51
|
Flyak AI, Ruiz S, Colbert MD, Luong T, Crowe JE, Bailey JR, Bjorkman PJ. HCV Broadly Neutralizing Antibodies Use a CDRH3 Disulfide Motif to Recognize an E2 Glycoprotein Site that Can Be Targeted for Vaccine Design. Cell Host Microbe 2019; 24:703-716.e3. [PMID: 30439340 DOI: 10.1016/j.chom.2018.10.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) vaccine efforts are hampered by the extensive genetic diversity of HCV envelope glycoproteins E1 and E2. Structures of broadly neutralizing antibodies (bNAbs) (e.g., HEPC3, HEPC74) isolated from individuals who spontaneously cleared HCV infection facilitate immunogen design to elicit antibodies against multiple HCV variants. However, challenges in expressing HCV glycoproteins previously limited bNAb-HCV structures to complexes with truncated E2 cores. Here we describe crystal structures of full-length E2 ectodomain complexes with HEPC3 and HEPC74, revealing lock-and-key antibody-antigen interactions, E2 regions (including a target of immunogen design) that were truncated or disordered in E2 cores, and an antibody CDRH3 disulfide motif that exhibits common interactions with a conserved epitope despite different bNAb-E2 binding orientations. The structures display unusual features relevant to common genetic signatures of HCV bNAbs and demonstrate extraordinary plasticity in antibody-antigen interactions. In addition, E2 variants that bind HEPC3/HEPC74-like germline precursors may represent candidate vaccine immunogens.
Collapse
Affiliation(s)
- Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stormy Ruiz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michelle D Colbert
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tiffany Luong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
52
|
Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 2019; 50:1513-1529.e9. [PMID: 31126879 PMCID: PMC6591006 DOI: 10.1016/j.immuni.2019.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Westridge High School, 324 Madeline Drive, Pasadena, CA 91105, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Franziska Bach
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
53
|
Conti S, Karplus M. Estimation of the breadth of CD4bs targeting HIV antibodies by molecular modeling and machine learning. PLoS Comput Biol 2019; 15:e1006954. [PMID: 30970017 PMCID: PMC6457539 DOI: 10.1371/journal.pcbi.1006954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
HIV is a highly mutable virus for which all attempts to develop a vaccine have been unsuccessful. Nevertheless, few long-infected patients develop antibodies, called broadly neutralizing antibodies (bnAbs), that have a high breadth and can neutralize multiple variants of the virus. This suggests that a universal HIV vaccine should be possible. A measure of the efficacy of a HIV vaccine is the neutralization breadth of the antibodies it generates. The breadth is defined as the fraction of viruses in the Seaman panel that are neutralized by the antibody. Experimentally the neutralization ability is measured as the half maximal inhibitory concentration of the antibody (IC50). To avoid such time-consuming experimental measurements, we developed a computational approach to estimate the IC50 and use it to determine the antibody breadth. Given that no direct method exists for calculating IC50 values, we resort to a combination of atomistic modeling and machine learning. For each antibody/virus complex, an all-atoms model is built using the amino acid sequence and a known structure of a related complex. Then a series of descriptors are derived from the atomistic models, and these are used to train a Multi-Layer Perceptron (an Artificial Neural Network) to predict the value of the IC50 (by regression), or if the antibody binds or not to the virus (by classification). The neural networks are trained by use of experimental IC50 values collected in the CATNAP database. The computed breadths obtained by regression and classification are reported and the importance of having some related information in the data set for obtaining accurate predictions is analyzed. This approach is expected to prove useful for the design of HIV bnAbs, where the computation of the potency must be accompanied by a computation of the breadth, and for evaluating the efficiency of potential vaccination schemes developed through modeling and simulation.
Collapse
Affiliation(s)
- Simone Conti
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
54
|
Magaret CA, Benkeser DC, Williamson BD, Borate BR, Carpp LN, Georgiev IS, Setliff I, Dingens AS, Simon N, Carone M, Simpkins C, Montefiori D, Alter G, Yu WH, Juraska M, Edlefsen PT, Karuna S, Mgodi NM, Edugupanti S, Gilbert PB. Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features. PLoS Comput Biol 2019; 15:e1006952. [PMID: 30933973 PMCID: PMC6459550 DOI: 10.1371/journal.pcbi.1006952] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/11/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022] Open
Abstract
The broadly neutralizing antibody (bnAb) VRC01 is being evaluated for its efficacy to prevent HIV-1 infection in the Antibody Mediated Prevention (AMP) trials. A secondary objective of AMP utilizes sieve analysis to investigate how VRC01 prevention efficacy (PE) varies with HIV-1 envelope (Env) amino acid (AA) sequence features. An exhaustive analysis that tests how PE depends on every AA feature with sufficient variation would have low statistical power. To design an adequately powered primary sieve analysis for AMP, we modeled VRC01 neutralization as a function of Env AA sequence features of 611 HIV-1 gp160 pseudoviruses from the CATNAP database, with objectives: (1) to develop models that best predict the neutralization readouts; and (2) to rank AA features by their predictive importance with classification and regression methods. The dataset was split in half, and machine learning algorithms were applied to each half, each analyzed separately using cross-validation and hold-out validation. We selected Super Learner, a nonparametric ensemble-based cross-validated learning method, for advancement to the primary sieve analysis. This method predicted the dichotomous resistance outcome of whether the IC50 neutralization titer of VRC01 for a given Env pseudovirus is right-censored (indicating resistance) with an average validated AUC of 0.868 across the two hold-out datasets. Quantitative log IC50 was predicted with an average validated R2 of 0.355. Features predicting neutralization sensitivity or resistance included 26 surface-accessible residues in the VRC01 and CD4 binding footprints, the length of gp120, the length of Env, the number of cysteines in gp120, the number of cysteines in Env, and 4 potential N-linked glycosylation sites; the top features will be advanced to the primary sieve analysis. This modeling framework may also inform the study of VRC01 in the treatment of HIV-infected persons.
Collapse
Affiliation(s)
- Craig A. Magaret
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David C. Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Brian D. Williamson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Bhavesh R. Borate
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adam S. Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Noah Simon
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Christopher Simpkins
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David Montefiori
- Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michal Juraska
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shelly Karuna
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nyaradzo M. Mgodi
- University of Zimbabwe College of Health Sciences Clinical Trials Research Centre, Harare, Zimbabwe
| | - Srilatha Edugupanti
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
55
|
Caskey M, Klein F, Nussenzweig MC. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat Med 2019; 25:547-553. [PMID: 30936546 PMCID: PMC7322694 DOI: 10.1038/s41591-019-0412-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
Combination anti-retroviral therapy (ART) has revolutionized the treatment and prevention of HIV-1 infection. Taken daily, ART prevents and suppresses the infection. However, ART interruption almost invariably leads to rebound viremia in infected individuals due to a long-lived latent reservoir of integrated proviruses. Therefore, ART must be administered on a life-long basis. Here we review recent preclinical and clinical studies suggesting that immunotherapy may be an alternative or an adjuvant to ART because, in addition to preventing new infections, anti-HIV-1 antibodies clear the virus, directly kill infected cells and produce immune complexes that can enhance host immunity to the virus.
Collapse
Affiliation(s)
- Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA.
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, Cologne, Germany.
- German Center for Infection Research, partner site Bonn-Cologne, Cologne, Germany.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA.
| |
Collapse
|
56
|
Bricault CA, Yusim K, Seaman MS, Yoon H, Theiler J, Giorgi EE, Wagh K, Theiler M, Hraber P, Macke JP, Kreider EF, Learn GH, Hahn BH, Scheid JF, Kovacs JM, Shields JL, Lavine CL, Ghantous F, Rist M, Bayne MG, Neubauer GH, McMahan K, Peng H, Chéneau C, Jones JJ, Zeng J, Ochsenbauer C, Nkolola JP, Stephenson KE, Chen B, Gnanakaran S, Bonsignori M, Williams LD, Haynes BF, Doria-Rose N, Mascola JR, Montefiori DC, Barouch DH, Korber B. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe 2019; 25:59-72.e8. [PMID: 30629920 PMCID: PMC6331341 DOI: 10.1016/j.chom.2018.12.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022]
Abstract
Eliciting HIV-1-specific broadly neutralizing antibodies (bNAbs) remains a challenge for vaccine development, and the potential of passively delivered bNAbs for prophylaxis and therapeutics is being explored. We used neutralization data from four large virus panels to comprehensively map viral signatures associated with bNAb sensitivity, including amino acids, hypervariable region characteristics, and clade effects across four different classes of bNAbs. The bNAb signatures defined for the variable loop 2 (V2) epitope region of HIV-1 Env were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine, and immunization of guinea pigs with V2-SET vaccines resulted in increased breadth of NAb responses compared with Env 459C alone. These data demonstrate that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens capable of eliciting antibody responses with greater neutralization breadth. HIV-1 bNAb sensitivity signatures from 4 large virus panels mapped across 4 Ab classes Non-contact hypervariable region characteristics are critical for bNAb sensitivity HIV-1 Env 459C used alone as a vaccine can elicit modest tier 2 NAbs in guinea pigs V2 bNAb signature-guided modifications in 459C enhanced neutralization breadth
Collapse
Affiliation(s)
- Christine A Bricault
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | | | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Edward F Kreider
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA
| | - James M Kovacs
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Departments of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | - Jennifer L Shields
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Rist
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Madeleine G Bayne
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - George H Neubauer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Coraline Chéneau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jennifer J Jones
- Department of Medicine and CFAR, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jie Zeng
- Department of Medicine and CFAR, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christina Ochsenbauer
- Department of Medicine and CFAR, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - S Gnanakaran
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - LaTonya D Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA.
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA.
| |
Collapse
|
57
|
Sensitivity to Broadly Neutralizing Antibodies of Recently Transmitted HIV-1 Clade CRF02_AG Viruses with a Focus on Evolution over Time. J Virol 2019; 93:JVI.01492-18. [PMID: 30404804 DOI: 10.1128/jvi.01492-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are promising agents for prevention and/or treatment of HIV-1 infection. However, the diversity among HIV-1 envelope (Env) glycoproteins impacts bnAb potency and breadth. Neutralization data on the CRF02_AG clade are scarce although it is highly prevalent in West Africa and Europe. We assessed the sensitivity to bnAbs of a panel of 33 early transmitted CRF02_AG viruses over a 15-year period of the French epidemic (1997 to 2012). Env pseudotyped CRF02_AG viruses were best neutralized by the CD4 binding site (CD4bs)-directed bnAbs (VRC01, 3BNC117, NIH45-46G54W, and N6) and the gp41 membrane-proximal external region (MPER)-directed bnAb 10E8 in terms of both potency and breadth. We observed a higher resistance to bnAbs targeting the V1V2-glycan region (PG9 and PGT145) and the V3-glycan region (PGT121 and 10-1074). Combinations were required to achieve full coverage across this subtype. We observed increased resistance to bnAbs targeting the CD4bs linked to the diversification of CRF02_AG Env over the course of the epidemic, a phenomenon which was previously described for subtypes B and C. These data on the sensitivity to bnAbs of CRF02_AG viruses, including only recently transmitted viruses, will inform future passive immunization studies. Considering the drift of the HIV-1 species toward higher resistance to neutralizing antibodies, it appears necessary to keep updating existing panels for evaluation of future vaccine and passive immunization studies.IMPORTANCE Major progress occurred during the last decade leading to the isolation of human monoclonal antibodies, termed broadly neutralizing antibodies (bnAbs) due to their capacity to neutralize various strains of HIV-1. Several clinical trials are under way in order to evaluate their efficacy in preventive or therapeutic strategies. However, no single bnAb is active against 100% of strains. It is important to gather data on the sensitivity to neutralizing antibodies of all genotypes, especially those more widespread in regions where the prevalence of HIV-1 infection is high. Here, we assembled a large panel of clade CRF02_AG viruses, the most frequent genotype circulating in West Africa and the second most frequent found in several European countries. We evaluated their sensitivities to bnAbs, including those most advanced in clinical trials, and looked for the best combinations. In addition, we observed a trend toward increased resistance to bnAbs over the course of the epidemic.
Collapse
|
58
|
Keeffe JR, Van Rompay KKA, Olsen PC, Wang Q, Gazumyan A, Azzopardi SA, Schaefer-Babajew D, Lee YE, Stuart JB, Singapuri A, Watanabe J, Usachenko J, Ardeshir A, Saeed M, Agudelo M, Eisenreich T, Bournazos S, Oliveira TY, Rice CM, Coffey LL, MacDonald MR, Bjorkman PJ, Nussenzweig MC, Robbiani DF. A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Rep 2018; 25:1385-1394.e7. [PMID: 30403995 PMCID: PMC6268006 DOI: 10.1016/j.celrep.2018.10.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/15/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV.
Collapse
Affiliation(s)
- Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA; Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Priscilla C Olsen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stephanie A Azzopardi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackson B Stuart
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
59
|
Glycoengineering HIV-1 Env creates 'supercharged' and 'hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathog 2018; 14:e1007024. [PMID: 29718999 PMCID: PMC5951585 DOI: 10.1371/journal.ppat.1007024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/14/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
The extensive glycosylation of HIV-1 envelope (Env) glycoprotein leaves few glycan-free holes large enough to admit broadly neutralizing antibodies (bnAb). Consequently, most bnAbs must inevitably make some glycan contacts and avoid clashes with others. To investigate how Env glycan maturation regulates HIV sensitivity to bnAbs, we modified HIV-1 pseudovirus (PV) using various glycoengineering (GE) tools. Promoting the maturation of α-2,6 sialic acid (SA) glycan termini increased PV sensitivity to two bnAbs that target the V2 apex and one to the interface between Env surface gp120 and transmembrane gp41 subunits, typically by up to 30-fold. These effects were reversible by incubating PV with neuraminidase. The same bnAbs were unusually potent against PBMC-produced HIV-1, suggesting similar α-2,6 hypersialylated glycan termini may occur naturally. Overexpressing β-galactosyltransferase during PV production replaced complex glycans with hybrid glycans, effectively 'thinning' trimer glycan coverage. This increased PV sensitivity to some bnAbs but ablated sensitivity to one bnAb that depends on complex glycans. Other bnAbs preferred small glycans or galactose termini. For some bnAbs, the effects of GE were strain-specific, suggesting that GE had context-dependent effects on glycan clashes. GE was also able to increase the percent maximum neutralization (i.e. saturation) by some bnAbs. Indeed, some bnAb-resistant strains became highly sensitive with GE—thus uncovering previously unknown bnAb breadth. As might be expected, the activities of bnAbs that recognize glycan-deficient or invariant oligomannose epitopes were largely unaffected by GE. Non-neutralizing antibodies were also unaffected by GE, suggesting that trimers remain compact. Unlike mature bnAbs, germline-reverted bnAbs avoided or were indifferent to glycans, suggesting that glycan contacts are acquired as bnAbs mature. Together, our results suggest that glycovariation can greatly impact neutralization and that knowledge of the optimal Env glycoforms recognized by bnAbs may assist rational vaccine design. Here we engineered various changes in the sizes and shapes of sugars that decorate HIV surface spike proteins and tested the effects of these changes on virus susceptibility to neutralizing antibodies. In so doing, we were able to define the optimal Env-sugars recognized by prototype bnAbs that recognize various canonical epitope clusters on Env spike proteins. Some bnAbs preferred spike proteins decorated with large, complex glycans. Others preferred smaller glycans that improved their access to underlying protein targets. For similar reasons, germline-reverted versions of bnAbs were also generally more effective when the glycans were small. In some cases, bnAbs acquired an ability to bind to sugars as they matured. A comparison of viruses generated in cell lines and primary cells revealed large differences in bnAb sensitivity, raising questions about clinical relevance of cell line-produced virus for checking vaccine responses and, moreover, the use of these cell lines for manufacturing vaccines. Overall, just as car engines may be modified to be supercharged or hybrid for increased power or efficiency, the sugars of HIV coat proteins may also need to be engineered as 'supercharged' and 'hybrid' or otherwise modified in rational vaccine designs to optimize bnAb recognition.
Collapse
|
60
|
Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY, Hartweger H, West AP, Cohen AE, Nussenzweig MC, Bjorkman PJ. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun 2018; 9:1251. [PMID: 29593217 PMCID: PMC5871869 DOI: 10.1038/s41467-018-03632-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332gp120 glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332gp120 glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18's binding orientation provides additional contacts with N392gp120 and N386gp120 glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb-glycan interactions critical for using V3/N332gp120 bNAbs therapeutically and targeting their epitope for immunogen design.
Collapse
Affiliation(s)
- Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Department of Clinical Immunology and Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
61
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
62
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
63
|
Hake A, Pfeifer N. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time. PLoS Comput Biol 2017; 13:e1005789. [PMID: 29065122 PMCID: PMC5669501 DOI: 10.1371/journal.pcbi.1005789] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/03/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient’s viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population. Several sequence-based approaches exist to predict the epitope of broadly neutralizing antibodies (bNAbs) against HIV based on the correlation between variation in the viral sequence and neutralization response to the antibody. Though the potential epitope sites can be used to predict the neutralization response, the methods are not optimized for the task, using additional structural information, additional preselection steps to identify the epitope sites, and assuming independence and/or only linear relationship between the potential sites and the neutralization response. To model also the neutralization response to bNAbs with more complex binding sites, including for example several non-consecutive residues or accompanying conformational changes, we used non-linear, multivariate machine learning techniques. Though we used only the viral sequence information, the models learnt the corresponding binding sites of the bNAbs. In general only few residues were learnt to be responsible for a change in neutralization response, which can additionally reduce the sequencing cost for application in clinical routine. We propose our tailored models to aid the patient selection process for current clinical trials for bNAb immunotherapy, but also as a basis to predict the best combinations of bNAbs, which will be required for routine clinical practice in the future.
Collapse
Affiliation(s)
- Anna Hake
- Department Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
- * E-mail: (AH); (NP)
| | - Nico Pfeifer
- Department Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Germany
- Medical Faculty, University of Tübingen, Tübingen, Germany
- * E-mail: (AH); (NP)
| |
Collapse
|
64
|
Bonsignori M, Liao HX, Gao F, Williams WB, Alam SM, Montefiori DC, Haynes BF. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev 2017; 275:145-160. [PMID: 28133802 PMCID: PMC5302796 DOI: 10.1111/imr.12509] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Induction of HIV-1 broadly neutralizing antibodies (bnAbs) to date has only been observed in the setting of HIV-1 infection, and then only years after HIV transmission. Thus, the concept has emerged that one path to induction of bnAbs is to define the viral and immunologic events that occur during HIV-1 infection, and then to mimic those events with a vaccine formulation. This concept has led to efforts to map both virus and antibody events that occur from the time of HIV-1 transmission to development of bnAbs. This work has revealed that a virus-antibody "arms race" occurs in which a HIV-1 transmitted/founder (TF) Env induces autologous neutralizing antibodies that can not only neutralize the TF virus but also can select virus escape mutants that in turn select affinity-matured neutralizing antibodies. From these studies has come a picture of bnAb development that has led to new insights in host-pathogen interactions and, as well, led to insight into immunologic mechanisms of control of bnAb development. Here, we review the progress to date in elucidating bnAb B cell lineages in HIV-1 infection, discuss new research leading to understanding the immunologic mechanisms of bnAb induction, and address issues relevant to the use of this information for the design of new HIV-1 sequential envelope vaccine candidates.
Collapse
Affiliation(s)
- Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Feng Gao
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Wilton B Williams
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
65
|
Voitenko OS, Dhroso A, Feldmann A, Korkin D, Kalinina OV. Patterns of amino acid conservation in human and animal immunodeficiency viruses. Bioinformatics 2017; 32:i685-i692. [PMID: 27587690 DOI: 10.1093/bioinformatics/btw441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION Due to their high genomic variability, RNA viruses and retroviruses present a unique opportunity for detailed study of molecular evolution. Lentiviruses, with HIV being a notable example, are one of the best studied viral groups: hundreds of thousands of sequences are available together with experimentally resolved three-dimensional structures for most viral proteins. In this work, we use these data to study specific patterns of evolution of the viral proteins, and their relationship to protein interactions and immunogenicity. RESULTS We propose a method for identification of two types of surface residues clusters with abnormal conservation: extremely conserved and extremely variable clusters. We identify them on the surface of proteins from HIV and other animal immunodeficiency viruses. Both types of clusters are overrepresented on the interaction interfaces of viral proteins with other proteins, nucleic acids or low molecular-weight ligands, both in the viral particle and between the virus and its host. In the immunodeficiency viruses, the interaction interfaces are not more conserved than the corresponding proteins on an average, and we show that extremely conserved clusters coincide with protein-protein interaction hotspots, predicted as the residues with the largest energetic contribution to the interaction. Extremely variable clusters have been identified here for the first time. In the HIV-1 envelope protein gp120, they overlap with known antigenic sites. These antigenic sites also contain many residues from extremely conserved clusters, hence representing a unique interacting interface enriched both in extremely conserved and in extremely variable clusters of residues. This observation may have important implication for antiretroviral vaccine development. AVAILABILITY AND IMPLEMENTATION A Python package is available at https://bioinf.mpi-inf.mpg.de/publications/viral-ppi-pred/ CONTACT voitenko@mpi-inf.mpg.de or kalinina@mpi-inf.mpg.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Olga S Voitenko
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E1 4, Saarbrücken 66123, Germany, Graduate School for Computer Science, Saarland University, Campus E1 3, Saarbrücken 66123, Germany
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Anna Feldmann
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E1 4, Saarbrücken 66123, Germany, Graduate School for Computer Science, Saarland University, Campus E1 3, Saarbrücken 66123, Germany
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Olga V Kalinina
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E1 4, Saarbrücken 66123, Germany
| |
Collapse
|
66
|
Horwitz JA, Bar-On Y, Lu CL, Fera D, Lockhart AAK, Lorenzi JCC, Nogueira L, Golijanin J, Scheid JF, Seaman MS, Gazumyan A, Zolla-Pazner S, Nussenzweig MC. Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo. Cell 2017; 170:637-648.e10. [PMID: 28757252 DOI: 10.1016/j.cell.2017.06.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
Abstract
Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratory of Structural Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Whelan Laboratory, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ainsley A K Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Susan Zolla-Pazner
- Zolla-Pazner Laboratory, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
67
|
Zhang Y, Niu Y, Tian J, Liu X, Yao X, Liu H. The glycan-mediated mechanism on the interactions of gp120 with CD4 and antibody: Insights from molecular dynamics simulation. Chem Biol Drug Des 2017. [DOI: 10.1111/cbdd.13045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yan Zhang
- Guiyang College of Traditional Chinese Medicine; Guiyang China
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou China
| | - Yuzhen Niu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou China
| | - Jiaqi Tian
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou China
| | - Huanxiang Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| |
Collapse
|
68
|
Wang H, Gristick HB, Scharf L, West AP, Galimidi RP, Seaman MS, Freund NT, Nussenzweig MC, Bjorkman PJ. Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. eLife 2017; 6. [PMID: 28548638 PMCID: PMC5472438 DOI: 10.7554/elife.27389] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022] Open
Abstract
The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2 Å resolution) and PG9 (11.5 Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility. DOI:http://dx.doi.org/10.7554/eLife.27389.001
Collapse
Affiliation(s)
- Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
69
|
Robbiani DF, Bozzacco L, Keeffe JR, Khouri R, Olsen PC, Gazumyan A, Schaefer-Babajew D, Avila-Rios S, Nogueira L, Patel R, Azzopardi SA, Uhl LFK, Saeed M, Sevilla-Reyes EE, Agudelo M, Yao KH, Golijanin J, Gristick HB, Lee YE, Hurley A, Caskey M, Pai J, Oliveira T, Wunder EA, Sacramento G, Nery N, Orge C, Costa F, Reis MG, Thomas NM, Eisenreich T, Weinberger DM, de Almeida ARP, West AP, Rice CM, Bjorkman PJ, Reyes-Teran G, Ko AI, MacDonald MR, Nussenzweig MC. Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell 2017; 169:597-609.e11. [PMID: 28475892 PMCID: PMC5492969 DOI: 10.1016/j.cell.2017.04.024] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 01/20/2023]
Abstract
Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Priscilla C Olsen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Roshni Patel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stephanie A Azzopardi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Lion F K Uhl
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arlene Hurley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Elsio A Wunder
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Gielson Sacramento
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Nivison Nery
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Cibele Orge
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil
| | - Federico Costa
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA; Faculdade de Medicina da Bahia and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia CEP 40296-710, Brazil
| | - Mitermayer G Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA; Faculdade de Medicina da Bahia and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia CEP 40296-710, Brazil
| | - Neena M Thomas
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Antonio R P de Almeida
- Faculdade de Medicina da Bahia and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia CEP 40296-710, Brazil
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Albert I Ko
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia CEP 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
70
|
Contrasting antibody responses to intrasubtype superinfection with CRF02_AG. PLoS One 2017; 12:e0173705. [PMID: 28288209 PMCID: PMC5348025 DOI: 10.1371/journal.pone.0173705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/25/2017] [Indexed: 11/22/2022] Open
Abstract
HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.
Collapse
|
71
|
Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, Murrell B, Pfeifer N, Nogueira L, Oliveira TY, Learn GH, Cohen YZ, Lehmann C, Gillor D, Shimeliovich I, Unson-O’Brien C, Weiland D, Robles A, Kümmerle T, Wyen C, Levin R, Witmer-Pack M, Eren K, Ignacio C, Kiss S, West AP, Mouquet H, Zingman BS, Gulick RM, Keler T, Bjorkman PJ, Seaman MS, Hahn BH, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC, Klein F. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med 2017; 23:185-191. [PMID: 28092665 PMCID: PMC5467219 DOI: 10.1038/nm.4268] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 log10 copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Allison Settler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Theodora Karagounis
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Edward F. Kreider
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Gerald H. Learn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yehuda Z. Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Daniel Gillor
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Cecilia Unson-O’Brien
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Daniela Weiland
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Alexander Robles
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tim Kümmerle
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Rebeka Levin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Kemal Eren
- Department of Biomedical Informatics and
- Bioinformatics and System Biology, University of California, San Diego, San Diego, California, USA
| | - Caroline Ignacio
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Szilard Kiss
- Department of Ophthalmology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris, France
| | - Barry S. Zingman
- Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Einstein/CUNY/Rockefeller Center for AIDS Research, Bronx, New York, New York, USA
| | - Roy M. Gulick
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, New Jersey, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Sarah J. Schlesinger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| |
Collapse
|
72
|
Wibmer CK, Gorman J, Ozorowski G, Bhiman JN, Sheward DJ, Elliott DH, Rouelle J, Smira A, Joyce MG, Ndabambi N, Druz A, Asokan M, Burton DR, Connors M, Abdool Karim SS, Mascola JR, Robinson JE, Ward AB, Williamson C, Kwong PD, Morris L, Moore PL. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathog 2017; 13:e1006074. [PMID: 28076415 PMCID: PMC5226681 DOI: 10.1371/journal.ppat.1006074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel J. Sheward
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Julie Rouelle
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Ashley Smira
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - M. Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nonkululeko Ndabambi
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mangai Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, CHAVI-ID and IAVI Neutralizing Antibody Centre, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James E. Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IDM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
73
|
|
74
|
Wibmer CK, Gorman J, Anthony CS, Mkhize NN, Druz A, York T, Schmidt SD, Labuschagne P, Louder MK, Bailer RT, Abdool Karim SS, Mascola JR, Williamson C, Moore PL, Kwong PD, Morris L. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site. J Virol 2016; 90:10220-10235. [PMID: 27581986 PMCID: PMC5105658 DOI: 10.1128/jvi.01357-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023] Open
Abstract
All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Colin S Anthony
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Nonhlanhla N Mkhize
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Phillip Labuschagne
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
75
|
Cryo-EM structure of a CD4-bound open HIV-1 envelope trimer reveals structural rearrangements of the gp120 V1V2 loop. Proc Natl Acad Sci U S A 2016; 113:E7151-E7158. [PMID: 27799557 DOI: 10.1073/pnas.1615939113] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 envelope (Env) glycoprotein, a trimer of gp120-gp41 heterodimers, relies on conformational flexibility to function in fusing the viral and host membranes. Fusion is achieved after gp120 binds to CD4, the HIV-1 receptor, and a coreceptor, capturing an open conformational state in which the fusion machinery on gp41 gains access to the target cell membrane. In the well-characterized closed Env conformation, the gp120 V1V2 loops interact at the apex of the Env trimer. Less is known about the structure of the open CD4-bound state, in which the V1V2 loops must rearrange and separate to allow access to the coreceptor binding site. We identified two anti-HIV-1 antibodies, the coreceptor mimicking antibody 17b and the gp120-gp41 interface-spanning antibody 8ANC195, that can be added as Fabs to a soluble native-like Env trimer to stabilize it in a CD4-bound conformation. Here, we present an 8.9-Å cryo-electron microscopy structure of a BG505 Env-sCD4-17b-8ANC195 complex, which reveals large structural rearrangements in gp120, but small changes in gp41, compared with closed Env structures. The gp120 protomers are rotated and separated in the CD4-bound structure, and the three V1V2 loops are displaced by ∼40 Å from their positions at the trimer apex in closed Env to the sides of the trimer in positions adjacent to, and interacting with, the three bound CD4s. These results are relevant to understanding CD4-induced conformational changes leading to coreceptor binding and fusion, and HIV-1 Env conformational dynamics, and describe a target structure relevant to drug design and vaccine efforts.
Collapse
|
76
|
Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks. Int J Mol Sci 2016; 17:ijms17101710. [PMID: 27727189 PMCID: PMC5085742 DOI: 10.3390/ijms17101710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1.
Collapse
|
77
|
Gasser R, Hamoudi M, Pellicciotta M, Zhou Z, Visdeloup C, Colin P, Braibant M, Lagane B, Negroni M. Buffering deleterious polymorphisms in highly constrained parts of HIV-1 envelope by flexible regions. Retrovirology 2016; 13:50. [PMID: 27473399 PMCID: PMC4967302 DOI: 10.1186/s12977-016-0285-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Background Covariation is an essential process that leads to coevolution of parts of proteins and genomes. In organisms subject to strong selective pressure, coevolution is central to keep the balance between the opposite requirements of antigenic variation and retention of functionality. Being the viral component most exposed to the external environment, the HIV-1 glycoprotein gp120 constitutes the main target of the immune response. Accordingly its more external portions are characterised by extensive sequence heterogeneity fostering constant antigenic variation. Results We report that a single polymorphism, present at the level of the viral population in the conserved internal region C2, was sufficient to totally abolish Env functionality when introduced in an exogenous genetic context. The prominent defect of the non-functional protein is a block occurring after recognition of the co-receptor CCR5, likely due to an interference with the subsequent conformational changes that lead to membrane fusion. We also report that the presence of compensatory polymorphisms at the level of the external and hypervariable region V3 fully restored the functionality of the protein. The functional revertant presents different antigenic profiles and sensitivity to the entry inhibitor TAK 779. Conclusions Our data suggest that variable regions, besides harbouring intrinsic extensive antigenic diversity, can also contribute to sequence diversification in more structurally constrained parts of the gp120 by buffering the deleterious effect of polymorphisms, further increasing the genetic flexibility of the protein and the antigenic repertoire of the viral population.
Collapse
Affiliation(s)
- Romain Gasser
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Meriem Hamoudi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France.,U1016, UMR 8104, INSERM-CNRS, Institut Cochin, Université Paris Descartes, Paris, France
| | - Martina Pellicciotta
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Zhicheng Zhou
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Philippe Colin
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Bernard Lagane
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Matteo Negroni
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France.
| |
Collapse
|
78
|
HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 2016; 535:556-60. [PMID: 27338952 DOI: 10.1038/nature18929] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023]
Abstract
Interruption of combination antiretroviral therapy in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117,a broad and potent neutralizing antibody against the CD4 binding site of the HIV-1 Env protein, during analytical treatment interruption in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Results show that two or four 30 mg kg(-1) 3BNC117 infusions,separated by 3 or 2 weeks, respectively, are generally well tolerated.Infusions are associated with a delay in viral rebound of 5-9 weeks after two infusions, and up to 19 weeks after four infusions, or an average of 6.7 and 9.9 weeks, respectively, compared with 2.6 weeks for historical controls (P < 0.00001). Rebound viruses arise predominantly from a single provirus. In most individuals,emerging viruses show increased resistance, indicating escape.However, 30% of participants remained suppressed until antibody concentrations waned below 20 μg ml(-1), and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9-19 weeks.We conclude that the administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during analytical treatment interruption in humans.
Collapse
|
79
|
Gautam R, Nishimura Y, Pegu A, Nason MC, Klein F, Gazumyan A, Golijanin J, Buckler-White A, Sadjadpour R, Wang K, Mankoff Z, Schmidt SD, Lifson JD, Mascola JR, Nussenzweig MC, Martin MA. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 2016; 533:105-109. [PMID: 27120156 PMCID: PMC5127204 DOI: 10.1038/nature17677] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.
Collapse
Affiliation(s)
- Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Martha C. Nason
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Reza Sadjadpour
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Keyun Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zachary Mankoff
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
- Howard Hughes Medical Institute, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
80
|
Schoofs T, Klein F, Braunschweig M, Kreider EF, Feldmann A, Nogueira L, Oliveira T, Lorenzi JCC, Parrish EH, Learn GH, West AP, Bjorkman PJ, Schlesinger SJ, Seaman MS, Czartoski J, McElrath MJ, Pfeifer N, Hahn BH, Caskey M, Nussenzweig MC. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 2016; 352:997-1001. [PMID: 27199429 DOI: 10.1126/science.aaf0972] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/14/2016] [Indexed: 01/07/2023]
Abstract
3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany. Department of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Malte Braunschweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Edward F Kreider
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Feldmann
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E14, 66123 Saarbrücken, Germany
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Erica H Parrish
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony P West
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah J Schlesinger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E14, 66123 Saarbrücken, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
81
|
Scharf L, Wang H, Gao H, Chen S, McDowall AW, Bjorkman PJ. Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env. Cell 2015; 162:1379-90. [PMID: 26359989 DOI: 10.1016/j.cell.2015.08.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The HIV-1 envelope (Env) spike contains limited epitopes for broadly neutralizing antibodies (bNAbs); thus, most neutralizing antibodies are strain specific. The 8ANC195 epitope, defined by crystal and electron microscopy (EM) structures of bNAb 8ANC195 complexed with monomeric gp120 and trimeric Env, respectively, spans the gp120 and gp41 Env subunits. To investigate 8ANC195's gp41 epitope at higher resolution, we solved a 3.58 Å crystal structure of 8ANC195 complexed with fully glycosylated Env trimer, revealing 8ANC195 insertion into a glycan shield gap to contact gp120 and gp41 glycans and protein residues. To determine whether 8ANC195 recognizes the CD4-bound open Env conformation that leads to co-receptor binding and fusion, one of several known conformations of virion-associated Env, we solved EM structures of an Env/CD4/CD4-induced antibody/8ANC195 complex. 8ANC195 binding partially closed the CD4-bound trimer, confirming structural plasticity of Env by revealing a previously unseen conformation. 8ANC195's ability to bind different Env conformations suggests advantages for potential therapeutic applications.
Collapse
Affiliation(s)
- Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alasdair W McDowall
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
82
|
Cohen YZ, Lavine CL, Miller CA, Garrity J, Carey BR, Seaman MS. Glycan-Dependent Neutralizing Antibodies Are Frequently Elicited in Individuals Chronically Infected with HIV-1 Clade B or C. AIDS Res Hum Retroviruses 2015; 31:1192-201. [PMID: 26149894 DOI: 10.1089/aid.2015.0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A number of potent broadly neutralizing antibodies against HIV-1 have recently been identified that target epitopes on the viral envelope that contain N-linked glycans. It remains unknown how frequently glycan-dependent neutralizing antibodies generally arise during the course of natural infection or whether particular glycosylation sites are preferentially targeted. We tested sera with a broad range of neutralization activity from individuals infected with HIV-1 clades B or C against panels of HIV-1 Env pseudoviruses that lacked specific glycans in the outer domain glycan cluster (ODGC) or inner domain glycan cluster (IDGC) to determine the presence of glycan-dependent neutralizing antibodies. Overall, 54% of individuals were observed to have neutralizing antibodies targeting these glycan regions. Glycan-specific neutralizing antibodies were readily detected in sera that were selected for having broad, moderate, or weak neutralization potency and breadth. Our results demonstrate that glycan-specific neutralizing antibodies arise with appreciable frequency in individuals chronically infected with HIV-1 clades B and C. Antibody responses that commonly occur during natural infection may be more feasible to induce by vaccination; thus glycan-specific neutralizing antibodies may be desirable responses to elicit with candidate HIV-1 vaccines.
Collapse
Affiliation(s)
- Yehuda Z. Cohen
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christy L. Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Caroline A. Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jetta Garrity
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brittany R. Carey
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
83
|
Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses 2015; 7:5443-75. [PMID: 26506369 PMCID: PMC4632389 DOI: 10.3390/v7102881] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations of mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus "hot-spots" under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. With well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent "cocktail" vaccines.
Collapse
|
84
|
Caskey M, Klein F, Lorenzi JCC, Seaman MS, West AP, Buckley N, Kremer G, Nogueira L, Braunschweig M, Scheid JF, Horwitz JA, Shimeliovich I, Ben-Avraham S, Witmer-Pack M, Platten M, Lehmann C, Burke LA, Hawthorne T, Gorelick RJ, Walker BD, Keler T, Gulick RM, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015; 522:487-91. [PMID: 25855300 PMCID: PMC4890714 DOI: 10.1038/nature14411] [Citation(s) in RCA: 609] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/adverse effects
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Binding Sites
- Broadly Neutralizing Antibodies
- CD4 Antigens/metabolism
- Case-Control Studies
- Evolution, Molecular
- Female
- HIV Antibodies/administration & dosage
- HIV Antibodies/adverse effects
- HIV Antibodies/immunology
- HIV Antibodies/pharmacology
- HIV Antibodies/therapeutic use
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- HIV-1/chemistry
- HIV-1/drug effects
- HIV-1/immunology
- Humans
- Immunization, Passive/methods
- Male
- Middle Aged
- Molecular Sequence Data
- Time Factors
- Viral Load/drug effects
- Viral Load/immunology
- Viremia/immunology
- Viremia/therapy
- Viremia/virology
- Young Adult
Collapse
Affiliation(s)
- Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Anthony P West
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Noreen Buckley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Gisela Kremer
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] Clinical Trials Center Cologne, ZKS Köln, BMBF 01KN1106, University of Cologne, Cologne, Germany
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Malte Braunschweig
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Sivan Ben-Avraham
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Martin Platten
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Clara Lehmann
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Leah A Burke
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, New Jersey 08827, USA
| | - Roy M Gulick
- Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Gerd Fätkenheuer
- 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Sarah J Schlesinger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Michel C Nussenzweig
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
85
|
Pritchard LK, Spencer DIR, Royle L, Bonomelli C, Seabright GE, Behrens AJ, Kulp DW, Menis S, Krumm SA, Dunlop DC, Crispin DJ, Bowden TA, Scanlan CN, Ward AB, Schief WR, Doores KJ, Crispin M. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat Commun 2015; 6:7479. [PMID: 26105115 PMCID: PMC4500839 DOI: 10.1038/ncomms8479] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Louise Royle
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel W Kulp
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sergey Menis
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Stefanie A Krumm
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - D Cameron Dunlop
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel J Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - William R Schief
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
86
|
Yoon H, Macke J, West AP, Foley B, Bjorkman PJ, Korber B, Yusim K. CATNAP: a tool to compile, analyze and tally neutralizing antibody panels. Nucleic Acids Res 2015; 43:W213-9. [PMID: 26044712 PMCID: PMC4489231 DOI: 10.1093/nar/gkv404] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/15/2015] [Indexed: 02/01/2023] Open
Abstract
CATNAP (Compile, Analyze and Tally NAb Panels) is a new web server at Los Alamos HIV Database, created to respond to the newest advances in HIV neutralizing antibody research. It is a comprehensive platform focusing on neutralizing antibody potencies in conjunction with viral sequences. CATNAP integrates neutralization and sequence data from published studies, and allows users to analyze that data for each HIV Envelope protein sequence position and each antibody. The tool has multiple data retrieval and analysis options. As input, the user can pick specific antibodies and viruses, choose a panel from a published study, or supply their own data. The output superimposes neutralization panel data, virus epidemiological data, and viral protein sequence alignments on one page, and provides further information and analyses. The user can highlight alignment positions, or select antibody contact residues and view position-specific information from the HIV databases. The tool calculates tallies of amino acids and N-linked glycosylation motifs, counts of antibody-sensitive and -resistant viruses in conjunction with each amino acid or N-glycosylation motif, and performs Fisher's exact test to detect potential positive or negative amino acid associations for the selected antibody. Website name: CATNAP (Compile, Analyze and Tally NAb Panels). Website address: http://hiv.lanl.gov/catnap.
Collapse
Affiliation(s)
- Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Brian Foley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW To provide an update on neutralizing antibody targets in the context of the recent HIV-1 envelope trimer structure, describe new antibody isolation technologies, and discuss the implications of these data for HIV-1 prevention and therapy. RECENT FINDINGS Recent advances in B-cell technologies have dramatically expanded the number of antibodies isolated from HIV-infected donors with broadly neutralizing plasma activity. These, together with the first high-resolution crystal and cryo-electron microscopy (cryo-EM) structures of a cleaved, prefusion HIV-1 trimer, have defined new regions susceptible to neutralization. This year, three epitopes in the gp120-gp41 interface were structurally characterized, highlighting the importance of prefusion gp41 as a target. Similar to many other broadly neutralizing antibody epitopes, these new antibodies define a target that is also highly glycan dependent. Collectively, the epitopes for broadly neutralizing antibodies now reveal a continuum of vulnerability spanning the length of the HIV-1 envelope trimer. SUMMARY Progress in the last year has provided support for the use of rationally stabilized whole HIV-1 trimers as immunogens for eliciting antibodies to multiple epitopes. Furthermore, the increasing number of broad and potent antibodies with the potential for synergistic/complementary combinations opens up new avenues for preventing and treating HIV-1 infection.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
88
|
Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS, Menis S, Huang X, Kulp D, Osawa K, Muranaka J, Stewart-Jones G, Destefano J, O’Dell S, LaBranche C, Robinson JE, Montefiori DC, McKee K, Du SX, Doria-Rose N, Kwong PD, Mascola JR, Zhu P, Schief WR, Wyatt RT, Whalen RG, Binley JM. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathog 2015; 11:e1004932. [PMID: 26023780 PMCID: PMC4449185 DOI: 10.1371/journal.ppat.1004932] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 12/28/2022] Open
Abstract
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
Collapse
Affiliation(s)
- Ema T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bimal Chakrabarti
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kristin Narayan
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sergey Menis
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Xiaoxing Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Daniel Kulp
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | | | - Guillaume Stewart-Jones
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Joanne Destefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James E. Robinson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sean X. Du
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - William R. Schief
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard T. Wyatt
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
89
|
Derking R, Ozorowski G, Sliepen K, Yasmeen A, Cupo A, Torres JL, Julien JP, Lee JH, van Montfort T, de Taeye SW, Connors M, Burton DR, Wilson IA, Klasse PJ, Ward AB, Moore JP, Sanders RW. Comprehensive antigenic map of a cleaved soluble HIV-1 envelope trimer. PLoS Pathog 2015; 11:e1004767. [PMID: 25807248 PMCID: PMC4373910 DOI: 10.1371/journal.ppat.1004767] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/26/2015] [Indexed: 11/23/2022] Open
Abstract
The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers. Using these tools, we generated an antigenic map of the trimer by antibody cross-competition. Our analysis delineates three well-defined epitope clusters (CD4 binding site, quaternary V1V2 and Asn332-centered oligomannose patch) and new epitopes at the gp120-gp41 interface. It also identifies the relationships among these clusters. In addition to epitope overlap, we defined three more ways in which antibodies can cross-compete: steric competition from binding to proximal but non-overlapping epitopes (e.g., PGT151 inhibition of 8ANC195 binding); allosteric inhibition (e.g., PGT145 inhibition of 1NC9, 8ANC195, PGT151 and CD4 binding); and competition by reorientation of glycans (e.g., PGT135 inhibition of CD4bs bNAbs, and CD4bs bNAb inhibition of 8ANC195). We further demonstrate that bNAb binding can be complex, often affecting several other areas of the trimer surface beyond the epitope. This extensive analysis of the antigenic structure and the epitope interrelationships of the Env trimer should aid in design of both bNAb-based therapies and vaccines intended to induce bNAbs. The discovery of new broadly neutralizing antibodies against various epitopes on the HIV-1 envelope glycoprotein trimer and increased knowledge of its structure are guiding vaccine design. To increase our understanding of the interrelationships among the different epitopes, we generated a detailed antigenic map of the trimer using a variety of techniques. We have uncovered various mechanisms whereby antibodies can influence each other’s binding. The resulting antigenic map should further aid in design of HIV-1 vaccines to induce broadly neutralizing antibodies and in devising cocktails of such antibodies for therapeutic use.
Collapse
Affiliation(s)
- Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Per-Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
90
|
Freund NT, Scheid JF, Mouquet H, Nussenzweig MC. Amplification of highly mutated human Ig lambda light chains from an HIV-1 infected patient. J Immunol Methods 2015; 418:61-5. [PMID: 25667013 DOI: 10.1016/j.jim.2015.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Isolation and characterization of anti HIV-1 broadly neutralizing antibodies (bNAbs) have elucidated new epitopes and sites of viral vulnerability. Anti-HIV-1 bNAbs typically show high levels of somatic mutations in their variable region genes. This feature potentially limits antibody identification, since the mutated antibody sequences are no longer complimentary to primers designed based on germline antibody sequences. Here we report a new set of primers for Igλ light chains that aligns to the 5' end of the leader sequence and is highly efficient for the amplification of antibodies that contain mutations and deletions in the 5' end of human Igλ.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
91
|
Shmelkov E, Nadas A, Cardozo T. Could vaccination with AIDSVAX immunogens have resulted in antibody-dependent enhancement of HIV infection in human subjects? Hum Vaccin Immunother 2014; 10:3013-6. [PMID: 25483466 DOI: 10.4161/21645515.2014.972148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The immune-correlate analysis of the RV144 clinical trial revealed that human plasma IgA immune responses elicited by the RV144 vaccine correlated positively with a risk for HIV acquisition. This result once again emphasized that HIV vaccines can potentially have adverse effects leading to enhancement of infection. Here, we discuss previously reported evidence of antibody-dependent enhancement of HIV infection. We also describe how a structure-based epitope-specific sieve-analysis can be employed to mine the molecular mechanism underlying this phenomenon.
Collapse
Affiliation(s)
- Evgeny Shmelkov
- a Department of Biochemistry and Molecular Pharmacology ; New York University School of Medicine ; New York , NY USA
| | | | | |
Collapse
|
92
|
IDEPI: rapid prediction of HIV-1 antibody epitopes and other phenotypic features from sequence data using a flexible machine learning platform. PLoS Comput Biol 2014; 10:e1003842. [PMID: 25254639 PMCID: PMC4177671 DOI: 10.1371/journal.pcbi.1003842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/01/2014] [Indexed: 11/19/2022] Open
Abstract
Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose ultimate goals--a cure and a vaccine--remain elusive. One of the fundamental challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes) for learning genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab), determining coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license), documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/idepi.
Collapse
|
93
|
Pandit H, Gopal S, Sonawani A, Yadav AK, Qaseem AS, Warke H, Patil A, Gajbhiye R, Kulkarni V, Al-Mozaini MA, Idicula-Thomas S, Kishore U, Madan T. Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production. PLoS One 2014; 9:e102395. [PMID: 25036364 PMCID: PMC4103819 DOI: 10.1371/journal.pone.0102395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/17/2014] [Indexed: 01/12/2023] Open
Abstract
Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SP-D against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection.
Collapse
Affiliation(s)
- Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Sandhya Gopal
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Archana Sonawani
- Biomedical Informatics Centre, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Ajit Kumar Yadav
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Asif S. Qaseem
- Centre for Infection, Immunity and Disease Mechanisms, Brunel University, London, United Kingdom
| | - Himangi Warke
- Department of Obstetrics and Gynecology, Seth G S Medical College and K E M Hospital, Mumbai, Maharashtra, India
| | - Anushree Patil
- Department of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Rahul Gajbhiye
- Department of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Vijay Kulkarni
- Department of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Maha Ahmed Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Brunel University, London, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
94
|
Chuang GY, Liou D, Kwong PD, Georgiev IS. NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences. Nucleic Acids Res 2014; 42:W64-71. [PMID: 24782517 PMCID: PMC4086065 DOI: 10.1093/nar/gku318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 11/14/2022] Open
Abstract
Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep.
Collapse
Affiliation(s)
| | - David Liou
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
95
|
Scharf L, Scheid JF, Lee JH, West AP, Chen C, Gao H, Gnanapragasam PNP, Mares R, Seaman MS, Ward AB, Nussenzweig MC, Bjorkman PJ. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep 2014; 7:785-95. [PMID: 24767986 DOI: 10.1016/j.celrep.2014.04.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) to HIV-1 envelope glycoprotein (Env) can prevent infection in animal models. Characterized bNAb targets, although key to vaccine and therapeutic strategies, are currently limited. We defined a new site of vulnerability by solving structures of bNAb 8ANC195 complexed with monomeric gp120 by X-ray crystallography and trimeric Env by electron microscopy. The site includes portions of gp41 and N-linked glycans adjacent to the CD4-binding site on gp120, making 8ANC195 the first donor-derived anti-HIV-1 bNAb with an epitope spanning both Env subunits. Rather than penetrating the glycan shield by using a single variable-region CDR loop, 8ANC195 inserted its entire heavy-chain variable domain into a gap to form a large interface with gp120 glycans and regions of the gp120 inner domain not contacted by other bNAbs. By isolating additional 8ANC195 clonal variants, we identified a more potent variant, which may be valuable for therapeutic approaches using bNAb combinations with nonoverlapping epitopes.
Collapse
Affiliation(s)
- Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Courtney Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - René Mares
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
96
|
West AP, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014; 156:633-48. [PMID: 24529371 DOI: 10.1016/j.cell.2014.01.052] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
97
|
Abstract
OBJECTIVE Studies of neutralizing antibodies in HIV-1 infected individuals provide insights into the quality of the response that should be possible to elicit with vaccines and ways to design effective immunogens. Some individuals make high titres of exceptional broadly reactive neutralizing antibodies that are of particular interest; however, more modest responses may be a reasonable goal for vaccines. We performed a large cross-sectional study to determine the spectrum of neutralization potency and breadth that is seen during chronic HIV-1 infection. DESIGN Neutralization potency and breadth were assessed with genetically and geographically diverse panels of 205 chronic HIV-1 sera and 219 Env-pseudotyped viruses representing all major genetic subtypes of HIV-1. METHODS Neutralization was measured by using Tat-regulated luciferase reporter gene expression in TZM-bl cells. Serum-neutralizing activity was compared with a diverse set of human mAbs that are widely considered to be broadly neutralizing. RESULTS We observed a uniform continuum of responses, with most sera displaying some level of cross-neutralization, and approximately 50% of sera neutralizing more than 50% of viruses. Titres of neutralization (potency) were highly correlated with breadth. Many sera had breadth comparable to several of the less potent broadly neutralizing human mAbs. CONCLUSION These results help clarify the spectrum of serum-neutralizing activity induced by HIV-1 infection and that should be possible to elicit with vaccines. Importantly, most people appear capable of making low to moderate titres of broadly neutralizing antibodies. Additional studies of these relatively common responses might provide insights for practical and feasible vaccine designs.
Collapse
|
98
|
Hefferon KL. Broadly neutralizing antibodies and the promise of universal vaccines: where are we now? Immunotherapy 2014; 6:51-7. [DOI: 10.2217/imt.13.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent research has provided strong support for the utility of broadly neutralizing antibodies generated against viruses, which inherently possess a high degree of antigenic variability (such as influenza virus or HIV) as a feasible means to prevent infection. Many of these antibodies share the ability to bind to highly conserved regions within the stem of the virus ‘spike’ or surface glycoprotein, in such a way that they interfere with virus entry, including membrane fusion. As a result, broadly neutralizing antibodies could be supplied to patients as a form of passive immunotherapy, as well as play a role in the design of new ‘universal’ vaccines and antiviral agents. The following article describes the most recent innovations in this exciting field.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- University of Toronto, Toronto, Ontario, Canada and Cornell University, Ithaca, NY, USA
| |
Collapse
|
99
|
Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 2013; 88:2489-507. [PMID: 24352443 DOI: 10.1128/jvi.02853-13] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.
Collapse
|
100
|
Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, Stephenson KE, Chang HW, Shekhar K, Gupta S, Nkolola JP, Seaman MS, Smith KM, Borducchi EN, Cabral C, Smith JY, Blackmore S, Sanisetty S, Perry JR, Beck M, Lewis MG, Rinaldi W, Chakraborty AK, Poignard P, Nussenzweig MC, Burton DR. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 2013; 503:224-8. [PMID: 24172905 PMCID: PMC4017780 DOI: 10.1038/nature12744] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023]
Abstract
HIV-1-specific monoclonal antibodies (mAbs) with extraordinary potency and breadth have recently been described. In humanized mice, combinations of mAbs have been shown to suppress viremia, but the therapeutic potential of these mAbs has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific mAbs, as well as the single glycan-dependent mAb PGT121, resulted in a rapid and precipitous decline of plasma viremia to undetectable levels in rhesus monkeys chronically infected with the pathogenic virus SHIV-SF162P3. A single mAb infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa, and lymph nodes without the development of viral resistance. Moreover, following mAb administration, host Gag-specific T lymphocyte responses exhibited improved functionality. Virus rebounded in the majority of animals after a median of 56 days when serum mAb titers had declined to undetectable levels, although a subset of animals maintained long-term virologic control in the absence of further mAb infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific mAbs in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of mAb therapy for HIV-1 in humans.
Collapse
Affiliation(s)
- Dan H Barouch
- 1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|