51
|
Kobayashi K, Fukuoka T, Yamanaka H, Iyamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K. Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 2006; 498:443-54. [PMID: 16874807 DOI: 10.1002/cne.21066] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined the precise distribution of mRNAs for six cloned rat P2Y receptor subtypes, P2Y1, P2Y2, P2Y4, P2Y6, P2Y12, and P2Y14, in the dorsal root ganglion (DRG) and spinal cord by in situ hybridization histochemistry (ISHH) with 35S-labeled riboprobes. In the DRG, P2Y1 and P2Y2 mRNAs were expressed by 15% and 24% of all neurons, respectively. Although each receptor was evenly distributed between neurofilament-positive and -negative neurons, P2Y2 was rather selectively expressed by TrkA-positive neurons. Schwann cells expressed P2Y2 mRNA, and the nonneuronal cells around the DRG neurons, perhaps the satellite cells, expressed P2Y12 and P2Y14 mRNAs. No ISHH signals for P2Y4 or P2Y6 were seen in any cellular components of the DRG. In the spinal cord, P2Y1 and P2Y4 mRNAs were expressed by some of the dorsal horn neurons, whereas the motor neurons in the ventral horn had P2Y4 and P2Y6 mRNAs. In addition, astrocytes in the gray matter had P2Y1 mRNA, and the microglia throughout the spinal cord expressed P2Y12 mRNA. P2Y14 mRNA was weakly expressed by putative microglia. These findings should provide useful information in interpreting pharmacological and electrophysiological studies in this field given the lack of highly selective antagonists for each P2Y receptor subtype.
Collapse
Affiliation(s)
- Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Marcus DC, Liu J, Lee JH, Scherer EQ, Scofield MA, Wangemann P. Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Commun Signal 2005; 3:13. [PMID: 16266433 PMCID: PMC1298316 DOI: 10.1186/1478-811x-3-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/02/2005] [Indexed: 11/17/2022] Open
Abstract
Background It was previously shown that K+ secretion by strial marginal cell epithelium is under the control of G-protein coupled receptors of the P2Y family in the apical membrane. Receptor activation by uracil nucleotides (P2Y2, P2Y4 or P2Y6) leads to a decrease in the electrogenic K+ secretion. The present study was conducted to determine the subtype of the functional purinergic receptor in gerbil stria vascularis, to test if receptor activation leads to elevation of intracellular [Ca2+] and to test if the response to these receptors undergoes desensitization. Results The transepithelial short circuit current (Isc) represents electrogenic K+ secretion and was found to be decreased by uridine 5'-triphosphate (UTP), adenosine 5'-triphosphate (ATP) and diadenosine tetraphosphate (Ap4A) but not uridine 5'-diphosphate (UDP) at the apical membrane of marginal cells of the gerbil stria vascularis. The potencies of these agonists were consistent with rodent P2Y4 and P2Y2 but not P2Y6 receptors. Activation caused a biphasic increase in intracellular [Ca2+] that could be partially blocked by 2-aminoethoxy-diphenyl borate (2-APB), an inhibitor of the IP3 receptor and store-operated channels. Suramin (100 μM) did not inhibit the effect of UTP (1 μM). The ineffectiveness of suramin at the concentration used was consistent with P2Y4 but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in the stria vascularis. Sustained exposure to ATP or UTP for 15 min caused a depression of Isc that appeared to have two components but with apparently no chronic desensitization. Conclusion The results support the conclusion that regulation of K+ secretion across strial marginal cell epithelium occurs by P2Y4 receptors at the apical membrane. The apparent lack of desensitization of the response is consistent with two processes: a rapid-onset phosphorylation of KCNE1 channel subunit and a slower-onset of regulation by depletion of plasma membrane PIP2.
Collapse
Affiliation(s)
- Daniel C Marcus
- Cellular Biophysics Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506 USA
| | - Jianzhong Liu
- Cellular Biophysics Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506 USA
| | - Jun Ho Lee
- Cellular Biophysics Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506 USA
| | - Elias Q Scherer
- Cell Physiology Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506 USA
| | - Margaret A Scofield
- Molecular Pharmacology Laboratory, Dept. Pharmacology, Creighton School of Medicine, Omaha, NE 68178 USA
| | - Philine Wangemann
- Cell Physiology Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
53
|
von Kügelgen I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 2005; 110:415-32. [PMID: 16257449 DOI: 10.1016/j.pharmthera.2005.08.014] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 08/23/2005] [Indexed: 11/29/2022]
Abstract
Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and it is blocked by suramin and reactive blue 2 (RB2). The P2Y12-receptor plays a crucial role in platelet aggregation as well as in inhibition of neuronal cells. It is activated by ADP and very potently by 2-methylthio-ADP. Nucleotide antagonists including N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (=cangrelor; AR-C69931MX), the nucleoside analogue AZD6140, as well as active metabolites of the thienopyridine compounds clopidogrel and prasugrel block the receptor. These P2Y12-antagonists are used in pharmacotherapy to inhibit platelet aggregation. The P2Y13-receptor is expressed in immunocytes and neuronal cells and is again activated by ADP and 2-methylthio-ADP. The 2-chloro-5-nitro pyridoxal-phosphate analogue 6-(2'-chloro-5'-nitro-azophenyl)-pyridoxal-alpha5-phosphate (MRS2211) is a selective antagonist. mRNA encoding for the human P2Y14-receptor is found in many tissues. However, a physiological role of the receptor has not yet been established. UDP-glucose and related analogues act as agonists; antagonists are not known. Finally, UDP has been reported to act on receptors for cysteinyl leukotrienes as an additional agonist--indicating a dual agonist specificity of these receptors.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| |
Collapse
|
54
|
Chootip K, Gurney AM, Kennedy C. Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery. Respir Res 2005; 6:124. [PMID: 16250909 PMCID: PMC1282591 DOI: 10.1186/1465-9921-6-124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/26/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP) acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems. METHODS The perforated-patch clamp technique was used to record the Ca2+-dependent, Cl- current (I(Cl,Ca)) activated by P2Y receptor agonists in acutely dissociated smooth muscle cells of rat small (SPA) and large (LPA) intrapulmonary arteries, held at -50 mV. Contractions to ATP were measured in isolated muscle rings. Data were compared by Student's t test or one way ANOVA. RESULTS ATP, UTP and UDP (10(-4) M) evoked oscillating, inward currents (peak = 13-727 pA) in 71-93% of cells. The first current was usually the largest and in the SPA the response to ATP was significantly greater than those to UTP or UDP (P < 0.05). Subsequent currents tended to decrease in amplitude, with a variable time-course, to a level that was significantly smaller for ATP (P < 0.05), UTP (P < 0.001) and UDP (P < 0.05) in the SPA. The frequency of oscillations was similar for each agonist (mean approximately to 6-11.min(-1)) and changed little during agonist application. The non-selective P2 receptor antagonist suramin (10(-4) M) abolished currents evoked by ATP in SPA (n = 4) and LPA (n = 4), but pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (10(-4) M), also a non-selective P2 antagonist, had no effect (n = 4, 5 respectively). Currents elicited by UTP (n = 37) or UDP (n = 14) were unaffected by either antagonist. Contractions of SPA evoked by ATP were partially inhibited by PPADS (n = 4) and abolished by suramin (n = 5). Both antagonists abolished the contractions in LPA. CONCLUSION At least two P2Y subtypes couple to ICl,Ca in smooth muscle cells of rat SPA and LPA, with no apparent regional variation in their distribution. The suramin-sensitive, PPADS-resistant site activated by ATP most resembles the P2Y11 receptor. However, the suramin- and PPADS-insensitive receptor activated by UTP and UDP does not correspond to any of the known P2Y subtypes. These receptors likely play a significant role in nucleotide-induced vasoconstriction.
Collapse
Affiliation(s)
- Krongkarn Chootip
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 ONR, UK
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Alison M Gurney
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 ONR, UK
| | - Charles Kennedy
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 ONR, UK
| |
Collapse
|
55
|
Franke H, Illes P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 2005; 109:297-324. [PMID: 16102837 DOI: 10.1016/j.pharmthera.2005.06.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/06/2005] [Indexed: 12/12/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) has been recognized as a ubiquitous, unstable signalling molecule, acting as a fast neurotransmitter and modulator of transmitter release and neuronal excitability. Recent findings have demonstrated that ATP is a growth factor participating in differentiation, cell proliferation, and survival, as well as a toxic agent that mediates cellular degeneration and death. Potential sources of extracellular purines in the nervous system include neurons, glia, endothelium, and blood. A complex family of ectoenzymes rapidly hydrolyzes or interconverts extracellular nucleotides, thereby either terminating their signalling action or producing an active metabolite of altered purinoceptor selectivity. Most effects are mediated through the 2 main subclasses of specific cell surface receptors, P2X and P2Y. Members of these P2X/Y receptor families are widely expressed in the central nervous system (CNS) and are involved in glia-glia and glia-neuron communications, whereby they play important physiological and pathophysiological roles in a variety of biological processes. After different kinds of "acute" CNS injury (e.g., ischemia, hypoxia, mechanical stress, axotomy), extracellular ATP can reach high concentrations, up to the millimolar range, flowing out from cells into the extracellular space, exocytotically, via transmembrane transport, or as a result of cell damage. In this review, P2 receptor activation as a cause or a consequence of neuronal cell activation or death and/or glial activation is described. The involvement of P2 receptors is also described under different "chronic" pathological conditions, such as pain, epilepsia, toxic influence of ethanol or amphetamine, retinal diseases, Alzheimer's disease (AD), and possibly, Parkinson's disease. The relationship between changes in P2 receptor expression and the specific response of different cell types to injury is extremely complex and can be related to detrimental and/or beneficial effects. The present review therefore considers ATP acting via P2 receptors as a potent regulator of normal physiological and pathological processes in the brain, with a focus on pathophysiological implications of P2 receptor functions.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany.
| | | |
Collapse
|
56
|
Vonend O, Stegbauer J, Sojka J, Habbel S, Quack I, Robaye B, Boeynaems JM, Rump LC. Noradrenaline and extracellular nucleotide cotransmission involves activation of vasoconstrictive P2X(1,3)- and P2Y6-like receptors in mouse perfused kidney. Br J Pharmacol 2005; 145:66-74. [PMID: 15711586 PMCID: PMC1576118 DOI: 10.1038/sj.bjp.0706151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nucleotides like ATP and UTP act as potent extracellular signalling molecules. Released from sympathetic nerve endings as cotransmitters of noradrenaline or paracrine from nonexcitatory cells, they activate specific receptors (ion-gated P2X(1-7) and G-protein-coupled P2Y(1,2,4,6,11-15)). Which of these subtypes, however, are able to modulate vasoconstriction in the kidney is unclear. Wild-type- and P2Y4-receptor-deficient mice kidneys were isolated and perfused with Krebs-Henseleit solution. Pressor responses to renal nerve stimulations (RNS) and added drugs were recorded. Release of endogenous noradrenaline was measured by HPLC. RNS (1-15 Hz) induced a frequency-dependent increase in the perfusion pressor (14.2+/-5.1-67.3+/-6.9 mmHg) and noradrenaline release (1.4+/-0.3-24.2+/-3.4 ng g(-1) kidney). Pressor responses to RNS were not (1-2 Hz) or only partially (5-15 Hz) blocked by the alpha-adrenoceptor antagonist phentolamine (1 microM). Combination of phentolamine and the P2-receptor blocker PPADS (5 microM) prevented RNS-induced pressor responses. The P2X(1,3)-receptor selective antagonist NF279 (10 microM) reduced RNS-induced pressor responses in a frequency-dependent manner. Perfusion of ATP, ADP, UTP, UDP and alpha,beta-meATP concentration dependently increased perfusion pressor with the following rank order of potency alpha,beta-meATP>ADP approximately ATP approximately UDP > or = UTP. NF279 (10 microM) reduced alpha,beta-meATP- (0.1 microM) (21.7+/-3.9% of control) but not UTP- (0.3 microM) (102.6+/-15.3% of control) induced pressor responses. No differences in nucleotide-induced effects were detected among wild-type and P2Y4-receptor knockout mice. Continuous perfusion of alpha,beta-meATP (0.01 microM) potentiated UTP-, UDP- and ATP-gamma S-induced pressor responses. Neuronally and paracrine-released nucleotides evoked renal vasoconstriction by activation of P2X(1,3)- and P2Y6-like receptors in mice. Pretreatment with the P2X(1,3)-receptor agonist alpha,beta-meATP potentiated P2Y6-like receptor-mediated vasoconstrictions.
Collapse
Affiliation(s)
- Oliver Vonend
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Germany
| | - Johann Sojka
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Germany
| | - Sina Habbel
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Germany
| | - Ivo Quack
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Germany
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie humaine et moléculaire, Faculté de Médecine, Université Libre De Bruxelles, Belgium
| | - Jean-Marie Boeynaems
- Institut de Recherche Interdisciplinaire en Biologie humaine et moléculaire, Faculté de Médecine, Université Libre De Bruxelles, Belgium
| | - Lars Christian Rump
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Germany
- Author for correspondence:
| |
Collapse
|
57
|
Khalifa M, El-Mahmoudy A, Shiina T, Shimizu Y, Nikami H, El-Sayed M, Kobayashi H, Takewaki T. An electrophysiological study of excitatory purinergic neuromuscular transmission in longitudinal smooth muscle of chicken anterior mesenteric artery. Br J Pharmacol 2005; 144:830-9. [PMID: 15685211 PMCID: PMC1576065 DOI: 10.1038/sj.bjp.0706076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The object of the present study was to clarify the neurotransmitters controlling membrane responses to electrical field stimulation (EFS) in the longitudinal smooth muscle cells of the chicken anterior mesenteric artery. 2. EFS (5 pulses at 20 Hz) evoked a depolarization of amplitude 19.7+/-2.1 mV, total duration 29.6+/-3.1 s and latency 413.0+/-67.8 ms. This depolarization was tetrodotoxin (TTX)-sensitive and its amplitude was partially decreased by atropine (0.5 microM); however, its duration was shortened by further addition of prazosin (10 microM). 3. Atropine/prazosin-resistant component was blocked by the nonspecific purinergic antagonist, suramin, in a dose-dependent manner, indicating that this component is mediated by the neurotransmitter adenosine 5'-triphosphate (ATP). 4. Neither desensitization nor blocking of P2X receptor with its putative receptor agonist alpha,beta-methylene ATP (alpha,beta-MeATP, 1 microM) and its antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic (PPADS, up to 50 microM), had significant effect on the purinergic depolarization. In contrast, either desensitization or blocking of P2Y receptor with its putative agonist 2-methylthioATP (2-MeSATP, 1 microM) and its antagonist Cibacron blue F3GA (CBF3GA, 10 microM) abolished the purinergic depolarization, indicating that this response is mediated through P2Y but not P2X receptor. 5. The purinergic depolarization was inhibited by pertussis toxin (PTX, 600 ng ml(-1)). Furthermore, it was significantly inhibited by a phospholipase C (PLC) inhibitor, U-73122 (10 microM), indicating that the receptors involved in mediating the purinergic depolarization are linked to a PTX-sensitive G-protein, which is involved in a PLC-mediated signaling pathway. 6. Data of the present study suggest that the EFS-induced excitatory membrane response occurring in the longitudinal smooth muscle of the chicken anterior mesenteric artery is mainly purinergic in nature and is mediated via P2Y purinoceptors.
Collapse
Affiliation(s)
- Maisa Khalifa
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - AbuBakr El-Mahmoudy
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University-Benha Branch, 13736 Moshtohor, Egypt
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Author for correspondence:
| | - Hideki Nikami
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mossad El-Sayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University-Benha Branch, 13736 Moshtohor, Egypt
| | - Haruo Kobayashi
- Department of Veterinary medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Tadashi Takewaki
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
58
|
Miyagi Y, Kimura H, Carpenter RC, Parent AD, Zhang J. alpha,beta-MeATP augments the UTP contraction of rabbit basilar artery. Eur J Pharmacol 2004; 488:117-25. [PMID: 15044043 DOI: 10.1016/j.ejphar.2004.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 01/26/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
The mechanism underlying the interaction between alpha,beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP) and uridine 5'-triphosphate (UTP) was investigated using the basilar artery of a rabbit. UTP induced a concentration-dependent contraction, whereas P2X receptor agonists, such as alpha,beta-MeATP and 2-methylthioadenosine 5'-triphosphate (2-MeSATP), did not induce any contraction up to 100 microM. alpha,beta-MeATP augmented the UTP contraction two-fold, immediately and reversibly. This effect was observed with ectonucleotidase inhibition with 1 mM Ni(2+), the removal of extracellular Ca(2+) or Evans blue. The contractile response to adenosine 5'-O-(3-triphosphate) (ATPgammaS), a selective agonist for P2Y(4), was augmented by pretreatment with alpha,beta-MeATP also. ATPgammaS had no additional effect on the UTP contraction fully activated with alpha,beta-MeATP. UTP (100 microM) did not induce an increase in cytosolic Ca(2+) in a rabbit basilar arterial strip; however, in the presence of 1 mM alpha,beta-MeATP, UTP induced a significant increase in cytosolic Ca(2+). These results suggest that alpha,beta-MeATP facilitates the activation by UTP of the P2Y receptor (P2Y(4)) of the rabbit basilar artery through mechanisms other than nucleotidase inhibition, and that it does not do so via a P2X receptor.
Collapse
Affiliation(s)
- Yasushi Miyagi
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA.
| | | | | | | | | |
Collapse
|
59
|
Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 2004; 380:329-38. [PMID: 14967069 PMCID: PMC1224173 DOI: 10.1042/bj20031089] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/23/2003] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a co-culture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Tung EKK, Choi RCY, Siow NL, Jiang JXS, Ling KKY, Simon J, Barnard EA, Tsim KWK. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions. Mol Pharmacol 2004; 66:794-806. [PMID: 15258260 DOI: 10.1124/mol.104.003269] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs.
Collapse
Affiliation(s)
- Edmund K K Tung
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay Rd., Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Tulapurkar ME, Laubinger W, Nahum V, Fischer B, Reiser G. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5'-O-(1-boranotriphosphate) derivatives. Br J Pharmacol 2004; 142:869-78. [PMID: 15197109 PMCID: PMC1575069 DOI: 10.1038/sj.bjp.0705859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-alpha-B) were synthesized by substitution of a nonbridging O at P(alpha) with a BH(3) group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y(1) and rat P2Y(2) receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y(1)-GFP, rP2Y(2)-GFP). We investigated agonist-induced receptor endocytosis, [Ca(2+)](i) rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y(1)-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-alpha-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca(2+) release by these compounds in HEK 293 cells stably transfected with rP2Y(1). In case of rP2Y(2)-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca(2+) release, AA release and in inducing receptor endocytosis. The different ATP-alpha-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y(1) receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes.
Collapse
Affiliation(s)
- M E Tulapurkar
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - W Laubinger
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - V Nahum
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - B Fischer
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - G Reiser
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
- Author for correspondence:
| |
Collapse
|
62
|
Watano T, Calvert JA, Vial C, Forsythe ID, Evans RJ. P2X receptor subtype-specific modulation of excitatory and inhibitory synaptic inputs in the rat brainstem. J Physiol 2004; 558:745-57. [PMID: 15181160 PMCID: PMC1665028 DOI: 10.1113/jphysiol.2004.066845] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of P2 receptors in synaptic transmission to the rat medial nucleus of the trapezoid body (MNTB) was studied in an in vitro brain slice preparation. Whole-cell patch recordings were made and spontaneous synaptic responses studied under voltage clamp during application of P2X receptor agonists. ATPgammaS (100 microm) had no effect on holding current, but facilitated spontaneous excitatory postsynaptic current (sEPSC) frequency in 41% of recordings and facilitated spontaneous inhibitory postsynaptic currents (sIPSCs) in 20% of recordings. These were blocked by the P2 receptor antagonist suramin (100 microm). alpha,beta-meATP also facilitated sEPSC and sIPSC frequency, while l-beta,gamma-meATP facilitated only sIPSCs. The sEPSC facilitation by ATPgammaS was blocked by TTX (but did not block facilitation of sIPSCs). sEPSC facilitation was blocked by PPADS (30 microm) and the selective P2X(3) receptor antagonist A-317491 (3 microm), suggesting that modulation of sEPSCs involves P2X(3) receptor subunits. alpha,beta-meATP-facilitated sIPSCs were also recorded in wild-type mouse MNTB neurones, but were absent in the MNTB from P2X(1) receptor-deficient mice demonstrating a functional role for P2X(1) receptors in the CNS.
Collapse
Affiliation(s)
- Tomokazu Watano
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, University Road, Leicester, LE1 9HN, UK
| | | | | | | | | |
Collapse
|
63
|
Brown J, Brown CA. Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors. Vascul Pharmacol 2003; 39:309-15. [PMID: 14567069 DOI: 10.1016/s1537-1891(03)00030-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P2Y receptor pharmacology is hampered by a lack of subtype selective antagonists. However, a recent study evaluated series of compounds, structurally related to the dye reactive blue 2, for their antagonist selectivity at P2X vs. P2Y receptors. Acid blue 129, acid blue 80, acid blue 25 and acid violet 34 were found to be the most potent of the antagonists studied, at P2Y receptors [Naunyn Schmiedeberg's Arch. Pharmacol. 357 (1998) 111]. In this study, we have determined the ability of these four agents to selectively antagonize inositol phosphate turnover mediated by P2Y1 and P2Y2 receptors that are natively expressed in bovine aortic endothelial (BAE) cells. Acid blue 129, acid blue 80, and acid violet 34 shifted the dose-response curve of the P2Y1 agonist 2-methylthio adenosine trisphosphate (2MeSATP) to the right. Acid blue 129 and acid blue 80 were also very weak antagonists of the P2Y2 agonist uridine 5'-triphosphate (UTP). At 30 and 100 microM, acid violet 34 failed to have any significant effect on the dose-response to UTP. However, at 10 microM, acid violet 34 enhanced the UTP responses. Acid blue 80, acid blue 129 and acid violet 34 are P2Y vs. P2X selective, but show poor selectivity between P2Y1 and P2Y2 receptors and are therefore of limited use in the field of P2Y receptor pharmacology. Furthermore, contrary to previous reports, acid blue 25 is not a P2Y-selective antagonist.
Collapse
Affiliation(s)
- Julia Brown
- Biomedical Sciences Division, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK.
| | | |
Collapse
|
64
|
Kim SG, Gao ZG, Soltysiak KA, Chang TS, Brodie C, Jacobson KA. P2Y6 nucleotide receptor activates PKC to protect 1321N1 astrocytoma cells against tumor necrosis factor-induced apoptosis. Cell Mol Neurobiol 2003; 23:401-18. [PMID: 12825835 PMCID: PMC3140713 DOI: 10.1023/a:1023696806609] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. We recently reported that the activation by UDP of rat P2Y6 nucleotide receptors expressed in 1321N1 astrocytoma cells protected them from TNFalpha-induced apoptosis by suppressing activation of caspase 3 and 8. This study aims to characterize the involvement of intracellular signaling pathways, including kinases involved in the antiapoptotic effect of UDP. 2. Cell death was induced in 1321N1 astrocytoma cells permanently expressing the rat P2Y6 receptor by exposure to TNFalpha in the presence of cycloheximide. The apoptotic fraction was analyzed using flow cytometry. 3. The activation of P2Y6 receptors by UDP both protected the astrocytes from TNF-alpha induced apoptosis and activated protein kinase C (PKC) isotypes. The phorbol ester PMA also activated PKC and protected the cells from TNFalpha-induced cell death. The alpha- and epsilon-isotypes of PKC were both activated in a persistent fashion upon 5-min exposure to either UDP (10 microM) or the phorbol ester PMA (100 nM). The PKCzeta isotype was markedly activated upon UDP treatment. 4. The addition of PKC inhibitors, GF109203X or Gö6976, partially antagonized the protective effect of UDP and reduced the UDP-induced phosphorylation of extracellular signal-regulated protein kinases (Erk). The inhibitors of Erk, PD98,059 or U0126, antagonized UDP-induced protection. 5. The antiapoptotic protein, Akt, was not affected by P2Y6 receptor activation. Incubation of the astrocytes with calcium modifiers BAPTA-AM or dantrolene, did not affect the UDP-induced protection from apoptosis. 6. The addition of phospholipase C (PLC) inhibitors, D609 or U73122, partially antagonized both UDP-induced protection and PKC activation.
Collapse
Affiliation(s)
- Seong G. Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kelly A. Soltysiak
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tong-Shin Chang
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chaya Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
65
|
Köttgen M, Löffler T, Jacobi C, Nitschke R, Pavenstädt H, Schreiber R, Frische S, Nielsen S, Leipziger J. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 2003; 111:371-9. [PMID: 12569163 PMCID: PMC151859 DOI: 10.1172/jci16711] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl(-) secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K(+) channels. We therefore speculated that a basolateral P2Y(6) receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y(6) receptor using crypt [Ca(2+)](i) measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y(6)elevates cAMP, we coexpressed the P2Y(1) or P2Y(6) receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl(-) currents. In oocytes expressing the P2Y(1) receptor, ATP transiently activated the endogenous Ca(2+)-activated Cl(-) current, but not CFTR. In contrast, in oocytes expressing the P2Y(6)receptor, UDP transiently activated the Ca(2+)-activated Cl(-) current and subsequently CFTR. CFTR Cl(-) currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y(6) receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca(2+)](i) and cAMP. In support of these data P2Y(6) receptor stimulation differentially activates CFTR in Xenopus oocytes.
Collapse
|
66
|
Köttgen M, Löffler T, Jacobi C, Nitschke R, Pavenstädt H, Schreiber R, Frische S, Nielsen S, Leipziger J. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 2003. [DOI: 10.1172/jci200316711] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
67
|
Price GD, Robertson SJ, Edwards FA. Long-term potentiation of glutamatergic synaptic transmission induced by activation of presynaptic P2Y receptors in the rat medial habenula nucleus. Eur J Neurosci 2003; 17:844-50. [PMID: 12603274 DOI: 10.1046/j.1460-9568.2003.02501.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel form of long-term potentiation of glutamatergic synaptic transmission is described in the rat medial habenula nucleus. It occurs when uridine 5'-triphosphate is bath applied at low micromolar concentrations and is prevented by Reactive Blue 2, suggesting that it is mediated by P2Y4 receptors. Uridine 5'-diphosphate can also cause such a Reactive Blue 2-sensitive potentiation, but at higher concentrations (200 microm), suggesting that this might also be an effect on the relatively uridine 5'-diphosphate-insensitive P2Y4 receptor. The potentiation is due to an increase in presynaptic release probability. It requires neither depolarization nor calcium influx postsynaptically and is thus probably non-Hebbian. When potentiation due to low concentrations of uridine 5'-triphosphate is inhibited in the presence of Reactive Blue 2, uridine 5'-triphosphate causes instead a significant inhibition of glutamate release. We suggest that this inhibition may be mediated by a Reactive Blue 2-insensitive P2Y2-like receptor. At higher concentrations of uridine 5'-triphosphate (200 micro m), the inhibitory effect dominates such that even in the absence of Reactive Blue 2 no potentiation is seen.
Collapse
Affiliation(s)
- Gareth D Price
- Department of Physiology, University College London, Gower St, London WC1E 6BT, UK
| | | | | |
Collapse
|
68
|
Malmsjö M, Hou M, Pendergast W, Erlinge D, Edvinsson L. The stable pyrimidines UDPbetaS and UTPgammaS discriminate between contractile cerebrovascular P2 receptors. Eur J Pharmacol 2003; 458:305-11. [PMID: 12504787 DOI: 10.1016/s0014-2999(02)02787-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extracellular nucleotides were used to characterise the contractile P2 receptors in the rat basilar artery. The isometric tension was recorded in vitro and receptor mRNA expression was examined by reverse transcriptase polymerase chain reaction (RT-PCR) after endothelium-denudation. Transient vasoconstriction was evoked by alphabeta-methylene-adenosine triphosphate (alphabeta-MeATP), indicating the presence of P2X(1) receptors. The P2Y receptors were analysed after P2X receptor desensitisation with 10 microM alphabeta-MeATP. Uridine diphosphate (UDP) and uridine triphosphate (UTP) induced sustained contractions of similar magnitude. The stable nucleotide analogue, uridine 5'-O-thiodiphosphate (UDPbetaS), was clearly more potent than uridine 5'-O-3-thiotriphosphate (UTPgammaS), suggesting prominent contractile effects of P2Y(6) receptors. P2Y(2) and P2Y(4) receptors might also be involved in nucleotide responses, since UTPgammaS and adenosine 5'-O-3-thiotriphosphate (ATPgammaS) were of similar potency. The P2Y(1) selective agonists, adenosine 5'-O-thiodiphosphate (ADPbetaS) and 2-methylthioadenosine diphosphate (2-MeSADP) did not induce contractions. RT-PCR analysis demonstrated P2X(1), P2Y(1), P2Y(2) and P2Y(6) receptor mRNA expression, while the P2Y(4) band was weak. In conclusion, extracellular nucleotides induce contractions of cerebral arteries primarily by activation of P2Y(6) receptors on smooth muscle cells, with a lesser contribution of P2Y(2) and P2X(1) receptors. Although mRNA for the P2Y(1) receptor was detected by RT-PCR, it does not mediate contraction.
Collapse
Affiliation(s)
- Malin Malmsjö
- Division of Experimental Vascular Research, Department of Internal Medicine, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
69
|
Molecular and Biological Properties of P2Y Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
70
|
Kubista H, Lechner SG, Wolf AM, Boehm S. Attenuation of the P2Y receptor-mediated control of neuronal Ca2+ channels in PC12 cells by antithrombotic drugs. Br J Pharmacol 2003; 138:343-50. [PMID: 12540525 PMCID: PMC1573666 DOI: 10.1038/sj.bjp.0705037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. In PC12 cells, adenine nucleotides inhibit voltage-activated Ca(2+) currents and adenylyl cyclase activity, and the latter effect was reported to involve P2Y(12) receptors. To investigate whether these two effects are mediated by one P2Y receptor subtype, we used the antithrombotic agents 2-methylthio-AMP (2-MeSAMP) and N(6)-(2-methyl-thioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (AR-C69931MX). 2. ADP reduced A(2A) receptor-dependent cyclic AMP synthesis with half maximal effects at 0.1-0.17 micro M. In the presence of 30 micro M 2-MeSAMP or 100 nM AR-C69931MX, concentration response curves were shifted to the right by factors of 39 and 30, indicative of pA(2) values of 6.1 and 8.5, respectively. 3. The inhibition of Ca(2+) currents by ADP was attenuated by 10-1000 nM AR-C69931MX and by 3-300 micro M 2-MeSAMP. ADP reinhibited Ca(2+) currents after removal of 2-MeSAMP within less than 15 s, but required 2 min to do so after removal of AR-C69931MX. 4. ADP inhibited Ca(2+) currents with half maximal effects at 5-20 micro M. AR-C69931MX (10-100 nM) displaced concentration response curves to the right, and the resulting Schild plot showed a slope of 1.09 and an estimated pK(B) value of 8.7. Similarly, 10-100 micro M 2-MeSAMP also caused rightward shifts resulting in a Schild plot with a slope of 0.95 and an estimated pK(B) of 5.4. 5. The inhibition of Ca(2+) currents by 2-methylthio-ADP and ADPbetaS was also antagonized by AR-C69931MX, which (at 30 nM) caused a rightward shift of the concentration response curve for ADPbetaS by a factor of 3.8, indicative of a pA(2) value of 8.1. 6. These results show that antithrombotic drugs antagonize the inhibition of neuronal Ca(2+) channels by adenine nucleotides, which suggests that this effect is mediated by P2Y(12) receptors.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan G Lechner
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Angelika M Wolf
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan Boehm
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
- Author for correspondence:
| |
Collapse
|
71
|
Muscella A, Elia MG, Greco S, Storelli C, Marsigliante S. Activation of P2Y2 purinoceptor inhibits the activity of the Na+/K+-ATPase in HeLa cells. Cell Signal 2003; 15:115-21. [PMID: 12401526 DOI: 10.1016/s0898-6568(02)00062-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of ATP on regulation of the Na(+)/K(+)-ATPase activity in the human cancerous HeLa cells was investigated. HeLa cells stimulated with increasing ATP concentrations showed a dose-dependent inhibition of the Na(+)/K(+)-ATPase activity. These effects were also obtained by UTP. ATP and UTP provoked a rise in intracellular calcium concentration ([Ca(2+)](i)) persisting for at least 4 min. The inhibitor of phospholipase C, U73122, blocked the elevation of [Ca(2+)](i) provoked by ATP/UTP. The expression of mRNA for P2Y2 and P2Y6 receptors was demonstrated by RT-PCR. ATP/UTP activated PKC-alpha, -betaI and -epsilon isoforms, but not PKC-delta and -zeta. The inhibition of the Na(+)/K(+)-ATPase activity by ATP/UTP was blocked by Gö6976, a specific inhibitor of the calcium-dependent PKCs. In conclusion, our results suggest that ATP/UTP modulate Na(+)/K(+)-ATPase activity in HeLa cells through the P2Y2 purinoceptor via calcium mobilisation and activation of calcium-dependent PKCs.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological Sciences and Environmental Technology (DisTeBA), Laboratory of Cell Physiology, University of Lecce, Ecotekne, Via Provinciale per Monteroni, 73100 Lecce, Italy
| | | | | | | | | |
Collapse
|
72
|
Rost S, Daniel C, Schulze-Lohoff E, Bäumert HG, Lambrecht G, Hugo C. P2 receptor antagonist PPADS inhibits mesangial cell proliferation in experimental mesangial proliferative glomerulonephritis. Kidney Int 2002; 62:1659-71. [PMID: 12371966 DOI: 10.1046/j.1523-1755.2002.00621.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although extracellular nucleotides have been shown to confer mitogenic effects in cultured rat mesangial cells through activation of purinergic P2 receptors (P2Y receptors), thus far the in vivo relevance of these findings is unclear. Virtually all cells and in particular the dense granules of platelets contain high levels of nucleotides that are released upon cell injury or platelet aggregation. In experimental mesangial proliferative glomerulonephritis in the rat (anti-Thy1 model), mesangiolysis and glomerular platelet aggregation are followed by a pronounced mesangial cell (MC) proliferative response leading to glomerular hypercellularity. Therefore, we examined the role of extracellular nucleotides and their corresponding receptors in nucleotide-stimulated cultured mesangial cells and in inflammatory glomerular disease using the P2 receptor antagonist PPADS. METHODS The effects of PPADS on nucleotide- or fetal calf serum (FCS)-stimulated proliferation of cultured MC were measured by cell counting and [3H]thymidine incorporation assay. After induction of the anti-Thy1 model, rats received injections of the P2-receptor antagonist PPADS at different doses (15, 30, 60 mg/kg BW). Proliferating mesangial and non-mesangial cells, mesangial cell activation, matrix accumulation, influx of inflammatory cells, mesangiolysis, microaneurysm formation, and renal functional parameters were assessed during anti-Thy1 disease. P2Y-mRNA and protein expression was assessed using RT-PCR and real time PCR, Northern blot analysis, in situ hybridization, and immunohistochemistry. RESULTS In cultured mesangial cells, PPADS inhibited nucleotide, but not FCS-stimulated proliferation in a dose-dependent manner. In the anti-Thy1 model, PPADS specifically and dose-dependently reduced early (day 3), but not late (day 8), glomerular mesangial cell proliferation as well as phenotypic activation of the mesangium and slightly matrix expansion. While no consistent effect was obtained in regard to the degree of mesangiolysis, influx of inflammatory cells, proteinuria or blood pressure, PPADS treatment increased serum creatinine and urea in anti-Thy1 rats. P2Y receptor expression (P2Y2 and P2Y6) was detected in cultured MC and isolated glomeruli, and demonstrated a transient marked increase during anti-Thy1 disease. CONCLUSION These data strongly suggest an in vivo role for extracellular nucleotides in mediating early MC proliferation after MC injury.
Collapse
Affiliation(s)
- Sylvia Rost
- Division of Nephrology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
73
|
Chootip K, Ness KF, Wang Y, Gurney AM, Kennedy C. Regional variation in P2 receptor expression in the rat pulmonary arterial circulation. Br J Pharmacol 2002; 137:637-46. [PMID: 12381677 PMCID: PMC1573537 DOI: 10.1038/sj.bjp.0704915] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 08/06/2002] [Indexed: 11/09/2022] Open
Abstract
The P2 receptors that mediate contraction of the rat isolated small (SPA, 200-500 micro m i.d.) and large (LPA, 1-1.5 mM i.d.) intrapulmonary arteries were characterized. 2 In endothelium-denuded vessels the contractile order of potency was alpha,beta-methyleneATP (alpha,beta-meATP)>>UDP=UTP=ATP=2-methylthioATP>ADP in the SPA and alpha,beta-meATP=UTP>or=UDP>2-methylthioATP, ATP>>ADP in the LPA. alpha,beta-meATP, 2-methylthioATP and ATP had significantly greater effects in the SPA than the LPA (P<0.001), but there was no difference in the potency of UTP or UDP between the vessels. 3 In the SPA, P2X1 receptor desensitisation by alpha,beta-meATP (100 microM) inhibited contractions to alpha,beta-meATP (10 nM-300 microM), but not those to UTP or UDP (100 nM-300 microM). In the LPA, prolonged exposure to alpha,beta-meATP (100 microM) did not desensitize P2X receptors. 4 Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), suramin and reactive blue 2 (RB2) (30-300 microM) inhibited contractions evoked by alpha,beta-meATP. UTP and UDP were potentiated by PPADS, unaffected by RB2 and inhibited, but not abolished by suramin. 1 and 3 mM suramin produced no further inhibition, indicating suramin-resistant components in the responses to UTP and UDP. 5 Thus, both P2X and P2Y receptors mediate contraction of rat large and small intrapulmonary arteries. P2Y agonist potency and sensitivity to antagonists were similar in small and large vessels, but P2X agonists were more potent in small arteries. This indicates differential expression of P2X, but not P2Y receptors along the pulmonary arterial tree.
Collapse
Affiliation(s)
- K Chootip
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - K F Ness
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - Y Wang
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - A M Gurney
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| | - C Kennedy
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR
| |
Collapse
|
74
|
Sanada M, Yasuda H, Omatsu-Kanbe M, Sango K, Isono T, Matsuura H, Kikkawa R. Increase in intracellular Ca(2+) and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience 2002; 111:413-22. [PMID: 11983326 DOI: 10.1016/s0306-4522(02)00005-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the effects of the activation of metabotropic P2Y receptors on the intracellular Ca(2+) concentration and the release of neuropeptide calcitonin gene-related peptide (CGRP) in isolated adult rat dorsal root ganglion neurons. In small-sized dorsal root ganglion neurons (soma diameter<30 microm) loaded with fura-2, a bath application of ATP (100 microM) evoked an increase in intracellular Ca(2+) concentration, while the removal of extracellular Ca(2+) partly depressed the response to ATP, thus suggesting that the ATP-induced increase in intracellular Ca(2+) concentration is due to both the release of Ca(2+) from intracellular stores and the influx of extracellular Ca(2+). Bath application of uridine 5'-triphosphate (UTP; 100 microM) also caused an increase in intracellular Ca(2+) concentration in small-sized dorsal root ganglion neurons and the P2 receptor antagonists suramin (100 microM) and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 microM) virtually abolished the response, indicating that the intracellular Ca(2+) elevation in response to UTP is mediated through metabotropic P2Y receptors. This intracellular Ca(2+) increase was abolished by pretreating the neurons with thapsigargin (100 nM), suggesting that the UTP-induced increase in intracellular Ca(2+) is primarily due to the release of Ca(2+) from endoplasmic reticulum Ca(2+) stores. An enzyme-linked immunosorbent assay showed that an application of UTP (100 microM) significantly stimulated the release of CGRP and that suramin (100 microM) totally abolished the response, suggesting that P2Y receptor-mediated increase in intracellular Ca(2+) is accompanied by CGRP release from dorsal root ganglion neurons. These results suggest that metabotropic P2Y receptors contribute to extracellular ATP-induced increase in intracellular Ca(2+) concentration and subsequent release of neuropeptide CGRP in rat dorsal root ganglion neurons.
Collapse
Affiliation(s)
- M Sanada
- Third Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Yamakuni H, Kawaguchi N, Ohtani Y, Nakamura J, Katayama T, Nakagawa T, Minami M, Satoh M. ATP induces leukemia inhibitory factor mRNA in cultured rat astrocytes. J Neuroimmunol 2002; 129:43-50. [PMID: 12161019 DOI: 10.1016/s0165-5728(02)00179-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukemia inhibitory factor (LIF) is a cytokine involved in the survival and differentiation of the neural cells in the central and peripheral nervous systems. In the present study, we examined the effects of various neurotransmitter receptor agonists on LIF mRNA expression in cultured rat astrocytes, microglia and neurons to elucidate the cell types producing LIF and to clarify the neurotransmitter(s) regulating the mRNA expression. The results demonstrated that the expression of LIF mRNA was intensely induced by ATP in the cultured astrocytes. Experiments using ATP, UTP and related compounds showed the involvement of P2Y2 and P2Y4 purinoceptors in the expression induced by ATP.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Central Nervous System/cytology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Dose-Response Relationship, Drug
- Fetus
- Growth Inhibitors/genetics
- Growth Inhibitors/metabolism
- Interleukin-6
- Leukemia Inhibitory Factor
- Lymphokines/genetics
- Lymphokines/metabolism
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurotransmitter Agents/metabolism
- Neurotransmitter Agents/pharmacology
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurotransmitter/agonists
- Receptors, Neurotransmitter/metabolism
- Receptors, Purinergic/drug effects
- Receptors, Purinergic/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y2
- Suramin/pharmacology
- Uridine Triphosphate/metabolism
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Hisashi Yamakuni
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, 606-8501, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Unterberger U, Moskvina E, Scholze T, Freissmuth M, Boehm S. Inhibition of adenylyl cyclase by neuronal P2Y receptors. Br J Pharmacol 2002; 135:673-84. [PMID: 11834615 PMCID: PMC1573178 DOI: 10.1038/sj.bjp.0704514] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y(12). Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment. ADP and ATP (0.1 - 100 microM) left basal cyclic AMP accumulation unaltered, but reduced cyclic AMP synthesis stimulated by activation of endogenous A(2A) or recombinant beta(2) receptors. Forskolin-dependent cyclic AMP production was reduced by <or=1 microM and enhanced by 10 - 100 microM ADP; this latter effect was turned into an inhibition when A(2A) receptors were blocked. The nucleotide inhibition of cyclic AMP synthesis was not altered when P2X receptors were blocked, but abolished by pertussis toxin. The rank order of agonist potencies for the reduction of cyclic AMP was (IC(50) values): 2-methylthio-ADP (0.12 nM)=2-methylthio-ATP (0.13 nM)>ADPbetaS (71 nM)>ATP (164 nM)=ADP (244 nM). The inhibition by ADP was not antagonized by suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid, or adenosine-3'-phosphate-5'-phosphate, but attenuated by reactive blue 2, ATP(alpha)S, and 2-methylthio-AMP. RT - PCR demonstrated the expression of P2Y(2), P2Y(4), P2Y(6), and P2Y(12), but not P2Y(1), receptors in PC12 cells. In Northern blots, only P2Y(2) and P2Y(12) were detectable. Differentiation with NGF did not alter these hybridization signals and left the nucleotide inhibition of adenylyl cyclase unchanged. We conclude that P2Y(12) receptors are expressed in neuronal cells and inhibit adenylyl cyclase activity.
Collapse
Affiliation(s)
- Ursula Unterberger
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Eugenia Moskvina
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Thomas Scholze
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan Boehm
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
- Author for correspondence:
| |
Collapse
|
77
|
Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E, Pendergast W, Möller S, Edvinsson L, Erlinge D. UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors. Am J Physiol Heart Circ Physiol 2002; 282:H784-92. [PMID: 11788430 DOI: 10.1152/ajpheart.00997.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogenic effects of the extracellular nucleotides ATP and UTP are mediated by P2Y(1), P2Y(2), and P2Y(4) receptors. However, it has not been possible to examine the highly expressed UDP-sensitive P2Y(6) receptor because of the lack of stable, selective agonists. In rat aorta smooth muscle cells (vascular smooth muscle cells; VSMC), UDP and UTP stimulated (3)H-labeled thymidine incorporation with similar pEC(50) values (5.96 and 5.69). Addition of hexokinase did not reduce the mitogenic effect of UDP. In cells transfected with P2Y receptors the stable pyrimidine agonist uridine 5'-O-(2-thiodiphosphate) (UDPbetaS) was specific for P2Y(6) with no effect on P2Y(1), P2Y(2), or P2Y(4) receptors. UDPbetaS stimulated [(3)H]thymidine and [(3)H]leucine incorporation and increased cell number in VSMC. Flow cytometry demonstrated that UDP stimulated cell cycle progression to both the S and G(2) phases. The intracellular signal pathways were dependent on phospholipase C, possibly protein kinase C-delta, and a tyrosine kinase pathway but independent of G(i) proteins, eicosanoids, and protein kinase A. The half-life of P2Y(6) receptor mRNA was <1 h by competitive RT-PCR. The mitogen-activated protein kinase kinase inhibitor PD-098059 significantly suppressed, whereas ATP and interleukin-1beta upregulated, expression of P2Y(6) receptor mRNA. The results demonstrate that UDP stimulates mitogenesis through activation of P2Y(6) receptors and that the receptor is regulated by factors important in the development of vascular disease.
Collapse
Affiliation(s)
- Mingyan Hou
- Division of Experimental Vascular Research, Department of Medicine, University Hospital, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Guile SD, Ince F, Ingall AH, Kindon ND, Meghani P, Mortimore MP. The medicinal chemistry of the P2 receptor family. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:115-87. [PMID: 11774794 DOI: 10.1016/s0079-6468(08)70093-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- S D Guile
- Department of Medicinal Chemistry, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK
| | | | | | | | | | | |
Collapse
|
79
|
Sak K, Webb TE. A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 2002; 397:131-6. [PMID: 11747319 DOI: 10.1006/abbi.2001.2616] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the first cloning of P2Y receptor sequences in 1993 it has become apparent that this family of G-protein-coupled receptors is omnipresent. At least 25 individual sequences entered in the GenBank sequence database encode P2Y receptors from a variety of species ranging from the little skate Raja erinacea to man. In man, six receptor subtypes have been cloned and found to be functionally active (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), and P2Y(12)). In this article a review of the P2Y receptor subtypes is presented considering both their sequences and the pharmacological profiles of the encoded receptors expressed in heterologous expression systems.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, Tartu University, Ulikooli 18, Tartu 50090, Estonia
| | | |
Collapse
|
80
|
Communi D, Gonzalez NS, Detheux M, Brézillon S, Lannoy V, Parmentier M, Boeynaems JM. Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 2001; 276:41479-85. [PMID: 11546776 DOI: 10.1074/jbc.m105912200] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and expressed a novel human G-protein-coupled receptor closely related to the human P2Y(12) receptor. It corresponds to the orphan receptor called GPR86. GPR86 proved to be a G(i)-coupled receptor displaying a high affinity for ADP, similar to the P2Y(12) receptor and can therefore be tentatively called P2Y(13). In 1321N1 cells, the P2Y(13) receptor coupled to the phosphoinositide pathway only when coexpressed with Galpha(16). Inositol trisphosphate formation was stimulated equipotently by nanomolar concentrations of ADP and 2MeSADP, whereas 2MeSATP and ATP were inactive. In CHO-K1 cells expressing the P2Y(13) receptor, ADP and 2MeSADP had a biphasic effect on the forskolin-stimulated accumulation of cAMP: inhibition at nanomolar concentrations and potentiation at micromolar levels. In the same cells, ADP and 2MeSADP also stimulated the phosphorylation of Erk1 and Erk2, in a pertussis toxin-sensitive way. The tissue distribution of P2Y(13) was investigated by reverse transcriptase-polymerase chain reaction, and the predominant signals were obtained in spleen and brain. Although these can be discriminated by tissue distribution and some pharmacological features, the P2Y(12) and P2Y(13) receptors form a subgroup of related P2Y subtypes that is structurally different from the other P2Y subtypes but share coupling to G(i) and a high affinity for ADP.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
81
|
Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH. Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1059-67. [PMID: 11557527 DOI: 10.1152/ajpgi.2001.281.4.g1059] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides may be important regulators of bile ductular secretion, because cholangiocytes express P2Y ATP receptors and nucleotides are found in bile. However, the expression, distribution, and function of specific P2Y receptor subtypes in cholangiocytes are unknown. Thus our aim was to determine the subtypes, distribution, and role in secretion of P2Y receptors expressed by cholangiocytes. The molecular subtypes of P2Y receptors were determined by RT-PCR. Functional studies measuring cytosolic Ca2+ (Ca) signals and bile ductular pH were performed in isolated, microperfused intrahepatic bile duct units (IBDUs). PCR products corresponding to P2Y1, P2Y2, P2Y4, P2Y6, and P2X4 receptor subtypes were identified. Luminal perfusion of ATP into IBDUs induced increases in Ca that were inhibited by apyrase and suramin. Luminal ATP, ADP, 2-methylthioadenosine 5'-triphosphate, UTP, and UDP each increased Ca. Basolateral addition of adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), but not ATP, to the perifusing bath increased Ca. IBDU perfusion with ATP-gamma-S induced net bile ductular alkalization. Cholangiocytes express multiple P2Y receptor subtypes that are expressed at the apical plasma membrane domain. P2Y receptors are also expressed on the basolateral domain, but their activation is attenuated by nucleotide hydrolysis. Activation of ductular P2Y receptors induces net ductular alkalization, suggesting that nucleotide signaling may be an important regulator of bile secretion by the liver.
Collapse
Affiliation(s)
- J A Dranoff
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA.
| | | | | | | | | |
Collapse
|
82
|
Banno Y, Takuwa Y, Akao Y, Okamoto H, Osawa Y, Naganawa T, Nakashima S, Suh PG, Nozawa Y. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. J Biol Chem 2001; 276:35622-8. [PMID: 11468290 DOI: 10.1074/jbc.m105673200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.
Collapse
Affiliation(s)
- Y Banno
- Departments of Biochemistry and Internal Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H. Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 2001; 78:1325-38. [PMID: 11579141 DOI: 10.1046/j.1471-4159.2001.00524.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that an ecto-NPPase modulates the ATP- and ADP-mediated P2Y(AC)-receptor activation in rat C6 glioma. In the present study, 2MeSADP and Ap(3)A induced no detectable PI turnover and were identified as specific agonists of the P2Y(AC)-receptor with EC(50) values of 250 +/- 37 pM and 1 +/- 0.5 microM, respectively. P2Y(AC)-receptor stimulation increased MAP kinase (ERK1/2) activation that returned to the basal level 4 h after stimulation and was correlated with a gradual desensitization of the P2Y(AC)-purinoceptor. The purinoceptor antagonists DIDS and RB2 blocked MAP kinase activation. An IP(3)-independent Ca(2+)-influx was observed after P2Y(AC)-receptor activation. Inhibition of this influx by Ca(2+)-chelation, did not affect MAP kinase activation. Pertussis toxin, toxin B, selective PKC-inhibitors and a specific MEK-inhibitor inhibited the 2MeSADP- and Ap(3)A-induced MAP kinase activation. In addition, transfection with dominant negative RhoA(Asn19) rendered C6 cells insensitive to P2Y(AC)-receptor-mediated MAP kinase activation whereas dominant negative ras was without effect. Immunoprecipitation experiments indicated a significant increase in the phosphorylation of raf-1 after P2Y(AC)-receptor activation. We may conclude that P2Y(AC)-purinoceptor agonists activate MAP kinase through a G(i)-RhoA-PKC-raf-MEK-dependent, but ras- and Ca(2+)-independent cascade.
Collapse
Affiliation(s)
- B Grobben
- Department of Biochemistry, Cellular Biochemistry, Universiteit Antwerpen, Universitaire Instelling Antwerpen, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
84
|
Dhulipala PD, Lianos EA, Kotlikoff MI. Regulation of human P2X1 promoter activity by beta helix-loop-helix factors in smooth muscle cells. Gene 2001; 269:167-75. [PMID: 11376948 DOI: 10.1016/s0378-1119(01)00442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We isolated and characterized genomic clones of the human P2X1 receptor (hP2X1) gene in an effort to understand its tissue specific expression. The hP2X1 gene contains 12 exons spanning 20 kb, with exon sizes ranging from 59 to 143 bp. A 385 bp upstream fragment promoted hP2X1 gene expression in smooth muscle (A7R5 and primary trachealis) and fibroblast (NIH3T3) cell lines, and mutation of a consensus E box sequence (CACCTG) within this fragment (-340 to -345) did not alter basal promoter activity. However, co-transfected bHLH factors regulated activity of the 385 bp minimal P2X1 promoter in a tissue-specific manner. E12 expression inhibited and ITF2b augmented activity in A7R5 cells, but had no effect in NIH3T3 cells. ITF2a, Myo-D, and Id1 proteins had no effect on either cell line, but co-expression of ITF2a blocked E12 inhibition in A7R5 cells, while ITF2b failed to reverse the inhibition. Northern analysis of A7R5 RNA identified high levels of E12 and ITF2b transcripts, and gel shift assays using A7R5 and NIH3T3 nuclear extracts indicated the formation of a protein-DNA complex with an oligonucleotide corresponding to -330 and -348, which was abolished by base substitutions within the E box motif. Our results identify a critical E box response element in the hP2X1 promoter that binds bHLH factors and demonstrate smooth muscle specific transcriptional regulation by E proteins.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Binding Sites
- Cloning, Molecular
- DNA, Complementary
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Helix-Loop-Helix Motifs
- Humans
- Inhibitor of Differentiation Protein 1
- Mice
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Nerve Tissue Proteins
- Promoter Regions, Genetic
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X
- Repressor Proteins
- TCF Transcription Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factor 4
- Transcription Factor 7-Like 1 Protein
- Transcription Factor 7-Like 2 Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- P D Dhulipala
- Department of Medicine, Division of Nephrology, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | |
Collapse
|
85
|
Bailey MA, Imbert-Teboul M, Turner C, Srai SK, Burnstock G, Unwin RJ. Evidence for basolateral P2Y(6) receptors along the rat proximal tubule: functional and molecular characterization. J Am Soc Nephrol 2001; 12:1640-1647. [PMID: 11461936 DOI: 10.1681/asn.v1281640] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In this study, the distribution of P2Y(6) receptor mRNA in rat nephron segments was investigated and a functional approach was used to analyze basolateral protein expression. Reverse transcription-PCR studies revealed more intense expression of P2Y(6) receptor mRNA in the proximal tubule and the thick ascending limb of Henle's loop, less intense expression in the thin descending limb and the cortical and outer medullary collecting ducts, and no detectable expression in either the thin ascending limb or the inner medullary collecting duct. Dose-dependent calcium responses to basolateral administration of UDP (a selective agonist for the P2Y(6) receptor) were observed in the proximal tubule but not in any of the other segments studied. In the proximal tubule, intracellular calcium concentration changes induced by UDP were associated with increased production of inositol phosphates, as were those induced by ATP and norepinephrine. However, UDP-induced intracellular calcium concentration changes were different, exhibiting no plateau after the initial peak; moreover, a single stimulation with a high concentration of UDP induced full desensitization of the UDP-sensitive calcium pathway but did not alter the responsiveness of the proximal tubule to ADP (a specific P2Y(1) receptor agonist), ATP or norepinephrine. In summary, this report demonstrates that P2Y(6) receptor mRNA is expressed in most segments of the rat nephron but that basolateral expression of the protein is restricted to the proximal tubule, where the receptor is coexpressed with the P2Y(1) receptor. The differences in the distributions of P2Y(6) receptor mRNA and UDP responses may indicate the presence of luminal receptors in other nephron segments.
Collapse
Affiliation(s)
- Matthew A Bailey
- Centre for Nephrology, University College London, London, United Kingdom
| | - Martine Imbert-Teboul
- Centre National de la Recherche Scientifique URA 1859, CEA Saclay, Gif sur Yvette, France
| | - Clare Turner
- Centre for Nephrology, University College London, London, United Kingdom
| | - S Kaila Srai
- Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | - Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, University College London, London, United Kingdom
| | - Robert J Unwin
- Centre for Nephrology, University College London, London, United Kingdom
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, University College London, London, United Kingdom
| |
Collapse
|
86
|
Marcus DC, Scofield MA. Apical P2Y4 purinergic receptor controls K+ secretion by vestibular dark cell epithelium. Am J Physiol Cell Physiol 2001; 281:C282-9. [PMID: 11401851 DOI: 10.1152/ajpcell.2001.281.1.c282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was previously shown that K+ secretion by vestibular dark cell epithelium is under control of G protein-coupled receptors of the P2Y family in the apical membrane that are activated by both purine and uridine nucleotides (P2Y2, P2Y4, or P2Y6). The present study was conducted to determine the subtype of purinergic receptor and to test whether these receptors undergo desensitization. The transepithelial short-circuit current represents electrogenic K+ secretion and was found to be reduced by UTP, ATP, and diadenosine tetraphosphate, but not UDP. Neither pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 30 microM) nor suramin (100 microM) inhibited the effect of UTP. The potencies of the agonists were consistent with rodent P2Y4 and P2Y2, but not P2Y6, receptors. The ineffectiveness of suramin was consistent with P2Y4, but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in vestibular labyrinth. Sustained exposure to ATP or UTP for 15 min caused a constant depression of short-circuit current with no apparent desensitization. The results support the conclusion that regulation of K+ secretion across vestibular dark cell epithelium occurs by P2Y4 receptors without desensitization of the response.
Collapse
Affiliation(s)
- D C Marcus
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
87
|
Delicado EG, Jiménez AI, Castro E, Miras-Portugal MT. Cerebellar astrocytes coexpress different purinoceptors: Cross-talk between several transduction mechanisms. Drug Dev Res 2001. [DOI: 10.1002/ddr.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
88
|
Brinson AE, Harden TK. Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 2001; 276:11939-48. [PMID: 11114308 DOI: 10.1074/jbc.m009909200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-promoted regulation of the uridine nucleotide-activated human P2Y4 receptor (P2Y4-R) and P2Y6 receptor (P2Y6-R) was studied. Incubation of P2Y4-R-expressing 1321N1 human astrocytoma cells with the cognate agonist UTP resulted in rapid desensitization of the inositol phosphate response and a 50% loss of cell surface receptors. In contrast, incubation of P2Y6-R-expressing cells with the cognate agonist UDP caused neither rapid desensitization nor rapid loss of cell surface receptors. Removal of UTP from the medium of UTP-pretreated cells resulted in rapid and complete recovery of surface P2Y4-R even after 12 h of agonist treatment. Although extended incubation with UDP also caused a loss of surface P2Y6-R, rapid recovery of surface P2Y6-R did not occur following removal of agonist. Pharmacological studies indicated that neither protein kinase C nor other Ca(2+)-activated kinases were involved in agonist-promoted desensitization or loss of surface P2Y4-R or P2Y6-R. Mutational analyses were carried out to identify domains involved in agonist-dependent regulation of P2Y4-R. Sequential truncation of the carboxyl-terminal domain revealed that sequence between amino acids 332 and 343 was necessary for UTP-promoted desensitization and internalization. Further mutational analyses of the three serines in this domain confirmed that Ser-333 and Ser-334 play a major role in these agonist-promoted changes in P2Y4-R. Experiments were carried out with [(32)P]P(i)-labeled cells to ascertain the role of phosphorylation in regulation of P2Y4-R. Incubation with UTP for 2 min caused a marked increase in phosphorylation of both the wild-type P2Y4-R and the P2Y4-343 truncation mutant. In contrast, no UTP-promoted phosphorylation of the P2Y4-332 truncation mutant was observed. Taken together, these results demonstrate differential regulation of uridine nucleotide-activated P2Y4-R and P2Y6-R and indicate that Ser-333 and Ser-334 in the carboxyl terminus of P2Y4-R are important for UTP-dependent phosphorylation, desensitization, and loss of surface receptors.
Collapse
Affiliation(s)
- A E Brinson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
89
|
Abstract
ATP, besides an intracellular energy source, is an agonist when applied to a variety of different cells including cardiomyocytes. Sources of ATP in the extracellular milieu are multiple. Extracellular ATP is rapidly degraded by ectonucleotidases. Today ionotropic P2X(1--7) receptors and metabotropic P2Y(1,2,4,6,11) receptors have been cloned and their mRNA found in cardiomyocytes. On a single cardiomyocyte, micromolar ATP induces nonspecific cationic and Cl(-) currents that depolarize the cells. ATP both increases directly via a G(s) protein and decreases Ca(2+) current. ATP activates the inward-rectifying currents (ACh- and ATP-activated K(+) currents) and outward K(+) currents. P2-purinergic stimulation increases cAMP by activating adenylyl cyclase isoform V. It also involves tyrosine kinases to activate phospholipase C-gamma to produce inositol 1,4,5-trisphosphate and Cl(-)/HCO(3)(-) exchange to induce a large transient acidosis. No clear correlation is presently possible between an effect and the activation of a given P2-receptor subtype in cardiomyocytes. ATP itself is generally a positive inotropic agent. Upon rapid application to cells, ATP induces various forms of arrhythmia. At the tissue level, arrhythmia could be due to slowing of electrical spread after both Na(+) current decrease and cell-to-cell uncoupling as well as cell depolarization and Ca(2+) current increase. In as much as the information is available, this review also reports analog effects of UTP and diadenosine polyphosphates.
Collapse
Affiliation(s)
- G Vassort
- Institut National de la Santé et de la Recherche Médicale U. 390, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
90
|
Zhu Y, Kimelberg HK. Developmental expression of metabotropic P2Y(1) and P2Y(2) receptors in freshly isolated astrocytes from rat hippocampus. J Neurochem 2001; 77:530-41. [PMID: 11299315 DOI: 10.1046/j.1471-4159.2001.00241.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are at least three subtypes of cloned metabotropic P2 receptors linked to intracellular Ca(2+) rises in rat brain cells, namely, P2Y(1), P2Y(2) and P2Y(4). In this study we explore the subtypes of the metabotropic P2 receptors seen in freshly isolated astrocytes (FIAs) from P8-P25 rats. We found by single cell RT-PCR that in process-bearing FIAs from hippocampi of P8-P12 rats, 31% of the glial fibrillary acidic protein (GFAP) mRNA (+) cells expressed P2Y(1) mRNA while only 5% of the cells tested expressed P2Y(2) mRNA. The expression of P2Y(1) receptor mRNA was not changed in FIAs from the hippocampi of P18-P25 rats, but 38% of the GFAP mRNA (+) cells in the P18-P25 age group then showed P2Y(2) mRNA. We also studied whether the mRNA was expressing functional receptor protein by measuring Ca(2+) responses to specific agonists for P2Y(1) and P2Y(2). We found that similar proportions of GFAP mRNA (+) FIAs responded to ATP or UTP as showed mRNAs for P2Y (1) and P2Y(2,) respectively. Total tissue RNA from P9 and P24 rat hippocampus showed a 2.8-fold increase in P2Y(2) mRNA levels from P9 to P24 with a decrease in P2Y(1) mRNA. Thus, this study shows a marked up-regulation of mRNA for P2Y(2) from 9 to 24 days in rat hippocampus, and some of this increase is likely due to the protoplasmic astrocytes which is being translated into functional receptor protein in these cells.
Collapse
Affiliation(s)
- Y Zhu
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, USA
| | | |
Collapse
|
91
|
Lee WK, Choi SW, Lee HR, Lee EJ, Lee KH, Kim HO. Purinoceptor-mediated calcium mobilization and proliferation in HaCaT keratinocytes. J Dermatol Sci 2001; 25:97-105. [PMID: 11164706 DOI: 10.1016/s0923-1811(00)00117-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the effect of nucleotides on cytosolic free calcium mobilization and proliferation activity in HaCaT keratinocytes, nucleotides-induced intracellular free calcium concentration ([Ca(2+)](i)) and cell proliferation observed. [Ca(2+)](i) to the extracellular nucleotides was determined using Ca(2+) sensitive indicator, Fura-2/AM with digital video fluorescence imaging microscopy, and cell proliferation was evaluated by counting of cell number. An adenosine 5'-triphosphate (ATP)-induced [Ca(2+)](i) increase was observed from the concentration of 10(-8) M and was more conspicuous at higher concentrations in a concentration-dependent manner. Additionally, other nucleotides such as ADP, UTP, and 2-me-S-ATP also induced a [Ca(2+)](i) increase in a concentration-dependent manner. However, adenosine induced a slight increase of [Ca(2+)](i) only at 10(-3) M. alpha,-methylene-ATP did not evoke any rise in [Ca(2+)](i). The maximal response observed occurred with ATP and UTP at a concentration of 10(-4) M. The ATP-induced transient [Ca(2+)](i) increase was attenuated by the pretreatment with phospholipase C (PLC) inhibitor, U-73122 (10 microM) for 30 min. ATP-induced [Ca(2+)](i) increase and cell proliferation were inhibited by putative P2Y receptor antagonist, suramin (10(-4) M). When the HaCaT cells were stimulated with nucleotides on a concentration of 10(-4) M and cultured for 5 days, the order of effect on cell proliferation was observed to be ATP>UTP>ADP>2-me-S-ATP. Based on these results, we suggest that extracellular ATP stimulate HaCaT keratinocytes proliferation via purinoceptor-mediated [Ca(2+)](i) mobilization
Collapse
Affiliation(s)
- W K Lee
- Department of Pharmacology, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, South Korea
| | | | | | | | | | | |
Collapse
|
92
|
Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 2001; 97:587-600. [PMID: 11157473 DOI: 10.1182/blood.v97.3.587] [Citation(s) in RCA: 573] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleotides are emerging as an ubiquitous family of extracellular signaling molecules. It has been known for many years that adenosine diphosphate is a potent platelet aggregating factor, but it is now clear that virtually every circulating cell is responsive to nucleotides. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular adenosine triphosphate (ATP). These effects are mediated through a specific class of plasma membrane receptors called purinergic P2 receptors that, according to the molecular structure, are further subdivided into 2 subfamilies: P2Y and P2X. ATP and possibly other nucleotides are released from damaged cells or secreted via nonlytic mechanisms. Thus, during inflammation or vascular damage, nucleotides may provide an important mechanism involved in the activation of leukocytes and platelets. However, the cell physiology of these receptors is still at its dawn, and the precise function of the multiple P2X and P2Y receptor subtypes remains to be understood.
Collapse
Affiliation(s)
- F Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Medical Genetics, and Center of Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Janssens R, Boeynaems JM. Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol 2001; 132:536-46. [PMID: 11159704 PMCID: PMC1572579 DOI: 10.1038/sj.bjp.0703833] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1. The purpose of this work was to characterize the receptors involved in the action of nucleotides on the human prostate carcinoma cell lines LNCaP, PC-3 and DU145. 2. Northern blotting revealed the presence of P2Y(2), P2Y(6) and P2Y(11) messengers in the three cell lines. P2Y(1) mRNA was only observed in the DU145 cells. In both PC-3 and DU145 cells, ATP and UTP stimulated inositol phosphate accumulation in an equipotent, equiactive and non-additive way, suggesting the involvement of P2Y(2) receptors. ATP also increased cyclic AMP, but this effect is likely to result from degradation into adenosine and activation of A(2) receptor. A(2) receptor activation led to a synergistic enhancement of prostate-specific antigen secretion induced by vasoactive intestinal peptide. 3. RT - PCR experiments detected the expression of the P2X(4) and P2X(5) receptors in the DU145 cells and the P2X(4), P2X(5) and P2X(7) receptors in the PC-3 cells. The calcium influx induced by BzATP confirmed the functional expression of P2X receptors. 4. ATP inhibited the growth of PC-3 and DU145 cells. This effect was mimicked neither by UTP nor by adenosine, indicating that it does not result from phospholipase C or adenylyl cyclase activation. On the contrary, in PC-3 cells, BzATP reproduced the effect of ATP, which was associated to a moderate decrease of proliferation and an increase of apoptosis. In DU145 cells, ATP was more potent than BzATP and growth inhibition was mainly associated with necrosis. We suggest that P2X receptors might be involved in the inhibition by nucleotides of prostate carcinoma cell growth.
Collapse
Affiliation(s)
- R Janssens
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | | |
Collapse
|
94
|
Bolego C, Centemeri C, Abbracchio MP, Ceruti S, Cattabeni F, Jacobson KA, Puglisi L, Rovati GE, Burnstock G, Nicosia S. Two Distinct P2Y Receptors Are Involved in Purine- and Pyrimidine-Evoked Ca 2+ Elevation in Mammalian Brain Astrocytic Cultures. Drug Dev Res 2001; 52:122-132. [PMID: 38239931 PMCID: PMC10794909 DOI: 10.1002/ddr.1106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP and 2-methyl-thio-ATP (2-Me-SATP) increase cytosolic calcium concentrations ([Ca2+]i) in rat striatal astrocytes (Centemeri et al. [1997] Br J Pharmacol 121:1700-1706). The aim of the present study was to: (1) characterize pyrimidine-induced [Ca2+]i increases in the same experimental system, and (2) try to identify the multiple P2Y receptor subtypes mediating Ca2+ mobilization. UDP and UTP triggered a concentration-dependent [Ca2+]i elevation (EC50s = 0.58 μM ± 0.4 and 31 μM ± 6, respectively).Pyrimidine-evoked [Ca2+]i elevation was solely due to mobilization from intracellular stores, because: (1) removing calcium from extracellular medium or (2) blocking its influx with Ni2+ did not modify UTP responses; (3) the store-depleting agent thapsigargin completely abolished UTP-evoked [Ca2+]i increments. Guanosine-5'-O-(2-thiodiphosphate) partially inhibited the UTP response, whereas pertussis toxin (PTx) had no effect. The phospholipase C inhibitor U-73122 significantly reduced the UTP-evoked [Ca2+]i rise. Computer-assisted analysis indicated that the UTP and UDP responses are mediated by a single receptor, while ATP and 2-Me-SATP interact with two distinct receptors. The selective P2Y1 receptor antagonist MRS2179 abolished the ATP higher potency component. Sequential challenges with the same nucleotides resulted in almost complete homologous desensitization. Pre-exposure to UTP lowered the subsequent responses to either ATP or 2-Me-SATP. Maximally active concentrations of UTP and ATP were not additive. In conclusion, [Ca2+]i elevation in astrocytes by purines and pyrimidines is mediated by two distinct P2Y receptors, likely the P2Y1 and P2Y6 subtypes.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Carlo Centemeri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | - Stefania Ceruti
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Flaminio Cattabeni
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, Maryland
| | - Lina Puglisi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Gian Enrico Rovati
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free Hospital, School of Medicine, London, United Kingdom
| | - Simonetta Nicosia
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| |
Collapse
|
95
|
Sugimura A, Kanatsuka H, Tanikawa T, Ong BH, Shirato K. Effect of diadenosine tetraphosphate (AP4A) on coronary arterial microvessels in the beating canine heart. JAPANESE CIRCULATION JOURNAL 2000; 64:868-75. [PMID: 11110433 DOI: 10.1253/jcj.64.868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diadenosine tetraphosphate (AP4A) can be released from activated platelets and the present study examined its effect on coronary arterial microvessels. The role of purinoceptors in the coronary microcirculation in vivo was also investigated. In open chest dogs, coronary arterioles were observed using a microscope with a floating objective. In Protocol 1, AP4A (1, 10, 100 and 1,000 micromol/L) was superfused onto the heart surface before and during the superfusion of 10 micromol/L of 8-phenyltheophylline (8-PT), a P1 purinoceptor blocker. In Protocol 2, AP4A (0.1, 1, 10, and 100 nmol x kg(-1) x min(-1)) was infused into the left anterior descending coronary artery before and during the superfusion of 10 micromol/L of 8-PT. In addition to 8-PT, 30 micromol/L of pyridoxalphosphate-6-azophenyl 2',4'-disulphonic acid (PPADS), a P2X purinoceptor blocker in Protocol 3, or 300 micromol/L of N(omega)-nitro-L-arginine (LNNA) in Protocol 4, was continuously superfused, and 4 doses of AP4A were cumulatively superfused as in Protocol 1. In Protocol 5, 10 micromol/L of alpha,beta-methylene ATP, an agonist of P2X purinoceptors, was superfused for 60 min. Superfused AP4A dilated arterioles in a dose-dependent manner. The magnitude of dilatation was greater in smaller arterioles (small vessel < or = 150 microm: 24.5+/-2.2% vs large vessel > 150 microm: 10.6+/-1.5% at a dose of 1,000 micromol/L, p<0.001). On the other hand, intraluminally applied AP4A also dilated arterioles, but no size dependency was shown. In the presence of 8-PT, vasodilatory responses to superfused and intraluminally applied AP4A were attenuated and the lower doses of AP4A constricted arterioles. This vasoconstrictor effect was not affected by PPADS. The vasodilatory effect of the higher doses of AP4A was almost abolished in the presence of LNNA. Alpha,beta-methylene ATP had no effect on coronary microvascular diameters. AP4A has bidirectional effects on coronary arterial microvessels: vasodilatory effects mediated by P1 purinoceptors and NO, which might be mediated by P2Y purinoceptors, and a vasoconstrictor effect, which is not mediated by P2X purinoceptors.
Collapse
Affiliation(s)
- A Sugimura
- The First Department of Internal Medicine, Tohoku University, School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
96
|
Teixeira M, Ferrary E, Butlen D. UTP binding and phosphoinositidase C activation in ampulla from frog semicircular canal. Am J Physiol Regul Integr Comp Physiol 2000; 279:R803-12. [PMID: 10956237 DOI: 10.1152/ajpregu.2000.279.3.r803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrimidine nucleotide-sensitive phosphoinositidase C activity (PLC), previously identified in frog semicircular canal ampulla, was pharmacologically characterized. Binding of [(3)H]UTP and abilities of unlabeled nucleotide analogs to inhibit binding and to stimulate PLC in myo-[(3)H]inositol-loaded ampullas were determined. Specific [(3)H]UTP binding was competitively inhibited by UTP [apparent dissociation binding constant = 0.8 microM; Hill coefficient = 0.7]. Scatchard analysis revealed a minor class of high-affinity binding sites [45 fmol UTP bound/microgram protein; dissociation constant (K(D1)) = 0.4 microM] and a major class of moderate-affinity binding sites (365 fmol UTP bound/microgram protein; K(D2) = 10 microM). The stereospecificity pattern for UTP analog recognition was UMP > UDP >/= ADP = UTP = dTTP > adenosine 5'-O-(3-thiotriphosphate) = ATP = CTP = 2'-and 3'-O-4-(benzoylbenzoyl)-ATP (Bz-ATP) >/= AMP >/= 2-methylthio-ATP = alpha,beta-methylene-ATP > uridine = diadenosine tetraphosphate (Ap(4)A); cAMP and adenosine were inactive. Antagonist recognition pattern was DIDS = pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) = reactive blue 2 > suramin. The rank order of potencies for agonist-induced PLC activation was UDP >/= UTP >/= Ap(4)A >/= UMP = Bz-ATP; uridine was inactive. UTP-stimulated PLC activity was inhibited by DIDS = reactive blue 2 = PPADS > suramin. These results suggest that the population of [(3)H]UTP-labeled binding sites is heterogeneous, with a low number of high-affinity UTP receptors whose function(s) need to be determined and a large number of moderate-affinity receptors triggering PLC activation.
Collapse
Affiliation(s)
- M Teixeira
- Institut National de la Santé et de la Recherche Médicale, Unité 426, Faculté de Médecine Xavier Bichat, 75870 Paris Cedex 18, France
| | | | | |
Collapse
|
97
|
|
98
|
Chan LN, Wang XF, Tsang LL, Chan HC. Pyrimidinoceptors-mediated activation of Ca(2+)-dependent Cl(-) conductance in mouse endometrial epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:261-70. [PMID: 10903431 DOI: 10.1016/s0167-4889(00)00057-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated the activation of endometrial Cl(-) secretion through P(2Y2) (P(2U)) purinoceptors by extracellular ATP. The present study further explored the presence of pyrimidine-sensitive receptors in the primary cultured mouse endometrial epithelial cells using the short-circuit current (I(SC)) and whole-cell patch-clamp techniques. UDP induced a transient increase in I(SC) in a concentration-dependent manner (EC(50) approximately 8.84 microM). The UDP-induced I(SC) was abolished after pretreating the epithelia with a calcium chelator, 1, 2-bis-(2-aminophenoxy)-ethane-N,N,N'N'tetraacetic acid-acetomethyl ester (BAPTA-AM), suggesting the dependence of the I(SC) on cytosolic free Ca(2+). The type of receptor involved was studied by cross-desensitization between ATP and UDP. ATP or UDP desensitized its subsequent I(SC) response. However, when ATP was added after UDP, or vice versa, a second I(SC) response was observed, indicating the activation of distinct receptors, possibly pyrimidine-sensitive receptors in addition to P(2Y2) (P(2U)) receptors. Similar results were observed in the patch-clamp experiments where UDP and ATP were shown to sequentially activate whole-cell current in the same cell. The UDP-activated whole-cell current exhibited outward rectification with delay activation and inactivation at depolarizing and hyperpolarizing voltages, respectively. In addition, the UDP-evoked whole-cell current reversed near the equilibrium potential of Cl(-) in the presence of a Cl(-) gradient across the membrane, and was sensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), indicating the activation of Ca(2+)-activated Cl(-) conductance. These characteristics were very similar to that of the ATP-activated whole-cell current. Taken together, our findings indicate the presence of distinct receptors, pyrimidinoceptors and P(2Y2) (P(2U)) receptors in mouse endometrial epithelial cells. These distinct receptors appear to converge on the same Ca(2+)-dependent Cl(-) channels.
Collapse
Affiliation(s)
- L N Chan
- Epithelial Cell Biology Research Center, Department of Physiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | |
Collapse
|
99
|
Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM. Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cell Signal 2000; 12:351-60. [PMID: 10889463 DOI: 10.1016/s0898-6568(00)00083-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleotides are ubiquitous intercellular messengers whose actions are mediated by specific receptors. Since the first clonings in 1993, it is known that nucleotide receptors belong to two families: the ionotropic P2X receptors and the metabotropic P2Y receptors. Five human P2Y receptor subtypes have been cloned so far and a sixth one must still be isolated. In this review we will show that they differ by their preference for adenine versus uracil nucleotides and triphospho versus diphospho nucleotides, as well as by their transduction mechanisms and cell expression.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Brussels, Belgium
| | | | | | | | | |
Collapse
|
100
|
Morán-Jiménez MJ, Matute C. Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 78:50-8. [PMID: 10891584 DOI: 10.1016/s0169-328x(00)00067-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports the characterization of a polyclonal antiserum to a carboxy-terminal epitope of the P2Y(1) receptor and its use in immunolocalization studies of this receptor in the CNS. The antibody recognized a major band of 42 kDa in Western blot of tissue homogenates from rat and bovine brain. Immunohistochemical studies confirmed early reports about the presence of the P2Y(1) receptor in the corpus callosum, habenula and ductal cells of the salivary gland. In addition, we found that the P2Y(1) receptor is intensely expressed in Purkinje cells, in deep layers of the cerebral cortex and in ischemic-sensitive areas of the hippocampus. Moreover, oligodendrocytes and astrocytes in brain white matter tracts and optic nerve were also immunoreactive. The intense expression of the P2Y(1) peptide in the aforementioned cell types suggests that this receptor may play fundamental roles in glial physiology. This antiserum should be a useful tool to study the presence of the P2Y(1) receptor in different tissues and cell cultures as well as in expression systems, and to distinguish the P2Y(1) from other subtypes of P2Y receptors.
Collapse
Affiliation(s)
- M J Morán-Jiménez
- Departamento de Neurociencias, Facultad de Medicina y Odontología, Universidad del País Vasco, 48940 Leioa, Vizcaya, Spain
| | | |
Collapse
|