51
|
Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation. PPAR Res 2010; 2010. [PMID: 20862367 PMCID: PMC2938449 DOI: 10.1155/2010/169506] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/27/2010] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are central regulators of fat metabolism, energy homeostasis, proliferation, and inflammation. The three PPAR subtypes, PPARα, β/δ, and γ activate overlapping but also very different target gene programs. This review summarizes the insights into PPAR subtype-specific transactivation provided by genome-wide studies and discusses the recent advances in the understanding of the molecular mechanisms underlying PPAR subtype specificity with special focus on the regulatory role of AF-1.
Collapse
|
52
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
53
|
Moreno M, Lombardi A, Silvestri E, Senese R, Cioffi F, Goglia F, Lanni A, de Lange P. PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through Nuclear and Cytosolic Signaling. PPAR Res 2010; 2010:435689. [PMID: 20814433 PMCID: PMC2929508 DOI: 10.1155/2010/435689] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/31/2010] [Accepted: 06/30/2010] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), which are known to regulate lipid homeostasis, are tightly controlled by nutrient availability, and they control nutrient handling. In this paper, we focus on how nutrients control the expression and action of PPARs and how cellular signaling events regulate the action of PPARs in metabolically active tissues (e.g., liver, skeletal muscle, heart, and white adipose tissue). We address the structure and function of the PPARs, and their interaction with other nuclear receptors, including PPAR cross-talk. We further discuss the roles played by different kinase pathways, including the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK MAPK), AMP-activated protein kinase (AMPK), Akt/protein kinase B (Akt/PKB), and the NAD+-regulated protein deacetylase SIRT1, serving to control the activity of the PPARs themselves as well as that of a key nutrient-related PPAR coactivator, PPARgamma coactivator-1alpha (PGC-1alpha). We also highlight how currently applied nutrigenomic strategies will increase our understanding on how nutrients regulate metabolic homeostasis through PPAR signaling.
Collapse
Affiliation(s)
- Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia ed Igiene, Università degli Studi di Napoli “Federico II”, Via Mezzocannone 8, 80134 Napoli, Italy
| | - Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
54
|
Chen M, Wang Y, Qu A. PGC-1 alpha accelerates cytosolic Ca2+ clearance without disturbing Ca2+ homeostasis in cardiac myocytes. Biochem Biophys Res Commun 2010; 396:894-900. [PMID: 20457122 DOI: 10.1016/j.bbrc.2010.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Energy metabolism and Ca(2+) handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1 alpha in cardiac Ca(2+) signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1 alpha via adenoviral transduction. Our data shows that overexpressing PGC-1 alpha improved myocyte contractility without increasing the amplitude of Ca(2+) transients, suggesting that myofilament sensitivity to Ca(2+) increased. Interestingly, the decay kinetics of global Ca(2+) transients and Ca(2+) waves accelerated in PGC-1 alpha-expressing cells, but the decay rate of caffeine-elicited Ca(2+) transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), but not Na(+)/Ca(2+) exchange (NCX) contribute to PGC-1 alpha-induced cytosolic Ca(2+) clearance. Furthermore, PGC-1 alpha induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1 alpha did not disturb cardiac Ca(2+) homeostasis, because SR Ca(2+) load and the propensity for Ca(2+) waves remained unchanged. These data suggest that PGC-1 alpha can ameliorate cardiac Ca(2+) cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1 alpha-calcium handling pathway sheds new light on the role of PGC-1 alpha in the therapy of cardiac diseases.
Collapse
Affiliation(s)
- Min Chen
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
55
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
56
|
Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. NUCLEAR RECEPTOR SIGNALING 2010; 8:e002. [PMID: 20414453 PMCID: PMC2858266 DOI: 10.1621/nrs.08002] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.
Collapse
Affiliation(s)
| | | | | | - Janardan K. Reddy
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
57
|
Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A 2010; 152A:674-86. [PMID: 20186815 DOI: 10.1002/ajmg.a.33323] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CHARGE syndrome [coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities (including deafness)] is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Here, we review the clinical features of 379 CHARGE patients who tested positive or negative for mutations in CHD7. We found that CHARGE individuals with CHD7 mutations more commonly have ocular colobomas, temporal bone anomalies (semicircular canal hypoplasia/dysplasia), and facial nerve paralysis compared with mutation negative individuals. We also highlight recent genetic and genomic studies that have provided functional insights into CHD7 and the pathogenesis of CHARGE syndrome.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
58
|
MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. Mol Cell Biol 2010; 30:2155-69. [PMID: 20194623 DOI: 10.1128/mcb.01238-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Mediator subunit MED1/TRAP220/DRIP205/PBP interacts directly with many nuclear receptors and was long thought to be responsible for tethering Mediator to peroxisome proliferator-activated receptor (PPAR)-responsive promoters. However, it was demonstrated recently that PPARgamma can recruit Mediator by MED1-independent mechanisms. Here, we show that target gene activation by ectopically expressed PPARgamma and PPARalpha is independent of MED1. Consistent with this finding, recruitment of PPARgamma, MED6, MED8, TATA box-binding protein (TBP), and RNA polymerase II (RNAPII) to the enhancer and proximal promoter of the PPARgamma target gene Fabp4 is also independent of MED1. Using a small interfering RNA (siRNA)-based approach, we identify MED14 as a novel critical Mediator component for PPARgamma-dependent transactivation, and we demonstrate that MED14 interacts directly with the N terminus of PPARgamma in a ligand-independent manner. Interestingly, MED14 knockdown does not affect the recruitment of PPARgamma, MED6, and MED8 to the Fabp4 enhancer but does reduce their occupancy of the Fabp4 proximal promoter. In agreement with the necessity of MED14 for PPARgamma transcriptional activity, we show that knockdown of MED14 impairs adipogenesis of 3T3-L1 cells. Thus, MED14 constitutes a novel anchoring point between Mediator and the N-terminal domain of PPARgamma that is necessary for functional PPARgamma-mediated recruitment of Mediator and transactivation of PPARgamma subtype-specific target genes.
Collapse
|
59
|
Qu A, Jiang C, Xu M, Zhang Y, Zhu Y, Xu Q, Zhang C, Wang X. PGC-1α attenuates neointimal formation via inhibition of vascular smooth muscle cell migration in the injured rat carotid artery. Am J Physiol Cell Physiol 2009; 297:C645-53. [DOI: 10.1152/ajpcell.00469.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress contributes significantly to the migration of vascular smooth muscle cells (VSMCs), the major pathogenic process of vascular diseases, but the mechanism remains unclear. In the present study, we explored the role of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a major regulator of mitochondrial biogenesis and energy balance, in VSMC migration in vitro and in vivo. Overexpression of PGC-1α in cultured VSMCs led to a 74.5% reduction of migration activity and mitochondrial ROS generation by the increased expression of antioxidative proteins such as SOD-2 in the mitochondria. The knockdown of PGC-1α by specific small interfering (si)RNA markedly augmented VSMC migration activity and greatly reduced mitochondrial antioxidative protein expression. Furthermore, knockdown of SOD-2 expression by siRNA greatly reversed the inhibitory effect of PGC-1α overexpression on VSMC migration. In a rat carotid balloon injury model, adenovirus-mediated overexpression of PGC-1α greatly reduced neointimal formation (ratio of intima to media: 0.78 ± 0.09 vs. 1.45 ± 0.18 in the adenovirus + green fluorescent protein gene- transfected group). Moreover, the expression of SOD-2 was significantly increased in vivo in local vessels after injury in the PGC-1α-overexpressing group. These data strongly suggest that PGC-1α inhibits VSMC migration and neointimal formation after vascular injury in rats, mainly by upregulating the expression of the mitochondrial antioxidant enzyme SOD-2.
Collapse
Affiliation(s)
- Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing
| | - Mingjiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing
| | - Yan Zhang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; and
| | - Yi Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing
| | - Qingbo Xu
- Cardiovascular Division, The James Black Centre, King's College, University of London, London, United Kingdom
| | - Chenyu Zhang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; and
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing
| |
Collapse
|
60
|
Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 2009; 9:615-30. [PMID: 19701241 PMCID: PMC2908510 DOI: 10.1038/nrc2695] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three homologous members of the p160 SRC family (SRC1, SRC2 and SRC3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRCgenes are subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRCs promote breast and prostate cancer cell proliferation and survival, have been identified, as have the specific contributions of individual SRC family members to spontaneous breast and prostate carcinogenesis in genetically manipulated mouse models. These studies have identified new challenges for cancer research and therapy.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Ray-Chang Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
61
|
Collino M, Patel NSA, Thiemermann C. PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2009; 2:179-97. [PMID: 19124421 DOI: 10.1177/1753944708090924] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability in industrialized countries. Despite advances in understanding its pathophysiology, little progress has been made in the treatment of stroke. The currently available therapies have proven to be highly unsatisfactory (except thrombolysis) and attempts are being made to identify and characterize signaling proteins which could be exploited to design novel therapeutic modalities. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control lipid and glucose metabolism. PPARs regulate gene expression by binding with the retinoid X receptor (RXR) as a heterodimeric partner to specific DNA sequences, termed PPAR response elements. In addition, PPARs may modulate gene transcription also by directly interfering with other transcription factor pathways in a DNA-binding independent manner. To date, three different PPAR isoforms, designated alpha, beta/delta, and gamma, have been identified. Recently, they have been found to play an important role for the pathogenesis of various disorders of the central nervous system and accumulating data suggest that PPARs may serve as potential targets for treating ischemic stroke. Activation of all PPAR isoforms, but especially of PPARgamma, was shown to prevent post-ischemic inflammation and neuronal damage in several in vitro and in vivo models, negatively regulating the expression of genes induced by ischemia/ reperfusion (I/R). This paper reviews the evidence and recent developments relating to the potential therapeutic effects of PPAR-agonists in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Massimo Collino
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | |
Collapse
|
62
|
Guillou H, Martin PGP, Pineau T. Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem 2008; 49:3-47. [PMID: 18751906 DOI: 10.1007/978-1-4020-8831-5_1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The liver is a major site of fatty acid synthesis and degradation. Transcriptional regulation is one of several mechanisms controlling hepatic metabolism of fatty acids. Two transcription factors, namely SREBP1-c and PPARalpha, appear to be the main players controlling synthesis and degradation of fatty acids respectively. This chapter briefly presents fatty acid metabolism. The first part focuses on SREBP1-c contribution to the control of gene expression relevant to fatty acid synthesis and the main mechanisms of activation for this transcriptional program. The second part reviews the evidence for the involvement of PPARalpha in the control of fatty acid degradation and the key features of this nuclear receptor. Finally, the third part aims at summarizing recent advances in our current understanding of how these two transcription factors fit in the regulatory networks that sense hormones or nutrients, including cellular fatty acids, and govern the transcription of genes implicated in hepatic fatty acid metabolism.
Collapse
Affiliation(s)
- Hervé Guillou
- Laboratoire de Pharmacologie et Toxicologie UR66, INRA, F-3100 Toulouse, France
| | | | | |
Collapse
|
63
|
Transcriptional regulation of the processes of human labour and delivery. Placenta 2008; 30 Suppl A:S90-5. [PMID: 19010537 DOI: 10.1016/j.placenta.2008.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 02/08/2023]
Abstract
Preterm birth is the most important complication contributing to poor pregnancy and neonatal outcome. A critical issue that must be resolved is how spontaneous onset labour is initiated both at term and preterm. Over the past decade, we and others have provided evidence in support of the hypothesis that labour onset is regulated by specific nuclear regulatory factor (NR) pathways, involving an interplay between transcription factors (TFs) and nuclear hormone receptors, that control the expression of many of the effector pathways requisite for labour and delivery. There is now compelling evidence implicating NRs, including the nuclear factor-kappaB (NF-kappaB) family of nuclear TFs, the nuclear hormone receptor superfamily of peroxisome proliferator activated receptors (PPARs), and the steroid receptors for progesterone (PRA, PRB and PRC), as candidate upstream regulators of labour-associated processes. Based on these studies and recent data obtained in our laboratory, we provide a new model of how the multiple pathways involved in spontaneous onset labour and delivery are coordinated at a nuclear level. We propose that spontaneous onset labour and delivery are consequent upon withdrawal of the repressive effect of nuclear receptors (PPAR and PR) on pro-labour TF pathways (NF-kappaB). The withdrawal of NR-mediated repression is affected by competition between TFs and NRs for a limited pool of nuclear cofactors. We also propose that coordination of these different pathways is achieved by competition for common cofactors that control the activity of NRs in human gestational tissues.
Collapse
|
64
|
Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, Champagne N, Côté J, Yang XJ. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol 2008; 28:6828-43. [PMID: 18794358 PMCID: PMC2573306 DOI: 10.1128/mcb.01297-08] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022] Open
Abstract
The monocytic leukemia zinc finger protein MOZ and the related factor MORF form tetrameric complexes with ING5 (inhibitor of growth 5), EAF6 (Esa1-associated factor 6 ortholog), and the bromodomain-PHD finger protein BRPF1, -2, or -3. To gain new insights into the structure, function, and regulation of these complexes, we reconstituted them and performed various molecular analyses. We found that BRPF proteins bridge the association of MOZ and MORF with ING5 and EAF6. An N-terminal region of BRPF1 interacts with the acetyltransferases; the enhancer of polycomb (EPc) homology domain in the middle part binds to ING5 and EAF6. The association of BRPF1 with EAF6 is weak, but ING5 increases the affinity. These three proteins form a trimeric core that is conserved from Drosophila melanogaster to humans, although authentic orthologs of MOZ and MORF are absent in invertebrates. Deletion mapping studies revealed that the acetyltransferase domain of MOZ/MORF is sufficient for BRPF1 interaction. At the functional level, complex formation with BRPF1 and ING5 drastically stimulates the activity of the acetyltransferase domain in acetylation of nucleosomal histone H3 and free histones H3 and H4. An unstructured 18-residue region at the C-terminal end of the catalytic domain is required for BRPF1 interaction and may function as an "activation lid." Furthermore, BRPF1 enhances the transcriptional potential of MOZ and a leukemic MOZ-TIF2 fusion protein. These findings thus indicate that BRPF proteins play a key role in assembling and activating MOZ/MORF acetyltransferase complexes.
Collapse
Affiliation(s)
- Mukta Ullah
- Department of Medicine, McGill University Health Centre, Montréal, Québec H3G 0B1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Surapureddi S, Rana R, Reddy JK, Goldstein JA. Nuclear receptor coactivator 6 mediates the synergistic activation of human cytochrome P-450 2C9 by the constitutive androstane receptor and hepatic nuclear factor-4alpha. Mol Pharmacol 2008; 74:913-23. [PMID: 18552123 DOI: 10.1124/mol.108.048983] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6) also known as PRIP/RAP250/ASC-2 anchors a steady-state complex of cofactors and function as a transcriptional coactivator for certain nuclear receptors. This is the first study to identify NCOA6 as a hepatic nuclear factor 4alpha (HNF4alpha)-interacting protein. CYP2C9 is an important enzyme that metabolizes both commonly used therapeutic drugs and important endogenous compounds. We have shown previously that constitutive androstane receptor (CAR) (a xenobiotic-sensing receptor) up-regulates the CYP2C9 promoter through binding to a distal site, whereas HNF4alpha transcriptionally up-regulates CYP2C9 via proximal sites. We demonstrate ligand-enhanced synergistic cross-talk between CAR and HNF4alpha. We identify NCOA6 as crucial to the underlying mechanism of this cross-talk. NCOA6 was identified as an HNF4alpha-interacting protein in this study using a yeast two-hybrid screen and GST pull-down assays. Furthermore, we identified NCOA6, CAR, and other coactivators as part of a mega complex of cofactors associated with HNF4alpha in HepG2 cells. Although the interaction of NCOA6 with CAR is specifically through the first LXXLL motif of NCOA6, both LXXLL motifs are involved in its interaction with HNF4alpha. Silencing of NCOA6 abrogated the synergistic activation of the CYP2C9 promoter and the synergistic induction of the CYP2C9 gene by CAR-HNF4alpha. Chromatin immunoprecipitation analysis revealed that NCOA6 can pull down both the proximal HNF4alpha and distal CAR binding sites of the CYP2C9 promoter and provides the basis for the recruitment of other cofactors. We conclude that the coactivator NCOA6 mediates the mechanism of the synergistic activation of the CYP2C9 gene by CAR and HNF4alpha.
Collapse
Affiliation(s)
- Sailesh Surapureddi
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
66
|
Nolte F, Hofmann WK. Myelodysplastic syndromes: molecular pathogenesis and genomic changes. Ann Hematol 2008; 87:777-95. [PMID: 18516602 DOI: 10.1007/s00277-008-0502-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis presenting with peripheral cytopenias in combination with a hyperplastic bone marrow and an increased risk of evolution to acute myeloid leukemia. The classification systems such as the WHO classification mainly rely on morphological criteria and are supplemented by the International Prognostic Scoring System which takes cytogenetical changes into consideration when determining the prognosis of MDS but wide intra-subtype variations do exist. The pathomechanisms causing primary MDS require further work. Development and progression of MDS is suggested to be a multistep alteration to hematopoietic stem cells. Different molecular alterations have been described, affecting genes involved in cell-cycle control, mitotic checkpoints, and growth factor receptors. Secondary signal proteins and transcription factors, which gives the cell a growth advantage over its normal counterpart, may be affected as well. The accumulation of such defects may finally cause the leukemic transformation of MDS.
Collapse
Affiliation(s)
- Florian Nolte
- Department of Hematology and Oncology, University Hospital Benjamin Franklin, Charité, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | |
Collapse
|
67
|
Discovery of genes implicated in whirling disease infection and resistance in rainbow trout using genome-wide expression profiling. BMC Genomics 2008; 9:37. [PMID: 18218127 PMCID: PMC2257940 DOI: 10.1186/1471-2164-9-37] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 01/24/2008] [Indexed: 12/03/2022] Open
Abstract
Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection.
Collapse
|
68
|
Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression. Mol Cell Biol 2007; 28:1081-91. [PMID: 18039840 DOI: 10.1128/mcb.00967-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mediator is a general coactivator complex connecting transcription activators and RNA polymerase II. Recent work has shown that the nuclear receptor-interacting MED1/TRAP220 subunit of Mediator is required for peroxisome proliferator-activated receptor gamma (PPARgamma)-stimulated adipogenesis of mouse embryonic fibroblasts (MEFs). However, the molecular mechanisms remain undefined. Here, we show an intracellular PPARgamma-Mediator interaction that requires the two LXXLL nuclear receptor recognition motifs on MED1/TRAP220 and, furthermore, we show that the intact LXXLL motifs are essential for optimal PPARgamma function in a reconstituted cell-free transcription system. Surprisingly, a conserved N-terminal region of MED1/TRAP220 that lacks the LXXLL motifs but gets incorporated into Mediator fully supports PPARgamma-stimulated adipogenesis. Moreover, in undifferentiated MEFs, MED1/TRAP220 is dispensable both for PPARgamma-mediated target gene activation and for recruitment of Mediator to a PPAR response element on the aP2 target gene promoter. However, PPARgamma shows significantly reduced transcriptional activity in cells deficient for a subunit (MED24/TRAP100) important for the integrity of the Mediator complex, indicating a general Mediator requirement for PPARgamma function. These results indicate that there is a conditional requirement for MED1/TRAP220 and that a direct interaction between PPARgamma and Mediator through MED1/TRAP220 is not essential either for PPARgamma-stimulated adipogenesis or for PPARgamma target gene expression in cultured fibroblasts. As Mediator is apparently essential for PPARgamma transcriptional activity, our data indicate the presence of alternative mechanisms for Mediator recruitment, possibly through intermediate cofactors or other cofactors that are functionally redundant with MED1/TRAP220.
Collapse
|
69
|
Avvakumov N, Côté J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 2007; 26:5395-407. [PMID: 17694081 DOI: 10.1038/sj.onc.1210608] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The histone acetyltransferases (HATs) of the MYST family are highly conserved in eukaryotes and carry out a significant proportion of all nuclear acetylation. These enzymes function exclusively in multisubunit protein complexes whose composition is also evolutionarily conserved. MYST HATs are involved in a number of key nuclear processes and play critical roles in gene-specific transcription regulation, DNA damage response and repair, as well as DNA replication. This suggests that anomalous activity of these HATs or their associated complexes can easily lead to severe cellular malfunction, resulting in cell death or uncontrolled growth and malignancy. Indeed, the MYST family HATs have been implicated in several forms of human cancer. This review summarizes the current understanding of these enzymes and their normal function, as well as their established and putative links to oncogenesis.
Collapse
Affiliation(s)
- N Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec, Canada
| | | |
Collapse
|
70
|
Abstract
Genes of the human monocytic leukemia zinc-finger protein MOZ (HUGO symbol, MYST3) and its paralog MORF (MYST4) are rearranged in chromosome translocations associated with acute myeloid leukemia and/or benign uterine leiomyomata. Both proteins have intrinsic histone acetyltransferase activity and are components of quartet complexes with noncatalytic subunits containing the bromodomain, plant homeodomain-linked (PHD) finger and proline-tryptophan-tryptophan-proline (PWWP)-containing domain, three types of structural modules characteristic of chromatin regulators. Although leukemia-derived fusion proteins such as MOZ-TIF2 promote self-renewal of leukemic stem cells, recent studies indicate that murine MOZ and MORF are important for proper development of hematopoietic and neurogenic progenitors, respectively, thereby highlighting the importance of epigenetic integrity in safeguarding stem cell identity.
Collapse
Affiliation(s)
- X-J Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montréal, Québec, Canada.
| | | |
Collapse
|
71
|
Flanagan JF, Blus BJ, Kim D, Clines KL, Rastinejad F, Khorasanizadeh S. Molecular implications of evolutionary differences in CHD double chromodomains. J Mol Biol 2007; 369:334-42. [PMID: 17433364 PMCID: PMC1948097 DOI: 10.1016/j.jmb.2007.03.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
Abstract
Double chromodomains occur in CHD proteins, which are ATP-dependent chromatin remodeling factors implicated in RNA polymerase II transcription regulation. Biochemical studies suggest important differences in the histone H3 tail binding of different CHD chromodomains. In human and Drosophila, CHD1 double chromodomains bind lysine 4-methylated histone H3 tail, which is a hallmark of transcriptionally active chromatin in all eukaryotes. Here, we present the crystal structure of the yeast CHD1 double chromodomains, and pinpoint their differences with that of the human CHD1 double chromodomains. The most conserved residues in these double chromodomains are the two chromoboxes that orient adjacently. Only a subset of CHD chromoboxes can form an aromatic cage for methyllysine binding, and methyllysine binding requires correctly oriented inserts. These factors preclude yeast CHD1 double chromodomains from interacting with the histone H3 tail. Despite great sequence similarity between the human CHD1 and CHD2 chromodomains, variation within an insert likely prevents CHD2 double chromodomains from binding lysine 4-methylated histone H3 tail as efficiently as in CHD1. By using the available structural and biochemical data we highlight the evolutionary specialization of CHD double chromodomains, and provide insights about their targeting capacities.
Collapse
Affiliation(s)
- John F Flanagan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
72
|
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CNA, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2007; 58:726-41. [PMID: 17132851 DOI: 10.1124/pr.58.4.5] [Citation(s) in RCA: 722] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre "Frontiers in Genetics," University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Li S, Shang Y. Regulation of SRC family coactivators by post-translational modifications. Cell Signal 2007; 19:1101-12. [PMID: 17368849 DOI: 10.1016/j.cellsig.2007.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 02/05/2023]
Abstract
Initially identified as a group of auxiliary protein factors involved in transcriptional regulation by steroid hormone receptors as well as by other members of the nuclear receptor superfamily, the steroid receptor coactivators (SRCs) have since then been implicated in the transcriptional regulation of other transcription factors which are important components of very different signaling pathways. Members of the SRC family have been shown to interact with myogenin, MEF-2, transcriptional enhancer factor (TEF), NF-kappaB, AP-1, STAT, p53, and E2F1, suggesting that SRC coactivators participate in diverse cellular processes. Recent evidence indicates that various post-translational modifications play critical roles in determining the final transcriptional output and specificity of SRC coactivators. In this review, we summarized the current knowledge concerning post-translational modifications, dynamic interplay between different modifications, and patho-physiological relevance of the modifications of SRC proteins.
Collapse
Affiliation(s)
- Shaosi Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, PR China
| | | |
Collapse
|
74
|
Sun Kim M, Sweeney TR, Shigenaga JK, Chui LG, Moser A, Grunfeld C, Feingold KR. Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism 2007; 56:267-79. [PMID: 17224343 PMCID: PMC2700944 DOI: 10.1016/j.metabol.2006.10.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 10/18/2006] [Indexed: 11/22/2022]
Abstract
During the acute phase response, cytokines induce marked alterations in lipid metabolism including an increase in serum triglyceride levels and a decrease in hepatic fatty acid oxidation, in bile acid synthesis, and in high-density lipoprotein levels. Here we demonstrate that tumor necrosis factor (TNF) and interleukin 1 (IL-1), but not IL-6, decrease the expression of retinoid X receptor alpha (RXRalpha), peroxisome proliferator-activated receptor alpha (PPARalpha), PPARgamma, liver X receptor alpha (LXRalpha), and coactivators PPARgamma coactivator 1alpha (PGC-1alpha), PGC-1beta, and steroid receptor coactivator 1 (SRC-1) in Hep3B human hepatoma cells. In addition, treatment of mice with TNF and IL-1 also decreased RXRalpha, PPARalpha, PPARgamma, LXRalpha, and PGC-1alpha messenger RNA (mRNA) levels in the liver. These decreases were accompanied by reduced binding of nuclear extracts to RXR, PPAR, and LXR response elements and decreased luciferase activity driven by PPAR and LXR response elements. In addition, the mRNA levels of proteins regulated by PPARalpha (carnitine palmitoyltransferase 1alpha) and LXR (sterol regulatory element binding protein) were decreased in Hep3B cells treated with TNF or IL-1. Finally, using constructs of the LXRalpha promoter or the PGC-1alpha promoter linked to luciferase, we were able to demonstrate that a decrease in transcription contributes to the reduction in mRNA levels of nuclear hormone receptors and coactivators. Thus, our results suggest that decreased expression of nuclear hormone receptors RXRalpha, PPARalpha, PPARgamma, and LXRalpha, as well as coactivators PGC-1alpha, PGC-1beta, and SRC-1 may contribute to the cytokine-induced alterations in hepatic lipid metabolism during the acute phase response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth R. Feingold
- To whom correspondence should be addressed: Metabolism Section (111F), Dept. of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121. Tel: 415-750-2005; Fax: 415-750-6927; E-mail:
| |
Collapse
|
75
|
Bedu E, Wahli W, Desvergne B. Peroxisome proliferator-activated receptor beta/delta as a therapeutic target for metabolic diseases. Expert Opin Ther Targets 2007; 9:861-73. [PMID: 16083348 DOI: 10.1517/14728222.9.4.861] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.
Collapse
Affiliation(s)
- Elodie Bedu
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
76
|
Sarkar J, Qi C, Guo D, Ahmed MR, Jia Y, Usuda N, Viswakarma N, Rao MS, Reddy JK. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver. Gene Expr 2007; 13:255-69. [PMID: 17605299 PMCID: PMC6032459 DOI: 10.3727/000000006780666948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Disruption of the genes encoding for the transcription coactivators, peroxisome proliferator-activated receptor (PPAR)-interacting protein (PRIP/ASC-2/RAP250/TRBP/NRC) and PPAR-binding protein (PBP/TRAP220/DRIP205/MED1), results in embryonic lethality by affecting placental and multiorgan development. Targeted deletion of coactivator PBP gene in liver parenchymal cells (PBP(LIV-/-)) results in the near abrogation of the induction of PPARalpha and CAR (constitutive androstane receptor)-regulated genes in liver. Here, we show that targeted deletion of coactivator PRIP gene in liver (PRIP(LIV-/-)) does not affect the induction of PPARalpha-regulated pleiotropic responses, including hepatomegaly, hepatic peroxisome proliferation, and induction of mRNAs of genes involved in fatty acid oxidation system, indicating that PRIP is not essential for PPARalpha-mediated transcriptional activity. We also provide additional data to show that liver-specific deletion of PRIP gene does not interfere with the induction of genes regulated by nuclear receptor CAR. Furthermore, disruption of PRIP gene in liver did not alter zoxazolamine-induced paralysis, and acetaminophen-induced hepatotoxicity. Studies with adenovirally driven EGFP-CAR expression in liver demonstrated that, unlike PBP, the absence of PRIP does not prevent phenobarbital-mediated nuclear translocation/retention of the receptor CAR in liver in vivo and cultured hepatocytes in vitro. These results show that PRIP deficiency in liver does not interfere with the function of nuclear receptors PPARalpha and CAR. The dependence of PPARalpha- and CAR-regulated gene transcription on coactivator PBP but not on PRIP attests to the existence of coactivator selectivity in nuclear receptor function.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Vitamin A signaling occurs through nuclear receptors recognizing diverse forms of retinoic acid (RA). The retinoic acid receptors (RARs) bind all-trans RA and its 9-cis isomer (9-cis RA). They convey most of the activity of RA, particularly during embryogenesis. The second subset of receptors, the rexinoid receptors (RXRs), binds 9-cis RA only. However, RXRs are obligatory DNA-binding partners for a number of nuclear receptors, broadening the spectrum of their biological activity to the corresponding nuclear receptor-signaling pathways. The present chapter more particularly focuses on RXR-containing transcriptional complexes for which RXR is not only a structural component necessary for DNA binding but also acts as a ligand-activated partner. After positioning RXR among the nuclear receptor superfamily in the first part, we will give an overview of three major signaling pathways involved in metabolism, which are sensitive to RXR activation: LXR:RXR, FXR:RXR, and PPAR:RXR. The third and last part is focused on RXR signaling and its potential role in metabolic regulation. Indeed, while the nature of the endogenous ligand for RXR is still in question, as we will discuss herein, a better understanding of RXR activities is necessary to envisage the potential therapeutic applications of synthetic RXR ligands.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, Building Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
78
|
Lutz T, Stöger R, Nieto A. CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis. FEBS Lett 2006; 580:5851-7. [PMID: 17027977 DOI: 10.1016/j.febslet.2006.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 12/29/2022]
Abstract
The CHD family of proteins comprises ATP-dependent chromatin remodeling enzymes, which combine chromodomains, with SWI2/SNF2 ATPase/helicase motifs and DNA-binding capability. In the last few years, CHD proteins have drawn increased attention, because some of them were found to form large multi-subunit complexes, involved in transcription-related events like gene activation, suppression, or histone modification. We previously described the identification of CHD6, a protein of the CHD subfamily III. In the present study, we report that CHD6 is expressed in cells of human origin and in various mouse tissues. Subcellular distribution of CHD6 is restricted to the nucleoplasm. We further show that CHD6 colocalizes with both hypo- and hyper-phosphorlylated forms of RNA polymerase II. CHD6 was found to be present at sites of mRNA synthesis and to be part of a high molecular weight complex. Moreover, we demonstrate DNA-dependent ATPase activity of CHD6.
Collapse
Affiliation(s)
- Thomas Lutz
- Centro Nacional de Biotecnología (CNB), Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
79
|
Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A, Rajanayagam O, Semple R, Luan J, Bath L, Zalin A, Labib M, Kumar S, Simpson H, Blom D, Marais D, Schwabe J, Barroso I, Trembath R, Wareham N, Nagy L, Gurnell M, O'Rahilly S, Chatterjee K. Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance. Cell Metab 2006; 4:303-11. [PMID: 17011503 PMCID: PMC1821092 DOI: 10.1016/j.cmet.2006.09.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/01/2006] [Accepted: 09/13/2006] [Indexed: 11/16/2022]
Abstract
PPARgamma is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARgamma in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARgamma coactivators and inhibit coexpressed wild-type receptor. Expression of PPARgamma target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARgamma action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators.
Collapse
Affiliation(s)
- Maura Agostini
- Department of Medicine, University of Cambridge, United Kingdom
| | | | | | - Istvan Szatmari
- Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - David Savage
- Department of Clinical Biochemistry, University of Cambridge, United Kingdom
| | - Aaron Smith
- Department of Medicine, University of Cambridge, United Kingdom
| | | | - Robert Semple
- Department of Clinical Biochemistry, University of Cambridge, United Kingdom
| | - Jian'an Luan
- Medical Research Council Epidemiology Unit, Cambridge, United Kingdom
| | - Louise Bath
- Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | | | | | - Sudhesh Kumar
- Department of Medicine, University of Warwick, Coventry, United Kingdom
| | - Helen Simpson
- Department of Medicine, University of Cambridge, United Kingdom
| | - Dirk Blom
- Department of Internal Medicine, University of Cape Town, South Africa
| | - David Marais
- Department of Internal Medicine, University of Cape Town, South Africa
| | - John Schwabe
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Inês Barroso
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridgeshire, United Kingdom
| | - Richard Trembath
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
| | - Nicholas Wareham
- Medical Research Council Epidemiology Unit, Cambridge, United Kingdom
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - Mark Gurnell
- Department of Medicine, University of Cambridge, United Kingdom
| | - Stephen O'Rahilly
- Department of Medicine, University of Cambridge, United Kingdom
- Department of Clinical Biochemistry, University of Cambridge, United Kingdom
| | - Krishna Chatterjee
- Department of Medicine, University of Cambridge, United Kingdom
- Corresponding author
| |
Collapse
|
80
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
81
|
Abstract
Although a change in life-style is often the method of first choice for lipid lowering, lipid-lowering drugs, in general, help to control elevated levels of different forms of lipids in patients with hyperlipidemia. While one group of drugs, statins, lowers cholesterol, the other group, fibrates, is known to take care of fatty acids and triglycerides. In addition, other drugs, such as ezetimibe, colesevelam, torcetrapib, avasimibe, implitapide, and niacin are also being considered to manage hyperlipidemia. As lipids are very critical for cardiovascular diseases, these drugs reduce fatal and nonfatal cardiovascular abnormalities in the general population. However, a number of recent studies indicate that apart from their lipid-lowering activities, statins and fibrates exhibit multiple functions to modulate intracellular signaling pathways, inhibit inflammation, suppress the production of reactive oxygen species, and modulate T cell activity. Therefore, nowadays, these drugs are being considered as possible therapeutics for several forms of human disorders including cancer, autoimmunity, inflammation, and neurodegeneration. Here I discuss these applications in the light of newly discovered modes of action of these drugs.
Collapse
Affiliation(s)
- K Pahan
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, Nebraska 68583, USA.
| |
Collapse
|
82
|
Collins HM, Kindle KB, Matsuda S, Ryan C, Troke PJF, Kalkhoven E, Heery DM. MOZ-TIF2 alters cofactor recruitment and histone modification at the RARbeta2 promoter: differential effects of MOZ fusion proteins on CBP- and MOZ-dependent activators. J Biol Chem 2006; 281:17124-17133. [PMID: 16613851 DOI: 10.1074/jbc.m602633200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MOZ-TIF2 and MOZ-CBP are leukemogenic fusion proteins associated with therapy-induced acute myeloid leukemia. These proteins are thought to subvert normal gene expression in differentiating hematopoietic progenitor cells. We have previously shown that MOZ-TIF2 inhibits transcription by CREB-binding protein (CBP)/p300-dependent activators such as nuclear receptors and p53. Here we have shown that MOZ-TIF2 associates with the RARbeta2 promoter in vivo, resulting in altered recruitment of CBP/p300, aberrant histone modification, and down-regulation of the RARbeta2 gene. In contrast, MOZ-TIF2 up-regulated transcription mediated by the MOZ/MYST3-dependent activator AML1/RUNX1. Both wild type MOZ and MOZ-TIF2 were found to colocalize with AML1, and MOZ-TIF2 was recruited to an AML1 target promoter. A MOZ-CBP fusion protein showed similar functions to MOZ-TIF2 in that it inhibited retinoic acid receptor-mediated transcription but enhanced AML1 reporter activation. Although it contains almost the entire CBP sequence, MOZ-CBP does not appear to associate with PML bodies. In summary, our results indicate that leukemogenic MOZ fusion proteins have differential effects on the activities of CBP-dependent and MOZ-dependent activators because of their ability to alter cofactor recruitment and chromatin modification at target promoters.
Collapse
Affiliation(s)
- Hilary M Collins
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Karin B Kindle
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sachiko Matsuda
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Colm Ryan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Philip J F Troke
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
83
|
Surapureddi S, Viswakarma N, Yu S, Guo D, Rao MS, Reddy JK. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex. Biochem Biophys Res Commun 2006; 343:535-43. [PMID: 16554032 DOI: 10.1016/j.bbrc.2006.02.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.
Collapse
Affiliation(s)
- Sailesh Surapureddi
- The Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
84
|
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45:120-59. [PMID: 16476485 DOI: 10.1016/j.plipres.2005.12.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.
Collapse
Affiliation(s)
- Jérôme N Feige
- Center for Integrative Genomics, NCCR Frontiers in Genetics, Le Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
85
|
Nuclear receptor transcriptional coactivators in development and metabolism. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1574-3349(06)16012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
86
|
Tomaru T, Satoh T, Yoshino S, Ishizuka T, Hashimoto K, Monden T, Yamada M, Mori M. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. Endocrinology 2006; 147:377-88. [PMID: 16239304 DOI: 10.1210/en.2005-0450] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using the DNA-binding domain (DBD) and hinge region of human peroxisome proliferator-activated receptor (PPAR)-gamma as bait in yeast two-hybrid screen, we isolated partial cDNA identical with that of the C terminal of KIAA1769. KIAA1769 encodes a 2080-amino acid protein (molecular mass, 231 kDa) that was recently identified to interact with PPARalpha and termed PPARalpha-interacting cofactor 285 (here referred to as PPARgamma-DBD-interacting protein 1 (PDIP1)-alpha). PDIP1 mRNA was expressed in 3T3-L1 adipocytes and THP-1 macrophages. We also identified the expression of the N terminal extended form of PDIP1alpha (referred to as PDIP1beta) consisting of 2649 amino acids (295 kDa) in human cultured cell lines by RT-PCR, and 5' rapid amplification of cDNA ends. Ribonuclease protection assay revealed that PDIP1beta mRNA was expressed more abundantly than PDIP1alpha mRNA. The C-terminal region of PDIP1 directly binds DBD of PPARgamma, and multiple LXXLL motifs in PDIP1 were not required for the interaction. PDIP1alpha and -beta similarly enhanced PPARgamma-mediated transactivation in transfection assays and short interfering RNA targeting PDIP1 mRNA significantly reduced transactivation by PPARgamma. No potent intrinsic activation domain was identified in either PDIP1 isoforms in mammalian one-hybrid assays, and mutation of all LXXLL motifs did not affect enhancement of PPARgamma-mediated transactivation. PDIP1alpha and -beta similarly augmented transactivation by PPARalpha, PPARdelta, thyroid hormone receptor (TR)-alpha1, TRbeta1, and retinoid X receptor-alpha. PDIP1alpha also enhanced estrogen receptoralpha- and androgen receptor-mediated transactivation, whereas PDIP1beta did not. PDIP1alpha showed receptor-specific synergism with activation function-2-interacting coactivators in PPARgamma- and TRbeta1-mediated transactivation. Together, PDIP1 might function as a transcriptional cofactor for a broad range of nuclear receptors, possibly in collaboration with specific activation function-2 interacting coactivators.
Collapse
Affiliation(s)
- Takuya Tomaru
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Jia Y, Guo GL, Surapureddi S, Sarkar J, Qi C, Guo D, Xia J, Kashireddi P, Yu S, Cho YW, Rao MS, Kemper B, Ge K, Gonzalez FJ, Reddy JK. Transcription coactivator peroxisome proliferator-activated receptor-binding protein/mediator 1 deficiency abrogates acetaminophen hepatotoxicity. Proc Natl Acad Sci U S A 2005; 102:12531-6. [PMID: 16109766 PMCID: PMC1187948 DOI: 10.1073/pnas.0506000102] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor-binding protein (PBP), also known as thyroid hormone receptor-associated protein 220/vitamin D receptor-interacting protein 205/mediator 1, an anchor for multisubunit mediator transcription complex, functions as a transcription coactivator for nuclear receptors. Disruption of the PBP gene results in embryonic lethality around embryonic day 11.5 by affecting placental and multiorgan development. Here, we report that targeted deletion of PBP in liver parenchymal cells (PBP(Liv-/-)) results in the abrogation of hypertrophic and hyperplastic influences in liver mediated by constitutive androstane receptor (CAR) ligands phenobarbital (PB) and 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene, and of acetaminophen-induced hepatotoxicity. CAR interacts with the two nuclear receptor-interacting LXXLL (L, leucine; X, any amino acid) motifs in PBP in a ligand-dependent manner. We also show that PBP interacts with the C-terminal portion of CAR, suggesting that PBP is involved in the regulation of CAR function. Although the full-length PBP only minimally increased CAR transcriptional activity, a truncated form of PBP (amino acids 487-735) functioned as a dominant negative repressor, establishing that PBP functions as a coactivator for CAR. A reduction in CAR mRNA and protein level observed in PBP(Liv-/-) mouse liver suggests that PBP may regulate hepatic CAR expression. PBP-deficient hepatocytes in liver failed to reveal PB-dependent translocation of CAR to the nucleus. Adenoviral reconstitution of PBP in PBP(Liv-/-) mouse livers restored PB-mediated nuclear translocation of CAR as well as inducibility of CYP1A2, CYP2B10, CYP3A11, and CYP7A1 expression. We conclude that transcription coactivator PBP/TRAP220/MED1 is involved in the regulation of hepatic CAR function and that PBP deficiency in liver abrogates acetaminophen hepatotoxicity.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kindle KB, Troke PJF, Collins HM, Matsuda S, Bossi D, Bellodi C, Kalkhoven E, Salomoni P, Pelicci PG, Minucci S, Heery DM. MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. Mol Cell Biol 2005; 25:988-1002. [PMID: 15657427 PMCID: PMC544007 DOI: 10.1128/mcb.25.3.988-1002.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/24/2004] [Accepted: 11/08/2004] [Indexed: 12/17/2022] Open
Abstract
Chromosomal rearrangements associated with acute myeloid leukemia (AML) include fusions of the genes encoding the acetyltransferase MOZ or MORF with genes encoding the nuclear receptor coactivator TIF2, p300, or CBP. Here we show that MOZ-TIF2 acts as a dominant inhibitor of the transcriptional activities of CBP-dependent activators such as nuclear receptors and p53. The dominant negative property of MOZ-TIF2 requires the CBP-binding domain (activation domain 1 [AD1]), and coimmunoprecipitation and fluorescent resonance energy transfer experiments show that MOZ-TIF2 interacts with CBP directly in vivo. The CBP-binding domain is also required for the ability of MOZ-TIF2 to extend the proliferative potential of murine bone marrow lineage-negative cells in vitro. We show that MOZ-TIF2 displays an aberrant nuclear distribution and that cells expressing this protein have reduced levels of cellular CBP, leading to depletion of CBP from PML bodies. In summary, our results indicate that disruption of the normal function of CBP and CBP-dependent activators is an important feature of MOZ-TIF2 action in AML.
Collapse
Affiliation(s)
- Karin B Kindle
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Song S, Zhang Y, Ma K, Jackson-Hayes L, Lavrentyev EN, Cook GA, Elam MB, Park EA. Peroxisomal proliferator activated receptor gamma coactivator (PGC-1alpha) stimulates carnitine palmitoyltransferase I (CPT-Ialpha) through the first intron. ACTA ACUST UNITED AC 2004; 1679:164-73. [PMID: 15297149 DOI: 10.1016/j.bbaexp.2004.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/17/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Peroxisomal proliferator activated receptor gamma coactivator-1 (PGC-1alpha) is a transcriptional coactivator that promotes mitochondrial biogenesis and energy metabolism in brown fat, skeletal muscle and heart. Previous studies demonstrated that PGC-1alpha is present at low levels in the liver but that the hepatic abundance of PGC-1alpha is elevated in diabetic and fasted animals. Elevated PGC-1alpha expression is associated with increased fatty acid oxidation and hepatic glucose production. Carnitine palmitoyltransferase-I (CPT-I) is a rate controlling step in the mitochondrial oxidation of long chain fatty acids. CPT-I transfers the acyl moiety from fatty acyl-CoA to carnitine for the translocation of long chain fatty acids across the mitochondrial membrane. There are two isoforms of CPT-I including a liver isoform CPT-Ialpha and a muscle isoform CPT-Ibeta. Here, we characterized the regulation of CPT-Ialpha isoform by PGC-1alpha. PGC-1alpha stimulates CPT-Ialpha primarily through multiple sites in the first intron. We found that PGC-1alpha can induce CPT-Ialpha gene expression in cardiac myocytes and primary hepatocytes. Our results indicate that PGC-1alpha elevates the expression of CPT-Ialpha via a unique mechanism that utilizes elements within the intron.
Collapse
Affiliation(s)
- Shulan Song
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
In the last decade the increased usage of '-omic' technologies, plus the sequencing of over 800 complete genomes has led to a vast increase in the amount of information available to the researcher for examining cellular responses to xenobiotics. Much effort has been put into the identification and analysis of expression profiles associated with pathobiological conditions and/or xenobiotic exposure. These profiles are commonly used in two applications. Firstly, comparative profile experiments are used to classify pathobiological states and for the screening of novel chemical entities to predict their action(s) on the body. Secondly, mechanistic investigations will gain information on the molecular mechanisms underlying toxic responses/pathobiological states. During the course of such analysis it has become increasingly clear that a series of highly refined interaction networks exist within the body, regulating both the sensitivity and selectivity of the body's response to pathobiological states/xenobiotic exposure. These interaction networks exist at several levels: Firstly, within individual cells, the interaction between factors that transmit xenobiotics signals will determine the overall cellular response. Secondly, intraorgan communication occurs between the different cell types/sub-types which makes up an organ, coordinating the overall organ response. Finally, interorgan interactions provide axes of response through the body.
Collapse
Affiliation(s)
- Nick Plant
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
91
|
Schäfer SA, Hansen BC, Völkl A, Fahimi HD, Pill J. Biochemical and morphological effects of K-111, a peroxisome proliferator-activated receptor (PPAR)alpha activator, in non-human primates. Biochem Pharmacol 2004; 68:239-51. [PMID: 15193996 DOI: 10.1016/j.bcp.2004.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/04/2004] [Indexed: 01/09/2023]
Abstract
K-111 has been characterized as a potent peroxisome proliferator-activated receptor (PPAR)alpha activator. Antidiabetic potency and amelioration of disturbed lipid metabolism were demonstrated in rodents, which were accompanied by elevations of peroxisomal enzymes and liver weight. To examine the possible therapeutic application of K-111 we have now assessed its efficacy in non-human primates with high transferability to humans. For this purpose obese, hypertriglyceridaemic, hyperinsulinaemic prediabetic rhesus monkeys were dosed sequentially with 0, 1, 3 and 10mg/kg per day orally over a period of 4 weeks each. In addition, the effect of K-111 on the peroxisome compartment was analyzed in cynomolgus monkeys using liver samples obtained following a 13-week oral toxicity study. In prediabetic monkeys, the reduction of hyperinsulinaemia and improvement of insulin-stimulated glucose uptake rate indicated amelioration of insulin resistance. These effects were nearly maximal at a dose of 3mg/kg per day, while triglycerides and body weight were lowered significantly in a dose-dependent manner. This reduction of body weight contrasts sharply with the adipogenic response observed with thiazolidinediones, another family of insulin-sensitizing agents. In young cynomolgus monkeys at a dosage of 5mg/kg per day and more, K-111 induced an up to three-fold increase in lipid beta-oxidation enzymes with an 1.5- to 2-fold increase in peroxisome volume density. This moderate increase in peroxisomal activity by K-111 in monkeys is consistent with its role as an PPARalpha activator and corresponds to the observations with fibrates in other low responder mammalian species. The increase in beta-oxidation may explain, at least in part, the lipid modulating effect as well as the antidiabetic potency of K-111. This pharmacological profile makes K-111 a highly promising drug candidate for clinical applications in the treatment of type 2 diabetes, dyslipidaemia, obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Silke A Schäfer
- Institute of Anatomy and Cell Biology II, University of Heidelberg, D69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
92
|
Latruffe N, Vamecq J, Cherkaoui Malki M. Genetic-dependency of peroxisomal cell functions - emerging aspects. J Cell Mol Med 2004; 7:238-48. [PMID: 14594548 PMCID: PMC6741413 DOI: 10.1111/j.1582-4934.2003.tb00224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This paper reviews aspects concerning the genetic regulation of the expression of the well studied peroxisomal genes including those of fatty acid beta-oxidation enzymes; acyl-CoA oxidase, multifunctional enzyme and thiolase from different tissues and species. An important statement is PPARalpha, which is now long known to be in rodents the key nuclear receptor orchestrating liver peroxisome proliferation and enhanced peroxisomal beta-oxidation, does not appear to control so strongly in man the expression of genes involved in peroxisomal fatty acid beta-oxidation related enzymes. In this respect, the present review strengthens among others the emerging concept that, in the humans, the main genes whose expression is up-regulated by PPARalpha are mitochondrial and less peroxisomal genes. A special emphasis is also made on the animal cold adaptation and on need for sustained study of peroxisomal enzymes and genes; challenging that some essential roles of peroxisomes in cell function and regulation still remain to be discovered.
Collapse
Affiliation(s)
- N Latruffe
- Laboratory of Cell Molecular Biology, Faculty of Life Sciences, University of Burgundy, Dijon, France.
| | | | | |
Collapse
|
93
|
Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004. [PMID: 15199412 DOI: 10.1172/jci200420513] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PTEN is a tumor suppressor gene mutated in many human cancers, and its expression is reduced or absent in almost half of hepatoma patients. We used the Cre-loxP system to generate a hepatocyte-specific null mutation of Pten in mice (AlbCrePten(flox/flox) mice). AlbCrePten(flox/flox) mice showed massive hepatomegaly and steatohepatitis with triglyceride accumulation, a phenotype similar to human nonalcoholic steatohepatitis. Adipocyte-specific genes were induced in mutant hepatocytes, implying adipogenic-like transformation of these cells. Genes involved in lipogenesis and beta-oxidation were also induced, possibly as a result of elevated levels of the transactivating factors PPARgamma and SREBP1c. Importantly, the loss of Pten function in the liver led to tumorigenesis, with 47% of AlbCrePten(flox/flox) livers developing liver cell adenomas by 44 weeks of age. By 74-78 weeks of age, 100% of AlbCrePten(flox/flox) livers showed adenomas and 66% had hepatocellular carcinomas. AlbCrePten(flox/flox) mice also showed insulin hypersensitivity. In vitro, AlbCrePten(flox/flox) hepatocytes were hyperproliferative and showed increased hyperoxidation with abnormal activation of protein kinase B and MAPK. Pten is thus an important regulator of lipogenesis, glucose metabolism, hepatocyte homeostasis, and tumorigenesis in the liver.
Collapse
Affiliation(s)
- Yasuo Horie
- Department of Gastroenterology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113:1774-83. [PMID: 15199412 PMCID: PMC420505 DOI: 10.1172/jci20513] [Citation(s) in RCA: 511] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/27/2004] [Indexed: 12/13/2022] Open
Abstract
PTEN is a tumor suppressor gene mutated in many human cancers, and its expression is reduced or absent in almost half of hepatoma patients. We used the Cre-loxP system to generate a hepatocyte-specific null mutation of Pten in mice (AlbCrePten(flox/flox) mice). AlbCrePten(flox/flox) mice showed massive hepatomegaly and steatohepatitis with triglyceride accumulation, a phenotype similar to human nonalcoholic steatohepatitis. Adipocyte-specific genes were induced in mutant hepatocytes, implying adipogenic-like transformation of these cells. Genes involved in lipogenesis and beta-oxidation were also induced, possibly as a result of elevated levels of the transactivating factors PPARgamma and SREBP1c. Importantly, the loss of Pten function in the liver led to tumorigenesis, with 47% of AlbCrePten(flox/flox) livers developing liver cell adenomas by 44 weeks of age. By 74-78 weeks of age, 100% of AlbCrePten(flox/flox) livers showed adenomas and 66% had hepatocellular carcinomas. AlbCrePten(flox/flox) mice also showed insulin hypersensitivity. In vitro, AlbCrePten(flox/flox) hepatocytes were hyperproliferative and showed increased hyperoxidation with abnormal activation of protein kinase B and MAPK. Pten is thus an important regulator of lipogenesis, glucose metabolism, hepatocyte homeostasis, and tumorigenesis in the liver.
Collapse
Affiliation(s)
- Yasuo Horie
- Department of Gastroenterology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Reddy JK. Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: biotic and xenobiotic sensing. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2305-21. [PMID: 15161663 PMCID: PMC1615758 DOI: 10.1016/s0002-9440(10)63787-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janardan K Reddy
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
96
|
Jia Y, Qi C, Kashireddi P, Surapureddi S, Zhu YJ, Rao MS, Le Roith D, Chambon P, Gonzalez FJ, Reddy JK. Transcription Coactivator PBP, the Peroxisome Proliferator-activated Receptor (PPAR)-binding Protein, Is Required for PPARα-regulated Gene Expression in Liver. J Biol Chem 2004; 279:24427-34. [PMID: 15150259 DOI: 10.1074/jbc.m402391200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptor coactivator PBP (peroxisome proliferator-activated receptor (PPAR)-binding protein) functions as a coactivator for PPARs and other nuclear receptors. PBP serves as an anchor for TRAP (thyroid hormone receptor-associated proteins)/mediator multisubunit cofactor transcription complex. Disruption of the PBP/TRAP220 gene results in embryonic lethality around embryonic day 11.5 by affecting placental, cardiac, hepatic, and bone marrow development. Because PPAR isoforms alpha, gamma, and beta/delta function as important regulators of lipid homeostasis in mammals, it becomes important to assess the requirement of coactivator PBP in the regulation of PPAR functions in vivo. Sustained activation of PPARalpha by structurally diverse classes of chemicals of biological importance, designated peroxisome proliferators, leads to proliferation of peroxisomes in liver, induction of PPARalpha target genes including those involved in fatty acid oxidation, and the eventual development of liver tumors. Here, we show that targeted deletion of PBP in liver parenchymal cells, using the Cre-loxP system, results in the near abrogation of PPARalpha ligand-induced peroxisome proliferation and liver cell proliferation, as well as the induction of PPARalpha-regulated genes in PBP-deficient liver cells. In contrast, scattered PBP(+/+) hepatocytes in these livers showed DNA synthesis and were markedly hypertrophic with peroxisome proliferation in response to PPARalpha ligands. Chromatin immunoprecipitation data suggest that in PBP conditional null livers, there appears to be reduced association of cofactors, especially of CBP and TRAP150, to the mouse enoyl-CoA hydratase/l-3-hydroxyacyl-CoA dehydrogenase gene promoter. These observations suggest that PBP is required for the stabilization of multiprotein cofactor complexes. In essence, the absence of PBP in hepatocytes in vivo appears to mimic the absence of PPARalpha, indicating that coactivator PBP is essential for PPARalpha-regulated gene expression in liver parenchymal cells.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Illinois 60611-3008, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Doebber TW, Kelly LJ, Zhou G, Meurer R, Biswas C, Li Y, Wu MS, Ippolito MC, Chao YS, Wang PR, Wright SD, Moller DE, Berger JP. MK-0767, a novel dual PPARα/γ agonist, displays robust antihyperglycemic and hypolipidemic activities. Biochem Biophys Res Commun 2004; 318:323-8. [PMID: 15120604 DOI: 10.1016/j.bbrc.2004.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Indexed: 10/26/2022]
Abstract
Here, we characterize the actions of MK-0767, a dual ligand of the nuclear receptors peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma. In cell-based assays, MK-0767 produced potent activation of human PPARgamma and PPARalpha with a gamma:alpha potency ratio of approximately 2. The dual agonist induced high affinity interactions of PPARalpha and PPARgamma with the transcriptional coactivator CBP in vitro. In ob/ob mice, MK-0767 normalized hyperglycemia and hyperinsulinemia with equal or greater potency and efficacy than pioglitazone. Treatment of hamsters with MK-0767 produced substantial reductions in blood cholesterol and triglycerides. In dogs, MK-0767 reduced serum cholesterol levels with a potency more than 10-fold greater than simvastatin. The efficacies of MK-0767 and simvastatin were additive when given together. We conclude that MK-0767 is a potent dual PPARalpha/gamma agonist with robust insulin sensitizing and hypolipidemic activities.
Collapse
Affiliation(s)
- Thomas W Doebber
- Department of Metabolic Disorders, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 2004; 32:959-76. [PMID: 14960713 PMCID: PMC384351 DOI: 10.1093/nar/gkh252] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/22/2003] [Accepted: 01/06/2004] [Indexed: 11/12/2022] Open
Abstract
Acetylation of the epsilon-amino group of lysine residues, or N(epsilon)-lysine acetylation, is an important post-translational modification known to occur in histones, transcription factors and other proteins. Since 1995, dozens of proteins have been discovered to possess intrinsic lysine acetyltransferase activity. Although most of these enzymes were first identified as histone acetyltransferases and then tested for activities towards other proteins, acetyltransferases only modifying non-histone proteins have also been identified. Lysine acetyltransferases form different groups, three of which are Gcn5/PCAF, p300/CBP and MYST proteins. While members of the former two groups mainly function as transcriptional co-activators, emerging evidence suggests that MYST proteins, such as Esa1, Sas2, MOF, TIP60, MOZ and MORF, have diverse roles in various nuclear processes. Aberrant lysine acetylation has been implicated in oncogenesis. The genes for p300, CBP, MOZ and MORF are rearranged in recurrent leukemia-associated chromosomal abnormalities. Consistent with their roles in leukemogenesis, these acetyltransferases interact with Runx1 (or AML1), one of the most frequent targets of chromosomal translocations in leukemia. Therefore, the diverse superfamily of lysine acetyltransferases executes an acetylation program that is important for different cellular processes and perturbation of such a program may cause the development of cancer and other diseases.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montréal, Quebec H3A 1A1, Canada.
| |
Collapse
|
99
|
Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 2004; 4:61-70. [PMID: 14708026 DOI: 10.1038/nrc1254] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, NCCR Frontiers in Genetics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
100
|
Morita M, Ohkubo-Suzuki A, Takahashi T, Nagashima A, Sawada Y, Ohkawa T, Nishimura S, Kita Y. Molecular analysis of antilipemic effects of FR218944, a novel vasopressin V1a receptor antagonist, in genetically diabetic db/db mice in comparison with pioglitazone and fenofibrate. Drug Dev Res 2003. [DOI: 10.1002/ddr.10323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|