51
|
Säemann MD, Zeyda M, Diakos C, Szekeres A, Böhmig GA, Kelemen P, Parolini O, Stockinger H, Prieschl EE, Stulnig TM, Baumruker T, Zlabinger GJ. Suppression of early T-cell-receptor-triggered cellular activation by the Janus kinase 3 inhibitor WHI-P-154. Transplantation 2003; 75:1864-72. [PMID: 12811247 DOI: 10.1097/01.tp.0000065738.58742.a9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Therapeutic targeting of Janus kinase 3 (JAK3) has received particular attention, because it is associated with the common gamma signaling of cytokine receptors and thus vitally influences T-cell growth and survival. Recent evidence, however, indicates a critical role for JAK3 in signaling linked to the T-cell antigen receptor. METHODS In this study we investigated whether targeting JAK3 with a rationally designed inhibitor affects early T-cell activation events. T cells were stimulated by CD3 and CD28 cross-linking, and interleukin (IL)-2 production, activation marker expression, increase of free intracellular Ca2+ concentration, activation of the extracellular-related kinase, and nuclear translocation of transcription factors were evaluated. RESULTS We found that JAK3 inhibitor treatment dramatically impaired T-cell-receptor (TCR)-induced IL-2 production, surface activation marker expression (CD69, CD154), and homotypic T-cell aggregation. Accordingly, mRNA production of IL-2, interferon-gamma, and IL-10 was profoundly inhibited. Molecular analysis revealed that TCR-triggered phosphorylation of phospholipase C-gamma1, increase in cytoplasmic Ca2+ concentration, and activation of extracellular-related kinase were markedly reduced by the JAK3 inhibitor, resulting in substantially decreased DNA binding of nuclear factor of activated T cells and alkaline phosphatase-1 and subsequent IL-2 promoter activation. Remarkably, on TCR-independent stimulation, IL-2 production, CD69 expression, and blast formation were completely insensitive to JAK3 inhibitor treatment. CONCLUSION These data indicate that pharmacologic targeting of JAK3 uncouples early TCR-triggered signaling from essential downstream events, which may have important implications for the use of such compounds in T-cell-mediated disorders such as allograft rejection or graft-versus-host disease.
Collapse
|
52
|
Giordanetto F, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Protein Eng Des Sel 2002; 15:727-37. [PMID: 12456871 DOI: 10.1093/protein/15.9.727] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical model of human Janus kinase 2 (JAK2) comprising all seven Janus homology domains is presented. The model was generated by application of homology modelling approaches. The three-dimensional structure contains, starting from the N-terminus, FERM (4.1, ezrin, radixin, moesin), SH2 (Src homology region 2), tyrosine kinase-like, and tyrosine kinase domains. The predicted inter-domain orientation in JAK2 is discussed and the currently existing mutational data for Janus kinases are evaluated. Structural details of the SH2 and the FERM domains are presented. The predictions indicate that the SH2 domain is not fully functional. A number of hydrophobic amino acids of the FERM domain that are predicted to be involved in the constitutive association with the cytokine receptors are highlighted. The model gives new insights into the structure-function relationship of this important protein, and areas that could be investigated by mutation studies are highlighted.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Department of Chemistry, Queen Mary and Westfield College,University of London, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
53
|
Usacheva A, Kotenko S, Witte MM, Colamonici OR. Two distinct domains within the N-terminal region of Janus kinase 1 interact with cytokine receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1302-8. [PMID: 12133952 DOI: 10.4049/jimmunol.169.3.1302] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interaction between receptors and kinases of the Janus kinase (Jak) family is critical for signaling by growth factors, cytokines, and IFNs. Therefore, the characterization of the domains involved in these interactions is pivotal not only in understanding kinase activation but also in the development of drugs that mimic or inhibit signaling. In this report, we have characterized the domains of Jak1 required to associate with distinct cytokine receptor subunits: IFN-alpha R beta L, IFN-gamma R alpha, IL-10R alpha, IL-2R beta, and IL-4R alpha. We demonstrate that two regions of Jak1 are necessary for the interaction with cytokine receptors. First, a common N-terminal region that includes Jak homology (JH) domain 7 and the first 19 aa of JH6, and, second, a C-terminal region (JH6-3) that was different for distinct receptors. The contribution of the two different regions of Jak1 to cytokine receptor binding was also variable. Deletion of JH7-6 impaired the association of IL-2R beta and IL-4R alpha chains with Jak1 but did not have a major impact on the binding of Jak1 to IFN-alpha R beta L or IL-10R alpha. Interestingly, regardless of the effect on receptor binding, removal of JH7-6 completely abrogated kinase activation, indicating that this domain is required for ligand-driven kinase activation and, thus, for proper signaling through cytokine receptors.
Collapse
Affiliation(s)
- Anna Usacheva
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
54
|
Greiser JS, Stross C, Heinrich PC, Behrmann I, Hermanns HM. Orientational constraints of the gp130 intracellular juxtamembrane domain for signaling. J Biol Chem 2002; 277:26959-65. [PMID: 12011064 DOI: 10.1074/jbc.m204113200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The glycoprotein 130 (gp130) is the common signal transducing receptor chain of the interleukin-6 family of cytokines. Here we investigated the requirements for transfer of the information given by ligand binding to the cytoplasmic domain of gp130. It is demonstrated that the box 1/2 region has to be located membrane-proximally in order to bind and activate Janus kinases. To test the possible requirement of an alpha-helical orientation, we inserted 1-4 alanine residues into this juxtamembrane intracellular region. The insertion of one alanine results in a strongly reduced activation of STAT1 and STAT3, whereas insertion of three alanine residues leads to a stronger STAT activation. These results suggest that gp130-mediated activation of STATs is sensitive to rotational changes around the receptor axis perpendicular to the membrane. Surprisingly, insertion of 1, 2, 3, or 4 alanine residues into this juxtamembrane region leads to successive impairment but not abolishment of Janus kinase and receptor phosphorylation, supporting the finding of sensitivity of Janus kinases toward changes in distance of box 1/2 from the plasma membrane. We suggest a new model concerning the gp130 activation mode in which the relative orientation of the cytoplasmic regions seems to be critical for further signal transduction.
Collapse
Affiliation(s)
- Jens S Greiser
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | | | | | | | | |
Collapse
|
55
|
Basler CF, García-Sastre A. Viruses and the type I interferon antiviral system: induction and evasion. Int Rev Immunol 2002; 21:305-37. [PMID: 12486817 DOI: 10.1080/08830180213277] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The type I interferon (IFN) system responds to viral infection and induces an "antiviral state" in cells, providing an important first line of defense against virus infection. Interaction of type I IFNs (IFN alpha and IFN beta) with their receptor induces hundreds of cellular genes. Of the proteins induced by IFN, the antiviral function of only a few is known, and their mechanisms of action are only partly understood. Additionally, although viral-encoded mechanisms that counteract specific components of the type I IFN response have been known for some time, it has recently become clear that many (if not most) viruses encode some form of IFN-antagonist. Understanding the interplay between viral-encoded IFN antagonists and the interferon response will be essential if the therapeutic potential of IFNs is to be fully exploited.
Collapse
|
56
|
Abstract
Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of different cell types and aberrations in these pathways is an underlying cause for diseases such as leukemias and other myeloproliferative and lymphoproliferative disorders. Over the past decade, downstream signal transduction events initiated upon cytokine/growth factor stimulation have been a major focus of basic and applied biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus protein tyrosine kinases (JAKs) and Src family of kinases seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Accumulating evidence suggests that STAT protein activation may be mediated by members of both JAK and Src family members following cytokine/growth factor stimulation. In addition, JAK kinases appear to be essential for the phosphorylation of the cytokine receptors which results in the creation of docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Cell and tissue-specificity of cytokine action appears to be determined by the nature of signal transduction pathways activated by cytokine/receptor interactions. The integration of these diverse signaling cues from active JAK kinases, members of the Src-family kinases and STAT proteins, leads to cell proliferation, cell survival and differentiation, the end-point of the cytokine/growth factor stimulus.
Collapse
Affiliation(s)
- Sushil G Rane
- Laboratory of Cell Regulation & Carcinogenesis, NCI, NIH, Bldg. 41, C629, 41 Library Drive, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
57
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 813] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
58
|
Haan C, Heinrich PC, Behrmann I. Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem J 2002; 361:105-11. [PMID: 11742534 PMCID: PMC1222284 DOI: 10.1042/0264-6021:3610105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We analysed the interaction of gp130, the common signal-transducing receptor chain of interleukin (IL)-6 type cytokines, with Jak1, the Janus family kinase which is crucial for signal transduction of this group of cytokines. With a truncated chimaeric IL-5Rbeta-gp130 receptor expressed in COS-7 cells, we show that the membrane-proximal 69 amino acids are sufficient to mediate Jak1 binding and activation. Deletion of box2 drastically reduced binding of endogenous, but not of overexpressed, Jak1. Several point mutations in the membrane-proximal region of gp130 (W652A, P671/P672A, F676A, Y683F, where W, A, P, F and Y are tryptophan, alanine, proline, phenylalanine and tyrosine) did not affect Jak1 association. However, stimulation of chimaeric receptors with the mutations P671/P672A and F676A in the interbox1/box2 region resulted in a reduced activation of STAT (signal transducer and activator of transcription) transcription factors. Most importantly, signalling by the receptor with the box1 mutation W652A was totally abrogated. Although this mutation did not affect Jak1 association, stimulation-dependent phosphorylation of Jak1 was prevented. The W652 mutation acts dominantly, since no signalling occured even when only a single cytoplasmic chain of a gp130 dimer contained the mutation. Our data demonstrate that the mere proximity of Jaks in an activated receptor complex is not sufficient to mediate their activation. Rather, it seems that parts of the receptor, including the box1 region, are involved in positioning Jaks correctly so that ligand-induced receptor dimerization and reorientation can lead to their mutual activation and subsequently to downstream signalling events.
Collapse
Affiliation(s)
- Claude Haan
- Department of Biochemistry, Rheinisch-Westfälische Technische Hochschule, Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
59
|
Abstract
The JAK/STAT signal transduction pathway plays a critical role in mammalian cells, particularly in hematopoiesis and immune responses. Several components of this pathway have been identified and characterized in Drosophila. Mutational analyses of these components have revealed a number of interesting developmental roles, and provide a mechanism to identify other interacting molecules and pathways. Hence, the JAK/STAT pathway in Drosophila serves as an attractive model for in vivo functional analyses of JAK/STAT signaling.
Collapse
Affiliation(s)
- H Luo
- The Cardiovascular Research Institute, Division of Molecular Cardiology, The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA.
| | | |
Collapse
|
60
|
Frucht DM, Gadina M, Jagadeesh GJ, Aksentijevich I, Takada K, Bleesing JJ, Nelson J, Muul LM, Perham G, Morgan G, Gerritsen EJ, Schumacher RF, Mella P, Veys PA, Fleisher TA, Kaminski ER, Notarangelo LD, O'Shea JJ, Candotti F. Unexpected and variable phenotypes in a family with JAK3 deficiency. Genes Immun 2001; 2:422-32. [PMID: 11781709 DOI: 10.1038/sj.gene.6363802] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 08/09/2001] [Accepted: 08/09/2001] [Indexed: 11/09/2022]
Abstract
Mutations of the Janus kinase 3 (JAK3) have been previously described to cause an autosomal recessive variant of severe combined immunodeficiency (SCID) usually characterized by the near absence of T and NK cells, but preserved numbers of B lymphocytes (T-B+SCID). We now report a family whose JAK3 mutations are associated with the persistence of circulating T cells, resulting in previously undescribed clinical presentations, ranging from a nearly unaffected 18-year-old subject to an 8-year-old sibling with a severe lymphoproliferative disorder. Both siblings were found to be compound heterozygotes for the same deleterious JAK3 mutations: an A96G initiation start site mutation, resulting in a dysfunctional, truncated protein product and a G2775(+3)C mutation in the splice donor site sequence of intron 18, resulting in a splicing defect and a predicted premature stop. These mutations were compatible with minimal amounts of functional JAK3 expression, leading to defective cytokine-dependent signaling. Activated T cells in these patients failed to express Fas ligand (FasL) in response to IL-2, which may explain the accumulation of T cells with an activated phenotype and a skewed T cell receptor (TcR) Vbeta family distribution. We speculate that residual JAK3 activity accounted for the maturation of thymocytes, but was insufficient to sustain IL-2-mediated homeostasis of peripheral T cells via Fas/FasL interactions. These data demonstrate that the clinical spectrum of JAK3 deficiency is quite broad and includes immunodeficient patients with accumulation of activated T cells, and indicate an essential role for JAK3 in the homeostasis of peripheral T cells in humans.
Collapse
Affiliation(s)
- D M Frucht
- Arthritis and Rheumatism Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Zhang L, Wu L, Hong K, Pagano JS. Intracellular signaling molecules activated by Epstein-Barr virus for induction of interferon regulatory factor 7. J Virol 2001; 75:12393-401. [PMID: 11711629 PMCID: PMC116135 DOI: 10.1128/jvi.75.24.12393-12401.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) is the principal oncogenic protein in the EBV transformation process. LMP-1 induces the expression of interferon regulatory factor 7 (IRF-7) and activates IRF-7 protein by phosphorylation and nuclear translocation. LMP-1 is an integral membrane protein with two regions in its C terminus that initiate signaling processes, the C-terminal activator regions 1 (CTAR-1) and CTAR-2. Here, genetic analysis of LMP-1 has determined that the PXQXT motif that governs the interaction between LMP-1 CTAR-1 and tumor necrosis factor receptor-associated factors (TRAFs) is needed to induce the expression of IRF-7. Mutations in the PXQXT motif in CTAR-1 that disrupt the interaction between LMP-1 and TRAFs abolished the induction of IRF-7. Also, dominant-negative mutants of TRAFs inhibited the induction of IRF-7 by CTAR-1. The last three amino acids (YYD) of CTAR-2 are also important for the induction of IRF-7. When both PXQXT and YYD were mutated (LMP-DM), the LMP-1 mutant failed to induce IRF-7. Also, LMP-DM blocked the induction of IRF-7 by wild-type LMP-1. These data strongly suggest that both CTAR-1 and CTAR-2 of LMP-1 independently induce the expression of IRF-7. In addition, NF-kappaB is involved in the induction of IRF-7. A superrepressor of IkappaB (sr-IkappaB) could block the induction of IRF-7 by LMP-1, and overexpression of NF-kappaB (p65 plus p50) could induce the expression of IRF-7. In addition, we have found that human IRF-7 is a stable protein, and sodium butyrate, a modifier of chromatin structure, induces IRF-7.
Collapse
Affiliation(s)
- L Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | | | |
Collapse
|
62
|
Zhou YJ, Chen M, Cusack NA, Kimmel LH, Magnuson KS, Boyd JG, Lin W, Roberts JL, Lengi A, Buckley RH, Geahlen RL, Candotti F, Gadina M, Changelian PS, O'Shea JJ. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol Cell 2001; 8:959-69. [PMID: 11741532 DOI: 10.1016/s1097-2765(01)00398-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Janus kinases comprise carboxyterminal kinase, pseudokinase, SH2-like, and N-terminal FERM domains. We identified three patient-derived mutations in the FERM domain of Jak3 and investigated the functional consequences of these mutations. These mutations inhibited receptor binding and also abrogated kinase activity, suggesting interactions between the FERM and kinase domains. In fact, the domains were found to physically associate, and coexpression of the FERM domain enhanced activity of the isolated kinase domain. Conversely, staurosporine, which alters kinase domain structure, disrupted receptor binding, even though the catalytic activity of Jak3 is dispensable for receptor binding. Thus, the Jak FERM domain appears to have two critical functions: receptor interaction and maintenance of kinase integrity.
Collapse
Affiliation(s)
- Y J Zhou
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Haan C, Is'harc H, Hermanns HM, Schmitz-Van De Leur H, Kerr IM, Heinrich PC, Grötzinger J, Behrmann I. Mapping of a region within the N terminus of Jak1 involved in cytokine receptor interaction. J Biol Chem 2001; 276:37451-8. [PMID: 11468294 DOI: 10.1074/jbc.m106135200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Janus kinase 1 (Jak1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors. Here we show that the in vitro translated N-terminal domains of Jak1 are sufficient for binding to a biotinylated peptide comprising the membrane-proximal 73 amino acids of gp130, the signal-transducing receptor chain of interleukin-6-type cytokines. By the fold recognition approach amino acid residues 36-112 of Jak1 were predicted to adopt a beta-grasp fold, and a structural model was built using ubiquitin as a template. Substitution of Tyr(107) to alanine, a residue conserved among Jaks and involved in hydrophobic core interactions of the proposed beta-grasp domain, abrogated binding of full-length Jak1 to gp130 in COS-7 transfectants. By further mutagenesis we identified the loop 4 region of the Jak1 beta-grasp domain as essential for gp130 association and gp130-mediated signal transduction. In Jak1-deficient U4C cells reconstituted with the loop 4 Jak1 mutants L80A/Y81A and Delta(Tyr(81)-Ser(84)), the interferon-gamma, interferon-alpha, and interleukin-6 responses were similarly impaired. Thus, loop 4 of the beta-grasp domain plays a role in the association of Jak1 with both class I and II cytokine receptors. Taken together the structural model and the mutagenesis data provide further insight into the interaction of Janus kinases with cytokine receptors.
Collapse
Affiliation(s)
- C Haan
- Department of Biochemistry, Rheinisch Westfälische Technische Hochschule Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Tang W, Huo H, Zhu J, Ji H, Zou W, Xu L, Sun L, Zheng Z, Theze J, Liu X. Critical sites for the interaction between IL-2Rgamma and JAK3 and the following signaling. Biochem Biophys Res Commun 2001; 283:598-605. [PMID: 11341766 DOI: 10.1006/bbrc.2001.4824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
JAK3 is the only known protein tyrosine kinase associating with IL-2Rgamma. This interaction is supposed to be very important to IL-2 signaling. In order to identify the critical residues for these two molecular interactions and the following signal events, various mutants of gammac and JAK3 were constructed on the basis of computer analysis. The direct interaction was determined via the yeast two-hybrid system, while the signaling was analyzed with reporter genes under the control of the c-fos, c-myc, or tnf-beta promoters, respectively. Results showed that there are two key sites on gammac involved in this interaction and the following signal transduction: the critical one is E327 via electrostatic interaction, the other is L293 via hydrophobic interaction. As to JAK3, the data indicated that Y100 is important for the interaction with gammac. These results also document that the requirement for interaction between gammac and JAK3 is different to activate different signaling pathways mediated by gammac, such as c-fos, c-myc, and JAK-STAT.
Collapse
Affiliation(s)
- W Tang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hellgren G, Albertsson-Wikland K, Billig H, Carlsson LM, Carlsson B. Growth hormone receptor interaction with Jak proteins differs between tissues. J Interferon Cytokine Res 2001; 21:75-83. [PMID: 11244571 DOI: 10.1089/107999001750069935] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Janus kinases (Jak) play an important role in the initial steps of cytokine receptor signaling. The specificity of the four members of the Jak family (Jak1, Jak2, Jak3, and Tyk2) for different cytokine receptors is not fully understood. Recent studies have indicated that a specific cytokine receptor can activate several Jak and that this may differ between tissues. The growth hormone receptor (GHR) is believed to interact predominantly with Jak2, but studies on cell lines have shown that it may also induce phosphorylation of Jak1 and Jak3. Little is known about the interaction between the GHR and Jak in tissues. Our aim, therefore, was to elucidate which Jak interact with the GHR in two target tissues for GH, liver and adipose tissue. Western blot analysis showed that all four members of the Jak family are present in both rat liver and adipose tissue. However, coprecipitation using an anti-GHR antibody revealed that only Jak1 and Jak2 were associated with the GHR in these tissues. The relative amount of Jak1 and Jak2 that coprecipitated with the GHR differed markedly between tissues. In the liver, Jak2 dominated, and only a small amount of Jak1 was detected. In adipose tissue, at least one third of the coprecipitated Jak was Jak1. This is the first study to show that both Jak1 and Jak2 are associated with the GHR in rat tissues. The difference in the ratio between GHR-associated Jak1 and Jak2 in liver and adipose tissue may indicate that GHR signaling in different tissues could differ in terms of Jak specificity.
Collapse
Affiliation(s)
- G Hellgren
- Research Centre for Endocrinology and Metabolism, Department of Internal Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
66
|
Sadeghi R, Depledge P, Rawlins P, Dhanjal N, Manic A, Wrigley S, Foxwell B, Moore M. Differential regulation of CD3- and CD28-induced IL-2 and IFN-γ production by a novel tyrosine kinase inhibitor XR774 from Cladosporium cf. cladosporioides. Int Immunopharmacol 2001; 1:33-48. [PMID: 11367516 DOI: 10.1016/s1567-5769(00)00008-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inhibition of CD28 signalling after an immune response impedes T cell activation and can lead to immunosuppression. To identify inhibitors of anti-CD28 induced IL-2 production, a library of fungal metabolites was screened in a cell-based, high throughput assay. A reduced novel benzofluoranthene, tentatively named as (6bS, 7R, 8S)-7-methoxy-4, 8, 9-trihydroxy-1, 6b, 7, 8-tetrahydro-2H-benzo[j] fluoranthen-3-one (XR774), from Cladosporium cf. cladosporioides, was isolated. XR774 inhibited IL-2 mRNA and protein expression induced by anti-CD28 and anti-CD3 but had no effect on IL-2 induction by PMA and ionomycin. Moreover, XR774 inhibited the activity of the tyrosine kinases, Fyn, Lck, Abl and epidermal growth factor receptor (EGFR) with nanomolar activity, whereas micromolar concentrations of XR774 were ineffective on the serine-threonine kinase, PKA. Kinetic analysis of Fyn kinase inhibition was consistent with XR774 as a competitive inhibitor with respect to ATP. In peripheral blood, mononuclear cells (PBMC), XR774 inhibited anti-CD3 and anti-CD28 induced IL-2 and IL-2R alpha chain (CD25) expression but was consistently less active for inhibition of IFN-gamma production. On stimulation with PMA and anti-CD28, XR774 inhibited IL-2 production but had no effect on CD25 expression and enhanced IFN-gamma production. In contrast, the ansamycin, geldanamycin, inhibited both IL-2 and IFN-gamma production induced by anti-CD3 and anti-CD28 or PMA and anti-CD28. No significant associated cytotoxicity or inhibition of protein synthesis was observed at concentrations up to 14 microM. Thus, XR774 represents a novel class of pharmacological agent with selective biological activities that distinguish it from other natural product inhibitors, such as the ansamycins.
Collapse
Affiliation(s)
- R Sadeghi
- Xenova Ltd., 240 Bath Road, Slough, Berkshire, SL1 4EF, UK
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Lindauer K, Loerting T, Liedl KR, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. PROTEIN ENGINEERING 2001; 14:27-37. [PMID: 11287676 DOI: 10.1093/protein/14.1.27] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The structure of human Janus kinase 2 (JAK2) comprising the two C-terminal domains (JH1 and JH2) was predicted by application of homology modelling techniques. JH1 and JH2 represent the tyrosine kinase and tyrosine kinase-like domains, respectively, and are crucial for function and regulation of the protein. A comparison between the structures of the two domains is made and structural differences are highlighted. Prediction of the relative orientation of JH1 and JH2 was aided by a newly developed method for the detection of correlated amino acid mutations. Analysis of the interactions between the two domains led to a model for the regulatory effect of JH2 on JH1. The predictions are consistent with available experimental data on JAK2 or related proteins and provide an explanation for inhibition of JH1 tyrosine kinase activity by the adjacent JH2 domain.
Collapse
Affiliation(s)
- K Lindauer
- Department of Chemistry, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | |
Collapse
|
68
|
Tomita K, Saijo K, Yamasaki S, Iida T, Nakatsu F, Arase H, Ohno H, Shirasawa T, Kuriyama T, O'Shea JJ, Saito T. Cytokine-independent Jak3 Activation upon T Cell Receptor (TCR) Stimulation through Direct Association of Jak3 and the TCR Complex. J Biol Chem 2001; 276:25378-85. [PMID: 11349123 DOI: 10.1074/jbc.m011363200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.
Collapse
Affiliation(s)
- K Tomita
- Department of Molecular Genetics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8790, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Cytoplasmic Janus protein tyrosine kinases (JAKs) are crucial components of diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Evidence to date, indicates that JAK kinase function may integrate components of diverse signaling cascades. While it is likely that activation of STAT proteins may be an important function attributed to the JAK kinases, it is certainly not the only function performed by this key family of cytoplasmic tyrosine kinases. Emerging evidence indicates that phosphorylation of cytokine and growth factor receptors may be the primary functional attribute of JAK kinases. The JAK-triggered receptor phosphorylation can potentially be a rate-limiting event for a successful culmination of downstream signaling events. In support of this hypothesis, it has been found that JAK kinase function is required for optimal activation of the Src-kinase cascade, the Ras-MAP kinase pathway, the PI3K-AKT pathway and STAT signaling following the interaction of cytokine/interferon receptors with their ligands. Aberrations in JAK kinase activity, that may lead to derailment of one or more of the above mentioned pathways could disrupt normal cellular responses and result in disease states. Thus, over-activation of JAK kinases has been implicated in tumorigenesis. In contrast, loss of JAK kinase function has been found to result in disease states such as severe-combined immunodeficiency. In summary, optimal JAK kinase activity is a critical determinant of normal transmission of cytokine and growth factor signals.
Collapse
Affiliation(s)
- S G Rane
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | |
Collapse
|
70
|
Kampa D, Burnside J. Computational and functional analysis of the putative SH2 domain in Janus Kinases. Biochem Biophys Res Commun 2000; 278:175-82. [PMID: 11071870 DOI: 10.1006/bbrc.2000.3757] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Src homology 2 (SH2) domains interact in a highly specific manner with phosphorylated tyrosine residues on other signaling molecules. Protein tyrosine kinases (PTK) frequently contain SH2 domains, which often control signaling specificity. The Janus Kinases (JAKs) are a family of PTKs involved in signal transduction pathways mediated by various cytokines. Initial characterization of JAKs showed no identifiable SH2 domain. However, we have found substantial evidence supporting the existence of an SH2 domain in JAKs through the use of various web-based computational analysis programs. Predictive secondary and tertiary structures recognize an SH2 domain in JAKs. In addition, a three-dimensional homology model was constructed using the SH2 domains of Src tyrosine kinase and Syp tyrosine phosphatase as templates. These results, in conjunction with preliminary binding studies showing interactions with tyrosine phosphorylated proteins in activated splenocytes, suggest a functional role for this domain in JAKs.
Collapse
Affiliation(s)
- D Kampa
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19717, USA
| | | |
Collapse
|
71
|
Abstract
Cytokines have critical functions in regulating immune responses. A large number of these factors bind related receptors termed the Type I and Type II families of cytokine receptors. These receptors activate Janus kinases (Jaks) and Stat family of transcription factors. The essential and specific function of Jaks and Stats is particularly well illustrated by human and mouse mutations. The possibility that these molecules could be targeted to produce novel immunosuppressive compounds is considered in this review.
Collapse
Affiliation(s)
- J J O'Shea
- National Institutes of Health, Bethesda, MD 20892-1820, USA.
| | | | | | | |
Collapse
|
72
|
Graninger WB, Steiner CW, Graninger MT, Aringer M, Smolen JS. Cytokine regulation of apoptosis and Bcl-2 expression in lymphocytes of patients with systemic lupus erythematosus. Cell Death Differ 2000; 7:966-72. [PMID: 11279543 DOI: 10.1038/sj.cdd.4400724] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Both faulty regulation of apoptosis and the inappropriate expression of several interleukins have been considered important defects of lymphocytes in the human autoimmune disease systemic lupus erythematosus (SLE). We therefore tested the in vitro effect of recombinant interleukin (IL-)-2, 4, 7, and 15 on peripheral blood mononuclear cells from patients with SLE and from healthy volunteers. Intracellular Bcl-2 and Bax expression was measured by fluorocytometry and the rate of apoptosis was determined by the TUNEL technique and propidium iodide staining. IL-2, IL-4, IL-7 and IL-15 led to a significant increase in Bcl-2 and a reduction in cell death rates, which was even more pronounced in SLE. Bax levels remained unchanged. Interestingly, the high ex vivo Bcl-2 content of lymphocytes from some SLE patients was maintained after growth factor withdrawal. Anti-apoptotic cytokine signaling may significantly influence the deregulation of cell death in SLE lymphocytes.
Collapse
Affiliation(s)
- W B Graninger
- Division of Rheumatology, Department of Internal Medicine III, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
73
|
Tsujino S, Di Santo JP, Takaoka A, McKernan TL, Noguchi S, Taya C, Yonekawa H, Saito T, Taniguchi T, Fujii H. Differential requirement of the cytoplasmic subregions of gamma c chain in T cell development and function. Proc Natl Acad Sci U S A 2000; 97:10514-9. [PMID: 10962026 PMCID: PMC27056 DOI: 10.1073/pnas.180063297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common cytokine receptor gamma chain (gammac), a shared component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. The cytoplasmic domain of gammac consists of 85 aa, in which the carboxyl-terminal 48 aa are essential for its interaction with and activation of the Janus kinase, Jak3. Evidence has been provided that Jak3-independent signals might be transmitted via the residual membrane-proximal region; however, its role in vivo remains totally unknown. In the present study, we expressed mutant forms of gammac, which lack either most of the cytoplasmic domain or only the membrane-distal Jak3-binding region, on a gammac null background. We demonstrate that, unlike gammac or Jak3 null mice, expression of the latter, but not the former mutant, restores T lymphopoiesis in vivo, accompanied by strong expression of Bcl-2. On the other hand, the in vitro functions of the restored T cells still remained impaired. These results not only reveal the hitherto unknown role of the gammac membrane-proximal region, but also suggest the differential requirement of the cytoplasmic subregions of gammac in T cell development and function.
Collapse
Affiliation(s)
- S Tsujino
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Clin Immunol 2000; 96:108-18. [PMID: 10900158 DOI: 10.1006/clim.2000.4880] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hereditary severe combined immunodeficiency (SCID) includes a heterogeneous group of diseases that profoundly affect both cellular and humoral immune responses and require treatment by bone marrow transplantation. Characterization of the cellular and molecular bases of SCID is essential to provide accurate genetic counseling and prenatal diagnosis, and it may offer the grounds for alternative forms of treatment. The Jak3 gene is mutated in most cases of autosomal recessive T(-)B(+) SCID in humans. Jak3 belongs to the family of intracellular Janus tyrosine kinases. It is physically and functionally coupled to the common gamma chain, gammac, shared by several cytokine receptors. We have established the JAK3base registry for disease and mutation information. In order to study the structural consequences of the Jak3 mutations, the structure of the human Jak3 kinase and pseudokinase domains was modeled. Residues involved in ATP and Mg(2+) binding were highly conserved in the kinase domain whereas the substrate binding region is somewhat different compared to other kinases. We have identified the first naturally occurring mutations disrupting the function of the human Jak3 kinase domain. The structural basis of all of the known Jak3 mutations reported so far is discussed based on the modeled structure. The model of the Jak3 protein also permits us to study Jak3 phosphorylation at the structural level and may thus serve in the design of novel immune suppressive drugs.
Collapse
Affiliation(s)
- M Vihinen
- Institute of Medical Technology, University of Tampere, FIN-33014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Notarangelo LD, Giliani S, Mella P, Schumacher RF, Mazza C, Savoldi G, Rodriguez-Pérez C, Badolato R, Mazzolari E, Porta F, Candotti F, Ugazio AG. Combined immunodeficiencies due to defects in signal transduction: defects of the gammac-JAK3 signaling pathway as a model. Immunobiology 2000; 202:106-19. [PMID: 10993286 DOI: 10.1016/s0171-2985(00)80058-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Combined immune deficiencies comprise a spectrum of genetic disorders characterized by developmental or functional defects of both T and B lymphocytes. Recent progress in cell biology and molecular genetics has unraveled the pathophysiology of most of these defects. In particular, the most common form of severe combined immune deficiency in humans, with lack of circulating T cells, a normal or increased number of B lymphocytes, and an X-linked pattern of inheritance (SCIDXI) has been shown to be due to defects of the IL2RG gene, encoding for the common gamma chain (gammac), shared by several cytokine receptors. Furthermore, defects of the JAK3 gene, encoding for an intracellular tyrosine kinase required for signal transduction through gammac-containing cytokine receptors, have been identified in patients with autosomal recessive T-B+ SCID. Characterization of the functional properties of cytokines that signal through the gammac-JAK3 signaling pathway has been favored by the detailed analysis of SCID patients. Specifically, the key role of IL-7 in promoting T cell development has been substantiated by the identification of rare patients with T-B+ SCID who have a defect in the alpha subunit of the IL-7 receptor (IL7Ralpha). The heterogeneity of genetic defects along the same signaling pathway that may lead to combined immune deficiency is paralleled by the heterogeneity of immunological phenotypes that may associate with defects in the same gene, thus creating a need for detailed immunological and molecular investigations in order to dissect the spectrum of combined immune deficiencies in humans.
Collapse
Affiliation(s)
- L D Notarangelo
- Istituto di Medicina Molecolare Angelo Nocivelli, Clinica Pediatrica Università di Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Endo K, Takeshita T, Kasai H, Sasaki Y, Tanaka N, Asao H, Kikuchi K, Yamada M, Chenb M, O'Shea JJ, Sugamura K. STAM2, a new member of the STAM family, binding to the Janus kinases. FEBS Lett 2000; 477:55-61. [PMID: 10899310 DOI: 10.1016/s0014-5793(00)01760-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We here cloned a cDNA encoding STAM2, a new member of the STAM family, which contains an SH3 domain and ITAM. STAM2 like STAM1 is associated with Jak2 and Jak3, and involved in the signaling for DNA synthesis and c-myc induction mediated by IL-2 and GM-CSF. Co-expression of the SH3 deletion mutants of STAM1 and STAM2 induces an additive effect on suppressing DNA synthesis upon stimulation with IL-2 and GM-CSF, suggesting that STAM1 and STAM2 exhibit compensatory effects on the signaling pathways downstream of Jak2 and Jak3 upon stimulation with GM-SCF and IL-2, respectively.
Collapse
Affiliation(s)
- K Endo
- Department of Microbiology, Tohoku University School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
We previously reported a fusion between TEL and JAK2in a t(9;12)(p24;p13) chromosomal translocation in childhood acute T-cell leukemia. This fusion gene encodes a TEL-JAK2 chimeric protein in which the 336 amino-terminal residues of TEL, including its specific self-association domain, are fused to the kinase domain of JAK2. TEL-JAK2 exhibits constitutive activation of its tyrosine kinase activity which, in turn, confers growth factor–independent proliferation to the interleukin-3–dependent Ba/F3 hematopoietic cell line. To elucidate the properties of TEL-JAK2 in primary cells and to create an animal model for TEL-JAK2–induced leukemia, we generated transgenic mice in which the TEL-JAK2 complementary DNA was placed under the transcriptional control of the EμSR enhancer/promoter. TEL-JAK2 founder mice and their transgenic progeny developed fatal leukemia at 4 to 22 weeks of age. Selective amplification of CD8-positive T cells was observed in blood, lymph nodes, thymus, spleen, and bone marrow. Expression of a tyrosine-phosphorylated TEL-JAK2 protein and activation of STAT1 and STAT5 (signal transducer and activator of transcription) were detected in leukemic tissues. TEL-JAK2 diseased mice also displayed invasion of nonhematopoietic organs, including liver, brain, lung, and kidney, by leukemic T cells. Leukemic organs of founder and transgenic progeny contained a monoclonal/oligoclonal T-cell population as analyzed by the rearrangement of the TCRβ locus. Transplantation of TEL-JAK2 leukemic cells in nude mice confirmed their invasive nature. We conclude that the TEL-JAK2 fusion is an oncogene in vivo and that its expression in lymphoid cells results in the preferential expansion of CD8-positive T cells.
Collapse
|
78
|
Abstract
Abstract
We previously reported a fusion between TEL and JAK2in a t(9;12)(p24;p13) chromosomal translocation in childhood acute T-cell leukemia. This fusion gene encodes a TEL-JAK2 chimeric protein in which the 336 amino-terminal residues of TEL, including its specific self-association domain, are fused to the kinase domain of JAK2. TEL-JAK2 exhibits constitutive activation of its tyrosine kinase activity which, in turn, confers growth factor–independent proliferation to the interleukin-3–dependent Ba/F3 hematopoietic cell line. To elucidate the properties of TEL-JAK2 in primary cells and to create an animal model for TEL-JAK2–induced leukemia, we generated transgenic mice in which the TEL-JAK2 complementary DNA was placed under the transcriptional control of the EμSR enhancer/promoter. TEL-JAK2 founder mice and their transgenic progeny developed fatal leukemia at 4 to 22 weeks of age. Selective amplification of CD8-positive T cells was observed in blood, lymph nodes, thymus, spleen, and bone marrow. Expression of a tyrosine-phosphorylated TEL-JAK2 protein and activation of STAT1 and STAT5 (signal transducer and activator of transcription) were detected in leukemic tissues. TEL-JAK2 diseased mice also displayed invasion of nonhematopoietic organs, including liver, brain, lung, and kidney, by leukemic T cells. Leukemic organs of founder and transgenic progeny contained a monoclonal/oligoclonal T-cell population as analyzed by the rearrangement of the TCRβ locus. Transplantation of TEL-JAK2 leukemic cells in nude mice confirmed their invasive nature. We conclude that the TEL-JAK2 fusion is an oncogene in vivo and that its expression in lymphoid cells results in the preferential expansion of CD8-positive T cells.
Collapse
|
79
|
Zhou YJ, Magnuson KS, Cheng TP, Gadina M, Frucht DM, Galon J, Candotti F, Geahlen RL, Changelian PS, O'Shea JJ. Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation. Mol Cell Biol 2000; 20:4371-80. [PMID: 10825200 PMCID: PMC85804 DOI: 10.1128/mcb.20.12.4371-4380.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.
Collapse
Affiliation(s)
- Y J Zhou
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Reddy EP, Korapati A, Chaturvedi P, Rane S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 2000; 19:2532-47. [PMID: 10851052 DOI: 10.1038/sj.onc.1203594] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of different cell types and aberrations in these pathways is an underlying cause for diseases such as cancer. Over the past several years, downstream events initiated upon cytokine/growth factor stimulation have been a major focus of biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of novel transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Until recently, the JAK proteins were considered to be the tyrosine kinases, which dictated the levels of phosphorylation and activation of STAT proteins, forming the basis of the JAK-STAT model. However, over the past few years, increasing evidence has accumulated which indicates that at least some of the STAT protein activation may be mediated by members of the Src gene family following cytokine/growth factor stimulation. Studies have demonstrated that the Src-family of tyrosine kinases can phosphorylate and activate certain STAT proteins, in lieu of JAK kinases. In such a scenario, JAK kinases may be more crucial to phosphorylation of the cytokine/growth factor receptors and in the process create docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Tyrosine phosphorylation and activation of STAT proteins can be achieved either by JAKs or Src-kinases depending on the nature of STAT that is being activated. This forms the basis for the JAK-Src-STAT model proposed in this review. The concerted action of JAK kinases, members of the Src-kinase family and STAT proteins, leads to cell proliferation and cell survival, the end-point of the cytokine/growth factor stimulus. Oncogene (2000).
Collapse
Affiliation(s)
- E P Reddy
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | | | |
Collapse
|
81
|
Cosenza L, Rosenbach A, White JV, Murphy JR, Smith T. Comparative model building of interleukin-7 using interleukin-4 as a template: a structural hypothesis that displays atypical surface chemistry in helix D important for receptor activation. Protein Sci 2000; 9:916-26. [PMID: 10850801 PMCID: PMC2144647 DOI: 10.1110/ps.9.5.916] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using a combination of theoretical sequence structure recognition predictions and experimental disulfide bond assignments, a three-dimensional (3D) model of human interleukin-7 (hIL-7) was constructed that predicts atypical surface chemistry in helix D that is important for receptor activation. A 3D model of hIL-7 was built using the X-ray crystal structure of interleukin-4 (IL-4) as a template (Walter MR et al., 1992, J Mol Biol. 224:1075-1085; Walter MR et al., 1992, J Biol Chem 267:20371-20376). Core secondary structures were constructed from sequences of hIL-7 predicted to form helices. The model was constructed by superimposing IL-7 helices onto the IL-4 template and connecting them together in an up-up down-down topology. The model was finished by incorporating the disulfide bond assignments (Cys3, Cys142), (Cys35, Cys130), and (Cys48, Cys93), which were determined by MALDI mass spectroscopy and site-directed mutagenesis (Cosenza L, Sweeney E, Murphy JR, 1997, J Biol Chem 272:32995-33000). Quality analysis of the hIL-7 model identified poor structural features in the carboxyl terminus that, when further studied using hydrophobic moment analysis, detected an atypical structural property in helix D, which contains Cys 130 and Cys142. This analysis demonstrated that helix D had a hydrophobic surface exposed to bulk solvent that accounted for the poor quality of the model, but was suggestive of a region in IL-7 that maybe important for protein interactions. Alanine (Ala) substitution scanning mutagenesis was performed to test if the predicted atypical surface chemistry of helix D in the hIL-7 model is important for receptor activation. This analysis resulted in the construction, purification, and characterization of four hIL-7 variants, hIL-7(K121A), hIL-7(L136A), hIL-7(K140A), and hIL-7(W143A), that displayed reduced or abrogated ability to stimulate a murine IL-7 dependent pre-B cell proliferation. The mutant hIL-7(W143A), which is biologically inactive and displaces [125I]-hIL-7, is the first reported IL-7R system antagonist.
Collapse
Affiliation(s)
- L Cosenza
- Evans Department of Clinical Research, Boston University School of Medicine, Massachusetts 02118-2393, USA
| | | | | | | | | |
Collapse
|
82
|
Notarangelo LD, Candotti F. JAK3-DEFICIENT SEVERE COMBINED IMMUNODEFICIENCY. Radiol Clin North Am 2000. [DOI: 10.1016/s0033-8389(22)00181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
83
|
Chen M, Cheng A, Candotti F, Zhou YJ, Hymel A, Fasth A, Notarangelo LD, O'Shea JJ. Complex effects of naturally occurring mutations in the JAK3 pseudokinase domain: evidence for interactions between the kinase and pseudokinase domains. Mol Cell Biol 2000; 20:947-56. [PMID: 10629052 PMCID: PMC85212 DOI: 10.1128/mcb.20.3.947-956.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of Janus kinases (JAKs) is unique among protein tyrosine kinases in having tandem, nonidentical kinase and pseudokinase domains. Despite its conservation in evolution, however, the function of the pseudokinase domain remains poorly understood. Lack of JAK3 expression results in severe combined immunodeficiency (SCID). In this study, we analyze two SCID patients with mutations in the JAK3 pseudokinase domain, which allows for protein expression but disrupts the regulation of the kinase activity. Specifically, these mutant forms of JAK3 had undetectable kinase activity in vitro but were hyperphosphorylated both in patients' Epstein-Barr virus-transformed B cells and when overexpressed in COS7 cells. Moreover, reconstitution of cells with these mutants demonstrated that, although they were constitutively phosphorylated basally, they were unable to transmit cytokine-dependent signals. Further analysis showed that the isolated catalytic domain of JAK3 was functional whereas either the addition of the pseudokinase domain or its deletion from the full-length molecule reduced catalytic activity. Through coimmunoprecipitation of the isolated pseudokinase domain with the isolated catalytic domain, we provide the first evidence that these two domains interact. Furthermore, whereas the wild-type pseudokinase domain modestly inhibited kinase domain-mediated STAT5 phosphorylation, the patient-derived mutants markedly inhibited this phosphorylation. We thus conclude that the JAK3 pseudokinase domain is essential for JAK3 function by regulating its catalytic activity and autophosphorylation. We propose a model in which this occurs via intramolecular interaction with the kinase domain and that increased inhibition of kinase activity by the pseudokinase domain likely contributes to the disease pathogenesis in these two patients.
Collapse
Affiliation(s)
- M Chen
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Complex effects of naturally occurring mutations in the JAK3 pseudokinase domain: evidence for interactions between the kinase and pseudokinase domains. Mol Cell Biol 2000. [PMID: 10629052 DOI: 10.1128/mcb.20.3.947‐956.2000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of Janus kinases (JAKs) is unique among protein tyrosine kinases in having tandem, nonidentical kinase and pseudokinase domains. Despite its conservation in evolution, however, the function of the pseudokinase domain remains poorly understood. Lack of JAK3 expression results in severe combined immunodeficiency (SCID). In this study, we analyze two SCID patients with mutations in the JAK3 pseudokinase domain, which allows for protein expression but disrupts the regulation of the kinase activity. Specifically, these mutant forms of JAK3 had undetectable kinase activity in vitro but were hyperphosphorylated both in patients' Epstein-Barr virus-transformed B cells and when overexpressed in COS7 cells. Moreover, reconstitution of cells with these mutants demonstrated that, although they were constitutively phosphorylated basally, they were unable to transmit cytokine-dependent signals. Further analysis showed that the isolated catalytic domain of JAK3 was functional whereas either the addition of the pseudokinase domain or its deletion from the full-length molecule reduced catalytic activity. Through coimmunoprecipitation of the isolated pseudokinase domain with the isolated catalytic domain, we provide the first evidence that these two domains interact. Furthermore, whereas the wild-type pseudokinase domain modestly inhibited kinase domain-mediated STAT5 phosphorylation, the patient-derived mutants markedly inhibited this phosphorylation. We thus conclude that the JAK3 pseudokinase domain is essential for JAK3 function by regulating its catalytic activity and autophosphorylation. We propose a model in which this occurs via intramolecular interaction with the kinase domain and that increased inhibition of kinase activity by the pseudokinase domain likely contributes to the disease pathogenesis in these two patients.
Collapse
|
86
|
Ortmann RA, Cheng T, Visconti R, Frucht DM, O'Shea JJ. Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. ARTHRITIS RESEARCH 2000; 2:16-32. [PMID: 11094415 PMCID: PMC129988 DOI: 10.1186/ar66] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/14/2023]
Abstract
Cytokines play a critical role in the normal development and function of the immune system. On the other hand, many rheumatologic diseases are characterized by poorly controlled responses to or dysregulated production of these mediators. Over the past decade tremendous strides have been made in clarifying how cytokines transmit signals via pathways using the Janus kinase (Jak) protein tyrosine kinases and the Signal transducer and activator of transcription (Stat) proteins. More recently, research has focused on several distinct proteins responsible for inhibiting these pathways. It is hoped that further elucidation of cytokine signaling through these pathways will not only allow for a better comprehension of the etiopathogenesis of rheumatologic illnesses, but may also direct future treatment options.
Collapse
Affiliation(s)
- R A Ortmann
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
87
|
Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ. Signal transduction in the erythropoietin receptor system. Exp Cell Res 1999; 253:143-56. [PMID: 10579919 DOI: 10.1006/excr.1999.4673] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Events relayed via the single transmembrane receptor for erythropoietin (Epo) are essential for the development of committed erythroid progenitor cells beyond the colony-forming unit-erythroid stage, and this clearly involves Epo's inhibition of programmed cell death (PCD). Less well resolved, however, are issues regarding the precise nature of Epo-dependent antiapoptotic mechanisms, the extent to which Epo might also promote mitogenesis and/or terminal erythroid differentiation, and the essential vs modulatory nature of certain Epo receptor cytoplasmic subdomains, signal transducing factors, and downstream pathways. Accordingly, this review focuses on the following aspects of Epo signal transduction: (1) Epo receptor/Jak2 activation mechanisms; (2) the critical vs dispensable nature of (P)Y sites and SH2 domain-encoding effectors in survival, growth, and differentiation responses; (3) primary mechanisms by which Epo inhibits PCD; (4) the integration of signals relayed by coexpressed and possibly directly interacting cytokine receptors; and (5) predictions regarding effector function which are provided by the association of certain primary and familial polycythemias with mutated human Epo receptor forms.
Collapse
Affiliation(s)
- D M Wojchowski
- Program in Cell & Developmental Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | | | | | | | | |
Collapse
|
88
|
Gene Duplication of Zebrafish JAK2 Homologs Is Accompanied by Divergent Embryonic Expression Patterns: Only jak2a Is Expressed During Erythropoiesis. Blood 1999. [DOI: 10.1182/blood.v94.8.2622.420k39_2622_2636] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Members of the JAK family of protein tyrosine kinase (PTK) proteins are required for the transmission of signals from a variety of cell surface receptors, particularly those of the cytokine receptor family. JAK function has been implicated in hematopoiesis and regulation of the immune system, and recent data suggest that the vertebrate JAK2gene may play a role in leukemia. We have isolated and characterizedjak cDNAs from the zebrafish Danio rerio. The zebrafish genome possesses 2 jak2 genes that occupy paralogous chromosome segments in the zebrafish genome, and these segments conserve syntenic relationships with orthologous genes in mammalian genomes, suggesting an ancient duplication in the zebrafish lineage. The jak2a gene is expressed at high levels in erythroid precursors of primitive and definitive waves and at a lower level in early central nervous system and developing fin buds. jak2b is expressed in the developing lens and nephritic ducts, but not in hematopoietic tissue. The expression of jak2a was examined in hematopoietic mutants and found to be disrupted in clocheand spadetail, suggesting an early role in hematopoiesis. Taken together with recent gene knockout data in the mouse, we suggest that jak2a may be functionally equivalent to mammalianJak2, with a role in early erythropoiesis.
Collapse
|
89
|
Orchansky PL, Kwan R, Lee F, Schrader JW. Characterization of the cytoplasmic domain of interleukin-13 receptor-alpha. J Biol Chem 1999; 274:20818-25. [PMID: 10409622 DOI: 10.1074/jbc.274.30.20818] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interleukin (IL)-13 and IL-4 are pleiotropic immunoregulatory cytokines that share many overlapping biological properties reflecting the fact that both can utilize a receptor complex composed of the IL-4 receptor-alpha (IL-4Ralpha) chain and the IL-13Ralpha chain. The cytoplasmic domain of the IL-13Ralpha is 60 amino acids long and is essential for IL-13-dependent growth. It contains a Pro-rich domain in the membrane-proximal region and two Tyr residues. Here we show that a truncated IL-13Ralpha, lacking the 38 carboxyl-terminal residues but retaining the Pro-rich region, can support IL-13-dependent proliferation, although with reduced efficiency. A Y402F mutant of the cytoplasmic domain of IL-13Ralpha supported normal IL-13-induced growth. However, tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3), which we show is induced by IL-13 and IL-4 in cells that express the IL-13Ralpha, was significantly reduced. The cytoplasmic domain of IL-13Ralpha was constitutively associated with STAT3, Tyk2, and Janus kinase 1 (JAK1). IL-13-induced tyrosine phosphorylation of IL-13Ralpha in vivo could not be detected using anti-Tyr(P) antibodies. A glutathione S-transferase fusion protein of the cytoplasmic domain of IL-13Ralpha was phosphorylated on tyrosine in vitro by JAK1, JAK3, and Tyk2, although the tyrosine phosphorylation events mediated by Tyk2 and JAK3 were not detectable using anti-phosphotyrosine antibodies. These data, together with the demonstration that IL-13Ralpha associates constitutively with Tyk2 and that Tyr-402 is involved in IL-13-induced phosphorylation of STAT3, suggest that the latter is mediated by Tyk2. Tyrosine phosphorylation of STAT3, which was not necessary for IL-13-induced proliferation, may account for some of the effects of IL-4 and IL-13 on the function of their targets.
Collapse
Affiliation(s)
- P L Orchansky
- The Biomedical Research Centre, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | | | | | | |
Collapse
|
90
|
Galon J, Sudarshan C, Ito S, Finbloom D, O’Shea JJ. IL-12 Induces IFN Regulating Factor-1 (IRF-1) Gene Expression in Human NK and T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
IL-12 is a critical immunoregulatory cytokine that promotes cell-mediated immune responses and the differentiation of naive CD4+ cells to Th1 cells; however, relatively few IL-12 target genes have been identified. To better clarify the molecular basis of IL-12 action, we set out to characterize genes up-regulated by IL-12, first by contrasting IL-12- and IFN-α-inducible genes. We identified several genes up-regulated by IL-12, namely, MIP-1α, MIP-1β, IL-1RA, and IFN regulatory factor-1 (IRF-1). IRF-1 is a transcription factor regulated by IFNs that is also essential for Th1 responses. We demonstrated that IL-12 directly up-regulates IRF-1 to the same extent as IFN-α in normal human T cells and in NK cells. We showed that IL-12 had a direct effect on IRF-1, an effect not mediated indirectly by the induction of IFN-γ production. Furthermore, IL-2 and IL-12 synergistically induced IRF-1, whereas IFN-α and IL-12 did not. The participation of STAT4 in the regulation of IRF-1 was demonstrated in two ways. First, STAT4 was required for the IL-12-dependent transactivation of an IRF-1 reporter construct, and second, STAT4 binding to the IRF-1 promoter was shown using EMSA. In contrast to IL-12, no up-regulation of IRF-1 was found in IL-4-stimulated cells, and IL-4 did not block IL-12-dependent up-regulation of IRF-1. Therefore, IRF-1 may be an important contributor to IL-12 signaling, and we speculate that the defective IL-12 responses seen in IRF-1−/− mice might be attributable, in part, to the absence of this transcription factor.
Collapse
Affiliation(s)
- Jérôme Galon
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal Diseases, National Institutes of Health, and
| | - Chitra Sudarshan
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal Diseases, National Institutes of Health, and
| | - Satochi Ito
- †Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - David Finbloom
- †Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - John J. O’Shea
- *Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal Diseases, National Institutes of Health, and
| |
Collapse
|
91
|
Chen E, Gadina M, Chen M, O'Shea JJ. Advances in cytokine signaling: the role of Jaks and STATs. Transplant Proc 1999; 31:1482-7. [PMID: 10330976 DOI: 10.1016/s0041-1345(99)00013-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- E Chen
- Lymphocyte Cell Biology Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA
| | | | | | | |
Collapse
|
92
|
Yamamoto K, Shibata F, Miura O, Kamiyama R, Hirosawa S, Miyasaka N. Physical interaction between interleukin-12 receptor beta 2 subunit and Jak2 tyrosine kinase: Jak2 associates with cytoplasmic membrane-proximal region of interleukin-12 receptor beta 2 via amino-terminus. Biochem Biophys Res Commun 1999; 257:400-4. [PMID: 10198225 DOI: 10.1006/bbrc.1999.0479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IL-12 is a heterodimeric cytokine, composed of p40 and p35 subunits, that exerts its biological effects by binding to specific cell surface receptors. Two human IL-12 receptor proteins, designated IL-12R beta 1 and IL-12R beta 2, have been previously identified. IL-12R beta 2 has box 1 motif, box 2 motif, and three tyrosine residues in its cytoplasmic domain. In response to IL-12, Jak2 and Tyk2, family members of Janus family protein tyrosine kinases, are phosphorylated in PHA-activated T lymphocytes. The present study demonstrates that Jak2 binds to the cytoplasmic membrane-proximal region of IL-12R beta 2, and box 2 motif and tyrosine residues in the cytoplasmic domain were not required for binding. The amino-terminus of Jak2 is necessary for association with IL-12R beta 2.
Collapse
Affiliation(s)
- K Yamamoto
- First Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
93
|
Cacalano NA, Migone TS, Bazan F, Hanson EP, Chen M, Candotti F, O'Shea JJ, Johnston JA. Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J 1999; 18:1549-58. [PMID: 10075926 PMCID: PMC1171243 DOI: 10.1093/emboj/18.6.1549] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signaling through the hematopoietic receptors requires activation of receptor-associated Janus (Jak) kinases. For example, Jak1 and Jak3 bind specifically to the IL-2 receptor beta (IL-2Rbeta) and common gamma (gammac) chains, respectively, and initiate biochemical signals critical in controlling immune responses. The region of Jak responsible for receptor interactions, however, is not well characterized. Here we describe a naturally occurring Jak3 mutation from a patient with autosomal severe combined immunodeficiency (SCID), where a single amino acid substitution, Y100C, in Janus homology domain 7 (JH7) prevents kinase-receptor interaction. This mutation also results in a loss of IL-2-induced signaling in a B-cell line derived from this patient. Using mutational analysis we have identified a region of Jak3, including portions of JH6 and JH7, that is sufficient for kinase-receptor contact and show that this segment interacts with the proline-rich Box1 region of the receptor. Furthermore, a Jak3-Jak1 chimera containing only the JH6 and JH7 domains of Jak3 interacts with gammac and can reconstitute IL-2-dependent responses, including receptor phosphorylation and activation of signal transducer and activator of transcription (STAT) 5b. Our results suggest that the N-terminus of Jak kinases is critical for receptor binding, and is therefore likely to determine specificity of Jak kinase-receptor interactions.
Collapse
Affiliation(s)
- N A Cacalano
- DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Gadina M, Sudarshan C, O’Shea JJ. IL-2, But Not IL-4 and Other Cytokines, Induces Phosphorylation of a 98-kDa Protein Associated with SHP-2, Phosphatidylinositol 3′-Kinase, and Grb2. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Binding of IL-2 to its receptor activates several biochemical pathways, including JAK-STAT, Ras-mitogen-activated protein kinase, and phosphatidylinositol 3′-kinase (PI 3′-kinase) pathways. Recently, it has been shown that the SH2-containing phosphatase, SHP-2, becomes phosphorylated in response to IL-2 stimulation, associates with PI3′-kinase and Grb2, and can exert a positive regulatory role in IL-2 signaling. We now report the identification of a prominent 98-kDa protein (p98) found to be phosphorylated in response to IL-2 stimulation and coprecipitated with SHP-2, the p85 subunit of PI 3′-kinase and Grb2. Interestingly, whereas IL-4 is known to activate PI 3′-kinase, we did not observe any p98 phosphorylation in response to IL-4 stimulation. p98 can form a multipartite complex with all these proteins as immunodepleting with anti-p85 antiserum substantially reduced the amount of p98 immunoprecipitated by SHP-2 and Grb2; the converse was also true. Furthermore, phosphorylation of p98 did not occur in cells lacking JAK3, suggesting that it may be a JAK substrate. Finally, deglycosylation of p98 did not alter its migration, suggesting p98 is not a member of the recently described SHP substrate/signal-regulatory proteins family of transmembrane glycoproteins. Thus p98 is a prominent IL-2-dependent substrate that associates with multiple proteins involved in IL-2 signaling and may play an important role in coupling the different signal transduction pathways activated by IL-2.
Collapse
Affiliation(s)
- Massimo Gadina
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chitra Sudarshan
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John J. O’Shea
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
95
|
Carpenter LR, Yancopoulos GD, Stahl N. General mechanisms of cytokine receptor signaling. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:109-40. [PMID: 9917919 DOI: 10.1016/s0065-3233(08)60434-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- L R Carpenter
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA
| | | | | |
Collapse
|
96
|
Abstract
Receptors for interleukins, colony stimulating factors, and hormones have a homology in their extracellular regions, characterized by the conserved cysteine residues and the tryptophan-serine-x-tryptophan-serine motif, thus, they are classified to the type 1 cytokine receptor superfamily. Janus tyrosine kinase (JAKs) have been found to be involved in the signal transduction through type I cytokine receptors. JAKs associate with the membrane proximal region in the cytoplasmic domain having box1 and box2, which are conserved among the family, and upon the stimulation JAKs can be aggregated following the receptor dimerization and activated probably by transphosphorylation. JAKs then phosphorylate the receptor and various signal transducing molecules, including STATs (signal transducer and activator of transcriptions) and other SH2-containing adapter molecules. STATs were initially identified as transcription factors containing a SH2 domain and regulating interferons-inducible genes. STATs can be tyrosine phosphorylated by JAKs and form dimer (either hetero- or homo-dimers) to enter the nucleus, resulting in the expression of a set of genes. On the other hand, adapter molecules such as Shc, GRB2, and SHP-2 have been shown to link the cytokine receptors to Ras, followed by the activation of the Raf-MEK-MAP kinase pathway, leading to the activation of various transcription factors in the nucleus. These two signals are generated by different ways upon the stimulation of the receptors and they elicit a variety of biological functions in various cell types. In this review, we will discuss the mechanism by which cytokines activate JAKs, STATs, and a variety of adapter molecules. We further discuss the roles of each signal transduction pathways in the expression of biological activities of cytokines.
Collapse
Affiliation(s)
- M Hibi
- Division of Molecular Oncology, Osaka University Medical School, Japan
| | | |
Collapse
|
97
|
Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M, Alexander WS, Metcalf D, Hilton DJ, Nicola NA. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 1999; 18:375-85. [PMID: 9889194 PMCID: PMC1171132 DOI: 10.1093/emboj/18.2.375] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SOCS-1 (suppressor of cytokine signaling-1) is a representative of a family of negative regulators of cytokine signaling (SOCS-1 to SOCS-7 and CIS) characterized by a highly conserved C-terminal SOCS box preceded by an SH2 domain. This study comprehensively examined the ability of several SOCS family members to negatively regulate the gp130 signaling pathway. SOCS-1 and SOCS-3 inhibited both interleukin-6 (IL-6)- and leukemia inhibitory factor (LIF)-induced macrophage differentiation of murine monocytic leukemic M1 cells and LIF induction of a Stat3-responsive reporter construct in 293T fibroblasts. Deletion of amino acids 51-78 in the N-terminal region of SOCS-1 prevented inhibition of LIF signaling. The SOCS-1 and SOCS-3 N-terminal regions were functionally interchangeable, but this did not extend to other SOCS family members. Mutation of SH2 domains abrogated the ability of both SOCS-1 and SOCS-3 to inhibit LIF signal transduction. Unlike SOCS-1, SOCS-3 was unable to inhibit JAK kinase activity in vitro, suggesting that SOCS-1 and SOCS-3 act on the JAK-STAT pathway in different ways. Thus, although inhibition of signaling by SOCS-1 and SOCS-3 requires both the SH2 and N-terminal domains, their mechanisms of action appear to be biochemically different.
Collapse
Affiliation(s)
- S E Nicholson
- The Walter and Eliza Hall Institute of Medical Research and the Cooperative Research Center for Cellular Growth Factors, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Zhu M, John S, Berg M, Leonard WJ. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell 1999; 96:121-30. [PMID: 9989503 DOI: 10.1016/s0092-8674(00)80965-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using the coiled-coil region of Stat5b as the bait in a yeast two-hybrid screen, we identified the association of Nmi, a protein of unknown function previously reported as an N-Myc interactor. We further show that Nmi interacts with all STATs except Stat2. We evaluated two cytokine systems, IL-2 and IFNgamma, and demonstrate that Nmi augments STAT-mediated transcription in response to these cytokines. Interestingly, Nmi lacks an intrinsic transcriptional activation domain; instead, Nmi enhances the association of CBP/p300 coactivator proteins with Stat1 and Stat5, and together with CBP/p300 can augment IL-2- and IFNgamma-dependent transcription. Therefore, our data not only reveal that Nmi can potentiate STAT-dependent transcription, but also suggest that it can augment coactivator protein recruitment to at least some members of a group of sequence-specific transcription factors.
Collapse
Affiliation(s)
- M Zhu
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | |
Collapse
|
99
|
Bunting KD, Flynn KJ, Riberdy JM, Doherty PC, Sorrentino BP. Virus-specific immunity after gene therapy in a murine model of severe combined immunodeficiency. Proc Natl Acad Sci U S A 1999; 96:232-7. [PMID: 9874801 PMCID: PMC15122 DOI: 10.1073/pnas.96.1.232] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/1998] [Indexed: 11/18/2022] Open
Abstract
Human severe combined immunodeficiency (SCID) can be caused by defects in Janus kinase 3 (JAK3)-dependent cytokine signaling pathways. As a result, patients are at high risk of life-threatening infection. A JAK3 -/- SCID mouse model for the human disease has been used to test whether transplant with retrovirally transduced bone marrow (BM) cells (JAK3 BMT) could restore immunity to an influenza A virus. The immune responses also were compared directly with those for mice transplanted with wild-type BM (+/+ BMT). After infection, approximately 90% of the JAK3 BMT or +/+ BMT mice survived, whereas all of the JAK3 -/- mice died within 29 days. Normal levels of influenza-specific IgG were present in plasma from JAK3 BMT mice at 14 days after respiratory challenge, indicating restoration of B cell function. Influenza-specific CD4(+) and CD8(+) T cells were detected in the spleen and lymph nodes, and virus-specific CD8(+) effectors localized to the lungs of the JAK3 BMT mice. The kinetics of the specific host response correlated with complete clearance of the virus within 2 weeks of the initial exposure. By contrast, the JAK3 -/- mice did not show any evidence of viral immunity and were unable to control this viral pneumonia. Retroviral-mediated JAK3 gene transfer thus restores diverse aspects of cellular and humoral immunity and has obvious potential for human autologous BMT.
Collapse
Affiliation(s)
- K D Bunting
- Division of Experimental Hematology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
100
|
Heim MH. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 1999; 19:75-120. [PMID: 10071751 DOI: 10.3109/10799899909036638] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Jak-STAT pathway was originally discovered through the study of interferon induced intracellular signal transduction. Meanwhile, a large number of cytokines, hormones and growth factors have been found to activate Jaks and STATs. Jaks (Janus Kinases) are a unique class of tyrosine kinases that associate with cytokine receptors. Upon ligand binding, they activate members of the Signal Transducers and Activators of Transcription (STAT) family through phosphorylation on a single tyrosine. Activated STATs form dimers, translocate to the nucleus, bind to specific response elements in promotors of target genes, and transcriptionally activate these genes. Both positive and negative regulations of the Jak-STAT pathway have been identified. In a positive feedback loop, interferons transcriptionally activate the genes for components of the interferon stimulated gene factor 3 (ISGF3). A number of cytokines that activate the Jak-STAT pathway, e.g. IL-6, IL-4, LIF, G-CSF, have been shown to upregulate the expression of SOCS-JABs-SSIs, a recently discovered class of STAT inhibitors. Targeted disruption of genes for a number of Jaks and STATs in mice have revealed specific biological functions for many of them. Although most of the STATs are activated in cell culture by many different ligands, STAT knockout mice mostly show defects in a single or a few cytokine dependent processes. STAT1 knockout mice have an impaired interferon signalling, STAT4 knockouts impaired IL-12 signalling, STAT5a knockouts impaired prolactin signalling, STAT5b knockouts impaired growth hormone signalling, and STAT6 knockout impaired IL-4 and IL-13 signalling. Defects in the Jak-STAT pathway have already been identified in a number of human diseases. Prominent amongst them are leukaemias, lymphomas and inherited immunodeficiency syndromes. It can be expected that additional Jak-STAT related diseases will be identified over the next years. To date, specific STAT inhibitory drugs are not known, but a number of specific protein-protein interactions in the Jak-STAT pathway are potential targets for pharmaceutical interventions.
Collapse
Affiliation(s)
- M H Heim
- Department of Research, University Hospital Basel, Switzerland
| |
Collapse
|