51
|
Nie F, Wong-Riley MT. Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: quantitative EM analysis. J Comp Neurol 1995; 356:115-31. [PMID: 7629306 DOI: 10.1002/cne.903560108] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the primate striate cortex, cytochrome oxidase (CO)-rich puffs differ from CO-poor interpuffs in their metabolic levels and physiological properties. The neurochemical basis for their metabolic and physiological differences is not well understood. The goal of the present study was to examine the relationship between the distribution of gamma aminobutyric acid (GABA)/non-GABA synapses and CO levels in postsynaptic neuronal profiles and to determine whether or not a difference existed between puffs and interpuffs. By combining CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. In both puffs and interpuffs, GABA-immunoreactive (GABA-IR) neurons were the only cell type that received both non-GABA-IR (presumed excitatory) and GABA-IR (presumed inhibitory) axosomatic synapses, and they had three times as many mitochondria darkly reactive for CO than non-GABA-IR neurons, which received only GABA-IR axosomatic synapses. GABA-IR neurons and terminals in puffs had a larger mean size, about twice as many darkly reactive mitochondria, and a higher ratio of non-GABA-IR to GABA-IR axosomatic synapses than those in interpuffs (2.3:1 vs. 1.6:1; P < 0.01). There were significantly more synapses of both non-GABA-IR and GABA-IR types in the neuropil of puffs than of interpuffs; however, the ratio of non-GABA-IR to GABA-IR synapses was significantly higher in puffs (2.86:1) than in interpuffs (2.08:1; P < 0.01). Our results are consistent with the hypothesis that the level of oxidative metabolism in postsynaptic neurons and neuronal processes is tightly governed by the strength and proportion of excitatory over inhibitory synapses. Thus, the present results suggest that (1) GABA-IR neurons in the macaque striate cortex have a higher level of oxidative metabolism than non-GABA ones because their somata receive direct excitatory synapses and their terminals are more tonically active; (2) the higher proportion of presumed excitatory synapses in puffs imposes a greater energy demand there than in interpuffs; and (3) excitatory synaptic activity may be more prominent in puffs than in interpuffs because puffs receive a greater proportion of excitatory synapses from multiple sources including the lateral geniculate nucleus, which is not known to project to the interpuffs.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
52
|
Chaudhuri A, Matsubara JA, Cynader MS. Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268. Vis Neurosci 1995; 12:35-50. [PMID: 7718501 DOI: 10.1017/s095252380000729x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is now well established that environmental signals mediated via neurotransmitters and hormones can induce responses in cells which involve a cascade of receptors, G proteins, and second messengers. These in turn can induce transcription factors which regulate long-term changes in gene expression. It has been proposed that the stimulus-transcription coupling properties of these DNA-binding proteins can be exploited to visualize activated neurons by way of immunostaining. We have used standard immunohistochemical techniques to detect the expression of one specific transcription factor, Zif268, in the visual cortex (area 17, V1) of vervet monkeys (Cercopithecus aethiops). Immunopositive neurons were present in large numbers throughout the visual cortex of the normal animal, being concentrated in layers 2/3 and 6 and at moderate levels in 4C beta and 5. To determine if Zif268 expression was affected by visual stimulation in the monkey, we restricted light input to one eye with the aim of revealing ocular-dominance columns in striate cortex. We found that short-term monocular deprivation induced either by enucleation, intravitreal TTX injection, or eyelid suturing resulted in dramatic changes in Zif268 levels, revealing vertically oriented columns of reduced Zif268 staining interdigitated with columns of normal expression. Furthermore, these columns were discernible after just 2 h of monocular blockade. A comparison of the ocular-dominance pattern obtained with Zif268 immunostaining and cytochrome oxidase histochemistry in long-term monocularly deprived animals showed a coincident reduction of both markers along columns that were precisely aligned in adjacent sections, indicating that Zif268 expression is restricted to cortical regions of high metabolic activity. Simultaneous immunostaining for Zif268 and the calcium-binding proteins calbindin and parvalbumin showed a negative correlation, suggesting that the Zif268 protein may be expressed selectively within excitatory neurons. A similar approach with immunostaining for neurofilament and microtubule-associated proteins (SMI-32 and MAP2) revealed pyramidal neurons which were regularly found to contain a Zif268-positive nucleus. Furthermore, confocal images of lucifer yellow filled neurons possessing Zif268-positive nuclei all showed pyramidal morphology. Taken together, these results point to activity-dependent expression of Zif268 within a subset of excitatory neurons.
Collapse
Affiliation(s)
- A Chaudhuri
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
53
|
Simonian NA, Elvhage T, Czernik AJ, Greengard P, Hyman BT. Calcium/calmodulin-dependent protein kinase II immunostaining is preserved in Alzheimer's disease hippocampal neurons. Brain Res 1994; 657:294-9. [PMID: 7820630 DOI: 10.1016/0006-8993(94)90979-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alterations in protein phosphorylation may be important in the pathogenesis of Alzheimer's disease and recent observations suggest that a subset of protein kinase pathways may be selectively altered. Calcium/calmodulin-dependent protein kinase II CaM kinase II) is the most abundant protein kinase in the brain and is believed to play an important role in the regulation of synaptic transmission, long-term potentiation and other forms of neuronal plasticity. We have now evaluated brains of individuals with Alzheimer's disease for changes in the distribution and density of immunoreactivity for the alpha subunit of CaM kinase II. CaM kinase II immunoreactivity was found in cytoarchitectural areas and neurons vulnerable to the formation of neurofibrillary angles and senile plaques. Over 80% of neurons bearing neurofibrillary tangles expressed CaM kinase II. Loss of CaM kinase II immunoreactivity was found in CA1, commensurate with neuronal loss in this area. Remaining CA1 neurons, however, had preserved CaM kinase II immunoreactivity. Preservation in the distribution and density of CaM kinase II immunoreactivity was observed in other hippocampal regions and in a multimodal association area, area 20. These results suggest CaM kinase II expression in the Alzheimer's disease brain is unaltered despite marked neuropathological changes.
Collapse
Affiliation(s)
- N A Simonian
- Massachusetts General Hospital, Harvard Medical School, Boston 02114
| | | | | | | | | |
Collapse
|
54
|
Liu N, Cooper NG. Purification and characterization of the Ca2+/calmodulin-dependent protein kinase II from chicken forebrain. J Mol Neurosci 1994; 5:193-206. [PMID: 7654521 DOI: 10.1007/bf02736733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CaM kinase II is known to be enriched in mammalian and avian brains. To determine the holoenzymic composition and functional characteristics of this kinase, a new approach for isolation was applied to isolate it from the chicken forebrain. Forebrains of hatched 45-d chicken were dissected, homogenized, and centrifuged. The supernatant was loaded onto a CaM-agarose affinity column and the calmodulin-binding proteins were eluted with EGTA. Selected eluates were loaded onto the antibody-agarose affinity column, which was prepared with monoclonal antibody (MAb) (6G9) to the CaM kinase II alpha subunit. Samples were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and either silver-stained or blotted onto a nitrocellulose membrane. The protein composition and the immunoreactivity of the antibody-agarose affinity eluate fractions were analyzed with a densitometric scanner. Silver staining of gels showed that the beta subunit doublet, the beta' subunit, and a putative substrate were coeluted with the alpha subunit from the antibody affinity column although only the alpha subunit bound the 6G9 antibody. Scintillation counting showed that the autophosphorylation of the kinase was significantly reduced in the eluate from the antibody affinity column. Whereas silver staining indicated an increase in the relative amount of alpha subunit had occurred during purification, phosphorylation assays indicated an increase in the relative amount of the alpha subunit after the last purification step. A possible reason for this is discussed. The presence of beta/beta' subunits in the antibody-agarose affinity eluate indicated the existence of an alpha beta/beta' heteropolymer. The phosphorylation assay was not a good indication of the amount of purification because of the loss of enzyme activity following purification. In contrast, the immunoassay indicated a 97-fold purification from the cytosolic fraction was achieved using the method. In conclusion, the data indicate the existence of the CaM kinase II alpha beta/beta' heteropolymer in the chicken forebrain.
Collapse
Affiliation(s)
- N Liu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY, USA
| | | |
Collapse
|
55
|
Wong-Riley MT, Trusk TC, Kaboord W, Huang Z. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons. JOURNAL OF NEUROCYTOLOGY 1994; 23:533-53. [PMID: 7815086 DOI: 10.1007/bf01262055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly regulated by neuronal activity.
Collapse
Affiliation(s)
- M T Wong-Riley
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226
| | | | | | | |
Collapse
|
56
|
Hendry SH, Yoshioka T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 1994; 264:575-7. [PMID: 8160015 DOI: 10.1126/science.8160015] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primate visual system is often divided into two channels, designated M and P, whose signals are relayed to the cerebral cortex by neurons in the magnocellular and parvicellular layers of the dorsal lateral geniculate nucleus. We have identified a third population of geniculocortical neurons in the dorsal lateral geniculate nucleus of macaques, which is immunoreactive for the alpha subunit of type II calmodulin-dependent protein kinase. This large third population occupies interlaminar regions (intercalated layers) ventral to each principal layer. Retrograde labeling of kinase-immunoreactive cells from the primary visual cortex shows that they provide the geniculocortical input to cytochrome oxidase-rich puffs in layers II and III.
Collapse
Affiliation(s)
- S H Hendry
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
57
|
Terashima T, Ochiishi T, Yamauchi T. Immunohistochemical detection of calcium/calmodulin-dependent protein kinase II in the spinal cord of the rat and monkey with special reference to the corticospinal tract. J Comp Neurol 1994; 340:469-79. [PMID: 8006213 DOI: 10.1002/cne.903400403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II is a prominent enzyme in the mammalian brain that phosphorylates a variety of substrate proteins. In the present study, monoclonal antibodies that specifically recognize either the alpha or the beta isoforms of this enzyme were used to determine the distribution of these isoforms within the rat and monkey spinal cord. In the rat, the corticospinal tract consists of two components: the dorsal corticospinal tract, which occupies the ventralmost aspect of the dorsal funiculus; and the ventral corticospinal tract, which occupies an area adjacent to the ventral median fissure. Both dorsal and ventral corticospinal tract fibers were strongly immunopositive for the alpha-antibody. Unilateral ablation of the sensorimotor cortex of the rat eliminated the alpha-immunoreactive staining in the contralateral dorsal corticospinal tract. The neuropil in the superficial laminae of the dorsal horn (Rexed's laminae I and II) was densely stained with the alpha-antibody, whereas the neuropil in laminae IV-X was immunonegative. Dense alpha-immunopositive neurons were also distributed in the head of the dorsal horn (laminae I-IV). In contrast to the strong alpha-immunoreactivity seen in the dorsal corticospinal tract fibers, only very weak beta-immunoreactivity was observed in this tract. Moderate beta-immunoreactive products were distributed homogenously throughout the neuropil of the gray matter, although the neuropil of the superficial laminae of the dorsal horn (laminae I and II) was stained more strongly than the other regions of the gray matter (laminae III-X). Neuronal components in all laminae were immunopositive for the beta-antibody. Thus, motoneurons in the ventral horn, which were immunonegative for the alpha-antibody, were immunopositive for the beta-antibody. This selective distribution pattern of immunoreactivity of alpha- and beta-antibodies in the rat was also present in the monkey spinal cord, although the alpha-immunopositive corticospinal tract fibers in the monkey descended in the lateral funiculus as the lateral corticospinal tract instead of passing through the dorsal funiculus, as is the case in the rat. The differential distribution of immunoreactivity in the spinal cord suggests that these two isoforms of calcium/calmodulin-dependent protein kinase II may have different functional roles in the spinal cord.
Collapse
Affiliation(s)
- T Terashima
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
58
|
GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex. Cereb Cortex 1994. [DOI: 10.1007/978-1-4757-9628-5_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
59
|
Onodera H, Aoki H, Kogure K. Long-term structural and biochemical events in the hippocampus following transient global ischemia. PROGRESS IN BRAIN RESEARCH 1993; 96:271-80. [PMID: 8332747 DOI: 10.1016/s0079-6123(08)63273-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- H Onodera
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
60
|
Hendry SH, Bhandari MA. Neuronal organization and plasticity in adult monkey visual cortex: immunoreactivity for microtubule-associated protein 2. Vis Neurosci 1992; 9:445-59. [PMID: 1333277 DOI: 10.1017/s0952523800011251] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immunocytochemical staining for microtubule-associated protein 2 (MAP 2) was used to examine the morphology of neurons, the organization of neuronal groups, and the neurochemical plasticity of cells in adult monkey area 17. MAP 2-immunostained neurons are present through the depth of area 17 but are most intensely immunoreactive in layers IVB and VI. From layer IVB, separate groups of MAP 2-positive cells invade layers IVA and IVC alpha. Clusters of cells protrude upward from superficial layer IVB and occupy the central core regions of the cytochrome oxidase (CO)-stained honeycomb in layer IVA, while large neurons typical of layer IVB are distributed in irregular clusters in the subjacent layer IVC alpha. The somata in the layer IVA honeycomb cores give off immunostained dendrites which remain largely within the core regions. Patches of MAP 2-positive neurons are also present in layers II and III, where they coincide with the CO-stained puffs. Intravitreal injections of tetrodotoxin (TTX) into one eye of adult monkeys produce stripes of alternating light and dark MAP 2 immunostaining in layer IVC. Stripes of light immunostaining coincide with stripes of light CO staining, and correspond to reduced MAP 2 immunoreactivity within cortical neurons dominated by the TTX-injected eye. In layers II and III, the MAP 2 immunostaining of patches overlying the injected-eye columns is similarly reduced. No change occurs in the MAP 2 immunostaining of layer IVA. These data suggest that the anatomical and physiological heterogeneity of layers IVA and IVC alpha arises from the periodic invasion of neurons characteristic of layer IVB, that the neurons in layer IVA have dendrites confined to thalamocortical-recipient or nonrecipient zones and that the expression of MAP 2 changes in adult cortical neurons following the loss of retinal input.
Collapse
Affiliation(s)
- S H Hendry
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | |
Collapse
|
61
|
Castrén E, Zafra F, Thoenen H, Lindholm D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci U S A 1992; 89:9444-8. [PMID: 1409655 PMCID: PMC50148 DOI: 10.1073/pnas.89.20.9444] [Citation(s) in RCA: 412] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Specific sensory input has profound transient and long-lasting effects on the function of corresponding sensory cortical areas both during development and in adulthood. To study whether neurotrophic factors might play a role in such processes, we investigated the effects of light on the nerve growth factor and brain-derived neurotrophic factor (BDNF) mRNA levels in rat visual cortex. Keeping adult rats in the dark or preventing normal activity of retinal ganglion cells by intraocular injection of tetrodotoxin significantly decreased the levels of BDNF mRNA in the visual cortex but not in other cortical areas. Exposure to light after a period in darkness rapidly restored the mRNA to control levels. These alterations in visual input had no effect on nerve growth factor mRNA. The mRNA of trkB, the putative signal-transducing receptor unit for BDNF, was also decreased in darkness, although less than BDNF mRNA. BDNF mRNA levels increased in the visual cortex of newborn rats after eye-opening. This increase is retarded, although not completely abolished, by rearing the pups in darkness. Thus, the levels of BDNF mRNA are rapidly regulated by sensory input during development and in adulthood. BDNF may therefore play an important role in formation and in activity-dependent modulation of specific connections in the visual cortex.
Collapse
Affiliation(s)
- E Castrén
- Department of Neurochemistry, Max Planck Institute for Psychiatry, Planegg-Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
62
|
Churn SB, Yaghmai A, Povlishock J, Rafiq A, DeLorenzo RJ. Global forebrain ischemia results in decreased immunoreactivity of calcium/calmodulin-dependent protein kinase II. J Cereb Blood Flow Metab 1992; 12:784-93. [PMID: 1324253 DOI: 10.1038/jcbfm.1992.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies utilizing crude brain homogenates have shown that forebrain ischemia results in inhibition of calcium/calmodulin-dependent protein kinase II (CaM kinase II) activity without large-scale proteolysis of the enzyme. In this report, a monoclonal antibody (1C3-3D6) directed against the beta- (60-kDa) subunit of CaM kinase II that does not recognize ischemically altered enzyme was utilized to further investigate the ischemia-induced inhibition of CaM kinase II. Immunohistochemical investigations showed that the ischemia-induced decreased immunoreactivity of CaM kinase II occurred immediately following ischemic insult in ischemia-sensitive cells such as pyramidal cells of the hippocampus. No decrease in CaM kinase II immunoreactivity was observed in ischemia-resistant cells such as granule cells of the dentate gyrus. The decreased immunoreactivity was observed for CaM kinase II balanced for protein staining and calmodulin binding in vitro. In addition, autophosphorylation of CaM kinase II in the presence of low (7 microM) or high (500 microM) ATP did not alter immunoreactivity of the enzyme with 1C3-3D6. The data demonstrate the production of a monoclonal antibody that recognizes the beta-subunit of CaM kinase II in a highly specific manner, but does not recognize ischemic enzyme. Together with previous studies, the data support the hypothesis that rapid, ischemia-induced inhibition of CaM kinase II activity may be involved in the cascade of events that lead to selective neuronal cell loss in stroke.
Collapse
Affiliation(s)
- S B Churn
- Department of Neurology, Medical College of Virginia, Richmond 23298
| | | | | | | | | |
Collapse
|
63
|
Hendry S, Carder RK. Organization and plasticity of GABA neurons and receptors in monkey visual cortex. PROGRESS IN BRAIN RESEARCH 1992; 90:477-502. [PMID: 1321463 DOI: 10.1016/s0079-6123(08)63627-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The GABA neurons of monkey area 17 are a morphologically and chemically heterogeneous population of interneurons that are normally distributed most densely within the geniculocortical recipient zones of the visual cortex. In adult monkeys deprived of visual input from one eye, the levels of immunoreactivity for GABA and GAD within neurons of these geniculocortical zones is reduced. Similar changes are seen in the levels of proteins that make up the GABAA receptor sub-type. The effects of monocular deprivation on other substances suggest that specific types of GABA neurons, such as those in which the tachykinin neuropeptide family and parvalbumin coexist with GABA, are greatly influenced by changes in visual input. That some proteins remain normal within deprived-eye neurons and that other proteins are increased indicates the changes in the GABA cells of the cortex are not the result of a general reduction in protein synthesis. Comparisons of what is known about the morphological and synaptic features of GABA cells in area 17 and the characteristics of cells affected by monocular deprivation suggests that certain classes, such as the clutch cell, may be preferential targets of deprivation. Such a selective loss of certain GABA neurons would have broad implications for the possible physiological plasticity of cortical cells, for if ongoing studies determine that specific receptive field properties are affected by monocular deprivation in adults, the correlation of functional properties and classes of GABA cells would be possible.
Collapse
Affiliation(s)
- S Hendry
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | |
Collapse
|
64
|
Polli JW, Kincaid RL, Torris J, Billingsley ML. Expression of calmodulin-dependent enzymes in developing rat striatum is not affected by perturbation of dopaminergic systems. Synapse 1991; 9:136-43. [PMID: 1821485 DOI: 10.1002/syn.890090208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transsynaptic regulation is one mechanism that controls expression of several calmodulin (CaM)-dependent enzymes. This observation and the demonstration that expression of several CaM-dependent enzymes in developing striatum occurred with a spatial and temporal pattern similar to that seen for dopamine and tyrosine hydroxylase suggested that the nigrostriatal pathway may influence the expression of CaM-binding proteins (CaM-BPs) during striatal development. Therefore, the possible role of nigrostriatal dopamine systems regulating the expression of CaM-dependent enzymes was studied in Sprague-Dawley rats by using surgical hemitransections of brain, 6-hydroxydopamine lesions, and chronic haloperidol treatments. Alterations in CaM-BP expression following perturbation of the developing nigrostriatal tract were analyzed by using immunoblots, biotinylated CaM overlays, and enzyme assays. The extent of nigrostriatal lesions was assessed by using depletion of immunoreactive tyrosine hydroxylase levels in striatum. All three experimental paradigms failed to alter the normal developmental expression of CaM-dependent enzymes. From these results we conclude that the increased expression of CaM-dependent enzymes during striatal development is not directly dependent on synaptic input from the nigrostriatal dopamine system.
Collapse
Affiliation(s)
- J W Polli
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | | | |
Collapse
|
65
|
Schoups AA, Black IB. Visual Experience Specifically Regulates Synaptic Molecules in Rat Visual Cortex. J Cogn Neurosci 1991; 3:252-7. [DOI: 10.1162/jocn.1991.3.3.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
To study environmental modulation of synaptic molecular structure, the major postsynaptic density protein (mPSDp) from rat visual cortex was monitored. This membrane component, a Ca2+/calmodulin-dependent protein kinase subunit, was measured during normal postnatal development and after visual deprivation. Total synaptic membrane (SM) protein was used as an index of synapses as a whole.
During the first 2 postnatal months, total SM protein in the visual cortex increased 32–fold. In contrast, the mPSDp increased 455–fold, indicating that different molecular components of the cortical synapse develop differentially. Exposure to complete darkness during the first 2 postnatal weeks prevented normal development of total SM protein in visual cortex, values reaching only 66% of normal. Moreover, environmental lighting preferentially modulated the mPSDp, which attained only 34% of the normal value after dark rearing. Thus, visual deprivation selectively inhibited the normal development of specific synaptic components. Moreover, experience-dependent modulation was area specific. In contrast to the marked effect in visual cortex, light deprivation did not alter synapses in the nonvisual parietal and prefrontal cortices. Finally, the modulation of visual cortex mPSDp was stage specific, since visual experience did not alter the synaptic protein in adults. Our results suggest that early visual experience selectively and specifically modifies molecular synaptic components in the visual cortex.
Collapse
|
66
|
Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci U S A 1991; 88:5106-10. [PMID: 1828891 PMCID: PMC51820 DOI: 10.1073/pnas.88.12.5106] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription factors are rapidly and transiently induced in brain by excitatory stimuli and may be important in coordinating changes in gene expression underlying neuronal plasticity. In contrast to their transient induction after stimulation, certain transcription factors display stable, relatively high basal levels of expression in brain. Here we demonstrate that this "constitutive" expression of the transcription factor zif268 in cortex is driven by natural synaptic activity. Blockade of afferent visual activity with intraocular injections of tetrodotoxin results in rapid, dramatic reductions of Zif268 mRNA and immunoreactivity in visual cortex. Moreover, dark-adaptation for several days lowers zif268 expression in visual cortex, and expression rapidly returns to control levels upon subsequent light exposure. Several other transcription factors, which are induced in cortical neurons by excitatory stimuli, appear less responsive to changes in natural sensory input. These studies suggest that transcription factors play a role not only in responses to artificial stimuli but also in the normal maintenance of cortical physiology. Anatomic markers for zif268 may be useful in mapping normal cortical activity in brain.
Collapse
Affiliation(s)
- P F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | |
Collapse
|
67
|
Kelly PT. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Mol Neurobiol 1991; 5:153-77. [PMID: 1668384 DOI: 10.1007/bf02935544] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the most important mechanisms for regulating neuronal functions is through second messenger cascades that control protein kinases and the subsequent phosphorylation of substrate proteins. Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is the most abundant protein kinase in mammalian brain tissues, and the alpha-subunit of this kinase is the major protein and enzymatic molecule of synaptic junctions in many brain regions. CaM-kinase II regulates itself through a complex autophosphorylation mechanism whereby it becomes calcium-independent following its initial activation. This property has implicated CaM-kinase II as a potential molecular switch at central nervous system (CNS) synapses. Recent studies have suggested that CaM-kinase II is involved in many diverse phenomena such as epilepsy, sensory deprivation, ischemia, synapse formation, synaptic transmission, long-term potentiation, learning, and memory. During brain development, the expression of CaM-kinase II at both protein and mRNA levels coincides with the active periods of synapse formation and, therefore, factors regulating the genes encoding kinase subunits may play a role in the cell-to-cell recognition events that underlie neuronal differentiation and the establishment of mature synaptic functions. Recent findings have demonstrated that the mRNA encoding the alpha-subunit of CaM-kinase II is localized in neuronal dendrites. Current speculation suggests that the localized translation of dendritic mRNAs encoding specific synaptic proteins may be responsible for producing synapse-specific changes associated with the processing, storage, and retrieval of information in neural networks.
Collapse
Affiliation(s)
- P T Kelly
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston
| |
Collapse
|
68
|
Dunkley PR. Autophosphorylation of neuronal calcium/calmodulin-stimulated protein kinase II. Mol Neurobiol 1991; 5:179-202. [PMID: 1668385 DOI: 10.1007/bf02935545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique feature of neuronal calcium/calmodulin-stimulated protein kinase II (CaM-PK II) is its autophosphorylation. A number of sites are involved and, depending on the in vitro conditions used, three serine and six threonine residues have been tentatively identified as autophosphorylation sites in the alpha subunit. These sites fall into three categories. Primary sites are phosphorylated in the presence of calcium and calmodulin, but under limiting conditions of temperature, ATP, Mg2+, or time. Secondary sites are phosphorylated in the presence of calcium and calmodulin under nonlimiting conditions. Autonomous sites are phosphorylated in the absence of calcium and calmodulin after initial phosphorylation of Thr-286. Mechanisms that lead to a decrease in CaM-PK II autophosphorylation include the thermolability of the enzyme and the activity of protein phosphatases. A range of in vitro inhibitors of CaM-PK II autophosphorylation have recently been identified. Autophosphorylation of CaM-PK II leads to a number of consequences in vitro, including generation of autonomous activity and subcellular redistribution, as well as alterations in conformation, activity, calmodulin binding, substrate specificity, and susceptibility to proteolysis. It is established that CaM-PK II is autophos-phorylated in neuronal cells under basal conditions. Depolarization and/or activation of receptors that lead to an increase in intracellular calcium induces a marked rise in the autophosphorylation of CaM-PK II in situ. The incorporation of phosphate is mainly found on Thr-286, but other sites are also phosphorylated at a slower rate. One consequence of the increase in CaM-PK II autophosphorylation in situ is an increase in the level of autonomous kinase activity. It is proposed that the formation of an autonomous enzyme is only one of the consequences of CaM-PK II autophosphorylation in situ and that some of the other consequences observed in vitro will also be seen. CaM-PK II is involved in the control of neuronal plasticity, including neurotransmitter release and long-term modulation of postreceptor events. In order to understand the function of CaM-PK II, it will be essential to ascertain more fully the mechanisms of its autophosphorylation in situ, including especially the sites involved, the consequences of this autophosphorylation for the kinase activity, and the relationships between the state of CaM-PK II autophosphorylation and the physiological events within neurons.
Collapse
Affiliation(s)
- P R Dunkley
- Neuroscience Group, Faculty of Medicine, University of Newcastle, NSW, Australia
| |
Collapse
|
69
|
Thurlow GA, Cooper RM. Activity-dependent changes in eye influence during monocular blockade: increases in the effects of visual stimulation on 2-DG uptake in the adult rat geniculostriate system. J Comp Neurol 1991; 306:697-707. [PMID: 2071701 DOI: 10.1002/cne.903060411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We examined the effects of loss of monocular retinal activity on 2-deoxyglucose (2-DG) uptake in the adult rat geniculostriate system. Of particular interest was whether the influence of the normally functioning eye changed during long-term contralateral retinal silence. Group 1 rats were subjected to short-term (24 hours) and group 2 rats to long-term (21-90 days) monocular tetrodotoxin (TTX) blockade, and metabolic activity was assessed during exposure to square-wave gratings. Group 1 rats exhibited patterns of cortical glucose utilization commensurate with complete monocular loss of retinal activity: minimal 2-DG uptake in contralateral monocular area 17 and dorsal lateral geniculate nucleus (LGN), and a bilateral depression in the binocular regions; 2-DG uptake was highest in the monocular regions fed by the stimulated normal eye (in both area 17 and the LGN) and these regions appeared unaffected by the monocular blockade. After repeated injections of TTX (group 2), metabolic activity in binocular area 17 and binocular LGN increased bilaterally relative to the metabolically active monocular regions contralateral to the normal eye. Group 3 rats were monocularly TTX-injected for 30 or 60 days, and, 24 hours before 2-DG, all retinal activity was eliminated by means of binocular TTX injections or binocular enucleation. Glucose utilization in the binocular regions of both area 17 and the LGN in these rats was depressed to levels seen in monocular area 17 after complete and recent loss of activity from the contralateral eye, indicating that the metabolic increase which occurred in the binocular regions during long-term monocular retinal blockade was dependent upon the neuronal processing of retinal information from the non-TTX eye. We conclude that, in the adult rat, an activity-dependent, physiologically based shift in ocular influence occurred in the binocular geniculostriate system during long-term monocular retinal inactivation.
Collapse
Affiliation(s)
- G A Thurlow
- Psychology Department, University of Calgary, Alberta, Canada
| | | |
Collapse
|
70
|
Tigges M, Tigges J. Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation. Vis Neurosci 1991; 6:375-82. [PMID: 2059571 DOI: 10.1017/s095252380000660x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunocytochemical methods with antiserum to the calcium-binding protein parvalbumin (PV) were used to examine the effects of monocular enucleation on parvalbuminergic neurons and processes in the lateral geniculate nucleus (LGN) of adult rhesus monkeys. In the LGN of normal monkeys, numerous PV-positive neurons, including the largest neurons in the nucleus, and many PV-positive processes occur in all six laminae. After monocular enucleation, PV immunoreactivity is reduced in the neuropil of the denervated laminae compared to adjacent nondenervated and to normal laminae. PV immunoreactivity of somata in denervated laminae, however, appears to be indistinguishable from that of somata in nondenervated laminae, although neurons in the denervated laminae are smaller in size. Since LGN neurons in denervated laminae have lost their visual input, the functional role of PV in this nucleus may not relate directly to visual information processing.
Collapse
Affiliation(s)
- M Tigges
- Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
71
|
|
72
|
Welker E, Soriano E, Dörfl J, Van der Loos H. Plasticity in the barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp Brain Res 1989; 78:659-64. [PMID: 2612610 DOI: 10.1007/bf00230256] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sensory experience during perinatal life and adulthood modifies physiological and anatomical characteristics of the central nervous system. So far, this phenomenon has been studied in situations of complete or partial sensory deprivation. We here report that increased sensory stimulation, during four days, of a number of whisker follicles on the face of the adult mouse results in an increased immunoreactivity of glutamic acid decarboxylase (the biosynthetic enzyme of the inhibitory neurotransmitter GABA) in the somatosensory cortex of the adult mouse. Effects were limited to a column of tissue corresponding to the representation of the stimulated follicles and lasted two days beyond stimulation. These findings suggest that sensory stimulation transiently modifies local cortical processing.
Collapse
Affiliation(s)
- E Welker
- Institute of Anatomy, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
73
|
Kennedy MB. Do activity-dependent changes in expression of regulatory proteins play a role in the progression of central nervous system neural degeneration? Ann N Y Acad Sci 1989; 568:193-7. [PMID: 2560899 DOI: 10.1111/j.1749-6632.1989.tb12508.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M B Kennedy
- Division of Biology 216-76, California Institute of Technology, Pasadena 91125
| |
Collapse
|
74
|
Warren R, Tremblay N, Dykes RW. Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex. J Comp Neurol 1989; 288:583-92. [PMID: 2553782 DOI: 10.1002/cne.902880405] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Somatosensory cortex reorganizes following restricted deafferentation so that deprived neurons acquire new receptive fields. Electrophysiological data suggest that a decrease in inhibition might be one of the mechanisms contributing to these changes. This hypothesis was tested by evaluating quantitatively glutamic acid decarboxylase (GAD) immunoreactivity and cytochrome oxidase (CO) activity in normal and partially deafferented rat hindlimb somatosensory cortex. In normal animals, there were laminar differences in the frequencies of GAD+ cells that correlated with the levels of CO activity. Two weeks after transection of the sciatic nerve, CO levels were reduced in all layers of the hindlimb somatosensory cortex contralateral to the nerve transection whereas the frequencies of GAD+ cells were unchanged except in layer IV where a 16% decrease was observed. This observation is consistent with the hypothesis that the expression of GAD in layer IV is partially controlled by the amount of afferent input. The ability of novel inputs to develop stable patterns of excitation in deafferented somatosensory cortex may depend upon the reduction of GABAergic inhibition which follows deafferentation.
Collapse
Affiliation(s)
- R Warren
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
75
|
Abstract
Human placental Choline Acetyltransferase (ChAT) has been shown to be phosphorylated in vitro by kinases present in rat brain. Phosphorylation occurs at a single site with the exclusive phosphoamino acid being serine. ChAT phosphorylation was shown to be calcium, and not cyclic nucleotide, dependent and was inhibited by inhibitors of calcium/calmodulin protein kinases including anti-calmodulin anti-sera. ChAT phosphorylation was stimulated by calmodulin (9 fold) and, to a lesser extent, by phosphatidylserine (4 fold). These results indicate the involvement of a calcium/calmodulin and possibly also a calcium/phospholipid kinase. This finding was confirmed by demonstrating ChAT phosphorylation using both purified multifunctional calcium/calmodulin protein kinase (CaMK) and calcium/phospholipid protein kinase C (PKC) from rat brain. A stoichiometric incorporation of 0.9 mol phosphate/mol ChAT was achieved by CaMK. Phosphorylated ChAT could be isolated from freshly prepared rat brain synaptosomes. The results obtained with this model system support the hypothesis that in vivo a fraction of ChAT exists phosphorylated.
Collapse
Affiliation(s)
- G Bruce
- Department of Biochemistry, University of Texas, Dallas 75235
| | | |
Collapse
|
76
|
Neve RL, Bear MF. Visual experience regulates gene expression in the developing striate cortex. Proc Natl Acad Sci U S A 1989; 86:4781-4. [PMID: 2543986 PMCID: PMC287357 DOI: 10.1073/pnas.86.12.4781] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have examined the regulation of expression of the genes for the neuronal growth-associated protein GAP43, the type II calcium/calmodulin-dependent protein kinase, and glutamic acid decarboxylase in the kitten visual cortex during normal postnatal development and after a period of visual deprivation. We find that the mRNA transcripts of these genes display very different patterns of normal development but are all increased in the visual cortex of animals reared in the dark. Upon exposure to light, the transcript of the GAP43 gene drops to near-normal levels within 12 hr.
Collapse
Affiliation(s)
- R L Neve
- Division of Genetics, Children's Hospital, Boston, MA
| | | |
Collapse
|
77
|
Wong-Riley MT, Tripathi SC, Trusk TC, Hoppe DA. Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex: I. Quantitative electron-microscopic (EM) analysis of neurons. Vis Neurosci 1989; 2:483-97. [PMID: 2562109 DOI: 10.1017/s0952523800012384] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our previous light-microscopic study indicates that unilateral retinal impulse blockage with tetrodotoxin (TTX) causes a reversible decrease of cytochrome oxidase (CO) in alternating rows of metabolically active zones (puffs) in the adult macaque striate cortex (Wong-Riley & Carroll, 1984b). The goal of the present study was to determine if TTX blockade adversely affects all neurons or only a subpopulation of neurons within the puffs. Three major neuronal types were identified based on mitochondrial CO activities and morphological characteristics. Type A neurons were the most prevalent, consisting of small pyramidal and nonpyramidal neurons that received only symmetrical axosomatic synapses. They had little cytoplasm and relatively low levels of CO activity, and showed the least change with TTX treatment. Type B cells were medium-to-large pyramidal neurons that received exclusively symmetrical axosomatic synapses and were moderately reactive for CO. Impulse blockage caused a decrease in mitochondrial size and packing density, but somal size remained within the control range. Type C cells were medium-sized nonpyramidal neurons contacted by both asymmetrical and symmetrical axosomatic synapses. They contained abundant darkly reactive mitochondria and presumably are metabolically the most active. This cell type suffered the greatest decrease in somal size and packing density of mitochondria, particularly the darkly reactive ones. A rare fourth cell type, type D, was a small, darkly reactive nonpyramidal variety that gave rise to somatodendritic synapses. Their low occurrence prevented statistical analysis under normal and TTX-treated conditions. These data indicate that retinal impulse blockade is most detrimental to the metabolically most active neurons in the adult primate cortical puffs. The alterations are not permanent, because the effects of TTX are fully reversible (Carroll & Wong-Riley, 1987).
Collapse
Affiliation(s)
- M T Wong-Riley
- Department of Anatomy and Cellular Biology, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | |
Collapse
|
78
|
Wong-Riley MT, Trusk TC, Tripathi SC, Hoppe DA. Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex: II. Quantitative electron-microscopic (EM) analysis of neuropil. Vis Neurosci 1989; 2:499-514. [PMID: 2562110 DOI: 10.1017/s0952523800012396] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unilateral retinal impulse blockage with tetrodotoxin (TTX) induces reversible shrinkage and decreased cytochrome oxidase (CO) activity in alternate rows of supragranular, CO-rich puffs in the adult macaque striate cortex (Wong-Riley & Carroll, 1984b: Carroll & Wong-Riley, 1987). The present study extended the findings to the electron-microscopic (EM) level to determine if various neuropil profiles in control puffs exhibit heterogeneous levels of CO activity, and whether specific processes were more susceptible to intravitreal TTX than others. Within the neuropil of control puffs, 60% of the total mitochondrial population resided in dendrites, and the majority of dendritic mitochondria were highly reactive for CO. Axon terminals forming symmetrical synapses also contained darkly reactive mitochondria, whereas those forming asymmetrical synapses possessed very few and mainly lightly reactive mitochondria. Unmyelinated axon trunks, myelinated axons, and glia all exhibited low levels of CO activity. Synaptic count revealed a 3:1 ratio of asymmetrical to symmetrical synapses. Intravitreal TTX for 2-4 weeks adversely affects dendrites and symmetrical terminals much more so than other neuropil processes. There was a general decrease in darkly and moderately reactive mitochondria and an increase in lightly reactive mitochondria throughout the puffs, especially in dendrites. This indicates that afferent blockade is more detrimental to processes of higher metabolic activity. Changes also differed between central and peripheral regions of puffs, and indications of axonal and synaptic reorganization were more evident in the latter. Thus, stabilization of neuronal structure and synapses appears to be activity-dependent even in the adult. A working model of these metabolic and morphological responses to chronic TTX is proposed.
Collapse
Affiliation(s)
- M T Wong-Riley
- Department of Anatomy and Cellular Biology, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | |
Collapse
|
79
|
Walaas SI, Gorelick FS, Greengard P. Presence of calcium/calmodulin-dependent protein kinase II in nerve terminals of rat brain. Synapse 1989; 3:356-62. [PMID: 2545012 DOI: 10.1002/syn.890030409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcium/calmodulin-dependent protein kinase type II, a multimeric 550-650 kilodalton enzyme composed of major alpha (50 kilodalton) and beta/beta' (60/58 kilodalton) subunits, is present in high concentrations in mammalian brain. Previous immunocytochemical studies indicated that the enzyme is enriched in cell bodies and dendrites, but did not show a clear-cut localization in nerve terminals. The present study presents evidence, using lesion-induced degenerations of pre- and postsynaptic neuronal populations in the neostriatum and substantia nigra, that calcium/calmodulin-dependent protein kinase II, as measured both by autophosphorylation of enzyme subunits and by synapsin I kinase activity, is present in high concentrations in several populations of presynaptic terminals. Lesions of the corticostriatal tract decreased the amount of enzyme by 30-40% in the neostriatum, a decrease similar to that seen in the same region of synapsin I, a general nerve terminal marker. Lesions of the striatonigral tract induced an even more pronounced decrease of the enzyme in the substantia nigra; this decrease was larger than the lesion-induced change of synapsin I seen in the same region. Our data therefore indicate that certain nerve terminal populations in the rat brain contain high levels of calcium/calmodulin-dependent protein kinase II.
Collapse
Affiliation(s)
- S I Walaas
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
80
|
Hayashi M, Yamashita A, Shimizu K, Oshima K. Ontogeny of cholecystokinin-8 and glutamic acid decarboxylase in cerebral neocortex of macaque monkey. Exp Brain Res 1989; 74:249-55. [PMID: 2924846 DOI: 10.1007/bf00248857] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Concentration of cholecystokinin-8 and the activity of glutamic acid decarboxylase were determined in the various cerebral cortical subdivisions of Japanese monkey (Macaca fuscata fuscata) at three different ages (embryonic 4 months, full-term and adult). The CCK-8 immunoreactive material extracted with 90% methanol from the cerebral cortex of the adult and foetal monkey were shown to be identical with synthetic cholecystokinin-8 by the criterion of co-elution on gel filtration chromatography (Sephadex G-50). The peptide concentration increased dramatically by about 30-80 fold (in terms of protein) and 17-28 fold (in terms of wet weight) between embryonic 4-month-old and full-term monkeys, while the level decreased 1/6-1/16 (protein) and 1/4-1/10 (wet weight) between full-term and adult monkeys. In adults, the highest levels of the peptide was observed in the association cortex, orbital prefrontal cortex and posterior parietal cortex. Glutamic acid decarboxylase activity, on the other hand, gradually increased about 4-10 fold (protein) between embryonic 4-month-old and adult animals and there was little variation in the increase rate among the cerebral subdivisions. In contrast to cholecystokinin-8, no reduction in the enzyme activity occurred between full-term and adult animals. The high level of cholecystokinin-8 in the embryonic period suggests that the peptide may participate in the regulation of the development of primate cerebral cortex.
Collapse
Affiliation(s)
- M Hayashi
- Department of Physiology, Kyoto University, Aichi, Japan
| | | | | | | |
Collapse
|
81
|
LeVine H, Su JL, Sahyoun NE. A monoclonal antibody against brain calmodulin-dependent protein kinase type II detects putative conformational changes induced by Ca2+-calmodulin. Biochemistry 1988; 27:6612-7. [PMID: 2464370 DOI: 10.1021/bi00417a060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A mouse monoclonal IgG1 antibody has been generated against the soluble form of the calmodulin-dependent protein kinase type II. This antibody recognizes both the soluble and cytoskeletal forms of the enzyme, requiring Ca2+ (EC50 = 20 microM) for the interaction. Other divalent cations such as Zn2+, Mn2+, Cd2+, Co2+, and Ni2+ will substitute for Ca2+, while Mg2+ and Ba2+ will not. The antibody reacts with both the alpha- and beta-subunits on Western blots in a similar Ca2+-dependent fashion but with a lower sensitivity. The affinity of the antibody for the kinase is 0.13 nM determined by displacement of 125I Bolton-Hunter-labeled kinase with unlabeled enzyme. A variety of other proteins including tubulin do not compete for antibody binding. The Mr 30,000 catalytic fragment obtained by proteolysis of either the soluble or the cytoskeletal form of the kinase fails to react with the antibody. Calmodulin and antibody reciprocally potentiate each other's interaction with the enzyme. This is illustrated both by direct binding studies and by a decrease of the Kmapp for calmodulin and an increase in the Vmax for the autophosphorylation reaction of the enzyme. The antibody thus appears to recognize and stabilize a conformation of the kinase which favors calmodulin binding although it does not itself activate the kinase in the absence of calmodulin. Since the Mr 30,000 catalytic fragment of the kinase is not immunoreactive, either the antibody combining site of the kinase must be present in the noncatalytic portion of the protein along with the calmodulin binding site or proteolysis interferes with the putative Ca2+-dependent conformational change.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H LeVine
- Department of Molecular Biology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | | | |
Collapse
|
82
|
Bronstein JM, Wasterlain CG, Farber DB. A retinal calmodulin-dependent kinase: calcium/calmodulin-stimulated and -inhibited states. J Neurochem 1988; 50:1438-46. [PMID: 3361303 DOI: 10.1111/j.1471-4159.1988.tb03028.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A calcium/calmodulin-dependent protein kinase was isolated from retina. The retinal enzyme is composed exclusively of 50-kilodalton (kD) subunits and has a molecular mass of approximately 275 kD, in contrast to forebrain calmodulin kinase II, which is composed of 50-kD and 60-kD subunits in a 3:1 ratio and has a molecular mass of approximately 520 kD. Similar substrate specificities, kinetic properties, capacity to bind calmodulin, and immunoreactivity suggest that the retinal kinase is an isoenzyme of forebrain calmodulin kinase II. Both kinases autophosphorylate in an intramolecular manner; however, autophosphorylation has different effects on the activities of the two enzymes. Autophosphorylation of retinal calmodulin kinase converts the enzyme from a calcium/calmodulin-dependent to a calcium/calmodulin-inhibited kinase, with high activity in the absence of calcium, whereas autophosphorylation of the forebrain kinase results in a less active, calcium/calmodulin-independent enzyme. These properties of calmodulin kinase may play an important role in retinal function.
Collapse
Affiliation(s)
- J M Bronstein
- Department of Neuroscience, UCLA School of Medicine 90024
| | | | | |
Collapse
|
83
|
Reiter HO, Stryker MP. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc Natl Acad Sci U S A 1988; 85:3623-7. [PMID: 3285347 PMCID: PMC280266 DOI: 10.1073/pnas.85.10.3623] [Citation(s) in RCA: 183] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Models of synaptic plasticity in the nervous system have conventionally assumed a mechanism in which spike activity of a postsynaptic cell enhances the efficacy of recently active presynaptic inputs. Making use of the prompt and dramatic response of the visual cortex to occlusion of vision in one eye during the critical period, we tested the role of postsynaptic activity in ocular dominance plasticity. To do so, we selectively blocked cortical cell discharges with a continuous intracortical infusion of the inhibitory neurotransmitter agonist muscimol during a period of monocular deprivation. This drug inhibits cortical cell discharges with no apparent effect on the activity of their presynaptic geniculocortical inputs. Recording from single cortical cells after they had recovered from the muscimol-induced blockade, we found a consistent shift in the responsiveness of the visual cortex in favor of the less-active, closed eye, while the normal shift in favor of the more-active, open eye was evident in regions not affected by the treatment. Such an inhibition-coupled expression of plasticity in favor of the less-active, closed eye cannot be explained by a nonspecific disruption of cortical function. We interpret these results to indicate (i) that the postsynaptic cell is crucially involved in plasticity of the visual cortex, (ii) that the direction of cortical plasticity depends on postsynaptic membrane conductance or polarization, and (iii) that plasticity can occur in the absence of postsynaptic spike activity.
Collapse
Affiliation(s)
- H O Reiter
- Division of Neurosciences, University of California, San Francisco 94143-0444
| | | |
Collapse
|
84
|
Stone RA, Laties AM, Raviola E, Wiesel TN. Increase in retinal vasoactive intestinal polypeptide after eyelid fusion in primates. Proc Natl Acad Sci U S A 1988; 85:257-60. [PMID: 2448769 PMCID: PMC279523 DOI: 10.1073/pnas.85.1.257] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lids were fused in six neonatal and one adult macaque monkey (Macaca mulatta and Macaca arctoides) and were kept fused for 1 to 18.5 months. The juvenile macaques, but not the adult one, developed myopia due to excessive elongation of the eye. In all animals, the immunohistochemical reactivity of the retina for vasoactive intestinal polypeptide (VIP) was much higher in the closed than in the open eyes. The neuropeptide was localized to the perikaryon and dendrites of amacrine cells. No difference was observed in substance P immunoreactivity between open and closed eyes, suggesting that the observed effect is selective. The change in VIP immunoreactivity could be the result of an increase in peptide synthesis, a decrease in peptide release, or a combination of the two. These results indicate that VIP may play a part in the regulation of postnatal ocular growth.
Collapse
Affiliation(s)
- R A Stone
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
85
|
|
86
|
Hendry SH, Jones EG. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 1986; 320:750-3. [PMID: 3703001 DOI: 10.1038/320750a0] [Citation(s) in RCA: 272] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The primary visual cortex (area 17) of the Old World monkey is divided into alternating right- and left-eye dominance columns that are highly modifiable by visual experience during a critical period in development but display little morphological or physiological plasticity during adult life. However, changes in immunocytochemical staining for a calcium/calmodulin-dependent protein kinase occur in visual cortical neurones of adult monkeys after brief monocular deprivation and concentrations of putative neurotransmitters or their related enzymes can be altered with changes in neuronal activity in other systems. We therefore examined the effects of monocular deprivation on the immunocytochemical staining for gamma-aminobutyric acid (GABA) and its synthetic enzyme, glutamic acid decarboxylase (GAD), in adult monkey area 17. The staining for GABA and GAD in neuronal somata and terminals was markedly reduced within ocular dominance columns associated with a removed or a visually deprived eye, suggesting that the GABA concentration in cortical neurones may depend on their levels of activity. Thus area 17 of adult monkeys may retain a greater degree of plasticity than previously recognized and sensory experience can profoundly affect transmitter levels, in the cortex, apparently by regulating levels of a synthetic enzyme.
Collapse
|