51
|
Dickinson RE, Hryhorskyj L, Tremewan H, Hogg K, Thomson AA, McNeilly AS, Duncan WC. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. Reproduction 2010; 139:395-407. [PMID: 19900988 PMCID: PMC2971460 DOI: 10.1530/rep-09-0182] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In humans and domestic mammals, pivotal processes in ovary development, including primordial follicle assembly, occur prenatally. These events are essential for determining fertility in adult life; however, they remain poorly understood at the mechanistic level. In mammals, the SLITs (SLIT1, SLIT2 and SLIT3) and their ROBO (ROBO1, ROBO2, ROBO3/RIG-1 and ROBO4/MAGIC ROBO) receptors regulate neural, leukocyte, vascular smooth muscle cell and endothelial cell migration. In addition, the SLIT/ROBO pathway has functional roles in embryonic development and in the adult ovary by inhibiting cell migration and promoting apoptosis. We therefore characterised follicle formation and investigated the expression and localisation of the ROBO/SLIT pathway in the ovine fetal ovary. Using RT-PCR, we identified SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 in sheep ovaries harvested across gestation. The real-time quantitative PCR results implied that ROBO2 expression and ROBO4 expression were elevated during the early stages of follicle formation and stayed abundant during primordial follicle maturation (P<0.05). Immunohistochemistry examination demonstrated that ROBO1 was localised to the pre-granulosa cells, while ROBO2, ROBO4 and SLIT2 were expressed in the oocytes of the developing primordial follicle. This indicates that in the fetal ovary, SLIT-ROBO signalling may require an autocrine and paracrine interaction. Furthermore, at the time of increased SLIT-ROBO expression, there was a significant reduction in the number of proliferating oocytes in the developing ovary (P<0.0001). Overall, these results suggest, for the first time, that the SLIT-ROBO pathway is expressed at the time of follicle formation during fetal ovary development.
Collapse
Affiliation(s)
- Rachel E Dickinson
- MRC Human Reproductive Sciences Unit Division of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, Centre for Reproductive Biology, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed.
Collapse
Affiliation(s)
- Patrick Nasarre
- Medical University of South Carolina, Division of Hematology/Oncology, Charleston, SC, USA
| | | | | | | |
Collapse
|
53
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Doi T, Hajduk P, Puri P. Upregulation of Slit-2 and Slit-3 gene expressions in the nitrofen-induced hypoplastic lung. J Pediatr Surg 2009; 44:2092-5. [PMID: 19944214 DOI: 10.1016/j.jpedsurg.2009.02.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE The pathogenesis of pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia (CDH) is not clearly understood. Slit-2 and Slit-3 are expressed in fetal lung and play a key role in directing the functional organization and differentiation of lung mesenchyme during branching morphogenesis. We hypothesized that the pulmonary gene expression levels of Slit genes are altered in the nitrofen-induced CDH. MATERIALS AND METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15 and D21 and divided into 2 groups as follows: CDH (n = 9 at each time-point) and control (n = 9 at each time-point). The pulmonary gene expression levels of Slit-2, Slit-3, Robo1, and Robo2 were analyzed by real time reverse transcription polymerase chain reaction. Student's t test or Mann-Whitney U test was used for statistical analysis. RESULTS Relative messenger RNA expression levels of Slit-2 and Slit-3 were significantly increased in CDH lungs compared to control at both D15 and D21 (P < .05). However, there were no significant differences between CDH and controls in the pulmonary gene expression levels of Robo1 and Robo2 at each time-point. CONCLUSION Our results provide evidence, for the first time, that Slit genes are upregulated in nitrofen-induced hypoplastic lungs in both early and late stages of lung development. Altered pulmonary Slit gene expression may disrupt branching lung morphogenesis resulting in pulmonary hypoplasia.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Center, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | |
Collapse
|
55
|
Klaassens M, de Klein A, Tibboel D. The etiology of congenital diaphragmatic hernia: still largely unknown? Eur J Med Genet 2009; 52:281-6. [PMID: 19464395 DOI: 10.1016/j.ejmg.2009.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/09/2009] [Indexed: 02/01/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect characterized by a defect in the diaphragm associated with pulmonary hypoplasia and postnatal pulmonary hypertension. Half of the cases present with other non-pulmonary congenital anomalies (so called non-isolated CDH) and in 5-10% of cases there is a chromosomal etiology. The clinical aspects of CDH are well documented but knowledge on the etiology of CDH is largely lacking. Worldwide many researchers have focused research efforts on CDH. Their findings have led to several hypotheses proposing roles for genetic and environmental factors. In this review we have combined these findings with our own research on the genetics of CDH in results from recent literature and propose a theory on the etiology of CDH. We also propose a protocol for the CDH patient that will help clinicians and researchers to obtain maximal success out of their collaborations that will eventually lead to unravelling the etiology of this intriguing birth defect.
Collapse
Affiliation(s)
- M Klaassens
- Department of Pediatric Surgery, Erasmus MC, Medical University Center, room Ee9.71, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
56
|
Manderson EN, Birch AH, Shen Z, Mes-Masson AM, Provencher D, Tonin PN. Molecular Genetic Analysis of a Cell Adhesion Molecule With Homology to L1CAM, Contactin 6, and Contactin 4 Candidate Chromosome 3p26pter Tumor Suppressor Genes in Ovarian Cancer. Int J Gynecol Cancer 2009; 19:513-25. [DOI: 10.1111/igc.0b013e3181a3cd38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
57
|
Donahoe PK. A pediatric surgeon retools in genetics and genomics to study congenital diaphragmatic hernia. J Pediatr Surg 2009; 44:307-11. [PMID: 19231523 PMCID: PMC2680546 DOI: 10.1016/j.jpedsurg.2008.10.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 10/23/2008] [Indexed: 12/13/2022]
Abstract
Prof. Donahoe outlines her career-long interest in congenital diaphragmatic hernia and how this has led to her current investigations into its etiology and possible treatment using gene probes.
Collapse
Affiliation(s)
- Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
58
|
Stella MC, Trusolino L, Comoglio PM. The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis. Mol Biol Cell 2009; 20:642-57. [PMID: 19005219 PMCID: PMC2626568 DOI: 10.1091/mbc.e08-03-0321] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/11/2008] [Accepted: 11/04/2008] [Indexed: 12/13/2022] Open
Abstract
The Slit protein acts through the Roundabout receptor as a paracrine chemorepellent in axon guidance and as an inhibitor in leukocyte chemotaxis, but its role in epithelial cell motility and morphogenesis remains largely unexplored. We report that nontransformed epithelial cells and cancerous cells empower the Slit-2/Robo1 signaling system to limit outward migration in response to motogenic attractants and to remain positionally confined within their primitive location. Short hairpin RNA-mediated depletion of SLIT-2 or ectopic expression of a soluble decoy Robo enhance hepatocyte growth factor (HGF)-induced migration, matrix invasion, and tubulogenesis, concomitantly with the up-regulation of Cdc-42 and the down-modulation of Rac-1 activities. Accordingly, autocrine overexpression or exogenous administration of Slit-2 prevent HGF-triggered motile responses, reduce Cdc-42 activation, and stimulate Rac-1. This antimigratory activity of Slit-2 derives from the inhibition of actin-based protrusive forces and from an increased adhesive strength of cadherin-mediated intercellular contacts. These results disclose a novel function for Slit and Robo in the inhibition of growth factor-mediated epithelial cell motility and morphogenesis, invoking a critical role for both molecules as natural antagonists of neoplastic invasive growth.
Collapse
Affiliation(s)
- Maria Cristina Stella
- Division of Molecular Oncology, Institute for Cancer Research and Treatment, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Division of Molecular Oncology, Institute for Cancer Research and Treatment, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy
| | - Paolo M. Comoglio
- Division of Molecular Oncology, Institute for Cancer Research and Treatment, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy
| |
Collapse
|
59
|
Avci ME, Konu O, Yagci T. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression. BMC Cancer 2008; 8:392. [PMID: 19114000 PMCID: PMC2632672 DOI: 10.1186/1471-2407-8-392] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/29/2008] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of SLIT-ROBO genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC) is missing. Hence, we quantified SLIT-ROBO transcripts in HCC cell lines, and in normal and tumor tissues from liver. METHODS Expression of SLIT-ROBO family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test. RESULTS Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: ROBO1, ROBO2, SLIT1 in one cluster, and ROBO4, SLIT2, SLIT3 in the other, respectively. Moreover, SLIT-ROBO expression predicted AFP-dependent subgrouping of HCC cell lines, but not that of liver tissues. ROBO1 and ROBO2 were significantly up-regulated, whereas SLIT3 was significantly down-regulated in cell lines with high-AFP background. When compared to normal liver tissue, ROBO1 was found to be significantly overexpressed, while ROBO4 was down-regulated in HCC. We also observed that ROBO1 and SLIT2 differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, ROBO4 could discriminate poorly differentiated HCC from other subgroups. CONCLUSION The present study is the first in comprehensive and quantitative evaluation of SLIT-ROBO family gene expression in HCC, and suggests that the expression of SLIT-ROBO genes is regulated in hepatocarcinogenesis. Our results implicate that SLIT-ROBO transcription profile is bi-modular in nature, and that each module shows intrinsic variability. We also provide quantitative evidence for potential use of ROBO1, ROBO4 and SLIT2 for prediction of tumor stage and differentiation status.
Collapse
Affiliation(s)
- Mehmet Ender Avci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
60
|
Coveney D, Ross AJ, Slone JD, Capel B. A microarray analysis of the XX Wnt4 mutant gonad targeted at the identification of genes involved in testis vascular differentiation. Gene Expr Patterns 2008; 8:529-37. [PMID: 18953701 DOI: 10.1016/j.gep.2008.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.
Collapse
Affiliation(s)
- Douglas Coveney
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
61
|
Dickinson RE, Myers M, Duncan WC. Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 2008; 149:5024-34. [PMID: 18566128 DOI: 10.1210/en.2008-0204] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human corpus luteum (CL) undergoes luteolysis, associated with marked tissue and vascular remodeling, unless conception occurs and the gland is rescued by human chorionic gonadotropin (hCG). In Drosophila the Slit gene product, a secreted glycoprotein, acts as a ligand for the roundabout (robo) transmembrane receptor. Together they influence the guidance and migration of neuronal and nonneuronal cells. In vertebrates three Slit (Slit1, Slit2, Slit3) and four Robo (Robo1, Robo2, Robo3/Rig-1, Robo4/Magic Robo) genes have been identified. ROBO1, SLIT2, and SLIT3 are also inactivated in human cancers and may regulate apoptosis and metastasis. Because processes such as apoptosis and tissue remodeling occur during the regression of the CL, the aim of this study was to investigate the expression, regulation, and effects of the SLIT and ROBO genes in human luteal cells. Immunohistochemistry and RT-PCR revealed that SLIT2, SLIT3, ROBO1, and ROBO2 are expressed in luteal steroidogenic cells and fibroblast-like cells of the human CL. Furthermore, using real-time quantitative PCR, expression of SLIT2, SLIT3, and ROBO2 was maximal in the late-luteal phase and significantly reduced after luteal rescue in vivo with exogenous hCG (P<0.05). Additionally, hCG significantly inhibited SLIT2, SLIT3, and ROBO2 expression in cultured luteinized granulosa cells (P<0.05). Blocking SLIT-ROBO activity increased migration and significantly decreased levels of apoptosis in primary cultures of luteal cells (P<0.05). Overall, these results suggest the SLIT/ROBO pathway could play an important role in luteolysis in women.
Collapse
Affiliation(s)
- Rachel E Dickinson
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Department of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
62
|
Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 2008; 283:26624-33. [PMID: 18611862 DOI: 10.1074/jbc.m800679200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SLIT-2 is considered as a candidate tumor suppressor gene, because it is frequently inactivated in various cancers due to hypermethylation of its promoter region and allelic loss. However, the exact mechanism of its tumor-suppressive effect has not been elucidated. Here, we observed that Slit-2-overexpressing breast cancer cells exhibited decreased proliferation and migration capabilities compared with control cells under in vitro conditions. These results were confirmed in vivo in mouse model systems. Mice injected with MCF-7/Slit-2 cells showed a 60-70% reduction in tumor size compared with mice injected with MCF-7/VC cells both in the absence and presence of estrogen. Upon further elucidation, we observed that Slit-2 mediates the tumor-suppressive effect via a coordinated regulation of the beta-catenin and PI3K signaling pathways and by enhancing beta-catenin/E-cadherin-mediated cell-cell adhesion. Our study for the first time reveals that Slit-2-overexpressing breast cancer cells exhibit tumor suppressor capabilities through the novel mechanism of beta-catenin modulation.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
63
|
Fukuhara N, Howitt JA, Hussain SA, Hohenester E. Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J Biol Chem 2008; 283:16226-34. [PMID: 18359766 PMCID: PMC2671633 DOI: 10.1074/jbc.m800688200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/17/2008] [Indexed: 11/06/2022] Open
Abstract
Recognition of the secreted protein Slit by transmembrane receptors of the Robo family provides important signals in the development of the nervous system and other organs, as well as in tumor metastasis and angiogenesis. Heparan sulfate (HS) proteoglycans serve as essential co-receptors in Slit-Robo signaling. Previous studies have shown that the second leucinerich repeat domain of Slit, D2, binds to the N-terminal immunoglobulin-like domains of Robo, IG1-2. Here we present two crystal structures of Drosophila Robo IG1-2, one of which contains a bound heparin-derived oligosaccharide. Using structure-based mutagenesis of a Robo IG1-5 construct we identified key Slit binding residues (Thr-74, Phe-114, Arg-117) forming a conserved patch on the surface of IG1; mutation of similarly conserved residues in IG2 had no effect on Slit binding. Mutation of conserved basic residues in IG1 (Lys-69, Arg-117, Lys-122, Lys-123), but not in IG2, reduced binding of Robo IG1-5 to heparin, in full agreement with the Robo-heparin co-crystal structure. Our collective results, together with a recent crystal structure of a minimal human Slit-Robo complex ( Morlot, C., Thielens, N. M., Ravelli, R. B., Hemrika, W., Romijn, R. A., Gros, P., Cusack, S., and McCarthy, A. A. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14923-14928 ), reveal a contiguous HS/heparin binding surface extending across the Slit-Robo interface. Based on the size of this composite binding site, we predict that at least five HS disaccharide units are required to support Slit-Robo signaling.
Collapse
Affiliation(s)
| | | | | | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London SW7 2AZ,
United Kingdom
| |
Collapse
|
64
|
Legg JA, Herbert JMJ, Clissold P, Bicknell R. Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis 2008; 11:13-21. [PMID: 18264786 DOI: 10.1007/s10456-008-9100-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/25/2008] [Indexed: 01/22/2023]
Abstract
Angiogenesis describes the development of new blood vessels from pre-existing vessels. The hijacking of this physiological process by tumours allows them to develop their own supplies of nutrients and oxygen, enabling their growth and metastasis. A large body of literature has accumulated over the last 20 years relating to angiogenesis, including signalling pathways involved in this process. One such pathway uses Slit-Roundabout proteins that are implicated in the development of cancers and tumour angiogenesis. The Roundabout family of receptors are large, single-pass transmembrane cell surface receptors involved in directing cell migration in response to their cognate Slit ligands. Although best known for their role in neuronal development, Slits and Roundabouts have now been implicated in myogenesis, leukocyte chemotaxis and tumour angiogenesis, confirming that the Robo signalling pathway functions across multiple cell types. We review here the evidence for a role for Slits and Roundabouts in cancer. In particular, we focus on the role of Robo1 and Robo4 in tumour angiogenesis and discuss the signalling pathways downstream of these proteins mediating endothelial cell migration.
Collapse
Affiliation(s)
- John A Legg
- Cancer Research UK Angiogenesis Group, Institute for Biomedical Research, University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
65
|
Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H, Erskine L, Murakami F, Parnavelas JG. The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 2008; 313:648-58. [PMID: 18054781 DOI: 10.1016/j.ydbio.2007.10.052] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/12/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Cortical interneurons in rodents are generated in the ventral telencephalon and migrate tangentially into the cortex. This process requires the coordinated action of many intrinsic and extrinsic factors. Here we show that Robo1 and Robo2 receptor proteins are dynamically expressed throughout the period of corticogenesis and colocalize with interneuronal markers, suggesting that they play a role in the migration of these cells. Analysis of Robo mutants showed a marked increase in the number of interneurons in the cortices of Robo1(-/-), but not Robo2(-/-), animals throughout the period of corticogenesis and in adulthood; this excess number of interneurons was observed in all layers of the developing cortex. Using BrdU incorporation in dissociated cell cultures and phosphohistone-3 labeling in vivo, we demonstrated that the increased number of interneurons in Robo1(-/-) mice is, at least in part, due to increased proliferation. Interestingly, a similar increase in proliferation was observed in Slit1(-/-)/Slit2(-/-) mutant mice, suggesting that cell division is influenced by Slit-Robo signaling mechanisms. Morphometric analysis of migrating interneurons in Robo1(-/-), Robo2(-/-) and Slit1(-/-)/Slit2(-/-), but not in Slit1(-/-) mice, showed a differential increase in neuronal process length and branching suggesting that Slit-Robo signaling also plays an important role in the morphological differentiation of these neurons.
Collapse
MESH Headings
- Animals
- Biomarkers
- Calbindins
- Cell Culture Techniques
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cerebral Cortex/cytology
- DNA, Complementary
- Electroporation
- Embryo, Mammalian
- Embryonic Stem Cells/chemistry
- Embryonic Stem Cells/metabolism
- Genetic Markers
- Genetic Vectors
- Genomic Library
- Immunohistochemistry
- Integrases/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/physiology
- Interneurons/cytology
- Interneurons/physiology
- Kinetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- S100 Calcium Binding Protein G/metabolism
- Selection, Genetic
- Signal Transduction
- Telencephalon/cytology
- Transfection
- Roundabout Proteins
Collapse
Affiliation(s)
- William Andrews
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Birch AH, Quinn MCJ, Filali-Mouhim A, Provencher DM, Mes-Masson AM, Tonin PN. Transcriptome analysis of serous ovarian cancers identifies differentially expressed chromosome 3 genes. Mol Carcinog 2008; 47:56-65. [PMID: 17620309 DOI: 10.1002/mc.20361] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytogenetic, molecular genetic and functional analyses have implicated chromosome 3 genes in epithelial ovarian cancers (EOC). To further characterize their contribution to EOC, the Affymetrix U133A GeneChip(R) was used to perform transcriptome analyses of chromosome 3 genes in primary cultures of normal ovarian surface epithelial (NOSE) cells (n = 14), malignant serous epithelial ovarian tumors (TOV) (n = 17), and four EOC cell lines (TOV-81D, TOV-112D, TOV-21G, and OV-90). A two-way comparative analysis of 735 known genes and expressed sequences identified 278 differentially expressed genes, where 43 genes were differentially expressed in at least 50% of the TOV samples. Three genes, RIS1 (at 3p21.31), GBE1 (at 3p12.2), and HEG1 (at 3q21.2), were similarly underexpressed in all TOV samples. Deregulation of the expression of these genes was not associated with loss of heterozygosity (LOH) of the genetic loci harboring them. LOH analysis of the RIS1, GBE1, and HEG1 loci was observed at frequencies of 14.3%, 13.7%, and 9.2%, respectively, in a series of 66 malignant TOV samples of the serous subtype. Reduced expression levels of RIS1, GBE1, and HEG1 were observed only in the tumorigenic EOC cell lines (TOV-21G, TOV-112D, and OV-90) and did not correlate with LOH. These results combined suggest that RIS1, GBE1, and HEG1, unlike classical tumor suppressor genes, are not likely to be primary targets of inactivation. This study provides a comprehensive analysis of chromosome 3 gene expression in NOSE and in EOC samples and identifies chromosome 3 gene candidates for further study.
Collapse
Affiliation(s)
- Ashley H Birch
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
67
|
Tao Q, Fujimoto J, Men T, Ye X, Deng J, Lacroix L, Clifford JL, Mao L, Van Pelt CS, Lee JJ, Lotan D, Lotan R. Identification of the retinoic acid-inducible Gprc5a as a new lung tumor suppressor gene. J Natl Cancer Inst 2007; 99:1668-82. [PMID: 18000218 DOI: 10.1093/jnci/djm208] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lung cancers develop via multiple genetic and epigenetic changes, including inactivation of tumor suppressor genes. We previously cloned human G protein-coupled receptor family C type 5A (GPRC5A), whose expression is suppressed in some human lung carcinoma cells, and its mouse homolog Gprc5a. METHODS We generated Gprc5a knockout mice by homologous recombination and studied their phenotype by macroscopic observation and microscopic histologic analysis of embryos and lungs of 1- to 2-year-old mice. GPRC5A mRNA expression was analyzed by reverse transcription-polymerase chain reaction in surgical specimens of 18 human lung tumors and adjacent normal tissues and by analyzing previously published data from 186 lung tumor tissues of a variety of histologic types and 17 normal lung samples. Human embryonic kidney, human non-small-cell lung cancer, and mouse lung adenocarcinoma cells were transfected with a GPRC5A expression vector or a control vector, and colony formation in semisolid medium was assayed. Statistical tests were two-sided. RESULTS Homozygous knockout mice developed many more lung tumors at 1-2 years of age (incidence: 76% adenomas and 17% adenocarcinomas) than heterozygous (11% adenomas) or wild-type (10% adenomas) mice. Human GPRC5A mRNA levels were lower in most (11 of 18 [61%]) human lung tumors than in adjacent normal tissues. The mean GPRC5A mRNA level in adenocarcinoma (n = 139), squamous cell carcinoma (n = 21), small-cell lung cancer (n = 6), and carcinoid (n = 20) tissues was 46.2% (P = .014), 7.5% (P<.001), 5.3% (P<.001), and 1.8% (P<.001), respectively, that in normal lung tissues (n = 17) GPRC5A transfection suppressed colony formation in semisolid medium of immortalized human embryonic kidney, human non-small-cell lung cancer, and mouse lung adenocarcinoma cells by 91%, 91%, and 68%, respectively, compared with vector controls (all P<.001). CONCLUSIONS Gprc5a functions as a tumor suppressor in mouse lung, and human GPRC5A may share this property. The Gprc5a-deficient mouse is a novel model to study lung carcinogenesis and chemoprevention.
Collapse
Affiliation(s)
- Qingguo Tao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Nural HF, Todd Farmer W, Mastick GS. The Slit receptor Robo1 is predominantly expressed via the Dutt1 alternative promoter in pioneer neurons in the embryonic mouse brain and spinal cord. Gene Expr Patterns 2007; 7:837-45. [PMID: 17826360 PMCID: PMC2080859 DOI: 10.1016/j.modgep.2007.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 10/23/2022]
Abstract
Robo1 is a member of the Roundabout (Robo) family of receptors for the Slit axon guidance cues. In mice (and humans), the Robo1 locus has alternative promoters producing two transcript isoforms, Robo1 and Dutt1. These isoforms have unique 5' termini, predicted to encode distinct N-terminal amino acids, but share the rest of their 3' exons. To determine the spatial expression of the Robo1 and Dutt1 isoforms, we generated isoform-specific RNA probes, and carried out in situ hybridization on E10.5 mouse embryos, the stage in early neuron differentiation when many major axon pathways are established. The two isoforms had distinct expression patterns that partially overlapped. Dutt1 was the predominant isoform, with widespread expression in regions of post-mitotic neurons and neuroepithelial cells. The Robo1 isoform had a distinct expression pattern restricted to subsets of neurons, many of which were Dutt1-negative. Dutt1 was the main isoform expressed in spinal cord commissural neurons. For both probes, the main hybridization signal was limited to two spots in the nuclei of individual cells. This study shows distinct expression patterns for the Dutt1 and Robo1 alternative promoters in the embryonic nervous system.
Collapse
|
69
|
Prasad A, Qamri Z, Wu J, Ganju RK. Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 2007; 82:465-76. [PMID: 17565045 PMCID: PMC2286829 DOI: 10.1189/jlb.1106678] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal, dendritic, and leukocyte migration. However, the molecular mechanism by which the Slit/Robo complex inhibits the migration of cells is not well defined. Here, we showed that Slit-2 can inhibit the CXCL12-induced chemotaxis and transendothelial migration of T cells and monocytes. We observed that CXCR4 associates with Robo-1 and that Slit-2 treatment enhances this association with the Robo-1 receptor. Robo-1 is a single-pass transmembrane receptor whose intracellular region contains four conserved motifs designated as CC0, CC1, CC2, and CC3. Structural and functional analyses of Robo receptors revealed that interaction of the CC3 motif with the CXCR4 receptor may regulate the CXCL12-induced chemotaxis of T cells. We further characterized Slit-2-mediated inhibition of the CXCL12/CXCR4 chemotactic pathway and found that Slit-2 can block the CXCL12-induced activation of the Src and Lck kinases but not Lyn kinase. Although Slit-2 did not inhibit the CXCL12-induced activation of MAPKs, it did inhibit the Akt phosphorylation and Rac activation induced by this chemokine. Altogether, our studies indicate a novel mechanism by which the Slit/Robo complex may inhibit the CXCR4/CXCL12-mediated chemotaxis of T cells.
Collapse
MESH Headings
- Blotting, Western
- Cell Adhesion/physiology
- Cell Movement/physiology
- Cell Survival
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis, Leukocyte/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Flow Cytometry
- Humans
- Immunoprecipitation
- Intercellular Signaling Peptides and Proteins/pharmacology
- Jurkat Cells/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Monocytes/physiology
- Nerve Tissue Proteins/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, Immunologic
- Signal Transduction
- T-Lymphocytes/physiology
- cdc42 GTP-Binding Protein/metabolism
- Roundabout Proteins
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahida Qamri
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane Wu
- Northwestern University Feinberg Medical School, Robert H. Laurie Comprehensive Cancer Center, Center for Genetic Medicine, Chicago, Illinois, USA
| | - Ramesh K. Ganju
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
70
|
Raso MG, Wistuba II. Molecular pathogenesis of early-stage non-small cell lung cancer and a proposal for tissue banking to facilitate identification of new biomarkers. J Thorac Oncol 2007; 2:S128-35. [PMID: 17603309 DOI: 10.1097/jto.0b013e318074fe42] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-small cell lung carcinoma (NSCLC) is one of the leading causes of death from cancer in both Eastern and Western countries. For patients with stage I NSCLC, full lobar or more extensive surgical resection is the treatment of choice. However, even among patients with surgically resected, stage I NSCLC, up to 30% of patients die of the disease within 5 years. At present, apart from clinical stage, there are no established cancer-specific clinical variables or biomarkers that reliably identify individuals at increased risk of death after surgical resection-individuals who could be candidates for adjuvant therapy or alternative management strategies. At a recent international workshop, participants discussed a clinical trial to compare radiation therapy with surgery among patients with stage I NSCLC. This study offers the opportunity to prospectively obtain, bank, and analyze tissue and other clinical specimens, which should facilitate the identification of new biomarkers for early detection, prognosis, and therapy in lung cancer.
Collapse
Affiliation(s)
- Maria Gabriela Raso
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | |
Collapse
|
71
|
Yue W, Dacic S, Sun Q, Landreneau R, Guo M, Zhou W, Siegfried JM, Yu J, Zhang L. Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res 2007; 13:4336-44. [PMID: 17671114 DOI: 10.1158/1078-0432.ccr-07-0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The goal of this study is to identify novel genes frequently silenced by promoter hypermethylation in lung cancer. EXPERIMENTAL DESIGNS Bioinformatic analysis was done to identify candidate genes significantly down-regulated in lung cancer. The effects of DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine on the expression of the candidate genes were determined. Methylated CpG sites in the promoters of the candidate genes were identified using bisulfite DNA sequencing. Methylation-specific PCR was developed and used to analyze DNA methylation in cell lines and clinical specimen. Pathologic and functional analyses were done to study the role of one candidate gene, receptor activity-modifying protein 2 (RAMP2), in suppressing lung cancer cell growth. RESULTS Among 54 candidate genes down-regulated in lung cancer, 31 were found to contain CpG islands in their promoters. Six of these 31 genes could be reactivated by 5-aza-2'-deoxycytidine in at least four of six lung cancer cell lines analyzed. Promoter hypermethylation of RAMP2, epidermal growth factor-containing fibulin-like extracellular matrix protein 1, and deleted in U Twenty Twenty cells was detected in 36% to 77% of 22 lung cancer cell lines and in 38% to 50% of 32 primary lung tumors, whereas hypermethylathion of these genes was rarely found in the matched normal samples. The methylation frequencies of these genes in lung cancer were similar to those of commonly used methylation markers, such as RAS association domain family protein 1A, p16, and methylguanine-DNA methyltransferase. Immunohistochemistry showed that RAMP2 was down-regulated in a majority of lung tumors, and RAMP2 down-regulation was correlated with high tumor grade. Ectopic expression of RAMP2 inhibited lung cancer cell growth and caused apoptotic cell death. Knockdown of RAMP2 by RNA interference stimulated cell proliferation. CONCLUSIONS Studying the newly identified genes may provide new insight into lung tumorigenesis. These genes might be useful as molecular markers of lung cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/pharmacology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- CpG Islands
- DNA Methylation
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Down-Regulation
- Epigenesis, Genetic
- Extracellular Matrix Proteins/antagonists & inhibitors
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Immunoenzyme Techniques
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Receptor Activity-Modifying Protein 2
- Receptor Activity-Modifying Proteins
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Tumor Cells, Cultured
- Roundabout Proteins
Collapse
Affiliation(s)
- Wen Yue
- Department of Pharmacology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Interneurons are an integral part of cortical neuronal circuits. During the past decade, numerous studies have shown that these cells, unlike their pyramidal counterparts that are derived from the neuroepithelium along the lumen of the lateral ventricles, are generated in the ganglionic eminences in the subpallium. They use tangential migratory paths to reach the cortex, guided by intrinsic and extrinsic cues. Evidence is now emerging which suggests that the family of Slit proteins, acting through Robo receptors, play a role not only in axon guidance in the developing forebrain, but also as guiding signals in the migration of cortical interneurons. Here we describe the patterns of expression of Slit and Robo at different stages of forebrain development and review the evidence in support of their role in cortical interneuron migration. Slit-Robo signal transduction mechanisms are also important during normal development in a number of systems in the body and in disease states, making them potential therapeutic targets for the treatment of neurological disorders and certain types of cancer.
Collapse
Affiliation(s)
- William D Andrews
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
73
|
Kantarci S, Donahoe PK. Congenital diaphragmatic hernia (CDH) etiology as revealed by pathway genetics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:217-26. [PMID: 17436295 DOI: 10.1002/ajmg.c.30132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect with high mortality and morbidity. Two hundred seventy CDH patients were ascertained, carefully phenotyped, and classified as isolated (diaphragm defects alone) or complex (with additional anomalies) cases. We established different strategies to reveal CDH-critical chromosome loci and genes in humans. Candidate genes for sequencing analyses were selected from CDH animal models, genetic intervals of recurrent chromosomal aberration in humans, such as 15q26.1-q26.2 or 1q41-q42.12, as well as genes in the retinoic acid and related pathways and those known to be involved in embryonic lung development. For instance, FOG2, GATA4, and COUP-TFII are all needed for both normal diaphragm and lung development and are likely all in the same genetic and molecular pathway. Linkage analysis was applied first in a large inbred family and then in four multiplex families with Donnai-Barrow syndrome (DBS) associated with CDH. 10K SNP chip and microsatellite markers revealed a DBS locus on chromosome 2q23.3-q31.1. We applied array-based comparative genomic hybridization (aCGH) techniques to over 30, mostly complex, CDH patients and found a de novo microdeletion in a patient with Fryns syndrome related to CDH. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) techniques allowed us to further define the deletion interval. Our aim is to identify genetic intervals and, in those, to prioritize genes that might reveal molecular pathways, mutations in any step of which, might contribute to the same phenotype. More important, the elucidation of pathways may ultimately provide clues to treatment strategies.
Collapse
Affiliation(s)
- Sibel Kantarci
- Peadiatric Surgical Research Laboratories at Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
74
|
Kinane TB. Lung development and implications for hypoplasia found in congenital diaphragmatic hernia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:117-24. [PMID: 17436303 DOI: 10.1002/ajmg.c.30124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is associated with various degrees of pulmonary hypoplasia and severe persistent pulmonary hypertension in the newborn. These conditions have significant implications for the outcome for the patient. Defects in early lung development are likely to be central to the generation of hypoplasia. A number of mouse models with defects in pathways that are central to lung development were found to have CDH. Understanding all aspects of early lung development will provide fresh insight into the pathogenesis of CDH and its associated conditions.
Collapse
Affiliation(s)
- T Bernard Kinane
- Pediatric Pulmonary, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
75
|
Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TPVM, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007; 80:616-32. [PMID: 17357069 PMCID: PMC1852714 DOI: 10.1086/512735] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/15/2007] [Indexed: 11/03/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) include vesicoureteral reflux (VUR). VUR is a complex, genetically heterogeneous developmental disorder characterized by the retrograde flow of urine from the bladder into the ureter and is associated with reflux nephropathy, the cause of 15% of end-stage renal disease in children and young adults. We investigated a man with a de novo translocation, 46,X,t(Y;3)(p11;p12)dn, who exhibits multiple congenital abnormalities, including severe bilateral VUR with ureterovesical junction defects. This translocation disrupts ROBO2, which encodes a transmembrane receptor for SLIT ligand, and produces dominant-negative ROBO2 proteins that abrogate SLIT-ROBO signaling in vitro. In addition, we identified two novel ROBO2 intracellular missense variants that segregate with CAKUT and VUR in two unrelated families. Adult heterozygous and mosaic mutant mice with reduced Robo2 gene dosage also exhibit striking CAKUT-VUR phenotypes. Collectively, these results implicate the SLIT-ROBO signaling pathway in the pathogenesis of a subset of human VUR.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Southern
- Blotting, Western
- Cell Line
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Y/genetics
- DNA Mutational Analysis
- DNA Primers
- Genetic Predisposition to Disease
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Molecular Sequence Data
- Mutation, Missense/genetics
- Nerve Tissue Proteins/metabolism
- Pedigree
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Translocation, Genetic/genetics
- Urinary Tract/abnormalities
- Vesico-Ureteral Reflux/genetics
- Vesico-Ureteral Reflux/pathology
Collapse
Affiliation(s)
- Weining Lu
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Jay PY, Bielinska M, Erlich JM, Mannisto S, Pu WT, Heikinheimo M, Wilson DB. Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol 2007; 301:602-14. [PMID: 17069789 PMCID: PMC1808541 DOI: 10.1016/j.ydbio.2006.09.050] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/08/2006] [Accepted: 09/29/2006] [Indexed: 01/13/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is an often fatal birth defect that is commonly associated with pulmonary hypoplasia and cardiac malformations. Some investigators hypothesize that this constellation of defects results from genetic or environmental triggers that disrupt mesenchymal cell function in not only the primordial diaphragm but also the thoracic organs. The alternative hypothesis is that the displacement of the abdominal viscera in the chest secondarily perturbs the development of the heart and lungs. Recently, loss-of-function mutations in the gene encoding FOG-2, a transcriptional co-regulator, have been linked to CDH and pulmonary hypoplasia in humans and mice. Here we show that mutagenesis of the gene for GATA-4, a transcription factor known to functionally interact with FOG-2, predisposes inbred mice to a similar set of birth defects. Analysis of wild-type mouse embryos demonstrated co-expression of Gata4 and Fog2 in mesenchymal cells of the developing diaphragm, lungs, and heart. A significant fraction of C57Bl/6 mice heterozygous for a Gata4 deletion mutation died within 1 day of birth. Developmental defects in the heterozygotes included midline diaphragmatic hernias, dilated distal airways, and cardiac malformations. Heterozygotes had any combination of these defects or none. In chimeric mice, Gata4(-/-) cells retained the capacity to contribute to cells in the diaphragmatic central tendon and lung mesenchyme, indicating that GATA-4 is not required for differentiation of these lineages. We conclude that GATA-4, like its co-regulator FOG-2, is required for proper mesenchymal cell function in the developing diaphragm, lungs, and heart.
Collapse
Affiliation(s)
- Patrick Y. Jay
- Department of Pediatrics, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
- Department of Genetics, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
| | - Malgorzata Bielinska
- Department of Pediatrics, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
| | - Jonathan M. Erlich
- Department of Pediatrics, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
| | - Susanna Mannisto
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - William T. Pu
- Departments of Cardiology, Pediatrics, & Genetics, Children’s Hospital Boston and Harvard Medical School, Boston, MA 02115
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
- Departments of Molecular Biology & Pharmacology, Washington University and St. Louis Children’s Hospital, St. Louis, MO 63110
| |
Collapse
|
77
|
Bielinska M, Jay PY, Erlich JM, Mannisto S, Urban Z, Heikinheimo M, Wilson DB. Molecular genetics of congenital diaphragmatic defects. Ann Med 2007; 39:261-74. [PMID: 17558598 PMCID: PMC2174621 DOI: 10.1080/07853890701326883] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is accompanied by malformations of the lung, heart, testis, and other organs. Patients with CDH may have any combination of these extradiaphragmatic defects, suggesting that CDH is often a manifestation of a global embryopathy. This review highlights recent advances in human and mouse genetics that have led to the identification of genes involved in CDH. These include genes for transcription factors, molecules involved in cell migration, and extracellular matrix components. The expression patterns of these genes in the developing embryo suggest that mesenchymal cell function is compromised in the diaphragm and other affected organs in patients with CDH. We discuss potential mechanisms underlying the seemingly random combination of diaphragmatic, pulmonary, cardiovascular, and gonadal defects in these patients.
Collapse
Affiliation(s)
- Malgorzata Bielinska
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Genetics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Jonathan M. Erlich
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Susanna Mannisto
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children's Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Zsolt Urban
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Genetics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children's Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Molecular Biology & Pharmacology, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| |
Collapse
|
78
|
Multipoint interphase FISH in childhood T-acute lymphoblastic leukemia detects subpopulations that carry different chromosome 3 aberrations. ACTA ACUST UNITED AC 2007; 172:54-60. [DOI: 10.1016/j.cancergencyto.2006.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/07/2006] [Accepted: 08/09/2006] [Indexed: 11/17/2022]
|
79
|
Hohenester E, Hussain S, Howitt JA. Interaction of the guidance molecule Slit with cellular receptors. Biochem Soc Trans 2006; 34:418-21. [PMID: 16709176 DOI: 10.1042/bst0340418] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Slits are large secreted glycoproteins characterized by an unusual tandem of four LRR (leucine-rich repeat) domains in their N-terminal half. Slit proteins were initially described as repulsive guidance cues in neural development, but it has become clear that they have additional important functions, for instance in the vasculature and immune system. Genetic studies have identified two types of cellular receptors for Slits: Robos (Roundabout) and the HS (heparan sulphate) proteoglycan syndecan. The intracellular signalling cascade downstream of Robo activation is slowly being elucidated, but the mechanism of transmembrane signalling by Robo has remained obscure. No active signalling role for syndecan has yet been demonstrated. Slit-HS interactions may be important for shaping the presumed Slit gradient or presenting Slit at its target cell surface. Recent studies have mapped the binding sites for Robos and HS/heparin to discrete Slit domains. Robos bind to the second LRR domain of Slit, whereas HS/heparin binds with very high affinity to the C-terminal portion of Slit. Slit activity is likely to be modulated by physiological proteolytic cleavage in the region separating the Robo and HS/heparin-binding sites.
Collapse
Affiliation(s)
- E Hohenester
- Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, UK
| | | | | |
Collapse
|
80
|
Cody NAL, Ouellet V, Manderson EN, Quinn MCJ, Filali-Mouhim A, Tellis P, Zietarska M, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. Transfer of chromosome 3 fragments suppresses tumorigenicity of an ovarian cancer cell line monoallelic for chromosome 3p. Oncogene 2006; 26:618-32. [PMID: 16909122 DOI: 10.1038/sj.onc.1209821] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.
Collapse
Affiliation(s)
- N A L Cody
- Department of Human Genetics, McGill University, Montréal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Angeloni D, ter Elst A, Wei MH, van der Veen AY, Braga EA, Klimov EA, Timmer T, Korobeinikova L, Lerman MI, Buys CHCM. Analysis of a new homozygous deletion in the tumor suppressor region at 3p12.3 reveals two novel intronic noncoding RNA genes. Genes Chromosomes Cancer 2006; 45:676-91. [PMID: 16607615 DOI: 10.1002/gcc.20332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Homozygous deletions or loss of heterozygosity (LOH) at human chromosome band 3p12 are consistent features of lung and other malignancies, suggesting the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene has been cloned thus far from the overlapping region deleted in lung and breast cancer cell lines U2020, NCI H2198, and HCC38. It is DUTT1 (Deleted in U Twenty Twenty), also known as ROBO1, FLJ21882, and SAX3, according to HUGO. DUTT1, the human ortholog of the fly gene ROBO, has homology with NCAM proteins. Extensive analyses of DUTT1 in lung cancer have not revealed any mutations, suggesting that another gene(s) at this location could be of importance in lung cancer initiation and progression. Here, we report the discovery of a new, small, homozygous deletion in the small cell lung cancer (SCLC) cell line GLC20, nested in the overlapping, critical region. The deletion was delineated using several polymorphic markers and three overlapping P1 phage clones. Fiber-FISH experiments revealed the deletion was approximately 130 kb. Comparative genomic sequence analysis uncovered short sequence elements highly conserved among mammalian genomes and the chicken genome. The discovery of two EST clusters within the deleted region led to the isolation of two noncoding RNA (ncRNA) genes. These were subsequently found differentially expressed in various tumors when compared to their normal tissues. The ncRNA and other highly conserved sequence elements in the deleted region may represent miRNA targets of importance in cancer initiation or progression.
Collapse
Affiliation(s)
- Debora Angeloni
- Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Coveney D, Ross AJ, Slone JD, Capel B. A microarray analysis of the XX Wnt4 mutant gonad targeted at the identification of genes involved in testis vascular differentiation. Gene Expr Patterns 2006; 7:82-92. [PMID: 16844427 DOI: 10.1016/j.modgep.2006.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 01/09/2023]
Abstract
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.
Collapse
Affiliation(s)
- Douglas Coveney
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
83
|
Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG, Sundaresan V, Richards LJ. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 2006; 133:2243-52. [PMID: 16690755 DOI: 10.1242/dev.02379] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.
Collapse
Affiliation(s)
- William Andrews
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Kajekar R, Pieczarka EM, Smiley-Jewell SM, Schelegle ES, Fanucchi MV, Plopper CG. Early postnatal exposure to allergen and ozone leads to hyperinnervation of the pulmonary epithelium. Respir Physiol Neurobiol 2006; 155:55-63. [PMID: 16616710 DOI: 10.1016/j.resp.2006.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 11/21/2022]
Abstract
Airway injury in infant monkeys exposed to ozone and/or house dust mite allergen (HDMA) is associated with a loss of epithelial innervation. In this study, we evaluated for persistence/recovery of the altered epithelial innervation. Thirty-day-old rhesus monkeys were exposed to repeated episodes of HDMA and/or ozone from 1 to 6 months of age and subsequently allowed to recover for 6 months in the absence of further ozone exposure and/or minimal HDMA challenge (sufficient to maintain allergen sensitization). At 1 year of age, nerve density in intrapulmonary airways was immunohistochemically evaluated using antibodies directed against protein gene product 9.5. Hyperinnervation and irregular epithelial nerve distribution was observed in both HDMA- and ozone-exposed groups; most prominent alterations were observed in animals exposed to HDMA plus ozone. Therefore, while adaptive mechanisms exist that re-establish epithelial innervation following cessation or diminution of exposure to HDMA and/or ozone, the recovery is associated with persistent proliferative mechanisms that result in hyperinnervation of the airways.
Collapse
Affiliation(s)
- Radhika Kajekar
- Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Challa AK, McWhorter ML, Wang C, Seeger MA, Beattie CE. Robo3 isoforms have distinct roles during zebrafish development. Mech Dev 2006; 122:1073-86. [PMID: 16129585 DOI: 10.1016/j.mod.2005.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/17/2005] [Indexed: 11/16/2022]
Abstract
Roundabout (Robo) receptors and their secreted ligand Slits have been shown to function in a number of developmental events both inside and outside of the nervous system. We previously cloned zebrafish robo orthologs to gain a better understanding of Robo function in vertebrates. Further characterization of one of these orthologs, robo3, has unveiled the presence of two distinct isoforms, robo3 variant 1 (robo3var1) and robo3 variant 2 (robo3var2). These two isoforms differ only in their 5'-ends with robo3var1, but not robo3var2, containing a canonical signal sequence. Despite this difference, both forms accumulate on the cell surface. Both isoforms are contributed maternally and exhibit unique and dynamic gene expression patterns during development. Functional analysis of robo3 isoforms using an antisense gene knockdown strategy suggests that Robo3var1 functions in motor axon pathfinding, whereas Robo3var2 appears to function in dorsoventral cell fate specification. This study reveals a novel function for Robo receptors in specifying ventral cell fates during vertebrate development.
Collapse
Affiliation(s)
- Anil K Challa
- Center for Molecular Neurobiology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Commissural axons grow along complex pathways toward, across, and beyond the midline of the central nervous system. Taking commissural axons in the vertebrate spinal cord and the Drosophila ventral nerve cord as examples, we examine how commissural axon pathfinding is regulated by the Slit family of guidance cues and their Robo family receptors. We extract several principles that seem likely to apply to other axons and other contexts, such as the reiterative use of the same guidance molecules in distinct pathfinding decisions, the transcriptional specification of a pathway, the posttranscriptional regulation of growth along the pathway, and the possible role of feedback mechanisms to ensure the fidelity of pathfinding choices. Such mechanisms may help explain how a relatively small number of guidance molecules can generate complex and stereotyped wiring patterns. We also highlight the many gaps in our understanding of commissural axon pathfinding and question some widely accepted views. We hope that this review encourages further efforts to tackle these questions, in the expectation that this system will continue to reveal the general principles of axon pathfinding.
Collapse
Affiliation(s)
- Barry J Dickson
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.
| | | |
Collapse
|
87
|
Chédotal A, Kerjan G, Moreau-Fauvarque C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ 2005; 12:1044-56. [PMID: 16015381 DOI: 10.1038/sj.cdd.4401707] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Slits, semaphorins and netrins are three families of proteins that can attract or repel growing axons and migrating neurons in the developing nervous system of vertebrates and invertebrates. Recent studies have shown that they are widely expressed outside the nervous system and that they may play important roles in cancers. Several of the genes encoding these proteins are localized on chromosomal region associated with frequent loss-of-heterozygosity in tumors and cancer cell lines and there is also significant hypermethylation of their promoter suggesting that they may act as tumor suppressors. In addition, proteins in all these families and their receptors appear to control the vascularization of the tumors. Last, many axon guidance molecules also regulate cell migration and apoptosis in normal and tumorigenic tissues. Overall, this suggests that molecules that could mimick or block the activity of axon guidance molecules may be used as therapeutic agents for the treatment of malignancy.
Collapse
Affiliation(s)
- A Chédotal
- CNRS UMR7102, Equipe Développement Neuronal, Université Paris 6, Batiment B, Case 12, 9 Quai Saint-Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
88
|
Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH, Ranganathan S, Monga DK, Bell A, Michalopoulos GK, Monga SPS. Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 2005; 129:285-302. [PMID: 16012954 PMCID: PMC1821080 DOI: 10.1053/j.gastro.2005.04.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Wnt/beta-catenin activation is observed in normal liver development, regeneration, and liver cancer. Our aim was to elucidate the regulation and mechanism of this pathway in liver. METHODS We report the generation and characterization of liver-specific nonmutated beta-catenin-overexpressing transgenic mice. Transgenic livers were examined for their morphology and phenotype by histology, proliferation, apoptosis, and microarray analysis. RESULTS Transgenic livers displayed a significant increase in cytoplasmic, membranous, and nuclear beta-catenin in hepatocytes as compared with their wild-type littermates, which display a predominant membranous localization only. A 15%-20% increase in the liver weight-body weight ratio was evident in transgenic mice secondary to increased hepatocyte proliferation. Microarray analysis showed differential expression of approximately 400 genes in the transgenic livers. Epidermal growth factor receptor RNA and protein and increased levels of activated epidermal growth factor receptor and Stat3 were observed in the transgenic livers. Epidermal growth factor receptor promoter analysis showed a T-cell factor-binding site, and subsequent reporter assay confirmed epidermal growth factor receptor activation in response to Wnt-3A treatment that was abrogated by frizzled related protein 1, a known Wnt antagonist. Epidermal growth factor receptor inhibition successfully decreased liver size in transgenic mice. Next, 7 of 10 hepatoblastomas displayed simultaneous beta-catenin and epidermal growth factor receptor up-regulation, thus suggesting a strong relationship between these 2 proteins in tumors. CONCLUSIONS beta-Catenin transgenic mice show an in vivo hepatotrophic effect secondary to increased basal hepatocyte proliferation. Epidermal growth factor receptor seems to be a direct target of the pathway, and epidermal growth factor receptor activation might contribute toward some mitogenic effects of increased beta-catenin in liver: epidermal growth factor receptor inhibition might be useful in such states.
Collapse
Affiliation(s)
- Xinping Tan
- Department of Pathology, University of Pittsburgh, School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn 2005; 233:41-51. [PMID: 15768400 DOI: 10.1002/dvdy.20324] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ventral midline of the central nervous system is an important intermediate target where growing commissural axons either cross and project contralaterally or remain on the same side of the body. New studies on mice and humans show that this decision by commissural axons is largely dependent on Slits, extracellular matrix proteins that are widely expressed in the midline of the nervous system, and their receptors, Robos (Long et al. [2004] Neuron 42:213-223; Sabatier et al. [2004] Cell 117:157-169; Jen et al. [2004] Science 304:1509-1513). Here, we show that the Robo family proteins Robo1 and Rig-1 exhibit differential expression patterns on commissural axons as they approach, cross, and leave the midline of the developing mouse spinal cord and demonstrate that Robo1 and Robo2 bind Slit1 and Slit2, but Rig-1 does not. In addition, we show that cultured chick commissural axons are repelled by a source of Slit protein, and the soluble Robo-Fc proteins are capable of neutralizing this repulsion. Finally, we exploit the large size and accessibility of the early chick embryo to analyze the function of Slit/Robo signaling in midline commissural axon guidance, and we demonstrate that the in vivo perturbation of Robo-Slit interaction at the floor plate causes consistent guidance defects of commissural axons during midline crossing. These findings demonstrate the evolutionarily conserved role for Robo-Slit interaction in the control of midline crossing axons in vertebrates.
Collapse
Affiliation(s)
- Elvira T Mambetisaeva
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
90
|
Pfeifer GP, Dammann R. Methylation of the Tumor Suppressor Gene RASSF1A in Human Tumors. BIOCHEMISTRY (MOSCOW) 2005; 70:576-83. [PMID: 15948711 DOI: 10.1007/s10541-005-0151-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loss of heterozygosity of a segment at 3p21.3 is frequently observed in lung cancer and several other carcinomas. We have identified the Ras-association domain family 1A gene (RASSF1A), which is localized at 3p21.3 in a minimum deletion sequence. De novo methylation of the RASSF1A promoter is one of the most frequent epigenetic inactivation events detected in human cancer and leads to silencing of RASSF1A expression. Hypermethylation of RASSF1A was frequently found in most major types of human tumors including lung, breast, prostate, pancreas, kidney, liver, cervical, thyroid and many other cancers. The detection of RASSF1A methylation in body fluids such as serum, urine, and sputum promises to be a useful marker for early cancer detection. The functional analysis of RASSF1A reveals a potential involvement of this protein in apoptotic signaling, microtubule stabilization, and cell cycle progression.
Collapse
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA.
| | | |
Collapse
|
91
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect with a high mortality and morbidity. A clear understanding of the pathogenesis of CDH is critical for determining prognosis and planning treatment, but to date, information on the genetic etiology of both nonsyndromic and syndromic CDH is limited. This paper summarizes the current knowledge concerning the genes, syndromes, and chromosome aberrations associated with CDH in humans and in animal model systems. Mutations in several different genes have been described in syndromic CDH, but there is only one mutation that has been reported in non-syndromic CDH to date. However, animal models suggest that genes involved in cell migration, myogenesis, and connective tissue formation are critical to normal diaphragm formation, and these data provide a starting point for the search for other genes involved in the pathogenesis of CDH.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143-0748, USA.
| |
Collapse
|
92
|
Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, Litwack ED, Richards LJ, Gronostajski RM. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 2005; 25:685-98. [PMID: 15632069 PMCID: PMC543431 DOI: 10.1128/mcb.25.2.685-698.2005] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phylogenetically conserved nuclear factor I (NFI) gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects, whereas Nfic-deficient mice have agenesis of molar tooth roots and severe incisor defects. Here we show that Nfib-deficient mice possess unique defects in lung maturation and exhibit callosal agenesis and forebrain defects that are similar to, but more severe than, those seen in Nfia-deficient animals. In addition, loss of Nfib results in defects in basilar pons formation and hippocampus development that are not seen in Nfia-deficient mice. Heterozygous Nfib-deficient animals also exhibit callosal agenesis and delayed lung maturation, indicating haploinsufficiency at the Nfib locus. The similarity in brain defects in Nfia- and Nfib-deficient animals suggests that these two genes may cooperate in late fetal forebrain development, while Nfib is essential for late fetal lung maturation and development of the pons.
Collapse
Affiliation(s)
- George Steele-Perkins
- State University of New York at Buffalo, Dept. of Biochemistry, 140 Farber Hall, 3435 Main St., Buffalo, NY 14214-3000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Dickinson RE, Dallol A, Bieche I, Krex D, Morton D, Maher ER, Latif F. Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer 2005; 91:2071-8. [PMID: 15534609 PMCID: PMC2409788 DOI: 10.1038/sj.bjc.6602222] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Drosophila, the Slit gene product, a secreted glycoprotein, acts as a midline repellent to guide axonal development during embryogenesis. Three human Slit gene orthologues have been characterised and recently we reported frequent promoter region hypermethylation and transcriptional silencing of SLIT2 in lung, breast, colorectal and glioma cell lines and primary tumours. Furthermore, re-expression of SLIT2 inhibited the growth of cancer cell lines so that SLIT2 appears to function as a novel tumour suppressor gene (TSG). We analysed the expression of SLIT3 (5q35–34) and SLIT1 (1q23.3–q24) genes in 20 normal human tissues. Similar to SLIT2 expression profile, SLIT3 is expressed strongly in many tissues, while SLIT1 expression is neuronal specific. We analysed the 5′ CpG island of SLIT3 and SLIT1 genes in tumour cell lines and primary tumours for hypermethylation. SLIT3 was found to be methylated in 12 out of 29 (41%) of breast, one out of 15 (6.7%) lung, two out of six (33%) colorectal and in two out of (29%) glioma tumour cell lines. In tumour cell lines, silenced SLIT3 associated with hypermethylation and was re-expressed after treatment with 5-aza-2′-deoxycytidine. In primary tumours, SLIT3 was methylated in 16% of primary breast tumours, 35% of gliomas and 38% of colorectal tumours. Direct sequencing of bisulphite-modified DNA from methylated tumour cell lines and primary tumours demonstrated that majority of the CpG sites analysed were heavily methylated. Thus, both SLIT2 and SLIT3 are frequently methylated in gliomas and colorectal cancers, but the frequency of SLIT3 methylation in lung and breast cancer is significantly less than that for SLIT2. We also demonstrated SLIT1 promoter region hypermethylation in glioma tumour lines (five out of six; 83%), the methylation frequency in glioma tumours was much lower (two out of 20; 10%). Hence, evidence is accumulating for the involvement of members of the guidance cues molecules and their receptors in tumour development.
Collapse
Affiliation(s)
- R E Dickinson
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - A Dallol
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - I Bieche
- Laboratoire d’Oncogénétique – INSERM E0017, Centre René Huguenin, 35, rue Dailly, F-92210 St-Cloud, France
| | - D Krex
- Department of Neurosurgery, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - D Morton
- Department of Surgery, University of Birmingham, Birmingham B15 2TT, UK
| | - E R Maher
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
- Cancer Research UK Renal Molecular Oncology Research Group, University of Birmingham, Birmingham B15 2TG, UK
| | - F Latif
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
- Cancer Research UK Renal Molecular Oncology Research Group, University of Birmingham, Birmingham B15 2TG, UK
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, University of Birmingham, Birmingham B15 2TT, UK. E-mail:
| |
Collapse
|
94
|
Matsunaga E, Chédotal A. Repulsive guidance molecule/neogenin: a novel ligand-receptor system playing multiple roles in neural development. Dev Growth Differ 2004; 46:481-6. [PMID: 15610137 DOI: 10.1111/j.1440-169x.2004.00768.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The repulsive guidance molecule (RGM) is a membrane-bound protein originally isolated as an axon guidance molecule in the visual system. Recently, the transmembrane protein, neogenin, has been identified as the RGM receptor. In vitro analysis with retinal explants showed that RGM repels temporal retinal axons and collapses their growth cones through neogenin-mediated signaling. However, RGM and neogenin are also broadly expressed at the early embryonic stage, suggesting that they do not only control the guidance of visual axons. Gene expression perturbation experiments in chick embryos showed that neogenin induces cell death, and its ligand, RGM, blocks the pro-apoptotic activity of neogenin. Thus, RGM/neogenin is a novel dependence ligand/receptor couple as well as an axon guidance molecular complex.
Collapse
Affiliation(s)
- Eiji Matsunaga
- UMR CNRS 7102, Université Paris 6, 9 Quai Saint Bernard, 75005 Paris, France.
| | | |
Collapse
|
95
|
Abstract
The Netrin, Slit, Semaphorin, and Ephrin families of secreted proteins were originally characterized in the nervous system as guidance cues for axons; however, recent studies demonstrate that many members of these families contribute to the development of a variety of organs. Here, the current knowledge of their roles is discussed with a focus on four tissues: lung, mammary, cardiovascular, and kidney. While many studies indicate a role for "axon guidance" cues in regulating cell-cell and cell-extracellular matrix (ECM) interactions during organogenesis, there is accumulating evidence that they also contribute to tissue development by regulating the transcription and translation of genes encoding key morphogenetic factors.
Collapse
Affiliation(s)
- Lindsay Hinck
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064 USA.
| |
Collapse
|
96
|
Jones LC, Tefferi A, Idos GE, Kumagai T, Hofmann WK, Koeffler HP. RARbeta2 is a candidate tumor suppressor gene in myelofibrosis with myeloid metaplasia. Oncogene 2004; 23:7846-53. [PMID: 15361842 DOI: 10.1038/sj.onc.1207510] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myelofibrosis with myeloid metaplasia (MMM) is a clonal stem-cell disorder that leads to ineffective hematopoiesis, bone marrow fibrosis, and extramedullary hematopoiesis. The molecular mechanisms underlying the development of this myeloproliferative syndrome are currently unknown. In order to identify tumor suppressor genes that may be involved in the disease process, we performed an analysis for loss of heterozygosity (LOH) in CD34+ cells from 29 patients with MMM. We observed a frequency of allelic loss on chromosomal arm 3p in 24% of cases. Detailed mapping of 3p revealed a distinct region of deletion at 3p24. Among the genes known to map within this region is the retinoic acid receptor-beta (RARbeta2) gene. To determine whether RARbeta2 gene activity is diminished in this disease, we analysed its expression in CD34+ cells from 17 patients with MMM using quantitative PCR. Our results indicate that expression of RARbeta2 is significantly decreased in 100% of patient samples compared to that in CD34+ cells from 10 normal individuals. Since allelic loss at 3p24 occurs in <25% of patients, we investigated the contribution of epigenetic modifications to RARbeta2 inactivity. Using methylation-specific PCR, we found hypermethylation of RARbeta2 in 16 of 18 patients (89%), while the methylated form of the gene was absent in CD34+ cells from nine normal individuals. Our results suggest that RARbeta2 acts as a tumor suppressor gene in MMM and that epigenetic changes are the most significant determinants of RARbeta2 gene activity in these patients.
Collapse
Affiliation(s)
- Letetia C Jones
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Howitt JA, Clout NJ, Hohenester E. Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J 2004; 23:4406-12. [PMID: 15496984 PMCID: PMC526463 DOI: 10.1038/sj.emboj.7600446] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/22/2004] [Indexed: 11/08/2022] Open
Abstract
Recognition of the large secreted protein Slit by receptors of the Robo family provides fundamental signals in axon guidance and other developmental processes. In Drosophila, Slit-Robo signalling regulates midline crossing and the lateral position of longitudinal axon tracts. We report the functional dissection of Drosophila Slit, using structure analysis, site-directed mutagenesis and in vitro assays. The N-terminal region of Slit consists of a tandem array of four independently folded leucine-rich repeat (LRR) domains, connected by disulphide-tethered linkers. All three Drosophila Robos were found to compete for a single highly conserved site on the concave face of the second LRR domain of Slit. We also found that this domain is sufficient for biological activity in a chemotaxis assay. Other Slit activities may require Slit dimerisation mediated by the fourth LRR domain. Our results show that a small portion of Slit is able to induce Robo signalling and indicate that the distinct functions of Drosophila Robos are encoded in their divergent cytosolic domains.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Axons/physiology
- Binding Sites
- Cell Line
- Cell Movement
- Cells, Cultured
- Chromatography, Gel
- Conserved Sequence
- Crystallography, X-Ray
- Culture Media, Conditioned
- Cysteine/chemistry
- Drosophila/chemistry
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/chemistry
- Drosophila Proteins/isolation & purification
- Drosophila Proteins/metabolism
- Endothelium, Vascular/cytology
- Humans
- Leucine/chemistry
- Leucine/genetics
- Leucine/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/isolation & purification
- Nerve Tissue Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Immunologic/isolation & purification
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Homology, Amino Acid
- Umbilical Veins/cytology
- Water/chemistry
- Roundabout Proteins
Collapse
Affiliation(s)
- Jason A Howitt
- Department of Biological Sciences, Imperial College London, London, UK.
| | | | | |
Collapse
|
98
|
Xian J, Aitchison A, Bobrow L, Corbett G, Pannell R, Rabbitts T, Rabbitts P. Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter. Cancer Res 2004; 64:6432-7. [PMID: 15374951 DOI: 10.1158/0008-5472.can-04-2561] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.
Collapse
Affiliation(s)
- Jian Xian
- Department of Oncology, University of Cambridge, Medical Research Council Centre, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
99
|
Thurston G, Gale NW. Vascular endothelial growth factor and other signaling pathways in developmental and pathologic angiogenesis. Int J Hematol 2004; 80:7-20. [PMID: 15293563 DOI: 10.1532/ijh97.04065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The field of angiogenesis received a huge boost in 2003 with the announcement of positive results in a phase III clinical trial using a vascular endothelial growth factor (VEGF)-blocking antibody for the treatment of cancer. Although the VEGF pathway has emerged as a central signaling pathway in normal and pathologic angiogenesis, several other pathways are also now recognized as playing essential roles. This review focuses on 2 specific areas. First, we summarize some of the work on newly discovered angiogenic signaling pathways by primarily describing the molecular biology of the pathways and the evidence for their involvement in vascular development. Second, we describe progress in therapeutic antiangiogenesis in cancer, particularly with agents that block the VEGF pathway.
Collapse
Affiliation(s)
- Gavin Thurston
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA.
| | | |
Collapse
|
100
|
Lundström A, Gallio M, Englund C, Steneberg P, Hemphälä J, Aspenström P, Keleman K, Falileeva L, Dickson BJ, Samakovlis C. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 2004; 18:2161-71. [PMID: 15342493 PMCID: PMC515293 DOI: 10.1101/gad.310204] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 06/21/2004] [Indexed: 11/25/2022]
Abstract
Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.
Collapse
Affiliation(s)
- Annika Lundström
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 96 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|