51
|
Wu Y, Zong M, Zhang Z, Wu Y, Li L, Zhang X, Wu H, Li B. Selective transportation and energy homeostasis regulation of dietary advanced glycation end-products in human intestinal Caco-2 cells. Food Chem 2022; 391:133284. [PMID: 35640343 DOI: 10.1016/j.foodchem.2022.133284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
|
52
|
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull 2022; 38:1248-1262. [PMID: 35729453 PMCID: PMC9554177 DOI: 10.1007/s12264-022-00878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Blacksburg, VA, 24016, USA
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Jarosław Szuszkiewicz
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Kraków, Poland.
| |
Collapse
|
53
|
Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients 2022; 14:nu14193982. [PMID: 36235635 PMCID: PMC9572209 DOI: 10.3390/nu14193982] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of advanced glycation end-products (AGE) in tissues is a physiological process; however, excessive production and storage are pathological and lead to inflammation. A sedentary lifestyle, hypercaloric and high-fructose diet and increased intake of processed food elements contribute to excessive production of compounds, which are created in the non-enzymatic multi-stage glycation process. The AGE’s sources can be endogenous and exogenous, mainly due to processing food at high temperatures and low moisture, including grilling, roasting, and frying. Accumulation of AGE increases oxidative stress and initiates various disorders, leading to the progression of atherosclerosis, cardiovascular disease, diabetes and their complications. Inborn defensive mechanisms, recovery systems, and exogenous antioxidants (including polyphenols) protect from excessive AGE accumulation. Additionally, numerous products have anti-glycation properties, occurring mainly in fruits, vegetables, herbs, and spices. It confirms the role of diet in the prevention of civilization diseases.
Collapse
|
54
|
Lim JM, Yoo HJ, Lee KW. High Molecular Weight Fucoidan Restores Intestinal Integrity by Regulating Inflammation and Tight Junction Loss Induced by Methylglyoxal-Derived Hydroimidazolone-1. Mar Drugs 2022; 20:md20090580. [PMID: 36135768 PMCID: PMC9505531 DOI: 10.3390/md20090580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fucoidan from brown seaweeds has several biological effects, including preserving intestinal integrity. To investigate the intestinal protective properties of high molecular weight fucoidan (HMWF) from Undaria pinnatifida on intestinal integrity dysfunction caused by methylglyoxal-derived hydroimidazolone-1 (MG-H1), one of the dietary advanced-glycation end products (dAGEs) in the human-colon carcinoma-cell line (Caco-2) cells and ICR mice. According to research, dAGEs may damage the intestinal barrier by increasing gut permeability. The findings of the study showed that HMWF + MG-H1 treatment reduced by 16.8% the amount of reactive oxygen species generated by MG-H1 treatment alone. Furthermore, HMWF + MGH-1 treatment reduced MG-H1-induced monolayer integrity disruption, as measured by alterations in transepithelial electrical resistance (135% vs. 75.5%) and fluorescein isothiocyanate incorporation (1.40 × 10-6 cm/s vs. 3.80 cm/s). HMWF treatment prevented the MG-H1-induced expression of tight junction markers, including zonula occludens-1, occludin, and claudin-1 in Caco-2 cells and mouse colon tissues at the mRNA and protein level. Also, in Caco-2 and MG-H1-treated mice, HMWF plays an important role in preventing receptor for AGEs (RAGE)-mediated intestinal damage. In addition, HMWF inhibited the nuclear factor kappa B activation and its target genes leading to intestinal inflammation. These findings suggest that HMWF with price competitiveness could play an important role in preventing AGEs-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jae-Min Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
- Department of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-3027
| |
Collapse
|
55
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
56
|
Niu L, Yu H, Zhang L, Zhao Q, Lai K, Liu Y, Huang Y. Advanced glycation end-products in raw and commercially sterilized pork tenderloin and offal. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Stephen SJ, Bailey S, D'Erminio DN, Krishnamoorthy D, Iatridis JC, Vashishth D. Bone matrix quality in a developing high-fat diet mouse model is altered by RAGE deletion. Bone 2022; 162:116470. [PMID: 35718325 PMCID: PMC9296598 DOI: 10.1016/j.bone.2022.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Overweightness and obesity in adolescents are epidemics linked to chronic low-grade inflammation and elevated fracture risk. The increased fracture risk observed in overweight/obese adolescence contrasts the traditional concept that high body mass is protective against fracture, and thus highlights the need to determine why weight gain becomes detrimental to fracture during growth and maturity. The Receptor for Advanced Glycation End products (RAGE) is a central inflammatory regulator that can influence bone metabolism. It remains unknown how RAGE removal impacts skeletal fragility in overweightness/obesity, and whether increased fracture risk in adolescents could result from low-grade inflammation deteriorating bone quality. We characterized the multiscale structural, mechanical, and chemical properties of tibiae extracted from adolescent C57BL/6J (WT) and RAGE null (KO) mice fed either low-fat (LF) or high-fat (HF) diet for 12 weeks starting at 6 weeks of age using micro-computed tomography, strength, Raman spectroscopy, and nanoindentation. Overweight/obese WT HF mice possessed degraded mineral-crystal quality and increased matrix glycoxidation in the form of pentosidine and carboxymethyl-lysine, with HF diet in females only showing reduced cortical surface expansion and TMD independently of RAGE ablation. Furthermore, in contrast to males, HF diet in females led to more material damage and plastic deformation. RAGE KO mitigated glycoxidative matrix accumulation, preserved mineral quantity, and led to increased E/H ratio in females. Taken together, these results highlight the complex, multi-scale and sex-dependent relationships between bone quality and function under overweightness, and identifies RAGE-controlled glycoxidation as a target to potentially preserve matrix quality and mechanical integrity.
Collapse
Affiliation(s)
- Samuel J Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Stacyann Bailey
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Danielle N D'Erminio
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Krishnamoorthy
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
58
|
Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154285. [PMID: 35809375 DOI: 10.1016/j.phymed.2022.154285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 5-Demethylnobiletin (5DN) is a polymethoxyflavone (PMF) primarily found in citrus fruits. It has various health-promoting properties and hence has attracted significant attention from scholars worldwide. PURPOSE This review is the first to systematically summarize the recent research progress of 5DN, including its pharmacological activity, mechanism of action, pharmacokinetics, and toxicological effects. In addition, the pharmacological mechanism of action of 5DN has been discussed from a molecular biological perspective, and data from in vivo and in vitro animal studies have been compiled to provide a more thorough understanding of 5DN as a potential lead drug. METHODS Data were extracted from SciFinder, PubMed, ScienceDirect and China National Knowledge Infrastructure (CNKI) from database inception to January 2022. RESULTS 5DN has broad pharmacological activities. It exerts anti-inflammatory effects, promotes apoptosis and autophagy, and induces melanogenesis mainly by regulating the JAK2/STAT3, caspase-dependent apoptosis, ROS-AKT/mTOR, MAPK and PKA-CREB signaling pathways. 5DN can be used for treating diseases such as cancer, inflammation-related diseases, rheumatoid arthritis, and neurodegenerative diseases. To date, there have been only a few toxicological studies on 5DN, and both in vitro and in vivo on 5DN have not revealed significant toxic side effects. Pharmacokinetic studies have revealed that the metabolites of 5DN are mainly 5,3'-didemethylnobiletin (M1); 5,4'-didemethylnobiletin (M2) and 5,3',4'-tridemethylnobiletin (M3), in either, glucuronide-conjugated or monomeric form. The pharmacokinetic products of 5DN, especially M1, possess better activity than 5DN for the treatment of cancer. CONCLUSION The anticancer effects of 5DN and its metabolites warrant further investigation as potential drug candidates, especially through in vivo studies. In addition, the therapeutic effects of 5DN in neurodegenerative diseases should be examined in more experimental models, and the absorption and metabolism of 5DN should be further investigated in vivo.
Collapse
Affiliation(s)
- Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
59
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
60
|
Wada K, Nakashima Y, Yamakawa M, Hori A, Seishima M, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C. Dietary advanced glycation end products and cancer risk in Japan: from the Takayama study. Cancer Sci 2022; 113:2839-2848. [PMID: 35662347 PMCID: PMC9357612 DOI: 10.1111/cas.15455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Few large epidemiological studies have evaluated the association between dietary advanced glycation end products (AGEs) and cancer risk. We evaluated the relationship between dietary AGE intake and the incidence of total cancer and site‐specific cancers in a population‐based prospective study in Japan. Participants were 14,173 men and 16,549 women who were 35 years of age or older in 1992. Dietary intake was assessed via a validated food frequency questionnaire. Intake of the AGE Nε‐carboxymethyl‐lysine (CML) was estimated using databases of CML content in foods determined using ultraperformance liquid chromatography–tandem mass spectrometry. Cancer incidence was confirmed through regional population‐based cancer registries. During a mean follow‐up period of 13.3 years, 1954 men and 1477 women developed cancer. We did not observe a significant association between CML intake and the risk of total cancer in men or women. In men, compared with the lowest quartile of CML intake, the hazard ratios of liver cancer for the second, third, and highest quartiles were 1.69 (95% CI: 0.92–3.10), 1.48 (95% CI: 0.77–2.84), and 2.10 (95% CI: 1.10–3.98; trend p = 0.04). Conversely, a decreased relative risk of male stomach cancer was observed for the second and highest quartiles of CML intake versus the lowest quartile, with hazard ratios of 0.73 and 0.67, respectively (trend p = 0.08). Our finding on the potential harmfulness of consuming AGEs on liver cancer risk is intriguing and warrants further study.
Collapse
Affiliation(s)
- Keiko Wada
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| | - Yuma Nakashima
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| | | | - Mitsuru Seishima
- Department of Internal Medicine, Takayama Red Cross Hospital Gifu Japan
| | - Shinobu Tanabashi
- Department of Internal Medicine, Takayama Red Cross Hospital Gifu Japan
| | | | - Naoki Tokimitsu
- Department of Internal Medicine, Takayama Red Cross Hospital Gifu Japan
| | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
61
|
Koyama AK, Pavkov ME, Wu Y, Siegel KR. Is dietary intake of advanced glycation end products associated with mortality among adults with diabetes? Nutr Metab Cardiovasc Dis 2022; 32:1402-1409. [PMID: 35282981 PMCID: PMC9167219 DOI: 10.1016/j.numecd.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Prior studies suggest a positive association between dietary AGEs and adverse health outcomes but have not well-characterized AGEs intake and its association with mortality in a general adult population in the United States. METHODS AND RESULTS We included 5474 adults with diabetes from the 2003 to 2018 National Health and Nutrition Examination Survey, a nationally representative sample of the non-institutionalized civilian population in the United States. Concordance to dietary guidelines (Healthy Eating Index 2015 [HEI-2015]) and intake of the AGE Nϵ-(carboxymethyl)lysine (CML) were estimated using an existing database and two 24-h food recalls. Multivariable Cox regression evaluated the association between AGEs intake and all-cause mortality. A secondary analysis measured CML, Nϵ-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1) from an alternative database. Higher AGEs intake was associated with lower concordance to dietary guidelines (Means and standard errors of HEI-2015 score, by quartiles of AGEs intake: Q1 = 55.2 ± 0.6, Q2 = 54.1 ± 0.5, Q3 = 52.1 ± 0.5, Q4 = 49.0 ± 0.5; p < 0.001). There were 743 deaths among 3884 adults in the mortality analysis (mean follow-up = 3.8 years). AGEs intake was not significantly associated with all-cause mortality (Q2 vs. Q1: Hazard Ratio [HR] = 0.91 [0.69-1.21], Q3 vs. Q1: HR = 0.90 [0.63-1.27], Q4 vs. Q1: HR = 1.16 [0.84-1.60]). Results were similar in secondary analyses. CONCLUSION While dietary AGEs intake was associated with concordance to dietary guidelines, it was not significantly associated with all-cause mortality among adults with diabetes. Further research may consider other health outcomes as well as the evaluating specific contribution of dietary AGEs to overall AGEs burden.
Collapse
Affiliation(s)
- Alain K Koyama
- Centers for Disease Control and Prevention, Division of Diabetes Translation, Atlanta, GA, United States.
| | - Meda E Pavkov
- Centers for Disease Control and Prevention, Division of Diabetes Translation, Atlanta, GA, United States
| | - Yanjue Wu
- Centers for Disease Control and Prevention, Division of Diabetes Translation, Atlanta, GA, United States
| | - Karen R Siegel
- Centers for Disease Control and Prevention, Division of Diabetes Translation, Atlanta, GA, United States
| |
Collapse
|
62
|
A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. Int J Mol Sci 2022; 23:ijms23105328. [PMID: 35628138 PMCID: PMC9141283 DOI: 10.3390/ijms23105328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.
Collapse
|
63
|
He CP, Chen C, Jiang XC, Li H, Zhu LX, Wang PX, Xiao T. The role of AGEs in pathogenesis of cartilage destruction in osteoarthritis. Bone Joint Res 2022; 11:292-300. [PMID: 35549515 PMCID: PMC9130677 DOI: 10.1302/2046-3758.115.bjr-2021-0334.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300.
Collapse
Affiliation(s)
- Chao-Peng He
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Chen
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin-Chen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Xin Zhu
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
64
|
Dietary Advanced Glycation End Products in an Elderly Population with Diabetic Nephropathy: An Exploratory Investigation. Nutrients 2022; 14:nu14091818. [PMID: 35565786 PMCID: PMC9102870 DOI: 10.3390/nu14091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are important in pathophysiology of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). Dietary AGEs (dAGEs) contribute to the overall AGE pool in the body. Forty elderly T2DM patients with DKD were randomly allocated to a low-AGE (n = 20) or regular diabetic (n = 20) diet group. A three-day meal questionnaire was used to estimate average quantity of dAGEs. AGE accumulation was measured using skin autofluorescence and urine spectroscopy. sRAGE (soluble receptor AGE) was quantified using ELISA. After 8 weeks, the mean consumption of dAGEs was considerably reduced, both in the low-AGE diet (p = 0.004) and the control (p = 0.019) group. The expected urinary emission peak at 490 nm was shifted to 520 nm in some spectra. dAGEs did not correspond with urine AGE output. An AGE-limited diet for two months did not affect AGE content in skin and urine, or sRAGE concentration in the blood. The role of glycemia is likely to be greater than the impact of dAGE consumption. The unique observation of a fluorescence pattern at 520 nm warrants further examination, since it might point to genetic differences in AGE regulation, which could have clinical consequences, as AGE content depends on its formation and elimination.
Collapse
|
65
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
66
|
Differences in kinetics and dynamics of endogenous versus exogenous advanced glycation end products (AGEs) and their precursors. Food Chem Toxicol 2022; 164:112987. [PMID: 35398182 DOI: 10.1016/j.fct.2022.112987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) and their precursors, referred to as glycation products, are a heterogenous group of compounds being associated with adverse health effects. They are formed endogenously and in exogenous sources including food. This review investigates the roles of endogenously versus exogenously formed glycation products in the potential induction of adverse health effects, focusing on differences in toxicokinetics and toxicodynamics, which appeared to differ depending on the molecular mass of the glycation product. Based on the available data, exogenous low molecular mass (LMM) glycation products seem to be bioavailable and to contribute to dicarbonyl stress and protein cross-linking resulting in formation of endogenous AGEs. Bioavailability of exogenous high molecular mass (HMM) glycation products appears limited, while these bind to the AGE receptor (RAGE), initiating adverse health effects. Together, this suggests that RAGE-binding in relevant tissues will more likely result from endogenously formed glycation products. Effects on gut microbiota induced by glycation products is proposed as a third mode of action. Overall, studies which better discriminate between LMM and HMM glycation products and between endogenous and exogenous formation are needed to further elucidate the contributions of these different types and sources of glycation products to the ultimate biological effects.
Collapse
|
67
|
Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol 2022; 194:2831-2855. [PMID: 35257316 DOI: 10.1007/s12010-022-03860-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.
Collapse
|
68
|
Food-Related Carbonyl Stress in Cardiometabolic and Cancer Risk Linked to Unhealthy Modern Diet. Nutrients 2022; 14:nu14051061. [PMID: 35268036 PMCID: PMC8912422 DOI: 10.3390/nu14051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonyl stress is a condition characterized by an increase in the steady-state levels of reactive carbonyl species (RCS) that leads to accumulation of their irreversible covalent adducts with biological molecules. RCS are generated by the oxidative cleavage and cellular metabolism of lipids and sugars. In addition to causing damage directly, the RCS adducts, advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), cause additional harm by eliciting chronic inflammation through receptor-mediated mechanisms. Hyperglycemia- and dyslipidemia-induced carbonyl stress plays a role in diabetic cardiovascular complications and diabetes-related cancer risk. Moreover, the increased dietary exposure to AGEs/ALEs could mediate the impact of the modern, highly processed diet on cardiometabolic and cancer risk. Finally, the transient carbonyl stress resulting from supraphysiological postprandial spikes in blood glucose and lipid levels may play a role in acute proinflammatory and proatherogenic changes occurring after a calorie dense meal. These findings underline the potential importance of carbonyl stress as a mediator of the cardiometabolic and cancer risk linked to today’s unhealthy diet. In this review, current knowledge in this field is discussed along with future research courses to offer new insights and open new avenues for therapeutic interventions to prevent diet-associated cardiometabolic disorders and cancer.
Collapse
|
69
|
Advanced Glycation End Products: A Sweet Flavor That Embitters Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23052404. [PMID: 35269546 PMCID: PMC8910157 DOI: 10.3390/ijms23052404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies demonstrate the role of early and intensive glycemic control in the prevention of micro and macrovascular disease in both type 1 and type 2 diabetes mellitus (DM). Hyperglycemia elicits several pathways related to the etiopathogenesis of cardiovascular disease (CVD), including the generation of advanced glycation end products (AGEs). In this review, we revisit the role played by AGEs in CVD based in clinical trials and experimental evidence. Mechanistic aspects concerning the recognition of AGEs by the advanced glycosylation end product-specific receptor (AGER) and its counterpart, the dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST) and soluble AGER are discussed. A special focus is offered to the AGE-elicited pathways that promote cholesterol accumulation in the arterial wall by enhanced oxidative stress, inflammation, endoplasmic reticulum stress and impairment in the reverse cholesterol transport (RCT).
Collapse
|
70
|
Dual Nature of RAGE in Host Reaction and Nurturing the Mother-Infant Bond. Int J Mol Sci 2022; 23:ijms23042086. [PMID: 35216202 PMCID: PMC8880422 DOI: 10.3390/ijms23042086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The final products of this irreversible reaction are called advanced glycation end-products (AGEs). The endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally, exogenous food-derived AGEs are debated to contribute to the development of aging and various diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and amyloid-β) can result in pathological processes via the activation of intracellular RAGE signaling pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level. This evidence from an evolutionary perspective allows us to understand why mammals require RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and (4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and social behaviors.
Collapse
|
71
|
Krishan P, Bhopal RS, Vlassopoulos A, Curry G, Kakde S. Could high heat cooking and food processing promoting neo-formed contaminants partially explain the high prevalence of chronic kidney disease in South Asian populations? A hypothesis. Diabetes Metab Syndr 2022; 16:102398. [PMID: 35182827 DOI: 10.1016/j.dsx.2022.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The occurrence of chronic heart and kidney diseases among the South Asian populations has been rising exponentially over the years. Research has been carried out in the past to explain the increased susceptibility with no resultant strong evidence. Various possible causes have been suggested with a previous hypothesis suggestive of high heat cooking techniques being responsible for increased production of neo-formed contaminants such as advanced glycation end products (AGEs) and trans-fatty acids (TFAs) leading to increased chronic heart diseases among the South Asian diaspora (India, Pakistan, Bangladesh, Sri Lanka in South Asia and overseas). The aim of this study proposes the high-heating cooking techniques and subsequent NFCs also to be responsible for the development of chronic kidney ailments among the South Asians. METHODS Review of the literature was conducted to ascertain the burden of accumulation and actions of AGEs and TFAs on kidney structure and functions. The varied high-heat cooking techniques including reheating of oils, food processing and kinds of food sources and their association with increased NFCs production and kidney damage were explored. RESULTS Higher NFCs content of AGEs/TFAs in reheated oils at elevated temperatures and TFAs among processed and fast foods of South Asians was associated with elevated diabetic complications and CKDs progression in few animal and human studies but the research on the actual burden of NFCs in the renal tissues of South Asians was lacking. CONCLUSION We hypothesize the high heat cooked foods generating increased levels of NFCs to be responsible for the preponderance of higher risk of CKDs among South Asians. Scientific exploration of the hypothesis to obtain quantifiable evidence of NFCs is suggested.
Collapse
Affiliation(s)
- Prerna Krishan
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Raj S Bhopal
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Antonis Vlassopoulos
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Gwenetta Curry
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK.
| | - Smitha Kakde
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
| |
Collapse
|
72
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
73
|
Receptor Mediated Effects of Advanced Glycation End Products (AGEs) on Innate and Adaptative Immunity: Relevance for Food Allergy. Nutrients 2022; 14:nu14020371. [PMID: 35057553 PMCID: PMC8778532 DOI: 10.3390/nu14020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
As of late, evidence has been emerging that the Maillard reaction (MR, also referred to as glycation) affects the structure and function of food proteins. MR induces the conformational and chemical modification of food proteins, not only on the level of IgG/IgE recognition, but also by increasing the interaction and recognition of these modified proteins by antigen-presenting cells (APCs). This affects their biological properties, including digestibility, bioavailability, immunogenicity, and ultimately their allergenicity. APCs possess various receptors that recognize glycation structures, which include receptor for advanced glycation end products (RAGE), scavenger receptors (SRs), galectin-3 and CD36. Through these receptors, glycation structures may influence the recognition, uptake and antigen-processing of food allergens by dendritic cells (DCs) and monocytes. This may lead to enhanced cytokine production and maturation of DCs, and may also induce adaptive immune responses to the antigens/allergens as a result of antigen uptake, processing and presentation to T cells. Here, we aim to review the current literature on the immunogenicity of AGEs originating from food (exogenous or dietary AGEs) in relation to AGEs that are formed within the body (endogenous AGEs), their interactions with receptors present on immune cells, and their effects on the activation of the innate as well as the adaptive immune system. Finally, we review the clinical relevance of AGEs in food allergies.
Collapse
|
74
|
Wang J, Cai W, Yu J, Liu H, He S, Zhu L, Xu J. Dietary Advanced Glycation End Products Shift the Gut Microbiota Composition and Induce Insulin Resistance in Mice. Diabetes Metab Syndr Obes 2022; 15:427-437. [PMID: 35210793 PMCID: PMC8857970 DOI: 10.2147/dmso.s346411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This study aimed to explore the associations between gut microbiota characteristics and glycometabolic profiles in mice fed diets high in advanced glycation end products (AGEs). METHODS C57BL/6 mice were exposed to a heat-treated diet or exogenous AGEs for 24 weeks, and glucose metabolism was assessed via the intraperitoneal glucose-tolerance test (IPGTT). Serum AGE and lipopolysaccharide-binding protein (LBP) levels were quantified using ELISA kits. 16S rDNA sequencing was performed to analyze the changes in gut microbiota according to α- and β-diversity. Key operational taxonomic units (OTUs) were evaluated, and co-abundance groups (CAGs) were delineated using weighted correlation network analysis. Associations between CAGs and clinical parameters were analyzed using Spearman correlation; predictive functional analysis of gut microbiota was performed using Kyoto Encyclopedia of Genes and Genomes data. RESULTS We identified significant increases in fasting blood glucose (FBG) and fasting insulin levels, as well as homeostatic model assessment insulin resistance (HOMA-IR) and glucose area under the receiver operating characteristic curve from IPGTT, in the high-AGE diet groups relative to controls at week 24. Serum AGE and LBP levels were elevated, and the α- and β-diversity of gut microbiota reduced in high-AGE diet groups. We identified 92 key OTUs that clustered into six CAGs, revealing positive correlations between CAG2/3/5 and insulin levels and mice weight and negative correlations between CAG1/3/4/5 and AGE, FBG, and LBP levels and HOMA-IR in mice fed high-AGE diets. We observed a reduced abundance of butyrate-producing bacteria, including Bacteroidales_S24-7, Ruminococcaceae, and Lachnospiraceae, in mice fed high-AGE diets, with pathway analysis of gut microbiota revealing significantly enriched fructose and mannose metabolism. CONCLUSION High-AGE diets altered the gut microbiota composition and structure, and induced insulin resistance in mice. In the pathogenesis of insulin resistance, the loss of butyrate-producing bacteria might impair the colonic epithelial barrier, thereby triggering chronic low-grade inflammation.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jiao Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Honghong Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Lingyan Zhu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
- Correspondence: Jixiong Xu, Email
| |
Collapse
|
75
|
Xiao SS, Shi L, Wang PC, Liu X, Fang M, Wu YN, Gong ZY. Determination of Nε-(carboxymethyl)lysine in commercial dairy products in China with liquid chromatography tandem mass spectroscopy. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
76
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
77
|
Yuan X, Nie C, Liu H, Ma Q, Peng B, Zhang M, Chen Z, Li J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34698575 DOI: 10.1080/10408398.2021.1991265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Increased intake of Western diets and ultra-processed foods is accompanied by increased intake of advanced glycation end products (AGEs). AGEs can be generated exogenously in the thermal processing of food and endogenously in the human body, which associated with various chronic diseases. In food, AGEs can be divided into free and bound forms, which differ in their bioavailability, digestion, absorption, gut microbial interactions and untargeted metabolites. We summarized the measurements and contents of free and bound AGE in foods. Moreover, the ingestion, digestion, absorption, excretion, gut microbiota interactions, and metabolites and metabolic pathways between free and bound AGEs based on animal and human studies were compared. Bound AGEs were predominant in most of the selected foods, while beer and soy sauce were rich in free AGEs. Only 10%-30% of AGEs were absorbed into the systemic circulation when orally administered. The excretion of ingested free and bound AGEs was approximately 90% and 60%, respectively. Dietary free CML has a detrimental effect on gut microbiota composition, while bound AGEs have both detrimental and beneficial impacts. Free and bound dietary AGEs changed amino acid metabolism, energy metabolism and carbohydrate metabolism. And besides, bound dietary AGEs altered vitamin metabolism, and glycerolipid metabolism.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
78
|
Minanni CA, Machado-Lima A, Iborra RT, Okuda LS, de Souza Pinto R, Santana MDFM, Lira ALDA, Nakandakare ER, Côrrea-Giannella MLC, Passarelli M. Persistent Effect of Advanced Glycated Albumin Driving Inflammation and Disturbances in Cholesterol Efflux in Macrophages. Nutrients 2021; 13:nu13103633. [PMID: 34684632 PMCID: PMC8537611 DOI: 10.3390/nu13103633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Advanced glycated albumin (AGE-albumin) impairs cholesterol efflux and contributes to inflammation in macrophages. The current study evaluated: (1) the persistence of the deleterious effect of AGE-albumin in cholesterol efflux and in inflammation, and (2) how metabolic control in diabetes mellitus (DM) contributes to attenuate the deleterious role of AGE-albumin in macrophage cholesterol homeostasis. Methods: AGE-albumin was produced in vitro or isolated from uncontrolled DM subjects' serum before (bGC) and after improved glycemic control (aGC). Albumin samples were incubated with bone marrow-derived macrophages and 14C-cholesterol efflux or LPS- induced cytokine secretion were determined immediately, or after cell resting in culture media alone. The ABCA-1 degradation rate was determined after cell incubation with cycloheximide, and ABCA1 protein level by immunoblot. Oil Red O staining was used to assess intracellular lipid accumulation. Results: A persistent effect of AGE-albumin was observed in macrophages in terms of the secretion of inflammatory cytokines and reduced cholesterol efflux. HDL-mediated 14C-cholesterol efflux was at least two times higher in macrophages treated with aCG-albumin as compared to bGC-albumin, and intracellular lipid content was significantly reduced in aGC-albumin-treated cells. As compared to bGC-albumin, the ABCA-1 protein content in whole cell bulk was 94% higher in aCG-albumin. A 20% increased ABCA-1 decay rate was observed in macrophages treated with albumin from poorly controlled DM. AGE-albumin has a persistent deleterious effect on macrophage lipid homeostasis and inflammation. The reduction of AGEs in albumin ameliorates cholesterol efflux.
Collapse
Affiliation(s)
- Carlos André Minanni
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Hospital Israelita Albert Einstein (HIAE), São Paulo 05652-900, Brazil
| | - Adriana Machado-Lima
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Programa de Pós-Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, São Paulo 03166-000, Brazil
| | - Rodrigo Tallada Iborra
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Programa de Pós-Graduação em Educação Física, Universidade São Judas Tadeu, São Paulo 03166-000, Brazil
| | - Lígia Shimabukuro Okuda
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Raphael de Souza Pinto
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Aécio Lopes de Araújo Lira
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Edna Regina Nakandakare
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
| | - Maria Lúcia Cardillo Côrrea-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil; (C.A.M.); (A.M.-L.); (R.T.I.); (L.S.O.); (R.d.S.P.); (M.d.F.M.S.); (A.L.d.A.L.); (E.R.N.)
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
- Correspondence:
| |
Collapse
|
79
|
Diet-Derived Advanced Glycation End Products (dAGEs) Induce Proinflammatory Cytokine Expression in Cardiac and Renal Tissues of Experimental Mice: Protective Effect of Curcumin. Cardiovasc Toxicol 2021; 22:35-51. [PMID: 34655413 DOI: 10.1007/s12012-021-09697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The beneficial effect of curcumin (CU) on dietary AGEs (dAGEs) involves blocking the overexpression of proinflammatory cytokine genes in the heart and kidney tissues of experimental mice. The animals were divided into six groups (n = 6/group) and were fed a heat-exposed diet (dAGEs) with or without CU for 6 months. Their blood pressure (BP) was monitored by a computerized tail-cuff BP-monitoring system. The mRNA and protein expression levels of proinflammatory genes were analyzed by RT-PCR and western blot, respectively. A marked increase in BP (108 ± 12 mmHg vs 149 ± 15 mmHg) accompanied by a marked increase in the heart and kidney weight ratio was noted in the dAGE-fed mice. Furthermore, the plasma levels of proinflammatory molecules (C5a, ICAM-1, IL-6, MCP-1, IL-1β and TNF-α) were found to be elevated (3-fold) in dAGE-fed mice. mRNA expression analysis revealed a significant increase in the expression levels of inflammatory markers (Cox-2, iNOS, and NF-κB) (3-fold) in cardiac and renal tissues of dAGE-fed mice. Moreover, increased expression of RAGE and downregulation of AGER-1 (p < 0.001) were noticed in the heart and kidney tissues of dAGE-fed mice. Interestingly, the dAGE-induced proinflammatory genes and inflammatory responses were neutralized upon cotreatment with CU. The present study demonstrates that dietary supplementation with CU has the ability to neutralize dAGE-induced adverse effects and alleviate proinflammatory gene expression in the heart and kidney tissues of experimental mice.
Collapse
|
80
|
Berdún R, Jové M, Sol J, Cai W, He JC, Rodriguez-Mortera R, Martin-Garí M, Pamplona R, Uribarri J, Portero-Otin M. Restriction of Dietary Advanced Glycation End Products Induces a Differential Plasma Metabolome and Lipidome Profile. Mol Nutr Food Res 2021; 65:e2000499. [PMID: 34599622 DOI: 10.1002/mnfr.202000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/10/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Diets with low content in advanced glycation end products (AGEs) lead to beneficial properties in highly prevalent age-related diseases. To shed light on the mechanisms behind, the changes induced by a low AGE dietary intervention in the circulating metabolome are analyzed. METHODS AND RESULTS To this end, 20 non-diabetic patients undergoing peritoneal dialysis are randomized to continue their usual diet or to one with a low content of AGEs for 1 month. Then, plasmatic metabolome and lipidomes are analyzed by liquid-chromatography coupled to mass spectrometry. The levels of defined AGE structures are also quantified by ELISA and by mass-spectrometry. The results show that the low AGE diet impinged significant changes in circulating metabolomes (166 molecules) and lipidomes (91 lipids). Metabolic targets of low-AGE intake include sphingolipid, ether-lipids, and glycerophospholipid metabolism. Further, it reproduces some of the plasma characteristics of healthy aging. CONCLUSION The finding of common pathways induced by low-AGE diets with previous metabolic traits implicated in aging, insulin resistance, and obesity suggest the usefulness of the chosen approach and supports the potential extension of this study to other populations.
Collapse
Affiliation(s)
- Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain.,Primary Care, Catalan Health Institute (ICS), Lleida, Spain.,Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Weijing Cai
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C He
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reyna Rodriguez-Mortera
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Meritxell Martin-Garí
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Jaime Uribarri
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|
81
|
Karkin K, İzol V, Kaplan M, Değer M, Akdoğan N, Tansuğ MZ. Demonstration of advanced glycation end product (AGE) expression in bladder cancer tissue in type-2 diabetic and non-diabetic patients and the relationship between AGE accumulation and endoplasmic reticulum stress with bladder cancer. Int J Clin Pract 2021; 75:e14526. [PMID: 34120398 DOI: 10.1111/ijcp.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study aimed to investigate the relationship between advanced glycation end product (AGE) expression and accumulation in transurethral resection (TUR-B) material taken from type-2 diabetes mellitus (DM) and non-DM bladder cancer patients and endoplasmic reticulum stress (ERS) with bladder cancer. METHOD The patients who had TUR-B between May 2016 and September 2018 were included in the study. After the tissue samples had been taken and frozen at -80°C, they were homogenised to be used in enzyme-linked immunosorbent assay (ELISA) experiments. The patients were grouped as DM and non-DM. In both groups, mean AGE, IRE1, PERK and ATF6 expression amounts were evaluated through ELISA method in the pathological material. RESULTS The expression amounts in tissue samples were AGE 0.59 ± 0.03 µg/mL, ATF6 1.08 ± 0.11 µg/mL, IRE1 30.71 ± 1.68 ng/mL, PERK 0.28 ± 0.02 ng. It was /mL. While there was no significant difference amongst AGE µg/mL (P = .146), ATF6 µg/mL (P = .175), IRE1 ng/mL (P = NA) and PERK ng/mL (P = .125) (P > .05) in the presence of DM, a positive correlation was observed between AGE values and PERK ng/mL values (r = .629; P < .05). CONCLUSION Bladder cancer may develop as a result of accumulation of AGEs and ERS. Demonstration of the expression of proteins resulting from AGEs and ERS may be useful biomarkers for the diagnosis, prognosis, prevention and development of treatment alternatives for bladder cancer.
Collapse
Affiliation(s)
- Kadir Karkin
- Department of Urology, Adana City Training and Research Hospital, Health Sciences University, Adana, Turkey
| | - Volkan İzol
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mahir Kaplan
- Department of Pharmacology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mutlu Değer
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nebil Akdoğan
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mustafa Zühtü Tansuğ
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| |
Collapse
|
82
|
Jin Q, Lau ESH, Luk AOY, Ozaki R, Chow EYK, Cheng F, So T, Yeung T, Loo KM, Lim CKP, Kong APS, Jenkins AJ, Chan JCN, Ma RCW. Skin autofluorescence is associated with higher risk of cardiovascular events in Chinese adults with type 2 diabetes: A prospective cohort study from the Hong Kong Diabetes Biobank. J Diabetes Complications 2021; 35:108015. [PMID: 34384706 DOI: 10.1016/j.jdiacomp.2021.108015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
AIMS To investigate association between skin autofluorescence (SAF) and cardiovascular events (CVE) and assess its predictive value in Chinese adults with type 2 diabetes (T2D). MATERIALS AND METHODS SAF was measured non-invasively in 3806 Chinese adults with T2D between 2016 and 2019 with CVE as primary endpoint and individual components as secondary endpoints. Cox proportional hazard models were used to examine associations between SAF and endpoints with adjustment for conventional risk factors. C-statistic, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were performed to evaluate SAF's predictive value. RESULTS During a median 1.8 (interquartile range, 1.2-3.1) years of follow-up, 172 individuals experienced CVE. Multivariate Cox model showed that SAF was independently associated with CVE (HR 1.18 per SD, 95% CI [1.02, 1.37]), coronary heart disease (HR 1.29 per SD, 95% CI [1.02, 1.63]), and congestive heart failure (HR 1.53 per SD, 95% CI [1.14, 2.05]). SAF yielded additional value on CVE risk stratification with enhanced IDI (95% CI) (0.023 [0.001, 0.057]) and continuous NRI (0.377 [0.002, 0.558]) over traditional risk factors. CONCLUSIONS Higher SAF was independently associated with CVE in Chinese adults with T2D and yielded incremental predictive information for CVE. SAF has potential as a prognostic maker for CVE.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Eric S H Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China.
| | - Risa Ozaki
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Elaine Y K Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Feifei Cheng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tammy So
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Theresa Yeung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Kit-Man Loo
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Alice P S Kong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Alicia J Jenkins
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Australia.
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China.
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
83
|
Experimental Animal Studies Support the Role of Dietary Advanced Glycation End Products in Health and Disease. Nutrients 2021; 13:nu13103467. [PMID: 34684468 PMCID: PMC8539226 DOI: 10.3390/nu13103467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
The increased incidence of obesity, diabetes mellitus, aging, and associated comorbidities indicates the interplay between genetic and environmental influences. Several dietary components have been identified to play a role in the pathogenesis of the so-called "modern diseases", and their complications including advanced glycation end products (AGEs), which are generated during the food preparation and processing. Diet-derived advanced glycation end products (dAGEs) can be absorbed in the gastrointestinal system and contribute to the total body AGEs' homeostasis, partially excreted in the urine, while a significant amount accumulates to various tissues. Various in vitro, in vivo, and clinical studies support that dAGEs play an important role in health and disease, in a similar way to those endogenously formed. Animal studies using wild type, as well as experimental, animal models have shown that dAGEs contribute significantly to the pathogenesis of various diseases and their complications, and are involved in the changes related to the aging process. In addition, they support that dAGEs' restriction reduces insulin resistance, oxidative stress, and inflammation; restores immune alterations; and prevents or delays the progression of aging, obesity, diabetes mellitus, and their complications. These data can be extrapolated in humans and strongly support that dAGEs' restriction should be considered as an alternative therapeutic intervention.
Collapse
|
84
|
Litwinowicz K, Waszczuk E, Gamian A. Advanced Glycation End-Products in Common Non-Infectious Liver Diseases: Systematic Review and Meta-Analysis. Nutrients 2021; 13:3370. [PMID: 34684371 PMCID: PMC8537188 DOI: 10.3390/nu13103370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Excessive intake of fructose, glucose and alcohol is associated with the development of non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). At the same time, these dietetic factors create an environment favorable for the generation of advanced glycation end-products. For this reason, advanced glycation end-products (AGEs) are hypothesized to play role in the development of NAFLD and ALD. In this systematic review and meta-analysis, we explore the relationship between NAFLD and ALD with AGE levels, including their diagnostic accuracy. METHODS The systematic review and meta-analysis has been pre-registered with PROSPERO (CRD42021240954) and was performed in accordance with the PRISMA guidelines. Meta-analyses were performed using the meta R package. RESULTS We have obtained 11 studies meeting our inclusion criteria, reporting data on 1844 participants (909 with NAFLD, 169 with ALD and 766 healthy controls). NAFLD was associated with significantly higher AGE fluorescence and serum N-(carboxyethyl)lysine (CEL) levels. Patients with alcoholic cirrhosis had significantly higher levels of N-(carboxymethyl)lysine (CML). Only individual studies examined AGEs in the context of their diagnostic accuracy. AGE fluorescence distinguished low and moderate steatosis with an AUC of 0.76. The ratio of CML, CEL and pentosidine to a soluble variant of the AGE receptor differentiated patients with NAFLD from healthy controls with high AUC (0.83-0.85). Glyceraldehyde-derived AGE separated non-alcoholic fatty liver (NAFL) from non-alcoholic steatohepatitis (NASH) with acceptable performance (AUC 0.78). CONCLUSIONS In conclusion, NAFLD and ALD are associated with significantly higher levels of several AGEs. More research is needed to examine the diagnostic accuracy of AGEs, however individual studies show that AGEs perform well in distinguishing NAFL from NASH.
Collapse
Affiliation(s)
- Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Ewa Waszczuk
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
85
|
Aglago EK, Mayén AL, Knaze V, Freisling H, Fedirko V, Hughes DJ, Jiao L, Eriksen AK, Tjønneland A, Boutron-Ruault MC, Rothwell JA, Severi G, Kaaks R, Katzke V, Schulze MB, Birukov A, Palli D, Sieri S, Santucci de Magistris M, Tumino R, Ricceri F, Bueno-de-Mesquita B, Derksen JWG, Skeie G, Gram IT, Sandanger T, Quirós JR, Luján-Barroso L, Sánchez MJ, Amiano P, Chirlaque MD, Gurrea AB, Johansson I, Manjer J, Perez-Cornago A, Weiderpass E, Gunter MJ, Heath AK, Schalkwijk CG, Jenab M. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021; 13:3132. [PMID: 34579010 PMCID: PMC8470201 DOI: 10.3390/nu13093132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dietary advanced glycation end-products (dAGEs) have been hypothesized to be associated with a higher risk of colorectal cancer (CRC) by promoting inflammation, metabolic dysfunction, and oxidative stress in the colonic epithelium. However, evidence from prospective cohort studies is scarce and inconclusive. We evaluated CRC risk associated with the intake of dAGEs in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Dietary intakes of three major dAGEs: Nε-carboxy-methyllysine (CML), Nε-carboxyethyllysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated in 450,111 participants (median follow-up = 13 years, with 6162 CRC cases) by matching to a detailed published European food composition database. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of dAGEs with CRC were computed using multivariable-adjusted Cox regression models. Inverse CRC risk associations were observed for CML (HR comparing extreme quintiles: HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00) and MG-H1 (HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00), but not for CEL (HRQ5vs.Q1 = 0.97, 95% CI = 0.89-1.05). The associations did not differ by sex or anatomical location of the tumor. Contrary to the initial hypothesis, our findings suggest an inverse association between dAGEs and CRC risk. More research is required to verify these findings and better differentiate the role of dAGEs from that of endogenously produced AGEs and their precursor compounds in CRC development.
Collapse
Affiliation(s)
- Elom K. Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Viktoria Knaze
- Early Detection, Prevention, and Infections Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Veronika Fedirko
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David J. Hughes
- Cancer Biology and Therapeutics Group (CBT), Conway Institute, School of Biomolecular and Biomedical Science (SBBS), University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (A.K.E.); (A.T.)
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Joseph A. Rothwell
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Gianluca Severi
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, 50121 Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE-ONLUS, 97100 Ragusa, Italy;
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
- Unit of Epidemiology, Regional Health Service ASL TO3, Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Jeroen W. G. Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Torkjel Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | | | - Leila Luján-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology—ICO; and Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute—IDIBELL, L’Hospitalet de Llobregat, Av. Granvia 199-203, 08908 Barcelona, Spain;
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, 20014 Donostia-San Sebastian, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia University, 30003 Murcia, Spain
| | - Aurelio Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Navarra Public Health Institute, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ingegerd Johansson
- Department of Radiation Sciences, Oncology, Umeå University, 907 36 Umeå, Sweden;
| | - Jonas Manjer
- Department of Clinical Sciences, Malmö, Lund University, 221 00 Lund, Sweden;
- Division of Surgery, Malmö, Lund University, 221 00 Lund, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK;
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 HX Maastrich, The Netherlands;
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| |
Collapse
|
86
|
Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J. Dietary AGEs as Exogenous Boosters of Inflammation. Nutrients 2021; 13:nu13082802. [PMID: 34444961 PMCID: PMC8401706 DOI: 10.3390/nu13082802] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Most chronic modern non-transmissible diseases seem to begin as the result of low-grade inflammation extending over prolonged periods of time. The importance of diet as a source of many pro-inflammatory compounds that could create and sustain such a low-grade inflammatory state cannot be ignored, particularly since we are constantly exposed to them during the day. The focus of this review is on specific components of the diet associated with inflammation, specifically advanced glycation end products (AGEs) that form during thermal processing of food. AGEs are also generated in the body in normal physiology and are widely recognized as increased in diabetes, but many people are unaware of the potential importance of exogenous AGEs ingested in food. We review experimental models, epidemiologic data, and small clinical trials that suggest an important association between dietary intake of these compounds and development of an inflammatory and pro-oxidative state that is conducive to chronic diseases. We compare dietary intake of AGEs with other widely known dietary patterns, such as the Mediterranean and the Dietary Approaches to Stop Hypertension (DASH) diets, as well as the Dietary Inflammation Index (DII). Finally, we delineate in detail the pathophysiological mechanisms induced by dietary AGEs, both direct (i.e., non-receptor-mediated) and indirect (receptor-mediated).
Collapse
Affiliation(s)
| | - Armando Rojas
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Catolica del Maule, Talca 3480005, Chile;
| | - Manuel Portero-Otin
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad de Lleida, 25196 Lleida, Spain;
| | - Jaime Uribarri
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-1887
| |
Collapse
|
87
|
Serin Y, Akbulut G, Uğur H, Yaman M. Recent developments in in-vitro assessment of advanced glycation end products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
88
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
89
|
Zhuang A, Yap FYT, Borg DJ, McCarthy D, Fotheringham A, Leung S, Penfold SA, Sourris KC, Coughlan MT, Schulz BL, Forbes JM. The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinol Diabetes Metab 2021; 4:e00278. [PMID: 34277994 PMCID: PMC8279619 DOI: 10.1002/edm2.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
| | | | - Danielle J. Borg
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Domenica McCarthy
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Amelia Fotheringham
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Sherman Leung
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | | | - Karly C. Sourris
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Melinda T. Coughlan
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQldAustralia
| | - Josephine M. Forbes
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
90
|
Sharifi-Zahabi E, Sharafabad FH, Abdollahzad H, Malekahmadi M, Rad NB. Circulating Advanced Glycation End Products and Their Soluble Receptors in Relation to All-Cause and Cardiovascular Mortality: A Systematic Review and Meta-analysis of Prospective Observational Studies. Adv Nutr 2021; 12:2157-2171. [PMID: 34139010 PMCID: PMC8634502 DOI: 10.1093/advances/nmab072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation end products (AGEs) are involved in the development of several age-related complications. The protective role of soluble receptors for AGEs (sRAGE) against deleterious effects of AGEs has been indicated in several studies. However, findings on the association of AGEs or sRAGE with mortality are equivocal. In this meta-analysis we aimed to present a quantitative estimation of the association between circulating AGEs or sRAGE and all-cause or cardiovascular disease (CVD) mortality. A comprehensive literature search was performed to determine relevant publications through the online databases including PubMed, Scopus, and Web of Science up to 29 November 2020. Prospective observational studies assessing the association between circulating AGEs or sRAGE and all-cause or CVD mortality were included. Seven studies with a total of 3718 participants and 733 mortality cases (345 CVD deaths) were included in the meta-analysis for assessing the association between circulating AGEs and mortality. Our results showed that higher circulating AGEs were associated with increased risk of all-cause (pooled effect measure: 1.05; 95% CI: 1.01, 1.09; P = 0.018, I2 = 77.7%) and CVD mortality (pooled effect measure: 1.08; 95% CI: 1.01, 1.14; P = 0.015, I2 = 80.2%), respectively. The association between sRAGE and mortality was assessed in 14 studies with a total of 16,335 participants and 2844 mortality cases (419 CVD deaths). Serum concentrations of sRAGE were not associated with the risk of all-cause mortality (pooled effect measure: 1.01; 95% CI: 1.00, 1.01; P = 0.205, I2 = 75.5%), whereas there was a significant link between sRAGE and the risk of CVD mortality (pooled effect measure: 1.02; 95% CI: 1.00, 1.04; P = 0.02, I2 = 78.9%). Our findings showed that a higher serum AGE concentration was associated with increased risk of all-cause and CVD mortality. In addition, higher circulating sRAGE was related to increased risk of CVD mortality. This review was registered at PROSPERO as CRD42021236559.
Collapse
Affiliation(s)
- Elham Sharifi-Zahabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Mahsa Malekahmadi
- Research Institute for Gastroenterology and Liver, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nadya Bahari Rad
- School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
91
|
Senatus L, MacLean M, Arivazhagan L, Egaña-Gorroño L, López-Díez R, Manigrasso MB, Ruiz HH, Vasquez C, Wilson R, Shekhtman A, Gugger PF, Ramasamy R, Schmidt AM. Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. IMMUNOMETABOLISM 2021; 3:e210024. [PMID: 34178389 PMCID: PMC8232874 DOI: 10.20900/immunometab20210024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michaele B. Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Henry H. Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robin Wilson
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Paul F. Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
92
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
93
|
Taguchi K, Fukami K, Elias BC, Brooks CR. Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease. Toxins (Basel) 2021; 13:361. [PMID: 34069405 PMCID: PMC8158751 DOI: 10.3390/toxins13050361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| |
Collapse
|
94
|
Oliveira JS, de Almeida C, de Souza ÂMN, da Cruz LD, Alfenas RCG. Effect of dietary advanced glycation end-products restriction on type 2 diabetes mellitus control: a systematic review. Nutr Rev 2021; 80:294-305. [PMID: 34010398 DOI: 10.1093/nutrit/nuab020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Reducing dietary advanced glycation end-products (AGEs) may favor diabetes control. OBJECTIVE Critically analyze studies about the effect of dietary AGEs restriction on inflammation, oxidative stress, and glycemic control in patients with type 2 diabetes mellitus (DM2). DATA SOURCE This systematic review was conducted according to PRISMA methodology. The PubMed, Web of Science, LILACS, and Cochrane Library databases were searched, using the terms "type 2 diabetes," "advanced glycation end products" and "diet." DATA EXTRACTION Seven original studies were included in this review. The duration of the studies ranged from 1 day to 16 weeks. All extracted data were compiled, compared, and critically analyzed. DATA ANALYSIS Glycemic variables were considered the primary outcomes. The secondary outcomes were glycation, inflammatory, and oxidative stress markers. CONCLUSION Although serum insulin, homeostasis model assessment of insulin resistance, and glycated hemoglobin values were lower after the consumption of AGEs restricted diets in most studies, there was a lack of unanimity regarding dietary AGEs' positive effect on inflammation, oxidative stress, and blood glucose. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020152640.
Collapse
Affiliation(s)
- Julia S Oliveira
- J.S. Oliveira, C. Almeida, A.M.N. Souza, L.D. Cruz, and R.C.G. Alfenas are with Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carolina de Almeida
- J.S. Oliveira, C. Almeida, A.M.N. Souza, L.D. Cruz, and R.C.G. Alfenas are with Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ângela M N de Souza
- J.S. Oliveira, C. Almeida, A.M.N. Souza, L.D. Cruz, and R.C.G. Alfenas are with Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Luciana D da Cruz
- J.S. Oliveira, C. Almeida, A.M.N. Souza, L.D. Cruz, and R.C.G. Alfenas are with Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- J.S. Oliveira, C. Almeida, A.M.N. Souza, L.D. Cruz, and R.C.G. Alfenas are with Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
95
|
Francisco FA, Saavedra LPJ, Junior MDF, Barra C, Matafome P, Mathias PCF, Gomes RM. Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome? Nutr Rev 2021; 79:13-24. [PMID: 32951053 DOI: 10.1093/nutrit/nuaa074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perinatal early nutritional disorders are critical for the developmental origins of health and disease. Glycotoxins, or advanced glycation end-products, and their precursors such as the methylglyoxal, which are formed endogenously and commonly found in processed foods and infant formulas, may be associated with acute and long-term metabolic disorders. Besides general aspects of glycotoxins, such as their endogenous production, exogenous sources, and their role in the development of metabolic syndrome, we discuss in this review the sources of perinatal exposure to glycotoxins and their involvement in metabolic programming mechanisms. The role of perinatal glycotoxin exposure in the onset of insulin resistance, central nervous system development, cardiovascular diseases, and early aging also are discussed, as are possible interventions that may prevent or reduce such effects.
Collapse
Affiliation(s)
- Flávio A Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Lucas P J Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Marcos D F Junior
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cátia Barra
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Rodrigo M Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
96
|
Ávila F, Ravello N, Manriquez C, Jiménez-Aspee F, Schmeda-Hirschmann G, Theoduloz C. Antiglycating Effect of Phenolics from the Chilean Currant Ribes cucullatum under Thermal Treatment. Antioxidants (Basel) 2021; 10:antiox10050665. [PMID: 33922890 PMCID: PMC8146124 DOI: 10.3390/antiox10050665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous dietary polyphenols possess antiglicating activity, but the effects of thermal treatment on this activity are mostly unknown. The effect of thermal treatment in the antiglycating activity of polyphenolic enriched extracts (PEEs) from Ribes cucullatum towards glyoxal-induced glycation of sarcoplasmic proteins was assessed. Sarcoplasmic proteins from chicken, beef, salmon, and turkey, were incubated 2 h at 60 °C with and without glyoxal and different concentrations of PEEs (0.25, 0.5, 1, and 5 mg/mL). The antiglycating activity was evaluated by: (1) Lys and Arg consumption, (2) Carboxymethyl lysine (CML) generation, and (3) lipid-derived electrophiles inhibition in a gastric digestion model. Protective effects were observed against CML generation in proteins and a decrease of electrophiles in the gastric digestion model. A dose-dependent consumption of Lys and Arg in proteins/PEEs samples, indicated the possible occurrence of quinoproteins generation from the phenolics. Protein/PEEs incubations were assessed by: (1) High pressure liquid chromatography analysis, (2) Gel electrophoresis (SDS-PAGE), and (3) Redox cycling staining of quinoproteins. Protein/PEEs incubations produced: (1) Decrease in phenolics, (2) increase of protein crosslinking, and (3) dose-dependent generation of quinoproteins. We demonstrate that phenolic compounds from R. cucullatum under thermal treatment act as antiglycating agents, but oxidative reactions occurs at high concentrations, generating protein crosslinking and quinoproteins.
Collapse
Affiliation(s)
- Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile; (N.R.); (C.M.)
- Correspondence: ; Tel.: +56-71-2418964
| | - Natalia Ravello
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile; (N.R.); (C.M.)
| | - Camila Manriquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile; (N.R.); (C.M.)
| | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Campus Lircay, Universidad de Talca, Talca 3460000, Chile;
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile;
| |
Collapse
|
97
|
Hughes MCB, Williams GM, Pageon H, Fourtanier A, Green AC. Dietary Antioxidant Capacity and Skin Photoaging: A 15-Year Longitudinal Study. J Invest Dermatol 2021; 141:1111-1118.e2. [PMID: 32682911 DOI: 10.1016/j.jid.2020.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 01/13/2023]
|
98
|
Huang HL, Kuo CS, Chang TY, Chou RH, Chen IC, Yang FC, Chen NJ, Lin SJ, Wu CC, Huang PH. An oral absorbent, AST-120, restores vascular growth and blood flow in ischemic muscles in diabetic mice via modulation of macrophage transition. J Mol Cell Cardiol 2021; 155:99-110. [PMID: 33713645 DOI: 10.1016/j.yjmcc.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/06/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Background Diabetes has a pronounced effect on the peripheral vasculature. The accumulation of advanced glycation end products (AGEs) is regarded as the crucial mechanism responsible for vascular damage in diabetes, but it is not easy to be avoided from food. In this study, we aimed to investigate the effects of an oral absorbent, AST-120, on the accumulation of AGEs and changes in blood flow recovery in diabetic mice. Methods The mice were divided into four groups, wild-type (WT) mice without treatment, WT mice treated with 5% AST-120 mixed into pulverized chow, streptozotocin-induced diabetes mellitus (DM) mice, and DM mice treated with 5% AST-120. Six weeks after hind-limb ischemia surgery, blood flow reperfusion, histology, plasma AGE, and cytokine were examined. Bone marrow cells were cultured and derived into macrophages to evaluate the effects of AGEs on macrophage polarization. Results Plasma AGEs were significantly increased in diabetic mice. AST-120 could bind to AGEs and reduced their plasma concentrations. Histological analysis revealed fewer collateral vessels with corresponding impairment of blood flow recovery in diabetic mice. In these mice, AGE-positive and AGE receptor-positive macrophages were numerous in ischemic limbs compared with non- diabetic mice. In diabetic mice, macrophages in ischemic tissues demonstrated greater M1 polarization than M2 polarization; this pattern was reversed in the AST-120 treatment group. The change in macrophage polarization was associated with the corresponding expression of pro-inflammatory cytokines in the ischemic tissues. In cell cultures, AGEs triggered the transformation of bone marrow-derived macrophages into the M1 phenotype. The alterations in the polarization of macrophages were reversed after treatment with AST-120. Conclusions Oral administration of AST-120 decreased the serum levels of AGEs in diabetic mice and improved neovascularization of ischemic limbs. This benefit may be due to, at least partially, the alterations in macrophage polarization and the associated changes in inflammatory cytokines.
Collapse
Affiliation(s)
- Hsin-Lei Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; National Taipei University of Nursing and Health Sciences, Taiwan
| | - Chin-Sung Kuo
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Chun Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Chen Yang
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Chih-Cheng Wu
- National Tsing-Hua University, Institute of Biomedical Engineering, Hsinchu, Taiwan; Cardiovascular Center, National Taiwan University Hospital, Hsinchu Branch, Taipei, Taiwan; National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
99
|
A negative association of dietary advanced glycation end products with obesity and body composition in Iranian adults. Br J Nutr 2021; 125:471-480. [PMID: 32713362 DOI: 10.1017/s0007114520002871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity caused by excessive deposited fat is generally classified as BMI ≥ 30 kg/m2. Research regarding the association between dietary advanced glycation end products (dAGE) and obesity is limited. The aim of the present study was to investigate the association between dAGE and obesity and body composition in Iranian adults. This cross-sectional study included 265 adults aged 18-75 years from Tehran, Iran. dAGE were estimated using a validated semi-quantitative FFQ, according to the published food carboxymethyl lysine-AGE database for 549 routinely consumed food items for the Northeastern American multiethnic urban population, and were reported by dividing total energy intake. Dietary intake, sociodemographic data and physical activity status were collected using validated questionnaires, and anthropometric characteristics were measured. Body composition was assessed by bioelectrical impedance analysis, and obesity was defined based on WHO guidelines. The intake of fat and meat was significantly increased in higher tertiles, compared with the first tertile of dAGE (P < 0·001). No association between dAGE and body composition measures and obesity was observed; however, there was a significant negative association between dAGE and BMI (BMI; P = 0·01), waist circumference (P = 0·01), waist:hip ratio (P = 0·03), fat-free mass (P = 0·02) and muscle mass index (P = 0·01) in non-linear models. In conclusion, higher consumption of dAGE was associated with increased intake of fat and meat and was negatively related to changes in body composition measurements. Therefore, dAGE may connect obesity to diet by energy imbalance.
Collapse
|
100
|
Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: The role of autophagy. J Biochem Mol Toxicol 2021; 35:e22710. [PMID: 33506967 DOI: 10.1002/jbt.22710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
The critical roles played by advanced glycation endproducts (AGEs) accumulation in diabetes and diabetic complications have gained intense recognition. AGEs interfere with the normal functioning of almost every organ with multiple actions like apoptosis, inflammation, protein dysfunction, mitochondrial dysfunction, and oxidative stress. However, the development of a potential treatment strategy is yet to be established. Autophagy is an evolutionarily conserved cellular process that maintains cellular homeostasis with the degradation and recycling systems. AGEs can activate autophagy signaling, which could be targeted as a therapeutic strategy against AGEs induced problems. In this review, we have provided an overview of the adverse effects of AGEs, and we put forth the notion that autophagy could be a promising targetable strategy against AGEs.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|