvae in absence of JA/JA-Ile, defense against S. exigua relied on additional JA/JA-Ile dependent factors, including the induction of foliar polyphenol oxidase activity in response to S. exigua oral secretions.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Sonja Berger
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| |
Collapse
|
95
|
Lazebnik J, Frago E, Dicke M, van Loon JJA. Phytohormone Mediation of Interactions Between Herbivores and Plant Pathogens. J Chem Ecol 2014; 40:730-41. [DOI: 10.1007/s10886-014-0480-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 08/29/2023]
|
96
|
Murakami S, Nakata R, Aboshi T, Yoshinaga N, Teraishi M, Okumoto Y, Ishihara A, Morisaka H, Huffaker A, Schmelz EA, Mori N. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 2014; 4:532-46. [PMID: 25000357 PMCID: PMC4192678 DOI: 10.3390/metabo4030532] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/14/2023] Open
Abstract
In response to attack by bacterial pathogens, soybean (Gylcine max) leaves accumulate isoflavone aglucones, isoflavone glucosides, and glyceollins. In contrast to pathogens, the dynamics of related insect-inducible metabolites in soybean leaves remain poorly understood. In this study, we analyzed the biochemical responses of soybean leaves to Spodoptera litura (Lepidoptera: Noctuidae) herbivory and also S. litura gut contents, which contain oral secretion elicitors. Following S. litura herbivory, soybean leaves displayed an induced accumulation of the flavone and isoflavone aglycones 4’,7-dihyroxyflavone, daidzein, and formononetin, and also the isoflavone glucoside daidzin. Interestingly, foliar application of S. litura oral secretions also elicited the accumulation of isoflavone aglycones (daidzein and formononetin), isoflavone 7-O-glucosides (daidzin, ononin), and isoflavone 7-O-(6’-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin). Consistent with the up-regulation of the isoflavonoid biosynthetic pathway, folair phenylalanine levels also increased following oral secretion treatment. To establish that these metabolitic changes were the result of de novo biosynthesis, we demonstrated that labeled (13C9) phenylalanine was incorporated into the isoflavone aglucones. These results are consistent with the presence of soybean defense elicitors in S. litura oral secretions. We demonstrate that isoflavone aglycones and isoflavone conjugates are induced in soybean leaves, not only by pathogens as previously demonstrated, but also by foliar insect herbivory.
Collapse
Affiliation(s)
- Shinichiro Murakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Ryu Nakata
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Takako Aboshi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Atsushi Ishihara
- Department of Agriculture, Tottori University, Koyama-machi 4-101, Tottori 680-8550, Japan.
| | - Hironobu Morisaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | - Alisa Huffaker
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA.
| | - Eric A Schmelz
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA.
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
97
|
Yoshinaga N, Ishikawa C, Seidl-Adams I, Bosak E, Aboshi T, Tumlinson JH, Mori N. N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. J Chem Ecol 2014; 40:484-90. [PMID: 24817386 DOI: 10.1007/s10886-014-0436-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Plants attacked by insect herbivores release a blend of volatile organic compounds (VOCs) that serve as chemical cues for host location by parasitic wasps, natural enemies of the herbivores. Volicitin, N-(17-hydroxylinolenoyl)-L-glutamine, is one of the most active VOC elicitors found in herbivore regurgitants. Our previous study revealed that hydroxylation on the 17th position of the linolenic acid moiety of N-linolenoyl-L-glutamine increases by more than three times the elicitor activity in corn plants. Here, we identified N-(18-hydroxylinolenoyl)-L-glutamine (18OH-volicitin) from larval gut contents of tobacco hornworm (THW), Manduca sexta. Eggplant and tobacco, two solanaceous host plants of THW larvae, and corn, a non-host plant, responded differently to this new elicitor. Eggplant and tobacco seedlings emitted twice the amount of VOCs when 18OH-volicitin was applied to damaged leaf surfaces compared to N-linolenoyl-L-glutamine, while both these fatty acid amino acid conjugates (FACs) elicited a similar response in corn seedlings. In both solanaceous plants, there was no significant difference in the elicitor activity of 17OH- and 18OH-volicitin. Interestingly, other lepidopteran species that have 17OH-type volicitin also attack solanaceous plants. These data suggest that plants have developed herbivory-detection systems customized to their herbivorous enemies.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan,
| | | | | | | | | | | | | |
Collapse
|
98
|
Chuang WP, Ray S, Acevedo FE, Peiffer M, Felton GW, Luthe DS. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:461-70. [PMID: 24329171 DOI: 10.1094/mpmi-07-13-0193-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In addition to feeding damage, herbivores release cues that are recognized by plants to elicit defenses. Caterpillar oral secretions have been shown to trigger herbivore defense responses in several different plant species. In this study, the effects of two fall armyworm (Spodoptera frugiperda) oral secretions (saliva and regurgitant) on caterpillar defense responses in maize (Zea mays) were examined. Only minute amounts of regurgitant were deposited on the maize leaf during larval feeding bouts and its application to leaves failed to induce the expression of several herbivore defense genes. On the other hand, caterpillars consistently deposited saliva on leaves during feeding and the expression of several maize defense genes significantly increased in response to saliva application and larval feeding. However, feeding by ablated caterpillars with impaired salivation did not induce these defenses. Furthermore, bioassays indicated that feeding by unablated caterpillars significantly enhanced defenses when compared with that of ablated caterpillars. Another critical finding was that the maize genotype and stage of development affected the expression of defense genes in response to wounding and regurgitant treatments. These results demonstrate that fall armyworm saliva contains elicitors that trigger herbivore defenses in maize.
Collapse
|
99
|
Yoshinaga N, Abe H, Morita S, Yoshida T, Aboshi T, Fukui M, Tumlinson JH, Mori N. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance? Front Physiol 2014; 5:121. [PMID: 24744735 PMCID: PMC3978339 DOI: 10.3389/fphys.2014.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/13/2014] [Indexed: 12/02/2022] Open
Abstract
Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Hiroaki Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Sayo Morita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Tetsuya Yoshida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Masao Fukui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Pennsylvania State University University Park, PA, USA
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| |
Collapse
|
100
|
Falk KL, Kästner J, Bodenhausen N, Schramm K, Paetz C, Vassão DG, Reichelt M, von Knorre D, Bergelson J, Erb M, Gershenzon J, Meldau S. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Mol Ecol 2014; 23:1188-1203. [PMID: 24313595 DOI: 10.1111/mec.12610] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022]
Abstract
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue ('slime trail') of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.
Collapse
Affiliation(s)
- Kimberly L Falk
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Julia Kästner
- Biodiversity project group, Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Natacha Bodenhausen
- Department of Ecology and Evolution, University of Chicago, 1101 East 57 Street, Chicago, Illinois, 60637, USA
| | - Katharina Schramm
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Daniel Giddings Vassão
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Dietrich von Knorre
- Phyletisches Museum, Friedrich-Schiller-Universität Jena, Vor dem Neutor 1, 07743 Jena
| | - Joy Bergelson
- Root-Herbivore Interactions Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Matthias Erb
- Research Group Biosynthesis/NMR, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Stefan Meldau
- Biodiversity project group, Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| |
Collapse
|