51
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
52
|
Sadick H, Schäfer E, Weiss C, Rotter N, Müller C, Birk R, Sadick M, Häussler D. An in vitro study on the effect of bevacizumab on endothelial cell proliferation and VEGF concentration level in patients with hereditary hemorrhagic telangiectasia. Exp Ther Med 2022; 24:555. [PMID: 35978926 PMCID: PMC9366282 DOI: 10.3892/etm.2022.11493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
Previous studies have demonstrated that vascular endothelial growth factor (VEGF) is upregulated in patients with hereditary hemorrhagic telangiectasia (HHT). The use of Bevacizumab as an anti-angiogenic treatment agent seems promising. The purpose of the present in vitro study was to determine the efficacy and potential toxicity levels of bevacizumab on cell proliferation and VEGF concentrations in endothelial cells of HHT patients. In this in vitro study, endothelial cells from patients with HHT and HUVECs (control) were incubated with different concentration levels of bevacizumab (2, 4, 6, 8 or 10 mg/ml). After 24, 48 or 72 h, the cell proliferation was assessed by Alamar Blue® Assay and the VEGF levels in the cell culture supernatants were measured by VEGF-ELISA. All endothelial cells incubated with bevacizumab showed an initial decrease in cell proliferation. Cell proliferation recovered within 72 h in cell cultures incubated with concentration levels of up to 4 mg/ml bevacizumab, whereas those incubated with higher concentration levels showed a continuous decline in cell proliferation. VEGF expression decreased after 24 h in cell cultures incubated with bevacizumab concentration levels of 2 and 4 mg/ml but increased again after 48 h. Cell cultures incubated with bevacizumab concentration levels of 10 mg/ml showed a constant decline in VEGF expression without any tendency for recovery. Translating these results into daily clinical practice, the present study suggests that the intranasal submucosal injection of bevacizumab in HHT patients should not exceed a concentration level of 4 mg/ml. Overall, higher bevacizumab concentration levels not only reduce VEGF expression but pose a higher risk of toxic effects on endothelial cells as they jeopardize cell proliferation.
Collapse
Affiliation(s)
- Haneen Sadick
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, D‑68135 Mannheim, Germany
| | - Elena Schäfer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, D‑68135 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, D‑68135 Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, D‑68135 Mannheim, Germany
| | - Cornelia Müller
- Department of Otorhinolaryngology, University Hospital Marburg, Philipps‑Universität Marburg, D‑35043 Marburg, Germany
| | - Richard Birk
- Department of Otorhinolaryngology, University Hospital Marburg, Philipps‑Universität Marburg, D‑35043 Marburg, Germany
| | - Maliha Sadick
- Clinic for Radiology and Nuclear Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, D‑68135 Mannheim, Germany
| | - Daniel Häussler
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, D‑68135 Mannheim, Germany
| |
Collapse
|
53
|
Han C, Lang MJ, Nguyen CL, Luna Melendez E, Mehta S, Turner GH, Lawton MT, Oh SP. Novel experimental model of brain arteriovenous malformations using conditional Alk1 gene deletion in transgenic mice. J Neurosurg 2022; 137:163-174. [PMID: 34740197 DOI: 10.3171/2021.6.jns21717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Hereditary hemorrhagic telangiectasia is the only condition associated with multiple inherited brain arteriovenous malformations (AVMs). Therefore, a mouse model was developed with a genetics-based approach that conditionally deleted the causative activin receptor-like kinase 1 (Acvrl1 or Alk1) gene. Radiographic and histopathological findings were correlated, and AVM stability and hemorrhagic behavior over time were examined. METHODS Alk1-floxed mice were crossed with deleter mice to generate offspring in which both copies of the Alk1 gene were deleted by Tagln-Cre to form brain AVMs in the mice. AVMs were characterized using MRI, MRA, and DSA. Brain AVMs were characterized histopathologically with latex dye perfusion, immunofluorescence, and Prussian blue staining. RESULTS Brains of 55 Tagln-Cre+;Alk12f/2f mutant mice were categorized into three groups: no detectable vascular lesions (group 1; 23 of 55, 42%), arteriovenous fistulas (AVFs) with no nidus (group 2; 10 of 55, 18%), and nidal AVMs (group 3; 22 of 55, 40%). Microhemorrhage was observed on MRI or MRA in 11 AVMs (50%). AVMs had the angiographic hallmarks of early nidus opacification, a tangle of arteries and dilated draining veins, and rapid shunting of blood flow. Latex dye perfusion confirmed arteriovenous shunting in all AVMs and AVFs. Microhemorrhages were detected adjacent to AVFs and AVMs, visualized by iron deposition, Prussian blue staining, and macrophage infiltration using CD68 immunostaining. Brain AVMs were stable on serial MRI and MRA in group 3 mice (mean age at initial imaging 2.9 months; mean age at last imaging 9.5 months). CONCLUSIONS Approximately 40% of transgenic mice satisfied the requirements of a stable experimental AVM model by replicating nidal anatomy, arteriovenous hemodynamics, and microhemorrhagic behavior. Transgenic mice with AVFs had a recognizable phenotype of hereditary hemorrhagic telangiectasia but were less suitable for experimental modeling. AVM pathogenesis can be understood as the combination of conditional Alk1 gene deletion during embryogenesis and angiogenesis that is hyperactive in developing and newborn mice, which translates to a congenital origin in most patients but an acquired condition in patients with a confluence of genetic and angiogenic events later in life. This study offers a novel experimental brain AVM model for future studies of AVM pathophysiology, growth, rupture, and therapeutic regression.
Collapse
Affiliation(s)
- Chul Han
- 1Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | | | - Candice L Nguyen
- 1Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Ernesto Luna Melendez
- 3Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Shwetal Mehta
- 3Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Gregory H Turner
- 4Neuroimaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | - Michael T Lawton
- 1Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
- Departments of2Neurosurgery and
| | - S Paul Oh
- 1Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| |
Collapse
|
54
|
Martínez-Salgado C, Sánchez-Juanes F, López-Hernández FJ, Muñoz-Félix JM. Endothelial Activin Receptor-Like Kinase 1 (ALK1) Regulates Myofibroblast Emergence and Peritubular Capillary Stability in the Early Stages of Kidney Fibrosis. Front Pharmacol 2022; 13:843732. [PMID: 35770075 PMCID: PMC9234496 DOI: 10.3389/fphar.2022.843732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Renal tubulo-interstitial fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) in the tubular interstitium during chronic kidney disease. The main source of ECM proteins are emerging and proliferating myofibroblasts. The sources of myofibroblasts in the renal tubular interstitium have been studied during decades, in which the epithelial contribution of the myofibroblast population through the epithelial-to-mesenchymal (EMT) process was assumed to be the major mechanism. However, it is now accepted that the EMT contribution is very limited and other mechanisms such as the proliferation of local resident fibroblasts or the transdifferentiation of endothelial cells seem to be more relevant. Activin receptor-like kinase 1 (ALK1) is a type I receptor which belongs to the transforming growth factor beta (TGF-β) superfamily, with a key role in tissue fibrosis and production of ECM by myofibroblast. Predominantly expressed in endothelial cells, ALK1 also plays an important role in angiogenesis and vessel maturation, but the relation of these processes with kidney fibrosis is not fully understood. We show that after 3 days of unilateral ureteral obstruction (UUO), ALK1 heterozygous mice (Alk1+/−) display lower levels of kidney fibrosis associated to a lower number of myofibroblasts. Moreover, Alk1+/− mice have a lower degree of vascular rarefaction, showing improved peritubular microvasculature after UUO. All these data suggest an important role of ALK1 in regulating vascular rarefaction and emergence of myofibroblasts.
Collapse
Affiliation(s)
- Carlos Martínez-Salgado
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD)-REDINREN (ISCIII), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Carlos Martínez-Salgado, ; José M. Muñoz-Félix,
| | - Fernando Sánchez-Juanes
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - Francisco J. López-Hernández
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD)-REDINREN (ISCIII), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José M. Muñoz-Félix
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
- *Correspondence: Carlos Martínez-Salgado, ; José M. Muñoz-Félix,
| |
Collapse
|
55
|
Egido-Turrión C, Rossi E, Ollauri-Ibáñez C, Pérez-García ML, Sevilla MA, Bastida JM, González-Porras JR, Rodríguez-Barbero A, Bernabeu C, Lopez-Novoa JM, Pericacho M. Functional Alterations Involved in Increased Bleeding in Hereditary Hemorrhagic Telangiectasia Mouse Models. Front Med (Lausanne) 2022; 9:871903. [PMID: 35665360 PMCID: PMC9160577 DOI: 10.3389/fmed.2022.871903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal-dominant genetic disorder involving defects in two predominant genes known as endoglin (ENG; HHT-1) and activin receptor-like kinase 1 (ACVRL1/ALK1; HHT-2). It is characterized by mucocutaneous telangiectases that, due to their fragility, frequently break causing recurrent epistaxis and gastrointestinal bleeding. Because of the severity of hemorrhages, the study of the hemostasis involved in these vascular ruptures is critical to find therapies for this disease. Our results demonstrate that HHT patients with high bleeding, as determined by a high Epistaxis Severity Score (ESS), do not have prolonged clotting times or alterations in clotting factors. Considering that coagulation is only one of the processes involved in hemostasis, the main objective of this study was to investigate the overall mechanisms of hemostasis in HHT-1 (Eng+/−) and HHT-2 (Alk1+/−) mouse models, which do not show HHT vascular phenotypes in the meaning of spontaneous bleeding. In Eng+/− mice, the results of in vivo and in vitro assays suggest deficient platelet-endothelium interactions that impair a robust and stable thrombus formation. Consequently, the thrombus could be torn off and dragged by the mechanical force exerted by the bloodstream, leading to the reappearance of hemorrhages. In Alk1+/− mice, an overactivation of the fibrinolysis system was observed. These results support the idea that endoglin and Alk1 haploinsufficiency leads to a common phenotype of impaired hemostasis, but through different mechanisms. This contribution opens new therapeutic approaches to HHT patients' epistaxis.
Collapse
Affiliation(s)
- Cristina Egido-Turrión
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Elisa Rossi
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France
| | - Claudia Ollauri-Ibáñez
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - María L. Pérez-García
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Internal Medicine, Complejo Asistencial Universitario de Salamanca (CAUSA)-SACYL, Salamanca, Spain
| | - María A. Sevilla
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José María Bastida
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA)-SACYL, Salamanca, Spain
| | - José Ramón González-Porras
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA)-SACYL, Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José M. Lopez-Novoa
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Miguel Pericacho
| |
Collapse
|
56
|
Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int 2022; 2022:4460041. [PMID: 35615696 PMCID: PMC9126670 DOI: 10.1155/2022/4460041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.
Collapse
|
57
|
In the spotlight: the role of TGFβ signalling in haematopoietic stem and progenitor cell emergence. Biochem Soc Trans 2022; 50:703-712. [PMID: 35285494 PMCID: PMC9162451 DOI: 10.1042/bst20210363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Haematopoietic stem and progenitor cells (HSPCs) sustain haematopoiesis by generating precise numbers of mature blood cells throughout the lifetime of an individual. In vertebrates, HSPCs arise during embryonic development from a specialised endothelial cell population, the haemogenic endothelium (HE). Signalling by the Transforming Growth Factor β (TGFβ) pathway is key to regulate haematopoiesis in the adult bone marrow, but evidence for a role in the formation of HSPCs has only recently started to emerge. In this review, we examine recent work in various model systems that demonstrate a key role for TGFβ signalling in HSPC emergence from the HE. The current evidence underpins two seemingly contradictory views of TGFβ function: as a negative regulator of HSPCs by limiting haematopoietic output from HE, and as a positive regulator, by programming the HE towards the haematopoietic fate. Understanding how to modulate the requirement for TGFβ signalling in HSC emergence may have critical implications for the generation of these cells in vitro for therapeutic use.
Collapse
|
58
|
Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res 2022; 130:1204-1229. [PMID: 35420918 PMCID: PMC10032582 DOI: 10.1161/circresaha.121.319949] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. This review article focuses on the epidemiology, cause, mechanisms of injury, current treatment strategies, and future research directions of ICH. Incidence of hemorrhagic stroke has increased worldwide over the past 40 years, with shifts in the cause over time as hypertension management has improved and anticoagulant use has increased. Preclinical and clinical trials have elucidated the underlying ICH cause and mechanisms of injury from ICH including the complex interaction between edema, inflammation, iron-induced injury, and oxidative stress. Several trials have investigated optimal medical and surgical management of ICH without clear improvement in survival and functional outcomes. Ongoing research into novel approaches for ICH management provide hope for reducing the devastating effect of this disease in the future. Areas of promise in ICH therapy include prognostic biomarkers and primary prevention based on disease pathobiology, ultra-early hemostatic therapy, minimally invasive surgery, and perihematomal protection against inflammatory brain injury.
Collapse
Affiliation(s)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
59
|
García-Sanmartín J, Narro-Íñiguez J, Rodríguez-Barbero A, Martínez A. Endoglin and Activin Receptor-like Kinase 1 (Alk1) Modify Adrenomedullin Expression in an Organ-Specific Manner in Mice. BIOLOGY 2022; 11:biology11030358. [PMID: 35336733 PMCID: PMC8945164 DOI: 10.3390/biology11030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Hereditary hemorrhagic telangiectasia (HHT) is called a rare disease because it affects relatively few people. It is characterized by malformations in some blood vessels and usually results in profuse nose bleedings. In a recent article, we found that these patients have higher levels of adrenomedullin (AM), a molecule with cardiovascular activities, than healthy people. Thus we wanted to know whether the mutations that cause the HHT disease are directly responsible for these higher levels of AM. To investigate this issue, we used mutant mice, which express lower levels of the genes involved in the disease (called Eng and Acvrl1), and measured how much AM was found in different tissues. Although we expected a higher amount of AM in all organs, that was not the case. Some organs showed no variation, some had lower levels of AM than normal mice (fat, skin, and adrenals), and others had a higher expression (cerebellum and colon). Interestingly, our results suggest that these genes and the related molecule BMP-9 may have novel functions, which have not been yet investigated, which may shed more light on the physiopathology of HHT. Abstract Hereditary hemorrhagic telangiectasia (HHT) is a rare disease characterized by vascular malformations and profuse bleeding. The disease is caused by mutations in the components of the BMP-9 receptor: endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes. Recently, we reported that HHT patients expressed higher serum levels of adrenomedullin (AM) than healthy volunteers; thus, we studied the expression of AM (by enzyme immunoassay, qRT-PCR, immunohistochemistry, and Western blotting) in mice deficient in either one of the receptor components to investigate whether these defects may be the cause of that elevated AM in patients. We found that AM expression is not affected by these mutations in a consistent pattern. On the contrary, in some organs (blood, lungs, stomach, pancreas, heart, kidneys, ovaries, brain cortex, hippocampus, foot skin, and microvessels), there were no significant changes, whereas in others we found either a reduced expression (fat, skin, and adrenals) or an enhanced production of AM (cerebellum and colon). These results contradict our initial hypothesis that the increased AM expression found in HHT patients may be due directly to the mutations, but open intriguing questions about the potential phenotypic manifestations of Eng and Acvrl1 mutants that have not yet been studied and that may offer, in the future, a new focus for research on HHT.
Collapse
Affiliation(s)
- Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Judit Narro-Íñiguez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Alicia Rodríguez-Barbero
- Vascular Endothelium Pathophysiology (ENDOVAS) Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain;
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
- Correspondence: ; Tel.: +34-941278775
| |
Collapse
|
60
|
de Jong A, Sier VQ, Peters HAB, Schilder NKM, Jukema JW, Goumans MJTH, Quax PHA, de Vries MR. Interfering in the ALK1 Pathway Results in Macrophage-Driven Outward Remodeling of Murine Vein Grafts. Front Cardiovasc Med 2022; 8:784980. [PMID: 35187106 PMCID: PMC8850982 DOI: 10.3389/fcvm.2021.784980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023] Open
Abstract
Aims Vein grafts are frequently used to bypass coronary artery occlusions. Unfortunately, vein graft disease (VGD) causes impaired patency rates. ALK1 mediates signaling by TGF-β via TGFβR2 or BMP9/10 via BMPR2, which is an important pathway in fibrotic, inflammatory, and angiogenic processes in vascular diseases. The role of the TGF-β pathway in VGD is previously reported, however, the contribution of ALK1 signaling is not known. Therefore, we investigated ALK1 signaling in VGD in a mouse model for vein graft disease using either genetic or pharmacological inhibition of the Alk1 signaling. Methods and Results Male ALK1 heterozygous (ALK1+/−), control C57BL/6, as well as hypercholesterolemic ApoE3*Leiden mice, underwent vein graft surgery. Histologic analyses of ALK1+/− vein grafts demonstrated increased outward remodeling and macrophage accumulation after 28 days. In hypercholesterolemic ApoE3*Leiden mice receiving weekly ALK1-Fc injections, ultrasound imaging showed 3-fold increased outward remodeling compared to controls treated with control-Fc, which was confirmed histologically. Moreover, ALK1-Fc treatment reduced collagen and smooth muscle cell accumulation, increased macrophages by 1.5-fold, and resulted in more plaque dissections. No difference was observed in intraplaque neovessel density. Flow cytometric analysis showed increased systemic levels of Ly6CHigh monocytes in ALK1-Fc treated mice, supported by in vitro increased MCP-1 and IL-6 production of LPS-stimulated and ALK1-Fc-treated murine monocytes and macrophages. Conclusion Reduced ALK1 signaling in VGD promotes outward remodeling, increases macrophage influx, and promotes an unstable plaque phenotype. Translational Perspective Vein graft disease (VGD) severely hampers patency rates of vein grafts, necessitating research of key disease-driving pathways like TGF-β. The three-dimensional nature of VGD together with the multitude of disease driving factors ask for a comprehensive approach. Here, we combined in vivo ultrasound imaging, histological analyses, and conventional in vitro analyses, identifying the ambiguous role of reduced ALK1 signaling in vein graft disease. Reduced ALK1 signaling promotes outward remodeling, increases macrophage influx, and promotes an unstable plaque phenotype in murine vein grafts. Characterization of in vivo vascular remodeling over time is imperative to monitor VGD development and identify new therapies.
Collapse
Affiliation(s)
- Alwin de Jong
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrika A. B. Peters
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Natalia K. M. Schilder
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Margreet R. de Vries
| |
Collapse
|
61
|
Medina-Jover F, Riera-Mestre A, Viñals F. Rethinking growth factors: the case of BMP9 during vessel maturation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R1-R14. [PMID: 35350597 PMCID: PMC8942324 DOI: 10.1530/vb-21-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation. Alterations in this pathway lead to the development of hereditary haemorrhagic telangiectasias. However, little was known about the BMP9 signalling cascade until the last years. Recent reports have shown that while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance endothelial maturation. In light of this evidence, a new criterion for the classification of cytokines is proposed here, based on the physiological objective of the activation of anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis or to promote a specific function such as matrix formation is a critical characteristic that needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic angiogenesis.
Collapse
Affiliation(s)
- Ferran Medina-Jover
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
62
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
63
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
64
|
Riera-Mestre A, Cerdà P, Iriarte A, Graupera M, Viñals F. Translational medicine in hereditary hemorrhagic telangiectasia. Eur J Intern Med 2022; 95:32-37. [PMID: 34538686 DOI: 10.1016/j.ejim.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022]
Abstract
Scientific community have gained lots of new insights in the genetic and biochemical background of different conditions, rare diseases included, settling the basis for preclinical models that are helping to identify new biomarkers and therapeutic targets. Translational Medicine (TM) is an interdisciplinary area of biomedicine with an essential role in bench-to-bedside transition enhancement, generating a circular flow of knowledge transference between research environment and clinical setting, always centered in patient needs. Here, we present different tools used in TM and an overview of what is being done related to hereditary hemorrhagic telangiectasia (HHT), as a disease's model. This work is focused on how this combination of basic and clinical research impacts in HHT patient's daily clinical management and also looking into the future. Further randomized clinical trials with HHT patients should assess the findings of this bench-to-bedside transition. The benefits of this basic and clinical research combination, may not only be important for HHT patients but for patients with other vascular diseases sharing angiogenic disturbances.
Collapse
Affiliation(s)
- A Riera-Mestre
- HHT Unit. Internal Medicine Department. Hospital Universitari Bellvitge, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Barcelona 08907, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain.
| | - P Cerdà
- HHT Unit. Internal Medicine Department. Hospital Universitari Bellvitge, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Barcelona 08907, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Iriarte
- HHT Unit. Internal Medicine Department. Hospital Universitari Bellvitge, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Barcelona 08907, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - M Graupera
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona 08916, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - F Viñals
- Physiological Sciences Department. Faculty of Medicine and Health Sciences. Universitat de Barcelona, Barcelona, Spain; Program Against Cancer Therapeutic Resistance, Hospital Duran i Reynals, Institut Catala d'Oncologia, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
65
|
Ito K, Fujie T, Shimomura M, Nakano T, Yamamoto C, Kaji T. TGF-β 1 Potentiates the Cytotoxicity of Cadmium by Induction of a Metal Transporter, ZIP8, Mediated by the ALK5-Smad2/3 and ALK5-Smad3-p38 MAPK Signal Pathways in Cultured Vascular Endothelial Cells. Int J Mol Sci 2021; 23:ijms23010448. [PMID: 35008873 PMCID: PMC8745387 DOI: 10.3390/ijms23010448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 01/23/2023] Open
Abstract
Vascular endothelial cells cover the luminal surface of blood vessels in a monolayer and play a role in the regulation of vascular functions, such as the blood coagulation-fibrinolytic system. When the monolayer is severely or repeatedly injured, platelets aggregate at the damaged site and release transforming growth factor (TGF)-β1 in large quantities from their α-granules. Cadmium is a heavy metal that is toxic to various organs, including the kidneys, bones, liver, and blood vessels. Our previous study showed that the expression level of Zrt/Irt-related protein 8 (ZIP8), a metal transporter that transports cadmium from the extracellular fluid into the cytosol, is a crucial factor in determining the sensitivity of vascular endothelial cells to cadmium cytotoxicity. In the present study, TGF-β1 was discovered to potentiate cadmium-induced cytotoxicity by increasing the intracellular accumulation of cadmium in cells. Additionally, TGF-β1 induced the expression of ZIP8 via the activin receptor-like kinase 5-Smad2/3 signaling pathways; Smad3-mediated induction of ZIP8 was associated with or without p38 mitogen-activated protein kinase (MAPK). These results suggest that the cytotoxicity of cadmium to vascular endothelial cells increases when damaged endothelial monolayers that are highly exposed to TGF-β1 are repaired.
Collapse
Affiliation(s)
- Keisuke Ito
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.I.); (M.S.); (T.N.)
| | - Tomoya Fujie
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan;
| | - Masahiro Shimomura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.I.); (M.S.); (T.N.)
| | - Tsuyoshi Nakano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.I.); (M.S.); (T.N.)
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan;
- Correspondence: (C.Y.); (T.K.); Tel.: +81-(0)4-7472-1827 (C.Y.); +81-(0)4-7121-3621 (T.K.)
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.I.); (M.S.); (T.N.)
- Correspondence: (C.Y.); (T.K.); Tel.: +81-(0)4-7472-1827 (C.Y.); +81-(0)4-7121-3621 (T.K.)
| |
Collapse
|
66
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
67
|
Connective Tissue Disorders and Cardiovascular Complications: The Indomitable Role of Transforming Growth Factor-β Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:161-184. [PMID: 34807419 DOI: 10.1007/978-3-030-80614-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that segregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. With overwhelming evidence of the involvement of aberrant Transforming Growth Factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in the relationship between connective tissue disorders and their associated cardiovascular complications. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, the heritable connective tissue syndromes related to aberrant TGF-β signaling, and will discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system.
Collapse
|
68
|
Witten MR, Wu L, Lai CT, Kapilashrami K, Pusey M, Gallagher K, Chen Y, Yao W. Inhibition of ALK2 with bicyclic pyridyllactams. Bioorg Med Chem Lett 2021; 55:128452. [PMID: 34780900 DOI: 10.1016/j.bmcl.2021.128452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022]
Abstract
Activin receptor-like kinase 2 (ALK2) has been implicated as a key target in multiple rare diseases. Herein, we describe the design of a novel bicyclic lactam series of potent and selective ALK2 inhibitors. This manuscript details an improvement in potency of two orders of magnitude from the initial bicyclic structure as well as a two-fold improvement in cellular potency from the original monocyclic inhibitor. Furthermore, we provide a detailed strategy for progressing this project in the future.
Collapse
Affiliation(s)
- Michael R Witten
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States.
| | - Liangxing Wu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Cheng-Tsung Lai
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Kanishk Kapilashrami
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Michelle Pusey
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Karen Gallagher
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Yaoyu Chen
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Wenqing Yao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| |
Collapse
|
69
|
The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement? Cancers (Basel) 2021; 13:cancers13215412. [PMID: 34771575 PMCID: PMC8582496 DOI: 10.3390/cancers13215412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The modulation of tumor blood vessels is a great opportunity for improving cancer therapies. Understanding the cellular and molecular players that regulate the biology of tumor blood vessels and tumor angiogenesis is necessary for the development of new anti-tumor strategies. Bone morphogenetic protein 9 (BMP9) is a circulating factor with multiple effects in vascular biology through its receptor activin receptor-like kinase 1 (ALK1). In this review, we give an overview of the possible benefits of modulating BMP9–ALK1 functions for cancer therapy improvement. Abstract The improvement of cancer therapy efficacy, the extension of patient survival and the reduction of adverse side effects are major challenges in cancer research. Targeting blood vessels has been considered a promising strategy in cancer therapy. Since the tumor vasculature is disorganized, leaky and triggers immunosuppression and tumor hypoxia, several strategies have been studied to modify tumor vasculature for cancer therapy improvement. Anti-angiogenesis was first described as a mechanism to prevent the formation of new blood vessels and prevent the oxygen supply to tumor cells, showing numerous limitations. Vascular normalization using low doses of anti-angiogenic drugs was purposed to overcome the limitations of anti-angiogenic therapies. Other strategies such as vascular promotion or the induction of high endothelial venules are being studied now to improve cancer therapy. Bone morphogenetic protein 9 (BMP9) exerts a dual effect through the activin receptor-like kinase 1 (ALK1) receptor in blood vessel maturation or activation phase of angiogenesis. Thus, it is an interesting pathway to target in combination with chemotherapies or immunotherapies. This review manuscript explores the effect of the BMP9–ALK1 pathway in tumor angiogenesis and the possible usefulness of targeting this pathway in anti-angiogenesis, vascular normalization or vascular promotion therapies.
Collapse
|
70
|
Shaligram SS, Zhang R, Zhu W, Ma L, Luo M, Li Q, Weiss M, Arnold T, Santander N, Liang R, do Prado L, Tang C, Pan F, Oh SP, Pan P, Su H. Bone Marrow-Derived Alk1 Mutant Endothelial Cells and Clonally Expanded Somatic Alk1 Mutant Endothelial Cells Contribute to the Development of Brain Arteriovenous Malformations in Mice. Transl Stroke Res 2021; 13:494-504. [PMID: 34674144 PMCID: PMC9021325 DOI: 10.1007/s12975-021-00955-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that deletion of activin receptor-like kinase 1 (Alk1) or endoglin in a fraction of endothelial cells (ECs) induces brain arteriovenous malformations (bAVMs) in adult mice upon angiogenic stimulation. Here, we addressed three related questions: (1) could Alk1- mutant bone marrow (BM)-derived ECs (BMDECs) cause bAVMs? (2) is Alk1- ECs clonally expended during bAVM development? and (3) is the number of mutant ECs correlates to bAVM severity? For the first question, we transplanted BM from PdgfbiCreER;Alk12f/2f mice (EC-specific tamoxifen-inducible Cre with Alk1-floxed alleles) into wild-type mice, and then induced bAVMs by intra-brain injection of an adeno-associated viral vector expressing vascular endothelial growth factor and intra-peritoneal injection of tamoxifen. For the second question, clonal expansion was analyzed using PdgfbiCreER;Alk12f/2f;confetti+/- mice. For the third question, we titrated tamoxifen to limit Alk1 deletion and compared the severity of bAVM in mice treated with low and high tamoxifen doses. We found that wild-type mice with PdgfbiCreER;Alk12f/2f BM developed bAVMs upon VEGF stimulation and Alk1 gene deletion in BMDECs. We also observed clusters of ECs expressing the same confetti color within bAVMs and significant proliferation of Alk1- ECs at early stage of bAVM development, suggesting that Alk1- ECs clonally expanded by local proliferation. Tamoxifen dose titration revealed a direct correlation between the number of Alk1- ECs and the burden of dysplastic vessels in bAVMs. These results provide novel insights for the understanding of the mechanism by which a small fraction of Alk1 or endoglin mutant ECs contribute to development of bAVMs.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Rui Zhang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Li Ma
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Man Luo
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Qiang Li
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Miriam Weiss
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Thomas Arnold
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Nicolas Santander
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rich Liang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Leandro do Prado
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Chaoliang Tang
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Felix Pan
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA. .,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
71
|
Abstract
Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.
Collapse
|
72
|
Ring NY, Latif MA, Hafezi-Nejad N, Holly BP, Weiss CR. Prevalence of and Factors Associated with Arterial Aneurysms in Patients with Hereditary Hemorrhagic Telangiectasia: 17-Year Retrospective Series of 418 Patients. J Vasc Interv Radiol 2021; 32:1661-1669. [PMID: 34478850 DOI: 10.1016/j.jvir.2021.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 08/22/2021] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To estimate the prevalence of and identify characteristics associated with the presence of aneurysms in a cohort of patients with hereditary hemorrhagic telangiectasia (HHT). MATERIALS AND METHODS In the study institution's HHT database, 418 patients with a definite HHT diagnosis were identified based on the clinical Curaçao criteria and/or an HHT-associated genetic mutation. Regression modeling was used to evaluate the association between arterial aneurysms and older age, male sex, smoking, alcohol consumption, hypertension, hyperlipidemia, genetic mutations, the presence of arteriovenous malformations (AVMs) unrelated to the aneurysms, and HHT-related genetic mutations. RESULTS Forty-three (10.3%) patients had at least 1 aneurysm. Sixteen (3.8%) patients had multiple aneurysms. Of the variables analyzed, older age (odds ratio [OR] = 1.02; 95% confidence interval [CI]: 1.0-1.1), the presence of anatomically and flow-unrelated AVMs (OR = 3.2; 95% CI: 1.3-8.0), and the presence of activin A receptor type II-like 1 (ACVRL1) mutation (OR = 4.0; 95% CI: 1.5-10) were associated with the presence of at least 1 aneurysm. CONCLUSIONS In this cohort of patients with HHT, the prevalence of intracranial and visceral arterial aneurysms was estimated to be 10.3%. Older age, the presence of unrelated AVMs, and the presence of the ACVRL1 mutation were associated with the presence of arterial aneurysms. Further study is required to assess the clinical importance and risk of rupture of aneurysms in patients with HHT.
Collapse
Affiliation(s)
- Natalie Y Ring
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad A Latif
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology and Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Nima Hafezi-Nejad
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian P Holly
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Clifford R Weiss
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
73
|
Schimmel K, Ali MK, Tan SY, Teng J, Do HM, Steinberg GK, Stevenson DA, Spiekerkoetter E. Arteriovenous Malformations-Current Understanding of the Pathogenesis with Implications for Treatment. Int J Mol Sci 2021; 22:ijms22169037. [PMID: 34445743 PMCID: PMC8396465 DOI: 10.3390/ijms22169037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Arteriovenous malformations are a vascular anomaly typically present at birth, characterized by an abnormal connection between an artery and a vein (bypassing the capillaries). These high flow lesions can vary in size and location. Therapeutic approaches are limited, and AVMs can cause significant morbidity and mortality. Here, we describe our current understanding of the pathogenesis of arteriovenous malformations based on preclinical and clinical findings. We discuss past and present accomplishments and challenges in the field and identify research gaps that need to be filled for the successful development of therapeutic strategies in the future.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.S.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Md Khadem Ali
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.S.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Serena Y. Tan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Joyce Teng
- Department of Dermatology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Huy M. Do
- Department of Radiology (Neuroimaging and Neurointervention), Stanford University, Stanford, CA 94305, USA;
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA 94305, USA;
| | - Gary K. Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA 94305, USA;
| | - David A. Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA 94305, USA;
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.S.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-(650)-739-5031
| |
Collapse
|
74
|
Mahendra Y, He M, Rouf MA, Tjakra M, Fan L, Wang Y, Wang G. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clin Biomech (Bristol, Avon) 2021; 88:105417. [PMID: 34246943 DOI: 10.1016/j.clinbiomech.2021.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.
Collapse
Affiliation(s)
- Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Longling Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
75
|
Ten Dijke P, Baker D. Fine-tuning ALK1 linear polyubiquitination to control angiogenesis. Trends Cell Biol 2021; 31:705-707. [PMID: 34330579 DOI: 10.1016/j.tcb.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/28/2023]
Abstract
Editing linear polyubiquitination of protein substrates by LUBAC and OTULIN is known to play a critical role in immune responses. A recent study by Fu et al. reveals how reversible linear polyubiquitination of the activin receptor-like kinase (ALK1) controls developmental angiogenesis and how its dysfunction leads to vascular malformations in humans.
Collapse
Affiliation(s)
- Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - David Baker
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
76
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
77
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
78
|
Inhibiting Endothelial Cell Function in Normal and Tumor Angiogenesis Using BMP Type I Receptor Macrocyclic Kinase Inhibitors. Cancers (Basel) 2021; 13:cancers13122951. [PMID: 34204675 PMCID: PMC8231556 DOI: 10.3390/cancers13122951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023] Open
Abstract
Angiogenesis, i.e., the formation of new blood vessels from pre-existing endothelial cell (EC)-lined vessels, is critical for tissue development and also contributes to neovascularization-related diseases, such as cancer. Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are among many secreted cytokines that regulate EC function. While several pharmacological anti-angiogenic agents have reached the clinic, further improvement is needed to increase clinical efficacy and to overcome acquired therapy resistance. More insights into the functional consequences of targeting specific pathways that modulate blood vessel formation may lead to new therapeutic approaches. Here, we synthesized and identified two macrocyclic small molecular compounds termed OD16 and OD29 that inhibit BMP type I receptor (BMPRI)-induced SMAD1/5 phosphorylation and downstream gene expression in ECs. Of note, OD16 and OD29 demonstrated higher specificity against BMPRI activin receptor-like kinase 1/2 (ALK1/2) than the commonly used small molecule BMPRI kinase inhibitor LDN-193189. OD29, but not OD16, also potently inhibited VEGF-induced extracellular regulated kinase MAP kinase phosphorylation in ECs. In vitro, OD16 and OD29 exerted strong inhibition of BMP9 and VEGF-induced ECs migration, invasion and cord formation. Using Tg (fli:EGFP) zebrafish embryos, we found that OD16 and OD29 potently antagonized dorsal longitudinal anastomotic vessel (DLAV), intra segmental vessel (ISV), and subintestinal vessel (SIV) formation during embryonic development. Moreover, the MDA-MB-231 breast cancer cell-induced tumor angiogenesis in zebrafish embryos was significantly decreased by OD16 and OD29. Both macrocyclic compounds might provide a steppingstone for the development of novel anti-angiogenesis therapeutic agents.
Collapse
|
79
|
Bouvard C, Tu L, Rossi M, Desroches-Castan A, Berrebeh N, Helfer E, Roelants C, Liu H, Ouarne M, Chaumontel N, Mallet C, Battail C, Bikfalvi A, Humbert M, Savale L, Daubon T, Perret P, Tillet E, Guignabert C, Bailly S. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10. Cardiovasc Res 2021; 118:1805-1820. [PMID: 34086873 PMCID: PMC9215199 DOI: 10.1093/cvr/cvab187] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Aims BMP9 and BMP10 mutations were recently identified in patients with pulmonary arterial hypertension, but their specific roles in the pathogenesis of the disease are still unclear. We aimed to study the roles of BMP9 and BMP10 in cardiovascular homeostasis and pulmonary hypertension using transgenic mouse models deficient in Bmp9 and/or Bmp10. Methods and results Single- and double-knockout mice for Bmp9 (constitutive) and/or Bmp10 (tamoxifen inducible) were generated. Single-knock-out (KO) mice developed no obvious age-dependent phenotype when compared with their wild-type littermates. However, combined deficiency in Bmp9 and Bmp10 led to vascular defects resulting in a decrease in peripheral vascular resistance and blood pressure and the progressive development of high-output heart failure and pulmonary hemosiderosis. RNAseq analysis of the lungs of the double-KO mice revealed differential expression of genes involved in inflammation and vascular homeostasis. We next challenged these mice to chronic hypoxia. After 3 weeks of hypoxic exposure, Bmp10-cKO mice showed an enlarged heart. However, although genetic deletion of Bmp9 in the single- and double-KO mice attenuated the muscularization of pulmonary arterioles induced by chronic hypoxia, we observed no differences in Bmp10-cKO mice. Consistent with these results, endothelin-1 levels were significantly reduced in Bmp9 deficient mice but not Bmp10-cKO mice. Furthermore, the effects of BMP9 on vasoconstriction were inhibited by bosentan, an endothelin receptor antagonist, in a chick chorioallantoic membrane assay. Conclusions Our data show redundant roles for BMP9 and BMP10 in cardiovascular homeostasis under normoxic conditions (only combined deletion of both Bmp9 and Bmp10 was associated with severe defects) but highlight specific roles under chronic hypoxic conditions. We obtained evidence that BMP9 contributes to chronic hypoxia-induced pulmonary vascular remodelling, whereas BMP10 plays a role in hypoxia-induced cardiac remodelling in mice.
Collapse
Affiliation(s)
- Claire Bouvard
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Martina Rossi
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | | | - Nihel Berrebeh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Elise Helfer
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Caroline Roelants
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France.,Inovarion, 75005, Paris, France
| | - Hequn Liu
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarne
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Chaumontel
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christophe Battail
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Andreas Bikfalvi
- INSERM U1029, Institut National de la Santé et de la Recherche Médicale, 33615, Pessac, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Thomas Daubon
- INSERM U1029, Institut National de la Santé et de la Recherche Médicale, 33615, Pessac, France.,Univ. Bordeaux, CNRS, IBGC, UMR5095, 33000, Bordeaux, France Bordeaux, France
| | - Pascale Perret
- Laboratory of Bioclinical Radiopharmaceutics, Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Emmanuelle Tillet
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Sabine Bailly
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
80
|
Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W. Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in moyamoya disease. CNS Neurosci Ther 2021; 27:908-918. [PMID: 33942536 PMCID: PMC8265944 DOI: 10.1111/cns.13646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION AND AIMS At present, the treatment for moyamoya disease (MMD) primarily consists of combined direct and indirect bypass surgery. Nevertheless, more than half of indirect bypass surgeries fail to develop good collaterals from the dura and temporal muscle. This study aimed to investigate whether microRNAs (miRNAs) in cerebrospinal fluid (CSF) could serve as biomarkers for the prediction of postoperative collateral formation. METHODS Moyamoya disease patients with indirect bypass surgery were divided into angiogenesis and non-angiogenesis groups, CSF was obtained, and miRNA sequencing was performed using the CSF. Candidate miRNAs were filtered and subsequently verified through qRT-PCR. The diagnostic utility of these differential miRNAs was investigated by using receiver operating characteristic (ROC) curve analysis. Finally, the potential biological processes and signaling pathways associated with candidate miRNAs were analyzed using R software. RESULTS The expression levels of four miRNAs (miR-92a-3p, miR-486-3p, miR-25-3p, and miR-155-5p) were significantly increased in the angiogenesis group. By combining these four miRNAs (area under the curve [AUC] =0.970), we established an accurate predictive model of collateral circulation after indirect bypass surgery in MMD patients. GO and KEGG analyses demonstrated a high correlation with biological processes and signaling pathways related to angiogenesis. CONCLUSION The 4-miRNA signature is a good model to predict angiogenesis after indirect bypass surgery and help the surgeon to select a appreciate bypass strategy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
81
|
Guo L, Wen X, Hou Y, Sun R, Zhang L, Liu F, Liu J. Dihydroartemisinin inhibits endothelial cell migration via the TGF-β1/ALK5/SMAD2 signaling pathway. Exp Ther Med 2021; 22:709. [PMID: 34007318 PMCID: PMC8120513 DOI: 10.3892/etm.2021.10141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Anti-angiogenesis therapy is a novel treatment method for malignant tumors. Endothelial cell (EC) migration is an important part of angiogenesis. Dihydroartemisinin (DHA) exhibits strong anti-angiogenic and anti-EC migration effects; however, the underlying molecular mechanisms are yet to be elucidated. The TGF-β1/activin receptor-like kinase 5 (ALK5)/SMAD2 signaling pathway serves an important role in the regulation of migration. The present study aimed to explore the effects of DHA treatment on EC migration and the TGF-β1/ALK5/SMAD2 signaling pathway. The effects of DHA on human umbilical vein EC migration were assessed using wound healing and Transwell assays. The effects of DHA on the TGF-β1/ALK5/SMAD2 signaling pathway were detected using western blotting. DHA exhibited an inhibitory effect on EC migration in the wound healing and Transwell assays. DHA treatment upregulated the expression levels of ALK5 and increased the phosphorylation of SMAD2 in ECs. SB431542 rescued the inhibitory effect of DHA during EC migration. DHA inhibited EC migration via the TGF-β1/ALK5/SMAD2-dependent signaling pathway, and DHA may be a novel drug for the treatment of patients with malignant tumors.
Collapse
Affiliation(s)
- Ling Guo
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong University, Jinan, Shandong 250014, P.R. China.,Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaoqing Wen
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Rong Sun
- Advanced Medical Research Institute, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
82
|
Bone Morphogenic Protein Signaling and Melanoma. Curr Treat Options Oncol 2021; 22:48. [PMID: 33866453 DOI: 10.1007/s11864-021-00849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Malignant melanoma is a deadly form of skin cancer caused by neoplastic transformation of melanocytic cells. Despite recent progress in melanoma therapy, by inhibition of activated oncogenes or immunotherapy, survival rate for metastatic melanoma patients remains low. The remarkable phenotypic plasticity of melanoma cells allows for rapid development of invasive properties and metastatic tumors, the main cause of mortality in melanoma patients. Phenotypic and molecular analyses of developing tumors revealed that epithelial-mesenchymal transition (EMT), a cellular and molecular mechanism, controls transition from mature melanocyte to less differentiated melanocyte lineage progenitor cells forming melanoma tumors. This transition is facilitated by persistence of transcriptional regulatory circuit characteristic of embryonic stage in mature melanocytes. Switching of the developmental program of mature melanocyte to EMT is induced by accumulated mutations, especially targeting BRAF, N-RAS, or MEK1/2 signaling pathways, and further promoted by dynamic stimuli from local environment including hypoxia, interactions with extracellular matrix and growth factors or cytokines. Recent reports demonstrate that signaling mediated by transforming growth factor-β (TGF-β) and bone morphogenic proteins (BMPs) play critical roles in inducing EMT by controlling expression of critical transcription factors. BMPs are essential modulators of differentiation, proliferation, apoptosis, invasiveness, and metastases in developing melanoma tumors. They control transcription and epigenetic landscape of melanoma cells. Better understanding of the role of BMPs may lead to new strategies to control EMT processes in melanocyte cell lineage and to achieve clinical benefits for the patients.
Collapse
|
83
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
84
|
Zhuang J, Huang Y, Zheng W, Yang S, Zhu G, Wang J, Lin X, Ye J. TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer. Biol Chem 2021; 401:285-296. [PMID: 31188741 DOI: 10.1515/hsz-2019-0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
The gene encoding transmembrane protein 100 (TMEM100) was first discovered to be transcribed by the murine genome. It has been recently proven that TMEM100 contributes to hepatocellular carcinoma and non-small-cell lung carcinoma (NSCLC). This study investigates the impact of TMEM100 expression on gastric cancer (GC). TMEM100 expression was remarkably downregulated in GC samples compared to the surrounding non-malignant tissues (p < 0.01). Excessive TMEM100 expression prohibited the migration and invasion of GC cells without influencing their growth. However, TMEM100 knockdown restored their migration and invasion potential. Additionally, TMEM100 expression restored the sensitivity of GC cells to chemotherapeutic drugs such as 5-fluouracil (5-FU) and cisplatin. In terms of TMEM100 modulation, it was revealed that BMP9 rather than BMP10, is the upstream modulator of TM3M100. HIF1α downregulation modulated the impact of TMEM100 on cell migration, chemotherapy sensitivity and invasion in GC cells. Eventually, the in vivo examination of TMEM100 activity revealed that its upregulation prohibits the pulmonary metastasis of GC cells and increases the sensitivity of xenograft tumors to 5-FU treatment. In conclusion, TMEM100 serves as a tumor suppressor in GC and could be used as a promising target for the treatment of GC and as a predictor of GC clinical outcome.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Jinzhou Wang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Xiaohan Lin
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| |
Collapse
|
85
|
Bofarid S, Hosman AE, Mager JJ, Snijder RJ, Post MC. Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. Int J Mol Sci 2021; 22:3471. [PMID: 33801690 PMCID: PMC8038106 DOI: 10.3390/ijms22073471] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy.
Collapse
Affiliation(s)
- Sala Bofarid
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Anna E. Hosman
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Johannes J. Mager
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Repke J. Snijder
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Marco C. Post
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
- Department of Cardiology, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
86
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular "pressure overload", which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
Affiliation(s)
| | | | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (S.F.); (M.B.)
| |
Collapse
|
87
|
Leurs N, Martinand-Mari C, Ventéo S, Haitina T, Debiais-Thibaud M. Evolution of Matrix Gla and Bone Gla Protein Genes in Jawed Vertebrates. Front Genet 2021; 12:620659. [PMID: 33790944 PMCID: PMC8006282 DOI: 10.3389/fgene.2021.620659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Matrix Gla protein (Mgp) and bone Gla protein (Bgp) are vitamin-K dependent proteins that bind calcium in their γ-carboxylated versions in mammals. They are recognized as positive (Bgp) or negative (Mgp and Bgp) regulators of biomineralization in a number of tissues, including skeletal tissues of bony vertebrates. The Mgp/Bgp gene family is poorly known in cartilaginous fishes, which precludes the understanding of the evolution of the biomineralization toolkit at the emergence of jawed vertebrates. Here we took advantage of recently released genomic and transcriptomic data in cartilaginous fishes and described the genomic loci and gene expression patterns of the Mgp/Bgp gene family. We identified three genes, Mgp1, Mgp2, and Bgp, in cartilaginous fishes instead of the single previously reported Mgp gene. We describe their genomic loci, resulting in a dynamic evolutionary scenario for this gene family including several events of local (tandem) duplications, but also of translocation events, along jawed vertebrate evolution. We describe the expression patterns of Mgp1, Mgp2, and Bgp in embryonic stages covering organogenesis in the small-spotted catshark Scyliorhinus canicula and present a comparative analysis with Mgp/Bgp family members previously described in bony vertebrates, highlighting ancestral features such as early embryonic, soft tissues, and neuronal expressions, but also derived features of cartilaginous fishes such as expression in fin supporting fibers. Our results support an ancestral function of Mgp in skeletal mineralization and a later derived function of Bgp in skeletal development that may be related to the divergence of bony vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- ISEM, CNRS, IRD, EPHE, Univ. Montpellier, Montpellier, France
| | | | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Inserm UMR 1051, Univ. Montpellier, Montpellier, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
88
|
Tazat K, Pomeraniec-Abudy L, Hector-Greene M, Szilágyi SS, Sharma S, Cai EM, Corona AL, Ehrlich M, Blobe GC, Henis YI. ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Mol Biol Cell 2021; 32:605-621. [PMID: 33566682 PMCID: PMC8101464 DOI: 10.1091/mbc.e20-03-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | - Swati Sharma
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elise M Cai
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Armando L Corona
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
89
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
90
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
91
|
Du J, Yin G, Hu Y, Shi S, Jiang J, Song X, Zhang Z, Wei Z, Tang C, Lyu H. Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFβ/ALK1/Smad1/5 signaling pathway. Aging (Albany NY) 2020; 13:877-893. [PMID: 33290255 PMCID: PMC7835068 DOI: 10.18632/aging.202194] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Background: Ischemic stroke is a devastating disease that causes long-term disability. However, its pathogenesis is unclear, and treatments for ischemic stroke are limited. Recent studies indicate that oxidative stress is involved in the pathological progression of ischemic stroke and that angiogenesis participates in recovery from ischemic stroke. Furthermore, previous studies have shown that Coicis Semen has antioxidative and anti-inflammatory effects in a variety of diseases. In the present study, we investigated whether Coicis Semen has a protective effect against ischemic stroke and the mechanism of this protective effect. Results: Coicis Semen administration significantly decreased the infarct volume and mortality and alleviated neurological deficits at 3, 7 and 14 days after MCAO. In addition, cerebral edema at 3 days poststroke was ameliorated by Coicis Semen treatment. DHE staining showed that ROS levels in the vehicle group were increased at 3 days after reperfusion and then gradually declined, but Coicis Semen treatment reduced ROS levels. The levels of GSH and SOD in the brain were increased by Coicis Semen treatment, while MDA levels were reduced. Furthermore, Coicis Semen treatment decreased the extravasation of EB dye in MCAO mouse brains and elevated expression of the tight junction proteins ZO-1 and Occludin. Double immunofluorescence staining and western blot analysis showed that the expression of angiogenesis markers and TGFβ pathway-related proteins was increased by Coicis Semen administration. Consistent with the in vivo results, cytotoxicity assays showed that Coicis Semen substantially promoted HUVEC survival following OGD/RX in vitro. Additionally, though LY2109761 inhibited the activation of TGFβ signaling in OGD/RX model animals, Coicis Semen cotreatment markedly reversed the downregulation of TGFβ pathway-related proteins and increased VEGF levels. Methods: Adult male wild-type C57BL/6J mice were used to develop a middle cerebral artery occlusion (MCAO) stroke model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7 and 14 after staining. In addition, changes in superoxide dismutase (SOD), GSH and malondialdehyde (MDA) levels were detected with a commercial kit. Blood-brain barrier (BBB) permeability was assessed with Evans blue (EB) dye. Western blotting was also performed to measure the levels of tight junction proteins of the BBB. Additionally, ELISA was performed to measure the level of VEGF in the brain. The colocalization of CD31, angiogenesis markers, and Smad1/5 was assessed by double immunofluorescent staining. TGFβ pathway-related proteins were measured by western blotting. Furthermore, the cell viability of human umbilical vein endothelial cells (HUVECs) following oxygen-glucose deprivation/reoxygenation (OGD/RX) was measured by Cell Counting Kit (CCK)-8 assay. Conclusions: Coicis Semen treatment alleviates brain damage induced by ischemic stroke through inhibiting oxidative stress and promoting angiogenesis by activating the TGFβ/ALK1 signaling pathway.
Collapse
Affiliation(s)
- Jin Du
- Department of Neurosurgery, The People’s Hospital of Chizhou, Chizhou 247000, Anhui, China
| | - Guobing Yin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Yida Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Si Shi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiazhen Jiang
- Department of Emergency, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Xiaoyan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhetao Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Zeyuan Wei
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Haiyan Lyu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
92
|
HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020; 12:cancers12113299. [PMID: 33171691 PMCID: PMC7695342 DOI: 10.3390/cancers12113299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The inhibition of angiogenesis, relying on the use of drugs targeting the VEGF signaling pathway, has become one of the main strategies for cancer treatment. However, the intrinsic and acquired resistance to this type of therapy limit its efficacy. Thus, the identification of novel therapeutic targets is urgently needed. The resistance to anti-angiogenic treatment often occurs through the activation of alternative VEGF independent signaling pathways and recruitment of bone marrow-derived pro-angiogenic cells in the tumor microenvironment. HOX genes are key regulators of embryonic development, also involved in angiogenesis and in cancer progression. HOXB9 upregulation occurs in many types of cancer and it has been identified as a critical transcription factor involved in tumour resistance to anti-angiogenic drugs. Indeed, HOXB9 modulates the expression of alternative pro-angiogenic secreted factors in the tumour microenvironment leading tumor escape from the anti-angiogenic treatments. Hence, HOXB9 could serves as a novel therapeutic target to overcome the resistance to anti-angiogenic therapies. Abstract Angiogenesis is one of the hallmarks of cancer, and the inhibition of pro-angiogenic factors and or their receptors has become a primary strategy for cancer therapy. However, despite promising results in preclinical studies, the majority of patients either do not respond to these treatments or, after an initial period of response, they develop resistance to anti-angiogenic agents. Thus, the identification of a novel therapeutic target is urgently needed. Multiple mechanisms of resistance to anti-angiogenic therapy have been identified, including the upregulation of alternative angiogenic pathways and the recruitment of pro-angiogenic myeloid cells in the tumor microenvironment. Homeobox containing (HOX) genes are master regulators of embryonic development playing a pivotal role during both embryonic vasculogenesis and pathological angiogenesis in adults. The importance of HOX genes during cancer progression has been reported in many studies. In this review we will give a brief description of the HOX genes and their involvement in angiogenesis and cancer, with particular emphasis on HOXB9 as a possible novel target for anti-angiogenic therapy. HOXB9 upregulation has been reported in many types of cancers and it has been identified as a critical transcription factor involved in resistance to anti-angiogenic drugs.
Collapse
|
93
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
94
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
95
|
da Silva SM, Campos GD, Gomes FCA, Stipursky J. Radial Glia-endothelial Cells' Bidirectional Interactions Control Vascular Maturation and Astrocyte Differentiation: Impact for Blood-brain Barrier Formation. Curr Neurovasc Res 2020; 16:291-300. [PMID: 31633476 DOI: 10.2174/1567202616666191014120156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND In the developing cerebral cortex, Radial Glia (RG) multipotent neural stem cell, among other functions, differentiate into astrocytes and serve as a scaffold for blood vessel development. After some time, blood vessel Endothelial Cells (ECs) become associated with astrocytes to form the neurovascular Blood-Brain Barrier (BBB) unit. OBJECTIVE Since little is known about the mechanisms underlying bidirectional RG-ECs interactions in both vascular development and astrocyte differentiation, this study investigated the impact of interactions between RG and ECs mediated by secreted factors on EC maturation and gliogenesis control. METHODS First, we demonstrated that immature vasculature in the murine embryonic cerebral cortex physically interacts with Nestin positive RG neural stem cells in vivo. Isolated Microcapillary Brain Endothelial Cells (MBEC) treated with the conditioned medium from RG cultures (RG-CM) displayed decreased proliferation, reduction in the protein levels of the endothelial tip cell marker Delta-like 4 (Dll4), and decreased expression levels of the vascular permeability associated gene, plasmalemma vesicle-associated protein-1 (PLVAP1). These events were also accompanied by increased levels of the tight junction protein expression, zonula occludens-1 (ZO-1). RESULTS Finally, we demonstrated that isolated RG cells cultures treated with MBEC conditioned medium promoted the differentiation of astrocytes in a Vascular Endothelial Growth Factor-A (VEGF-A) dependent manner. CONCLUSION These results suggest that the bidirectional interaction between RG and ECs is essential to induce vascular maturation and astrocyte generation, which may be an essential cell-cell communication mechanism to promote BBB establishment.
Collapse
Affiliation(s)
- Siqueira M da Silva
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| | - Gisbert D Campos
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| | - Joice Stipursky
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| |
Collapse
|
96
|
Inducers of the endothelial cell barrier identified through chemogenomic screening in genome-edited hPSC-endothelial cells. Proc Natl Acad Sci U S A 2020; 117:19854-19865. [PMID: 32759214 DOI: 10.1073/pnas.1911532117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The blood-retina barrier and blood-brain barrier (BRB/BBB) are selective and semipermeable and are critical for supporting and protecting central nervous system (CNS)-resident cells. Endothelial cells (ECs) within the BRB/BBB are tightly coupled, express high levels of Claudin-5 (CLDN5), a junctional protein that stabilizes ECs, and are important for proper neuronal function. To identify novel CLDN5 regulators (and ultimately EC stabilizers), we generated a CLDN5-P2A-GFP stable cell line from human pluripotent stem cells (hPSCs), directed their differentiation to ECs (CLDN5-GFP hPSC-ECs), and performed flow cytometry-based chemogenomic library screening to measure GFP expression as a surrogate reporter of barrier integrity. Using this approach, we identified 62 unique compounds that activated CLDN5-GFP. Among them were TGF-β pathway inhibitors, including RepSox. When applied to hPSC-ECs, primary brain ECs, and retinal ECs, RepSox strongly elevated barrier resistance (transendothelial electrical resistance), reduced paracellular permeability (fluorescein isothiocyanate-dextran), and prevented vascular endothelial growth factor A (VEGFA)-induced barrier breakdown in vitro. RepSox also altered vascular patterning in the mouse retina during development when delivered exogenously. To determine the mechanism of action of RepSox, we performed kinome-, transcriptome-, and proteome-profiling and discovered that RepSox inhibited TGF-β, VEGFA, and inflammatory gene networks. In addition, RepSox not only activated vascular-stabilizing and barrier-establishing Notch and Wnt pathways, but also induced expression of important tight junctions and transporters. Taken together, our data suggest that inhibiting multiple pathways by selected individual small molecules, such as RepSox, may be an effective strategy for the development of better BRB/BBB models and novel EC barrier-inducing therapeutics.
Collapse
|
97
|
Hwan Kim Y, Vu PN, Choe SW, Jeon CJ, Arthur HM, Vary CPH, Lee YJ, Oh SP. Overexpression of Activin Receptor-Like Kinase 1 in Endothelial Cells Suppresses Development of Arteriovenous Malformations in Mouse Models of Hereditary Hemorrhagic Telangiectasia. Circ Res 2020; 127:1122-1137. [PMID: 32762495 DOI: 10.1161/circresaha.119.316267] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease caused by mutations in ENG, ALK1, or SMAD4. Since proteins from all 3 HHT genes are components of signal transduction of TGF-β (transforming growth factor β) family members, it has been hypothesized that HHT is a disease caused by defects in the ENG-ALK1-SMAD4 linear signaling. However, in vivo evidence supporting this hypothesis is scarce. OBJECTIVE We tested this hypothesis and investigated the therapeutic effects and potential risks of induced-ALK1 or -ENG overexpression (OE) for HHT. METHODS AND RESULTS We generated a novel mouse allele (ROSA26Alk1) in which HA (human influenza hemagglutinin)-tagged ALK1 and bicistronic eGFP expression are induced by Cre activity. We examined whether ALK1-OE using the ROSA26Alk1 allele could suppress the development of arteriovenous malformations (AVMs) in wounded adult skin and developing retinas of Alk1- and Eng-inducible knockout (iKO) mice. We also used a similar approach to investigate whether ENG-OE could rescue AVMs. Biochemical and immunofluorescence analyses confirmed the Cre-dependent OE of the ALK1-HA transgene. We could not detect any pathological signs in ALK1-OE mice up to 3 months after induction. ALK1-OE prevented the development of retinal AVMs and wound-induced skin AVMs in Eng-iKO as well as Alk1-iKO mice. ALK1-OE normalized expression of SMAD and NOTCH target genes in ENG-deficient endothelial cells (ECs) and restored the effect of BMP9 (bone morphogenetic protein 9) on suppression of phosphor-AKT levels in these endothelial cells. On the other hand, ENG-OE could not inhibit the AVM development in Alk1-iKO models. CONCLUSIONS These data support the notion that ENG and ALK1 form a linear signaling pathway for the formation of a proper arteriovenous network during angiogenesis. We suggest that ALK1 OE or activation can be an effective therapeutic strategy for HHT. Further research is required to study whether this therapy could be translated into treatment for humans.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (Y.H.K., S.-w.C., S.P.O.).,Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ (Y.H.K., S.P.O.)
| | - Phuong-Nhung Vu
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea (N.V.P., Y.J.L.)
| | - Se-Woon Choe
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (Y.H.K., S.-w.C., S.P.O.).,Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea (S.-w.C.)
| | - Chang-Jin Jeon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Korea (C.J.J.)
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University, United Kingdom (H.M.A.)
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (C.P.V.)
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea (N.V.P., Y.J.L.)
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (Y.H.K., S.-w.C., S.P.O.).,Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ (Y.H.K., S.P.O.)
| |
Collapse
|
98
|
Gah A, Adil MS, Sabbineni H, Verma A, Somanath PR. Differential regulation of TGFβ type-I receptor expressions in TGFβ1-induced myofibroblast differentiation. Can J Physiol Pharmacol 2020; 98:841-848. [PMID: 32702244 DOI: 10.1139/cjpp-2020-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast-to-myofibroblast (FibroMF) differentiation is crucial for embryogenesis and organ fibrosis. Although transforming growth factor-β (TGFβ) is the primary mediator of FibroMF differentiation, the type-I receptor (TGFβRI) responsible for this has not yet been confirmed. In the current study, we investigated the ALK1 and ALK5 expressions in TGFβ1-stimulated NIH 3T3 fibroblasts to compare with the data from the Gene Expression Omnibus (GEO) repository. In our results, whereas TGFβ1 treatment promoted FibroMF differentiation accompanied by increased ALK5 expression and reduced ALK1 expression, TGFβ1-induced FibroMF differentiation and increased α-smooth muscle actin (αSMA) and ALK5 expression were inhibited by co-treatment with ALK5 inhibitor SB431542. GEO database analysis indicated increased ALK5 expression and reduced ALK1 expression in fibrotic compared to normal mouse or human tissues correlating with organ fibrosis progression. Finally, the inhibitors of Akt, mTOR, and β-catenin suppressed TGFβ1-induced ALK5 expression, indicating that the Akt pathway promotes FibroMF differentiation via ALK5 expression and fibrosis.
Collapse
Affiliation(s)
- Asma Gah
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.,Department of Medicine, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
99
|
Pang C, Lim CS, Brookes J, Tsui J, Hamilton G. Emerging importance of molecular pathogenesis of vascular malformations in clinical practice and classifications. Vasc Med 2020; 25:364-377. [PMID: 32568624 DOI: 10.1177/1358863x20918941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular malformations occur during early vascular development resulting in abnormally formed vessels that can manifest as arterial, venous, capillary or lymphatic lesions, or in combination, and include local tissue overdevelopment. Vascular malformations are largely caused by sporadic somatic gene mutations. This article aims to review and discuss current molecular signaling pathways and therapeutic targets for vascular malformations and to classify vascular malformations according to the molecular pathways involved. A literature review was performed using Embase and Medline. Different MeSH terms were combined for the search strategy, with the aim of encompassing all studies describing the classification, pathogenesis, and treatment of vascular malformations. Major pathways involved in the pathogenesis of vascular malformations are vascular endothelial growth factor (VEGF), Ras/Raf/MEK/ERK, angiopoietin-TIE2, transforming growth factor beta (TGF-β), and PI3K/AKT/mTOR. These pathways are involved in controlling cellular growth, apoptosis, differentiation, and proliferation, and play a central role in endothelial cell signaling and angiogenesis. Many vascular malformations share similar aberrant molecular signaling pathways with cancers and inflammatory disorders. Therefore, selective anticancer agents and immunosuppressants may be beneficial in treating vascular malformations of specific mutations. The current classification systems of vascular malformations, including the International Society of the Study of Vascular Anomalies (ISSVA) classification, are primarily observational and clinical, and are not based on the molecular pathways involved in the pathogenesis of the condition. Several molecular pathways with potential therapeutic targets have been demonstrated to contribute to the development of various vascular anomalies. Classifying vascular malformations based on their molecular pathogenesis may improve treatment by determining the underlying nature of the condition and their potential therapeutic target.
Collapse
Affiliation(s)
- Calver Pang
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom
| | - Chung Sim Lim
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom.,NIHR, University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Jocelyn Brookes
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Interventional Radiology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Janice Tsui
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom.,NIHR, University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - George Hamilton
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom
| |
Collapse
|
100
|
Qiao C, Richter GT, Pan W, Jin Y, Lin X. Extracranial arteriovenous malformations: from bedside to bench. Mutagenesis 2020; 34:299-306. [PMID: 31613971 DOI: 10.1093/mutage/gez028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/14/2019] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous malformation (AVM) is defined as a fast-flow vascular anomaly that shunts blood from arteries directly to veins. This short circuit of blood flow contributes to progressive expansion of draining veins, resulting in ischaemia, tissue deformation and in some severe cases, congestive heart failure. Various medical interventions have been employed to treat AVM, however, management of which remains a huge challenge because of its high recurrence rate and lethal complications. Thus, understanding the underlying mechanisms of AVM development and progression will help direct discovery and a potential cure. Here, we summarize current findings in the field of extracranial AVMs with the aim to provide insight into their aetiology and molecular influences, in the hope to pave the way for future treatment.
Collapse
Affiliation(s)
- Congzhen Qiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gresham T Richter
- Center for Investigation of Congenital Anomalies of Vascular Development, Arkansas Vascular Biology Program, Arkansas Children's Hospital, Little Rock, AR, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Division of Pediatric Otolaryngology, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunbo Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|