51
|
Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology 2022; 11:2019922. [PMID: 35003897 PMCID: PMC8741294 DOI: 10.1080/2162402x.2021.2019922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that utilizes an antibody-photoabsorber-conjugate (AbPC) combined with NIR light. The AbPC is injected and binds to the tumor whereupon NIR light irradiation causes a photochemical reaction that selectively kills cancer cells. NIR-PIT is ideal for surface-located skin cancers such as melanoma. However, there is concern that the pigment in melanoma lesions could interfere with light delivery, rendering treatment ineffective. We investigated the efficacy of CD29- and CD44-targeted NIR-PIT (CD29-PIT and CD44-PIT, respectively) in the B16 melanoma model, which is highly pigmented. While CD29-PIT and CD44-PIT killed B16 cells invitro and invivo, CD29-PIT suppressed tumor growth more efficiently. Ki67 expression showed that cells surviving CD29-PIT were less proliferative, suggesting that CD29-PIT was selective for more proliferative cancer cells. CD29-PIT did not kill immune cells, whereas CD44-PIT killed both T and NK cells and most myeloid cells, including DCs, which could interfere with the immune response to NIR-PIT. The addition of anti-CTLA4 antibody immune checkpoint inhibitor (ICI) to CD29-PIT increased the infiltration of CD8 T cells and enhanced tumor suppression with prolonged survival. Such effects were less prominent when the anti-CTLA4 ICI was combined with CD44-PIT. The preservation of immune cells in the tumor microenvironment (TME) after CD29-PIT likely led to a better response when combined with anti-CTLA4 treatment. We conclude that NIR-PIT can be performed in pigmented melanomas and that CD29 is a promising target for NIR-PIT, which is amenable to combination therapy with other immunotherapies.
Collapse
Affiliation(s)
- Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
52
|
Kok L, Masopust D, Schumacher TN. The precursors of CD8 + tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol 2022; 22:283-293. [PMID: 34480118 PMCID: PMC8415193 DOI: 10.1038/s41577-021-00590-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
CD8+ tissue resident memory T cells (TRM cells) are essential for immune defence against pathogens and malignancies, and the molecular processes that lead to TRM cell formation are therefore of substantial biomedical interest. Prior work has demonstrated that signals present in the inflamed tissue micro-environment can promote the differentiation of memory precursor cells into mature TRM cells, and it was therefore long assumed that TRM cell formation adheres to a 'local divergence' model, in which TRM cell lineage decisions are exclusively made within the tissue. However, a growing body of work provides evidence for a 'systemic divergence' model, in which circulating T cells already become preconditioned to preferentially give rise to the TRM cell lineage, resulting in the generation of a pool of TRM cell-poised T cells within the lymphoid compartment. Here, we review the emerging evidence that supports the existence of such a population of circulating TRM cell progenitors, discuss current insights into their formation and highlight open questions in the field.
Collapse
Affiliation(s)
- Lianne Kok
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Masopust
- grid.17635.360000000419368657Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Ton N. Schumacher
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Charitidis FT, Adabi E, Thalheimer FB, Clarke C, Buchholz CJ. Monitoring CAR T cell generation with a CD8-targeted lentiviral vector by single-cell transcriptomics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:359-369. [PMID: 34729382 PMCID: PMC8546366 DOI: 10.1016/j.omtm.2021.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/03/2022]
Abstract
Quantifying gene expression in individual cells can substantially improve our understanding about complex genetically engineered cell products such as chimeric antigen receptor (CAR) T cells. Here we designed a single-cell RNA sequencing (scRNA-seq) approach to monitor the delivery of a CD19-CAR gene via lentiviral vectors (LVs), i.e., the conventional vesicular stomatitis virus (VSV)-LV and the CD8-targeted CD8-LV. LV-exposed human donor peripheral blood mononuclear cells (PBMCs) were evaluated for a panel of 400 immune response-related genes including LV-specific probes. The resulting data revealed a trimodal expression for the CAR and CD8A, demanding a careful distribution-based identification of CAR T cells and CD8+ lymphocytes in scRNA-seq analysis. The fraction of T cells expressing high CAR levels was in concordance with flow cytometry results. More than 97% of the cells hit by CD8-LV expressed the CD8A gene. Remarkably, the majority of the potential off-target cells were in fact on-target cells, resulting in a target cell selectivity of more than 99%. Beyond that, differential gene expression analysis revealed the upregulation of restriction factors in CAR-negative cells, thus explaining their protection from CAR gene transfer. In summary, we provide a workflow and subsetting approach for scRNA-seq enabling reliable distinction between transduced and untransduced cells during CAR T cell generation.
Collapse
Affiliation(s)
- Filippos T Charitidis
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Elham Adabi
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Frederic B Thalheimer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, A94 X099 Co. Dublin, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany.,Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| |
Collapse
|
54
|
Wan Z, Sun R, Liu YW, Li S, Sun J, Li J, Zhu J, Moharil P, Zhang B, Ren P, Ren G, Zhang M, Ma X, Dai S, Yang D, Lu B, Li S. Targeting metabotropic glutamate receptor 4 for cancer immunotherapy. SCIENCE ADVANCES 2021; 7:eabj4226. [PMID: 34890233 PMCID: PMC8664261 DOI: 10.1126/sciadv.abj4226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/23/2021] [Indexed: 05/30/2023]
Abstract
In this study, we report a novel role of metabotropic glutamate receptor 4 (GRM4) in suppressing antitumor immunity. We revealed in three murine syngeneic tumor models (B16, MC38, and 3LL) that either genetic knockout (Grm4−/−) or pharmacological inhibition led to significant delay in tumor growth. Mechanistically, perturbation of GRM4 resulted in a strong antitumor immunity by promoting natural killer (NK), CD4+, and CD8+ T cells toward an activated, proliferative, and functional phenotype. Single-cell RNA sequencing and T cell receptor profiling further defined the clonal expansion and immune landscape changes in CD8+ T cells. We further showed that Grm4−/− intrinsically activated interferon-γ production in CD8+ T cells through cyclic adenosine 3′,5′-monophosphate (cAMP)/cAMP response element binding protein–mediated pathway. Our study appears to be of clinical significance as a signature of NKhigh-GRM4low and CD8high-GRM4low correlated with improved survival in patients with melanoma. Targeting GRM4 represents a new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yang-Wuyue Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pearl Moharil
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Guolian Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shuangshuang Dai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
55
|
Zandhuis ND, Nicolet BP, Wolkers MC. RNA-Binding Protein Expression Alters Upon Differentiation of Human B Cells and T Cells. Front Immunol 2021; 12:717324. [PMID: 34867946 PMCID: PMC8635512 DOI: 10.3389/fimmu.2021.717324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
B cells and T cells are key players in the defence against infections and malignancies. To exert their function, B cells and T cells differentiate into effector and memory cells. Tight regulation of these differentiation processes is key to prevent their malfunction, which can result in life-threatening disease. Lymphocyte differentiation relies on the appropriate timing and dosage of regulatory molecules, and post-transcriptional gene regulation (PTR) is a key player herein. PTR includes the regulation through RNA-binding proteins (RBPs), which control the fate of RNA and its translation into proteins. To date, a comprehensive overview of the RBP expression throughout lymphocyte differentiation is lacking. Using transcriptome and proteome analyses, we here catalogued the RBP expression for human B cells and T cells. We observed that even though the overall RBP expression is conserved, the relative RBP expression is distinct between B cells and T cells. Differentiation into effector and memory cells alters the RBP expression, resulting into preferential expression of different classes of RBPs. For instance, whereas naive T cells express high levels of translation-regulating RBPs, effector T cells preferentially express RBPs that modulate mRNA stability. Lastly, we found that cytotoxic CD8+ and CD4+ T cells express a common RBP repertoire. Combined, our study reveals a cell type-specific and differentiation-dependent RBP expression landscape in human lymphocytes, which will help unravel the role of RBPs in lymphocyte function.
Collapse
Affiliation(s)
- Nordin D. Zandhuis
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Benoit P. Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Monika C. Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
56
|
Nicolet BP, Guislain A, Wolkers MC. CD29 Enriches for Cytotoxic Human CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:2966-2975. [PMID: 34782446 DOI: 10.4049/jimmunol.2100138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
CD4+ T cells are key contributors in the induction of adaptive immune responses against pathogens. Even though CD4+ T cells are primarily classified as noncytotoxic helper T cells, it has become appreciated that a subset of CD4+ T cells is cytotoxic. However, tools to identify these cytotoxic CD4+ T cells are lacking. We recently showed that CD29 (integrin β1, ITGB1) expression on human CD8+ T cells enriches for the most potent cytotoxic T cells. In this study, we questioned whether CD29 expression also associates with cytotoxic CD4+ T cells. We show that human peripheral blood-derived CD29hiCD4+ T cells display a cytotoxic gene expression profile, which closely resembles that of CD29hi cytotoxic CD8+ T cells. This CD29hi cytotoxic phenotype was observed ex vivo and was maintained in in vitro cultures. CD29 expression enriched for CD4+ T cells, which effectively produced the proinflammatory cytokines IFN-γ, IL-2, and TNF-α, and cytotoxic molecules. Lastly, CD29-expressing CD4+ T cells transduced with a MART1-specific TCR showed target cell killing in vitro. In conclusion, we demonstrate in this study that CD29 can be employed to enrich for cytotoxic human CD4+ T cells.
Collapse
Affiliation(s)
- Benoît P Nicolet
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| |
Collapse
|
57
|
Darden DB, Dong X, Brusko MA, Kelly L, Fenner B, Rincon JC, Dirain ML, Ungaro R, Nacionales DC, Gauthier M, Kladde M, Brusko TM, Bihorac A, Moore FA, Loftus T, Bacher R, Moldawer LL, Mohr AM, Efron PA. A Novel Single Cell RNA-seq Analysis of Non-Myeloid Circulating Cells in Late Sepsis. Front Immunol 2021; 12:696536. [PMID: 34484194 PMCID: PMC8415415 DOI: 10.3389/fimmu.2021.696536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background With the successful implementation of the Surviving Sepsis Campaign guidelines, post-sepsis in-hospital mortality to sepsis continues to decrease. Those who acutely survive surgical sepsis will either rapidly recover or develop a chronic critical illness (CCI). CCI is associated with adverse long-term outcomes and 1-year mortality. Although the pathobiology of CCI remains undefined, emerging evidence suggests a post-sepsis state of pathologic myeloid activation, inducing suboptimal lymphopoiesis and erythropoiesis, as well as downstream leukocyte dysfunction. Our goal was to use single-cell RNA sequencing (scRNA-seq) to perform a detailed transcriptomic analysis of lymphoid-derived leukocytes to better understand the pathology of late sepsis. Methods A mixture of whole blood myeloid-enriched and Ficoll-enriched peripheral blood mononuclear cells from four late septic patients (post-sepsis day 14-21) and five healthy subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). Results We identified unique transcriptomic patterns for multiple circulating immune cell subtypes, including B- and CD4+, CD8+, activated CD4+ and activated CD8+ T-lymphocytes, as well as natural killer (NK), NKT, and plasmacytoid dendritic cells in late sepsis patients. Analysis demonstrated that the circulating lymphoid cells maintained a transcriptome reflecting immunosuppression and low-grade inflammation. We also identified transcriptomic differences between patients with bacterial versus fungal sepsis, such as greater expression of cytotoxic genes among CD8+ T-lymphocytes in late bacterial sepsis. Conclusion Circulating non-myeloid cells display a unique transcriptomic pattern late after sepsis. Non-myeloid leukocytes in particular reveal a host endotype of inflammation, immunosuppression, and dysfunction, suggesting a role for precision medicine-guided immunomodulatory therapy.
Collapse
Affiliation(s)
- Dijoia B Darden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Xiaoru Dong
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lauren Kelly
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brittany Fenner
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin L Dirain
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marie Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tyler Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
58
|
Ma T, Ryu H, McGregor M, Babcock B, Neidleman J, Xie G, George AF, Frouard J, Murray V, Gill G, Ghosn E, Newell EW, Lee SA, Roan NR. Protracted yet Coordinated Differentiation of Long-Lived SARS-CoV-2-Specific CD8 + T Cells during Convalescence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1344-1356. [PMID: 34389625 PMCID: PMC8763019 DOI: 10.4049/jimmunol.2100465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022]
Abstract
CD8+ T cells can potentiate long-lived immunity against COVID-19. We screened longitudinally-sampled convalescent human donors against SARS-CoV-2 tetramers and identified a participant with an immunodominant response against residues 322 to 311 of nucleocapsid (Nuc322-331), a peptide conserved in all variants of concern reported to date. We conducted 38-parameter cytometry by time of flight on tetramer-identified Nuc322-331-specific CD8+ T cells and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins, and took 32 serological measurements. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and Ab pillars of adaptive immunity. Over the approximately six month period of convalescence monitored, we observed a slow and progressive decrease in the activation state and polyfunctionality of Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph node-homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence into a state characteristic of long-lived, self-renewing memory.
Collapse
Affiliation(s)
- Tongcui Ma
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Matthew McGregor
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Benjamin Babcock
- Department of Medicine, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA
| | - Jason Neidleman
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Guorui Xie
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Ashley F George
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Julie Frouard
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Victoria Murray
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA; and
| | - Gurjot Gill
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA; and
| | - Eliver Ghosn
- Department of Medicine, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA
- Department of Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA; and
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA;
- Department of Urology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
59
|
Schuurman AR, Reijnders TDY, Saris A, Ramirez Moral I, Schinkel M, de Brabander J, van Linge C, Vermeulen L, Scicluna BP, Wiersinga WJ, Vieira Braga FA, van der Poll T. Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. eLife 2021; 10:e69661. [PMID: 34424199 PMCID: PMC8382293 DOI: 10.7554/elife.69661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
The exact immunopathophysiology of community-acquired pneumonia (CAP) caused by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The scarcity of single-cell investigations in the broader population of patients with CAP renders it difficult to distinguish immune features unique to COVID-19 from the common characteristics of a dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-infectious control subjects. Using this balanced, multi-omics approach, we describe shared and diverging transcriptional and phenotypic patterns-including increased levels of type I interferon-stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and influenza, and distinctive monocyte compositions between all groups-and thereby expand our understanding of the peripheral immune response in different etiologies of pneumonia.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Tom DY Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Ivan Ramirez Moral
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Christine van Linge
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
60
|
Pritchett JC, Yang ZZ, Kim HJ, Villasboas JC, Tang X, Jalali S, Cerhan JR, Feldman AL, Ansell SM. High-dimensional and single-cell transcriptome analysis of the tumor microenvironment in angioimmunoblastic T cell lymphoma (AITL). Leukemia 2021; 36:165-176. [PMID: 34230608 DOI: 10.1038/s41375-021-01321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive lymphoid malignancy associated with a poor clinical prognosis. The AITL tumor microenvironment (TME) is unique, featuring a minority population of malignant CD4+ T follicular helper (TFH) cells inter-mixed with a diverse infiltrate of multi-lineage immune cells. While much of the understanding of AITL biology to date has focused on characteristics of the malignant clone, less is known about the many non-malignant populations that comprise the TME. Recently, mutational consistencies have been identified between malignant cells and non-malignant B cells within the AITL TME. As a result, a significant role for non-malignant populations in AITL biology has been increasingly hypothesized. In this study, we have utilized mass cytometry and single-cell transcriptome analysis to identify several expanded populations within the AITL TME. Notably, we find that B cells within the AITL TME feature decreased expression of key markers including CD73 and CXCR5. Furthermore, we describe the expansion of distinct CD8+ T cell populations that feature an exhausted phenotype and an underlying expression profile indicative of dysfunction, impaired cytotoxicity, and upregulation of the chemokines XCL2 and XCL1.
Collapse
Affiliation(s)
| | - Zhi-Zhang Yang
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Xinyi Tang
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Health Sciences Research and Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
61
|
Mysore V, Cullere X, Settles ML, Ji X, Kattan MW, Desjardins M, Durbin-Johnson B, Gilboa T, Baden LR, Walt DR, Lichtman A, Jehi L, Mayadas TN. Protective heterologous T cell immunity in COVID-19 induced by MMR and Tdap vaccine antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.03.441323. [PMID: 33972940 PMCID: PMC8109200 DOI: 10.1101/2021.05.03.441323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T cells are critical for control of viral infection and effective vaccination. We investigated whether prior Measles-Mumps-Rubella (MMR) or Tetanus-Diphtheria-pertussis (Tdap) vaccination elicit cross-reactive T cells that mitigate COVID-19. Using co-cultures of antigen presenting cells (APC) loaded with antigens and autologous T cells, we found a high correlation between responses to SARS-CoV-2 (Spike-S1 and Nucleocapsid) and MMR and Tdap vaccine proteins in both SARS-CoV-2 infected individuals and individuals immunized with mRNA-based SARS-CoV-2 vaccines. The overlapping T cell population contained effector memory T cells (TEMRA) previously implicated in anti-viral immunity and their activation required APC-derived IL-15. TCR- and scRNA-sequencing detected cross-reactive clones with TEMRA features among the cells recognizing SARS-CoV-2, MMR and Tdap epitopes. A propensity-weighted analysis of 73,582 COVID-19 patients revealed that severe disease outcomes (hospitalization and transfer to intensive care unit or death) were reduced in MMR or Tdap vaccinated individuals by 38-32% and 23-20% respectively. In summary, SARS-CoV-2 re-activates memory T cells generated by Tdap and MMR vaccines, which may reduce disease severity.
Collapse
|
62
|
Ma T, Ryu H, McGregor M, Babcock B, Neidleman J, Xie G, George AF, Frouard J, Murray V, Gill G, Ghosn E, Newell E, Lee S, Roan NR. Protracted yet coordinated differentiation of long-lived SARS-CoV-2-specific CD8+ T cells during COVID-19 convalescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.28.441880. [PMID: 33948597 PMCID: PMC8095211 DOI: 10.1101/2021.04.28.441880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD8+ T cells are important antiviral effectors that can potentiate long-lived immunity against COVID-19, but a detailed characterization of these cells has been hampered by technical challenges. We screened 21 well-characterized, longitudinally-sampled convalescent donors that recovered from mild COVID-19 against a collection of SARS-CoV-2 tetramers, and identified one participant with an immunodominant response against Nuc322-331, a peptide that is conserved in all the SARS-CoV-2 variants-of-concern reported to date. We conducted 38-parameter CyTOF phenotyping on tetramer-identified Nuc322-331-specific CD8+ T cells, and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins from SARS-CoV-2, and took 32 serological measurements on longitudinal specimens from this participant. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and antibody pillars of adaptive immunity. Nuc322-331-specific CD8+ T cells were predominantly central memory T cells, but continually evolved over a ~6-month period of convalescence. We observed a slow and progressive decrease in the activation state and polyfunctionality of the Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph-node homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence, into a state characteristic of long-lived, self-renewing memory.
Collapse
Affiliation(s)
- Tongcui Ma
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Division Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | - Matthew McGregor
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Benjamin Babcock
- Department of Medicine, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jason Neidleman
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Guorui Xie
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Ashley F. George
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Julie Frouard
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Victoria Murray
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA, USA
| | - Gurjot Gill
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA, USA
| | - Eliver Ghosn
- Department of Medicine, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Evan Newell
- Vaccine and Infectious Disease Division Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | - Sulggi Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA, USA
| | - Nadia R. Roan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
63
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|
64
|
Channathodiyil P, Houseley J. Glyoxal fixation facilitates transcriptome analysis after antigen staining and cell sorting by flow cytometry. PLoS One 2021; 16:e0240769. [PMID: 33481798 PMCID: PMC7822327 DOI: 10.1371/journal.pone.0240769] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023] Open
Abstract
A simple method for extraction of high quality RNA from cells that have been fixed, stained and sorted by flow cytometry would allow routine transcriptome analysis of highly purified cell populations and single cells. However, formaldehyde fixation impairs RNA extraction and inhibits RNA amplification. Here we show that good quality RNA can be readily extracted from stained and sorted mammalian cells if formaldehyde is replaced by glyoxal—a well-characterised fixative that is widely compatible with immunofluorescent staining methods. Although both formaldehyde and glyoxal efficiently form protein-protein crosslinks, glyoxal does not crosslink RNA to proteins nor form stable RNA adducts, ensuring that RNA remains accessible and amenable to enzymatic manipulation after glyoxal fixation. We find that RNA integrity is maintained through glyoxal fixation, permeabilisation with methanol or saponin, indirect immunofluorescent staining and flow sorting. RNA can then be extracted by standard methods and processed into RNA-seq libraries using commercial kits; mRNA abundances measured by poly(A)+ RNA-seq correlate well between freshly harvested cells and fixed, stained and sorted cells. We validate the applicability of this approach to flow cytometry by staining MCF-7 cells for the intracellular G2/M-specific antigen cyclin B1 (CCNB1), and show strong enrichment for G2/M-phase cells based on transcriptomic data. Switching to glyoxal fixation with RNA-compatible staining methods requires only minor adjustments of most existing staining and sorting protocols, and should facilitate routine transcriptomic analysis of sorted cells.
Collapse
Affiliation(s)
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Freen-van Heeren JJ. Toll-like receptor-2/7-mediated T cell activation: An innate potential to augment CD8 + T cell cytokine production. Scand J Immunol 2021; 93:e13019. [PMID: 33377182 DOI: 10.1111/sji.13019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
CD8+ T cells are critical to combat pathogens and eradicate malignantly transformed cells. To exert their effector function and kill target cells, T cells produce copious amounts of effector molecules, including the pro-inflammatory cytokines interferon γ, tumour necrosis factor α and interleukin 2. TCR triggering alone is sufficient to induce cytokine secretion by effector and memory CD8+ T cells. However, T cells can also be directly activated by pathogen-derived molecules, such as through the triggering of Toll-like receptors (TLRs). TLR-mediated pathogen sensing by T cells results in the production of only interferon γ. However, in particular when the antigen load on target cells is low, or when TCR affinity to the antigen is limited, antigen-experienced T cells can benefit from costimulatory signals. TLR stimulation can also function in a costimulatory fashion to enhance TCR triggering. Combined TCR and TLR triggering enhances the proliferation, memory formation and effector function of T cells, resulting in enhanced production of interferon γ, tumour necrosis factor α and interleukin 2. Therefore, TLR ligands or the exploitation of TLR signalling could provide novel opportunities for immunotherapy approaches. In fact, CD19 CAR T cells bearing an intracellular TLR2 costimulatory domain were recently employed to treat cancer patients in a clinical trial. Here, the current knowledge regarding TLR2/7 stimulation-induced cytokine production by T cells is reviewed. Specifically, the transcriptional and post-transcriptional pathways engaged upon TLR2/7 sensing and TLR2/7 signalling are discussed. Finally, the potential uses of TLRs to enhance the anti-tumor effector function of T cells are explored.
Collapse
|
66
|
Bullock TNJ. Fundamentals of Cancer Immunology and Their Application to Cancer Vaccines. Clin Transl Sci 2020; 14:120-131. [PMID: 32770735 PMCID: PMC7877844 DOI: 10.1111/cts.12856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022] Open
Abstract
The capacity of the immune system to influence tumor progression has been a long-standing notion that first generated clinical traction over a 100 years ago when Dr. William Coley injected disaggregated bacterial components into sarcomas and noted that the ensuing inflammation commonly associated with tumor regression.1 Since then, our understanding of the individual components and the overall interaction of the immune system has expanded exponentially. This has led to the development of a robust understanding of how components of innate and adaptive immunity recognize and respond to tumors and leveraging this information for the development of tumor immunotherapies. However, clinical failures have also deepened our knowledge of how tumors might adapt/be selected to avoid or inhibit immune responses, which, in turn, has led to the further iteration of immunotherapies. In this tutorial, the established elements of tumor immunity are explained, and areas where our knowledge base is too thin is highlighted. The principles of tumor immunity that guide the development of cancer vaccines are further illustrated, and potential considerations of how to integrate cancer vaccines with conventional therapies and other immunotherapies are proposed.
Collapse
Affiliation(s)
- Timothy N J Bullock
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
67
|
Freen-van Heeren JJ, Popović B, Guislain A, Wolkers MC. Human T cells employ conserved AU-rich elements to fine-tune IFN-γ production. Eur J Immunol 2020; 50:949-958. [PMID: 32112565 PMCID: PMC7384093 DOI: 10.1002/eji.201948458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Long‐lasting CD8+ T cell responses are critical in combatting infections and tumors. The pro‐inflammatory cytokine IFN‐γ is a key effector molecule herein. We recently showed that in murine T cells the production of IFN‐γ is tightly regulated through adenylate uridylate–rich elements (AREs) that are located in the 3′ untranslated region (UTR) of the Ifng mRNA molecule. Loss of AREs resulted in prolonged cytokine production in activated T cells and boosted anti‐tumoral T cell responses. Here, we investigated whether these findings can be translated to primary human T cells. Utilizing CRISPR‐Cas9 technology, we deleted the ARE region from the IFNG 3′ UTR in peripheral blood‐derived human T cells. Loss of AREs stabilized the IFNG mRNA in T cells and supported a higher proportion of IFN‐γ protein‐producing T cells. Importantly, combining MART‐1 T cell receptor engineering with ARE‐Del gene editing showed that this was also true for antigen‐specific activation of T cells. MART‐1‐specific ARE‐Del T cells showed higher percentages of IFN‐γ producing T cells in response to MART‐1 expressing tumor cells. Combined, our study reveals that ARE‐mediated posttranscriptional regulation is conserved between murine and human T cells. Furthermore, generating antigen‐specific ARE‐Del T cells is feasible, a feature that could potentially be used for therapeutical purposes.
Collapse
Affiliation(s)
- Julian J Freen-van Heeren
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Branka Popović
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Aurélie Guislain
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|