51
|
Castillo AM, Reyes JL, Sánchez E, Mondragón R, Meza I. 2,3-butanedione monoxime (BDM), a potent inhibitor of actin-myosin interaction, induces ion and fluid transport in MDCK monolayers. J Muscle Res Cell Motil 2003; 23:223-34. [PMID: 12500902 DOI: 10.1023/a:1020979203141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Membrane-cytoskeleton interactions have been shown to be crucial to modulate polarity, cell shape and the paracellular pathway in epithelial MDCK cell monolayers. In particular, actin organization and myosin-dependent contractility play an important role in the regulation of these functions. Participation of myosin in vectorial transport, expressed as formation of domes, was investigated in confluent monolayers of high transepithelial electrical resistance (TER) plated on non-permeable supports. Cells exposed to 2,3-butanedione monoxime, a selective inhibitor of myosin ATPase, showed a remarkable increase in the number of domes. Replacement of extracellular Na+ and Cl- and inhibition of Na+-K+-ATPase blocked the induction of domes. The monoxime also caused a reduction of the TER leading to an increase in the paracellular flux of small molecular weight dextran. However, immunofluorescence microscopy of drug-treated cells showed that the localization and staining pattern of tight junction proteins ZO-1, occludin, and claudin 1, or the actin-myosin ring at the zonula adherens, were not modified. Treatment with the drug produced striking re-arrangements of actin filaments at the microvilli and at the basal level of the cells. Our data show that disruption of actin-myosin interaction at several cellular sites contributed importantly to the increased transport activity and the formation of the domes. These results point to the relevant role or actin-myosin dynamics and actin organization in the regulation of ion and water channel activity in these cells.
Collapse
Affiliation(s)
- Aida M Castillo
- Department of Biologia Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado 14-740, México, DF 07000, México
| | | | | | | | | |
Collapse
|
52
|
Bricker JL, Chu S, Kempson SA. Disruption of F-actin stimulates hypertonic activation of the BGT1 transporter in MDCK cells. Am J Physiol Renal Physiol 2003; 284:F930-7. [PMID: 12527556 DOI: 10.1152/ajprenal.00289.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many membrane transport systems are altered by changes in the state of the actin cytoskeleton. Although an intact microtubule network is required for hypertonic activation of the betaine transporter (BGT1), the possible role of the actin cytoskeleton is unknown. BGT1 function in Madin-Darby canine kidney cell monolayers was assessed as Na(+)-dependent uptake of GABA, following disassembly of F-actin by cytochalasin D (1.0 microM) or latrunculin A (0.6 microM). Both drugs significantly increased (P < 0.001) the activation of BGT1 transport by 24-h hypertonicity (500 mosmol/kgH(2)O). In contrast, the hypertonic upregulation of Na(+)-dependent alanine uptake remained unaltered by cytochalasin D. Disruption of F-actin did not interfere with downregulation of BGT1 transport when cells were transferred from hypertonic to isotonic medium. Immunofluorescence staining revealed colocalization of BGT1 and F-actin at the plasma membrane of hypertonic cells. Surface biotinylation revealed no major change in BGT1 protein abundance after cytochalasin D action, suggesting that stimulation of hypertonic activation of BGT1 transport is due to increased activity of existing BGT1 transporters.
Collapse
Affiliation(s)
- Jeremy L Bricker
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
53
|
Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji HL, Fuller CM, Kirk KL, Benos DJ. Acid-sensing ion channels in malignant gliomas. J Biol Chem 2003; 278:15023-34. [PMID: 12584187 DOI: 10.1074/jbc.m300991200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High grade glioma cells derived from patient biopsies express an amiloride-sensitive sodium conductance that has properties attributed to the human brain sodium channel family, also known as acid-sensing ion channels (ASICs). This amiloride-sensitive conductance was not detected in cells obtained from normal brain tissue or low grade or benign tumors. Differential gene profiling data showed that ASIC1 and ASIC2 mRNA were present in normal and low grade tumor cells. Although ASIC1 was present in all of the high grade glial cells examined, ASIC2 mRNA was detected in less than half. The main purpose of our work was to examine the molecular mechanisms that may underlie the constitutively activated sodium currents present in high grade glioma cells. Our results show that 1) gain-of-function mutations of ASIC1 were not present in a number of freshly resected and cultured high grade gliomas, 2) syntaxin 1A inhibited ASIC currents only when ASIC1 and ASIC2 were co-expressed, and 3) the inhibition of ASIC currents by syntaxin 1A had an absolute requirement for either gamma- or delta-hENaC. Transfection of cultured cells originally derived from high grade gliomas (U87-MG and SK-MG1) with ASIC2 abolished basal amiloride-sensitive sodium conductance; this inhibition was reversed by dialysis of the cell interior with Munc-18, a syntaxin-binding protein that typically blocks the interaction of syntaxin with other proteins. Thus, syntaxin 1A cannot inhibit Na(+) permeability in the absence of adequate plasma membrane ASIC2 expression, accounting for the observed functional expression of amiloride-sensitive currents in high grade glioma cells.
Collapse
Affiliation(s)
- Bakhrom K Berdiev
- Department of Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Shumilina EV, Negulyaev YA, Morachevskaya EA, Hinssen H, Khaitlina SY. Regulation of sodium channel activity by capping of actin filaments. Mol Biol Cell 2003; 14:1709-16. [PMID: 12686620 PMCID: PMC153133 DOI: 10.1091/mbc.e02-09-0622] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells.
Collapse
|
55
|
Liedtke CM, Hubbard M, Wang X. Stability of actin cytoskeleton and PKC-delta binding to actin regulate NKCC1 function in airway epithelial cells. Am J Physiol Cell Physiol 2003; 284:C487-96. [PMID: 12388079 DOI: 10.1152/ajpcell.00357.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of airway epithelial Na-K-2Cl cotransporter (NKCC)1 requires increased activity of protein kinase C (PKC)-delta, which localizes predominantly to the actin cytoskeleton. Prompted by reports of a role for actin in NKCC1 function, we studied a signaling mechanism linking NKCC1 and PKC. Stabilization of actin polymerization with jasplakinolide increased activity of NKCC1, whereas inhibition of actin polymerization with latrunculin B prevented hormonal activation of NKCC1. Protein-protein interactions among NKCC1, actin, and PKC-delta were verified by Western blot analysis of immunoprecipitated proteins. PKC-delta was detected in immunoprecipitates of NKCC1 and vice versa. Actin was also detected in immunoprecipitates of NKCC1 and PKC-delta. Pulldown of endogenous actin revealed the presence of NKCC1 and PKC-delta. Binding of recombinant PKC-delta to NKCC1 was not detected in overlay assays. Rather, activated PKC-delta bound to actin, and this interaction was prevented by a peptide encoding deltaC2, a C2-like domain based on the amino acid sequence of PKC-delta. deltaC2 also blocked stimulation of NKCC1 function by methoxamine. Immunofluorescence and confocal microscopy revealed PKC-delta in the cytosol and cell periphery. Merged images of cells stained for actin and PKC-delta indicated colocalization of PKC-delta and actin at the cell periphery. The results indicate that actin is critical for the activation of NKCC1 through a direct interaction with PKC-delta.
Collapse
Affiliation(s)
- Carole M Liedtke
- Warren Alan Bernbaum, M.D. Center for Cystic Fibrosis Research, Department of Pediatrics, Rainbow Babies & Children Hospital, Cleveland, Ohio 44106-4948, USA.
| | | | | |
Collapse
|
56
|
Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G. Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J Biol Chem 2003; 278:1915-23. [PMID: 12429735 DOI: 10.1074/jbc.m209938200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCN5A encodes the alpha subunit of the cardiac muscle and intestinal smooth muscle mechanosensitive Na(+) channel. Mechanosensitivity in the intestine requires an intact cytoskeleton. We report, using laser capture microdissection, single cell PCR, and immunohistochemistry, that syntrophins, scaffolding proteins, were expressed in human intestinal smooth muscle cells. The distribution of syntrophin gamma 2 was similar to that of SCN5A. Yeast two-hybrid and glutathione S-transferase pull-down experiments show that SCN5A and syntrophin gamma 2 co-express and that the PDZ domain of syntrophin gamma 2 directly interacts with the C terminus of SCN5A. In native cells, disruption of the C terminus-syntrophin gamma 2 PDZ domain interaction using peptides directed against either region result in loss of mechanosensitivity. Co-transfection of syntrophin gamma 2 with SCN5A in HEK293 cells markedly shifts the activation kinetics of SCN5A and reduces the availability of Na(+) current. We propose that syntrophin gamma 2 is an essential Na(+) channel-interacting protein required for the full expression of the Na(+) current and that the SCN5A-syntrophin gamma 2 interaction determines mechanosensitivity and current availability.
Collapse
Affiliation(s)
- Yijun Ou
- Enteric NeuroScience Program, Department of Physiology and Biophysics and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Becchetti A, Malik B, Yue G, Duchatelle P, Al-Khalili O, Kleyman TR, Eaton DC. Phosphatase inhibitors increase the open probability of ENaC in A6 cells. Am J Physiol Renal Physiol 2002; 283:F1030-45. [PMID: 12372779 DOI: 10.1152/ajprenal.00011.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the cellular phosphatase inhibitors okadaic acid (OKA), calyculin A, and microcystin on the epithelial sodium channel (ENaC) in A6 renal cells. OKA increased the amiloride-sensitive current after approximately 30 min with maximal stimulation at 1-2 h. Fluctuation analysis of cell-attached patches containing a large number of ENaC yielded power spectra with corner frequencies in untreated cells almost two times as large as in cells pretreated for 30 min with OKA, implying an increase in single channel open probability (P(o)) that doubled after OKA. Single channel analysis showed that, in cells pretreated with OKA, P(o) and mean open time approximately doubled. Two other phosphatase inhibitors, calyculin A and microcystin, had similar effects on P(o) and mean open time. An analog of OKA, okadaone, that does not inhibit phosphatases had no effect. Pretreatment with 10 nM OKA, which blocks protein phosphatase 2A (PP2A) but not PP1 in mammalian cells, had no effect even though both phosphatases are present in A6 cells. Several proteins were differentially phosphorylated after OKA, but ENaC subunit phosphorylation did not increase. We conclude that, in A6 cells, there is an OKA-sensitive phosphatase that suppresses ENaC activity by altering the phosphorylation of a regulatory molecule associated with the channel.
Collapse
Affiliation(s)
- A Becchetti
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Kim M, Jung J, Park CS, Lee K. Identification of the cofilin-binding sites in the large cytoplasmic domain of Na,K-ATPase. Biochimie 2002; 84:1021-9. [PMID: 12504282 DOI: 10.1016/s0300-9084(02)00004-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Na,K-ATPase, an alpha, beta heterodimer, is found in the plasma membrane of all animal cells. The alpha chain is believed to have 10 transmembrane regions and a large cytoplasmic domain between the 4th and 5th transmembrane regions (H4-H5). In our previous report, the large (3rd) cytoplasmic domains of the alpha1 and alpha2 isoform were found to interact with cofilin, an actin-modulating protein, by the yeast two-hybrid system. Here we show that cofilin interacts only with the 3rd cytoplasmic domain of the alpha2 subunit but not with the 2nd, 4th, and 5th cytoplasmic domains or the cytoplasmic region of the beta subunit of Na,K-ATPase. We also demonstrate that cofilin interacts with the large cytoplasmic domains of the alpha1, alpha2 and alpha3 isoforms of Na,K-ATPase, but not with those of glucose transporter 1, glucose transporter 4, cystic fibrosis transmembrane conductance regulator and plasma membrane Ca-ATPase. We introduced 10 mutations into the 3rd cytoplasmic domain of Na,K-ATPase to identify the binding sites with cofilin. Eight of these mutants were single amino acid substitutions (R417Q, K470Q, K654G, D672A, K691A, R700G, R700A and D710G) and two were double mutant (K654GR700G and K719AK720A). Analysis of the activity of the reporter gene of these mutants shows that residues D672 and R700 of the 3rd cytoplasmic domain of Na,K-ATPase are involved in the interaction with cofilin.
Collapse
Affiliation(s)
- Miyoung Kim
- College of Pharmacy, Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Olivier Bonny
- Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
60
|
Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT. Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 2002; 283:C126-34. [PMID: 12055080 DOI: 10.1152/ajpcell.00457.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some members of the epithelial Na+ channel/degenerin (ENaC/DEG) family of ion channels have been detected in mammalian brain. Therefore, we examined the RNA and protein expression of these channels in another part of the central nervous system, the rabbit retina. We next sought to demonstrate physiological evidence for an amiloride-sensitive current in Müller glia, which, on the basis of a previous study, are thought to express alpha-ENaC (Golestaneh N, de Kozak Y, Klein C, and Mirshahi M. Glia 33: 160-168, 2001). RT-PCR of retinal RNA revealed the presence of alpha-, beta-, gamma-, and delta-ENaC as well as acid-sensing ion channel (ASIC)1, ASIC2, ASIC3, and ASIC4. Immunohistochemical localization with antibodies against alpha-ENaC and beta-ENaC showed labeling in Müller cells and neurons, respectively. The presence of alpha-ENaC, beta-ENaC, and ASIC1 was detected by Western blotting. Cultured Müller cells were whole cell patch clamped. These cells exhibited an inward Na+ current that was blocked by amiloride. These data demonstrate for the first time both the expression of a variety of ENaC and ASIC subunits in the rabbit retina as well as distinct cellular expression patterns of specific subunits in neurons and glia.
Collapse
Affiliation(s)
- L M Brockway
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 490] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
62
|
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002; 82:735-67. [PMID: 12087134 DOI: 10.1152/physrev.00007.2002] [Citation(s) in RCA: 786] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Institut de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
63
|
Morris RG, Schafer JA. cAMP increases density of ENaC subunits in the apical membrane of MDCK cells in direct proportion to amiloride-sensitive Na(+) transport. J Gen Physiol 2002; 120:71-85. [PMID: 12084777 PMCID: PMC2311399 DOI: 10.1085/jgp.20018547] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antidiuretic hormone and/or cAMP increase Na(+) transport in the rat renal collecting duct and similar epithelia, including Madin-Darby canine kidney (MDCK) cell monolayers grown in culture. This study was undertaken to determine if that increment in Na(+) transport could be explained quantitatively by an increased density of ENaC Na(+) channels in the apical membrane. MDCK cells with no endogenous ENaC expression were retrovirally transfected with rat alpha-, beta-, and gammaENaC subunits, each of which were labeled with the FLAG epitope in their extracellular loop as described previously (Firsov, D., L. Schild, I. Gautschi, A.-M. Mérillat, E. Schneeberger, and B.C. Rossier. 1996. PROC: Natl. Acad. Sci. USA. 93:15370-15375). The density of ENaC subunits was quantified by specific binding of (125)I-labeled anti-FLAG antibody (M2) to the apical membrane, which was found to be a saturable function of M2 concentration with half-maximal binding at 4-8 nM. Transepithelial Na(+) transport was measured as the amiloride-sensitive short-circuit current (AS-I(sc)) across MDCK cells grown on permeable supports. Specific M2 binding was positively correlated with AS-I(sc) measured in the same experiments. Stimulation with cAMP (20 microM 8-p-chlorothio-cAMP plus 200 microM IBMX) significantly increased AS-I(sc) from 11.2 +/- 1.3 to 18.1 +/- 1.3 microA/cm(2). M2 binding (at 1.7 nM M2) increased in direct proportion to AS-I(sc) from 0.62 +/- 0.13 to 1.16 +/- 0.18 fmol/cm(2). Based on the concentration dependence of M2 binding, the quantity of Na(+) channels per unit of AS-I(sc) was calculated to be the same in the presence and absence of cAMP, 0.23 +/- 0.04 and 0.21 +/-0.05 fmol/microA, respectively. These values would be consistent with a single channel conductance of approximately 5 pS (typically reported for ENaC channels) only if the open probability is <0.02, i.e., less than one-tenth of the typical value. We interpret the proportional increases in binding and AS-I(sc) to indicate that the increased density of ENaC subunits in the apical membrane can account completely for the I(sc) increase produced by cAMP.
Collapse
Affiliation(s)
- Ryan G Morris
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
64
|
Abstract
Structurally diverse ion transport proteins anchor the spectrin-actin cytoskeleton to the plasma membrane by binding directly to linker proteins of the ankyrin and protein 4.1 families. Cytoskeletal anchoring regulates cell shape and restricts the activity of ion transport proteins to specialised membrane domains. New directions are being forged by recent findings that localised anchoring by ion transport proteins regulates the ordered assembly of actin filaments and the actin-dependent processes of cell adhesion and motility.
Collapse
Affiliation(s)
- Sheryl P Denker
- Department of Stomatology, University of California, San Francisco, CA 94143-0512, USA
| | | |
Collapse
|
65
|
Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG. ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 2002; 282:F501-5. [PMID: 11832432 DOI: 10.1152/ajprenal.00147.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanosensitivity of the epithelial sodium channel (ENaC) is controversial. Using cell-attached patch-clamp techniques, we found that mechanical stretch stimulated ENaC in A6 distal nephron cells in only three of nine cell-attached patches. However, stretch consistently activated ENaC after apical ATP was scavenged with apical hexokinase plus glucose or after P(2) receptors in the patch were blocked. The mean open probability (P(o)) of ENaC was increased from 0.31 +/- 0.04 to 0.61 +/- 0.06 (P < 0.001; n = 9) when patch pipettes contained hexokinase and glucose, or from 0.24 +/- 0.05 to 0.55 +/- 0.11 (P < 0.01; n = 7) when patch pipettes contained suramin, respectively. A poorly hydrolyzable ATP analog, ATPgammaS, in the patch pipettes inhibited ENaC, reducing the P(o) from 0.41 +/- 0.06 to 0.19 +/- 0.05 (P < 0.01; n = 8). Pretreatment of A6 cells with the phospholipase C (PLC) inhibitor U-73122 abolished the effect of ATP on ENaC activity. These data together suggest that ATP, acting through a PLC-dependent purinergic pathway, masks stretch-induced ENaC activation.
Collapse
Affiliation(s)
- He-Ping Ma
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, 35294-0017, USA.
| | | | | | | | | |
Collapse
|
66
|
Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 2002; 82:245-89. [PMID: 11773614 DOI: 10.1152/physrev.00026.2001] [Citation(s) in RCA: 453] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na(+) channels (ENaC), the Na(+)-K(+)-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na(+) feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl(-) secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl(-) channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl(-) secretion and enhanced Na(+) absorption in the colon of cystic fibrosis (CF) patients. Ca(2+)- and cAMP-activated basolateral K(+) channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Queensland, Brisbane, Australia.
| | | |
Collapse
|
67
|
Berdiev BK, Mapstone TB, Markert JM, Gillespie GY, Lockhart J, Fuller CM, Benos DJ. pH alterations "reset" Ca2+ sensitivity of brain Na+ channel 2, a degenerin/epithelial Na+ ion channel, in planar lipid bilayers. J Biol Chem 2001; 276:38755-61. [PMID: 11514582 DOI: 10.1074/jbc.m107266200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the degenerin/epithelial Na(+) channel superfamily of ion channels subserve many functions, ranging from whole body sodium handling to mechanoelectrical transduction. We studied brain Na(+) channel 2 (BNaC-2) in planar lipid bilayers to examine its single channel properties and regulation by Ca(2+). Upon incorporation of vesicles made from membranes of oocytes expressing either wild-type (WT) BNaC-2 or BNaC-2 with a gain-of-function (GF) point mutation (G433F), functional channels with different properties were obtained. WT BNaC-2 resided in a closed state with short openings, whereas GF BNaC-2 was constitutively activated; a decrease in the pH in the trans compartment of the bilayer activated WT BNaC-2 and decreased its permeability for Na(+) over K(+). Moreover, these maneuvers made the WT channel more resistant to amiloride. In contrast, GF BNaC-2 did not respond to a decrease in pH, and its amiloride sensitivity and selectivity for Na(+) over K(+) were unaffected by this pH change. Buffering the bathing solutions with EGTA to reduce the free [Ca(2+)] to <10 nm increased WT single channel open probability 10-fold, but not that of GF BNaC-2. Ca(2+) blocked both WT and GF BNaC-2 in a dose- and voltage-dependent fashion; single channel conductances were unchanged. A drop in pH reduced the ability of Ca(2+) to inhibit these channels. These results show that BNaC-2 is an amiloride-sensitive sodium channel and suggest that pH activation of these channels could be, in part, a consequence of H(+) "interference" with channel regulation by Ca(2+).
Collapse
Affiliation(s)
- B K Berdiev
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The epithelial Na(+) channel (ENaC) plays a key role in the regulation of Na(+) and water absorption in several epithelia, including those of the distal nephron, distal colon, and lung. Accordingly, mutations in ENaC leading to reduced or increased channel activity cause human diseases such as pseudohypoaldosteronism type I or Liddle's syndrome, respectively. The gain of ENaC function in Liddle's syndrome is associated with increased activity and stability of the channel at the plasma membrane. Thus understanding the regulation of channel processing and trafficking to and stability at the cell surface is of fundamental importance. This review describes some of the recent advances in our understanding of ENaC trafficking, including the role of glycosylation, ENaC solubility in nonionic detergent, targeting signal(s) and hormones. It also describes the regulation of ENaC stability at the cell surface and the roles of the ubiquitin ligase Nedd4 (and ubiquitination) and clathrin-mediated endocytosis in that regulation.
Collapse
Affiliation(s)
- D Rotin
- Program in Cell Biology and Biochemistry, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada, M5G 1X8.
| | | | | |
Collapse
|
69
|
Copeland SJ, Berdiev BK, Ji HL, Lockhart J, Parker S, Fuller CM, Benos DJ. Regions in the carboxy terminus of alpha-bENaC involved in gating and functional effects of actin. Am J Physiol Cell Physiol 2001; 281:C231-40. [PMID: 11401846 DOI: 10.1152/ajpcell.2001.281.1.c231] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gating differences occur between the alpha-subunits of the bovine and rat clones of an amiloride-sensitive epithelial Na+ channel (ENaC). Deletion of the carboxy terminus of bovine alpha-ENaC (alpha-bENaC) at R567 converted the gating properties to that of rat alpha-ENaC (alpha-rENaC). The equivalent truncation in alpha-rENaC was without effect on the gating of the rat homologue. The addition of actin to ENaC channels composed of either alpha-rENaC or alpha-bENaC alone produced a twofold reduction in conductance and an increase in open probability. Neither alpha-rENaC (R613X) nor alpha-bENaC (R567X) was responsive to actin. Using a chimera consisting of alpha-rENaC1-615 and alpha-bENaC570-650, we examined several different carboxy-terminal truncation mutants plus and minus actin. When incorporated into planar bilayers, the gating pattern of this construct was identical to wild-type (wt) alpha-bENaC. Premature stop mutations proximal to E685X produced channels with gating patterns like alpha-rENaC. Actin had no effect on the E631X truncation, whereas more distal truncations all interacted with actin, as did wt alpha-bENaC. Key findings were confirmed using channels expressed in Xenopus oocytes and studied by cell-attached patch-clamp recording. Our results suggest that the site of actin regulation at the carboxy terminus of the chimera is located between residues 631 and 644.
Collapse
Affiliation(s)
- S J Copeland
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Fukuda N, Jayr C, Lazrak A, Wang Y, Lucas R, Matalon S, Matthay MA. Mechanisms of TNF-alpha stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1258-65. [PMID: 11350806 DOI: 10.1152/ajplung.2001.280.6.l1258] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because tumor necrosis factor (TNF)-alpha can upregulate alveolar fluid clearance (AFC) in pneumonia or septic peritonitis, the mechanisms responsible for the TNF-alpha-mediated increase in epithelial fluid transport were studied. In rats, 5 microg of TNF-alpha in the alveolar instillate increased AFC by 67%. This increase was inhibited by amiloride but not by propranolol. We also tested a triple-mutant TNF-alpha that is deficient in the lectinlike tip portion of the molecule responsible for its membrane conductance effect; the mutant also has decreased binding affinity to both TNF-alpha receptors. The triple-mutant TNF-alpha did not increase AFC. Perfusion of human A549 cells, patched in the whole cell mode, with TNF-alpha (120 ng/ml) resulted in a sustained increase in Na(+) currents from 82 +/- 9 to 549 +/- 146 pA (P < 0.005; n = 6). The TNF-alpha-elicited Na(+) current was inhibited by amiloride, and there was no change when A549 cells were perfused with the triple-mutant TNF-alpha or after preincubation with blocking antibodies to the two TNF-alpha receptors before perfusion with TNF-alpha. In conclusion, although TNF- alpha can initiate acute inflammation and edema formation in the lung, TNF-alpha can also increase AFC by an amiloride-sensitive, cAMP-independent mechanism that enhances the resolution of alveolar edema in pathological conditions by either binding to its receptors or activating Na(+) channels by means of its lectinlike domain.
Collapse
MESH Headings
- Adrenergic beta-Agonists/administration & dosage
- Adrenergic beta-Antagonists/administration & dosage
- Amiloride/administration & dosage
- Amino Acid Substitution
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/metabolism
- Biological Transport/drug effects
- Biological Transport/physiology
- Cell Line
- Humans
- Instillation, Drug
- Male
- Membrane Potentials/drug effects
- Mutation
- Patch-Clamp Techniques
- Propranolol/administration & dosage
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/metabolism
- Sodium/metabolism
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Tumor Necrosis Factor-alpha/administration & dosage
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- N Fukuda
- Cardiovascular Research Institute, University of California, 505 Parnassus Ave., San Francisco, CA 94143-0130, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Berdiev BK, Latorre R, Benos DJ, Ismailov II. Actin modifies Ca2+ block of epithelial Na+ channels in planar lipid bilayers. Biophys J 2001; 80:2176-86. [PMID: 11325720 PMCID: PMC1301409 DOI: 10.1016/s0006-3495(01)76190-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mechanism by which the cytoskeletal protein actin affects the conductance of amiloride-sensitive epithelial sodium channels (ENaC) was studied in planar lipid bilayers. In the presence of monomeric actin, we found a decrease in the single-channel conductance of alpha-ENaC that did not occur when the internal [Ca2+]free was buffered to <10 nM. An analysis of single-channel kinetics demonstrated that Ca2+ induced the appearance of long-lived closed intervals separating bursts of channel activity, both in the presence and in the absence of actin. In the absence of actin, the duration of these bursts and the time spent by the channel in its open, but not in its short-lived closed state, were inversely proportional to [Ca2+]. This, together with a lengthening of the interburst intervals, translated into a dose-dependent decrease in the single-channel open probability. In contrast, a [Ca2+]-dependent decrease in alpha-ENaC conductance in the presence of actin was accompanied by lengthening of the burst intervals with no significant changes in the open or closed (both short- and long-lived) times. We conclude that Ca2+ acts as a "fast-to-intermediate" blocker when monomeric actin is present, producing a subsequent attenuation of the apparent unitary conductance of the channel.
Collapse
Affiliation(s)
- B K Berdiev
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
72
|
Pellerin I, Leclerc M, Claveau D, Mailloux J, Brunette MG. Roles of ATP and cytoskeleton in the regulation of Na+/H+ exchanger along the nephron luminal membrane. J Cell Physiol 2001; 187:109-16. [PMID: 11241355 DOI: 10.1002/1097-4652(2001)9999:9999<::aid-jcp1054>3.0.co;2-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although in LLC-PK cells ATP depletion has been shown to result in alterations of cytoskeleton actin and an inhibition of Na+/H+ exchanger activity, there is little information concerning the regulation of this exchanger in the distal luminal membrane by ATP and actin filaments. The present study examined the direct effect of ATP and cytochalasin B on the Na+/H+ exchanger activity in the proximal and distal tubule luminal membranes. The presence of 100 microM ATP in the luminal membrane vesicles from rabbit proximal tubules did not influence the Ethyl Isopropyl Amiloride sensitive Na+ uptake by these membranes. In contrast, the same treatment of luminal membranes from distal tubules significantly enhanced the exchanger activity from 0.22 +/- 0.04 to 0.39 +/- 0.08 pM/microg/10 sec (P < 0.02). When ATP was replaced by its nonhydrolysable form, ATPgammas, the effect on the distal luminal membrane was strongly diminished suggesting that the action of the nucleotide implicates a phosphorylation step. Confirming this hypothesis, addition of 300-microM-Rp cAMP, a protein kinase A inhibitor, completely abolished the effect of ATP. In view of the fact that a tight relationship has been described between ATP, the cytoskeleton complex and the exchanger activity, we studied the effect of cytochalasin B on this activity. The presence of 20 microM cytochalasin B in the distal luminal membrane vesicles induced, as observed with ATP, a significant increase in the Na+ uptake. However, the actions of ATP and cytochalasin B were not additive. These results suggest that firstly, ATP and short actin filaments of the cytoskeleton regulate the distal luminal isoform through an intramembranous mechanism and secondly, a phosphorylation mechanism is, at least partially, implicated in the action of ATP. In contrast, the proximal tubule exchanger is regulated through different mechanisms.
Collapse
Affiliation(s)
- I Pellerin
- Maisonneuve-Rosemont Hospital, Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
73
|
Golestaneh N, Klein C, Valamanesh F, Suarez G, Agarwal MK, Mirshahi M. Mineralocorticoid receptor-mediated signaling regulates the ion gated sodium channel in vascular endothelial cells and requires an intact cytoskeleton. Biochem Biophys Res Commun 2001; 280:1300-6. [PMID: 11162670 DOI: 10.1006/bbrc.2001.4275] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PCR analysis followed by sequence alignment showed that both the mineralocorticoid receptor (MCR) and the epithelial sodium channel (ENaC) genes were expressed in the human vascular endothelial cell line (ECV). The growth and multiplication of the ECV in culture were influenced by both aldosterone and the MCR-specific antagonist ZK 91587. Following double labelled immunofluorescence recorded by confocal microscopy, both the MCR and the ENaC were found to colocalize with the tubulin filaments in ECV cells in situ; no association was observed with cellular actin. ZK 91587 not only eliminated the basal expression, but it also impaired the transactivation of the ENaC gene by aldosterone. The disruption of actin and tubulin by cytochalasin D and colchicine, respectively, resulted in the total elimination of ENaC induction by aldosterone. These studies suggest that (i) the transcriptional regulation of the ENaC gene by the MCR-mediated signalling is not restricted to epithelial cells and requires cytoskeleton integrity in ECV cells in situ, (ii) tubulin may form a new and novel mediator in cell regulation, and (iii) the vascular tone may actually be regulated via transactivation of the ion gated sodium channel in the endothelial cell of the blood vessels under direct, receptor-mediated action of aldosterone.
Collapse
Affiliation(s)
- N Golestaneh
- Inserm E 9912, Centre Universitaire des Cordeliers, Paris, France
| | | | | | | | | | | |
Collapse
|
74
|
Chalumeau C, du Cheyron D, Defontaine N, Kellermann O, Paillard M, Poggioli J. NHE3 activity and trafficking depend on the state of actin organization in proximal tubule. Am J Physiol Renal Physiol 2001; 280:F283-90. [PMID: 11208604 DOI: 10.1152/ajprenal.2001.280.2.f283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was addressed to define the contribution of cytoskeleton elements in the kidney proximal tubule Na+/H+ exchanger 3 (NHE3) activity under basal conditions. We used luminal membrane vesicles (LMV) isolated from suspensions of rat cortical tubules pretreated with either colchicine (Colch) or cytochalasin D (Cyto D). Colch pretreatment of suspensions (200 microM for 60 min) moderately decreased LMV NHE3 activity. Cyto D pretreatment (1 microM for 60 min) elicited an increase in LMV NHE3 transport activity but did not increase Na-glucose cotransport activity. Cyto D pretreatment of suspensions did not change the apparent affinity of NHE3 for internal H+. In contrast, after Cyto D pretreatment of the suspensions, NHE3 protein abundance was increased in LMV and remained unchanged in cortical cell homogenates. The effect of Cyto D on NHE3 was further assessed with cultures of murine cortical cells. The amount of surface biotinylated NHE3 increased on Cyto D treatment, whereas NHE3 protein abundance was unchanged in cell homogenates. In conclusion, under basal conditions NHE3 activity depends on the state of actin organization possibly involved in trafficking processes between luminal membrane and intracellular compartment.
Collapse
Affiliation(s)
- C Chalumeau
- Institut National de la Santé et de la Recherche Médicale Unité 356, Institut Fédératif de Recherche 58, France
| | | | | | | | | | | |
Collapse
|
75
|
Negulyaev YA, Khaitlina SY, Hinssen H, Shumilina EV, Vedernikova EA. Sodium channel activity in leukemia cells is directly controlled by actin polymerization. J Biol Chem 2000; 275:40933-7. [PMID: 11016945 DOI: 10.1074/jbc.m008219200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.
Collapse
Affiliation(s)
- Y A Negulyaev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
76
|
Kunzelmann K, Nitschke R. Defects in processing and trafficking of cystic fibrosis transmembrane conductance regulator. EXPERIMENTAL NEPHROLOGY 2000; 8:332-42. [PMID: 11014930 DOI: 10.1159/000020687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In most epithelial tissues Cl(-) transport relies on the cystic fibrosis transmembrane conductance regulator (CFTR) which has dual function as a Cl(-) channel and as a regulator of other ion channels. More than 900 different mutations in the CFTR gene are the cause for defective transport of Cl(-) and Na(+) and impaired secretion or absorption of electrolytes in cystic fibrosis. However, the CFTR mutation delta F508 is the most common reason for the frequently inherited disease among the Caucasian population. Maturation and processing of delta F508-CFTR is defective which leads to expression of only very little but functional CFTR in the cell membrane. Understanding the processing and trafficking of CFTR may give a clue to the question as to how the expression and residual function of delta F508-CFTR can be enhanced, and may lead to the development of new pharmacological tools for the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- K Kunzelmann
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Brisbane, Australia.
| | | |
Collapse
|
77
|
Abstract
The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical movement of the system (electro-mechanical coupling). Because ionic transmission through linear polyelectrolytes is very slow compared with electronic conduction, only low-frequency electromagnetic fields can interact with the condensed counterion systems of linear polyelectrolytes. The delineated characteristics of microvillar ion conduction are strongly supported by the phenomenon of electro-mechanical coupling (reverse transduction) in microvilli of the audioreceptor (hair) cells and the recently reported dynamics of Ca(2+)signaling in microvilli of audio- and photoreceptor cells. Due to the cell-specific expression of different types and combinations of ion channels and transporters in the microvillar tip membrane of differentiated cells, the functional properties of this cell surface organelle are highly variable serving a multitude of different cellular functions including receptor-mediated effects such as Ca(2+)signaling, regulation of glucose and amino acid transport, as well as modulation of membrane potential. Even mechanical channel activation involved in cell volume regulation can be deduced from the systematic properties of the microvillar channel concept. In addition, the specific ion conduction properties of microfilaments combined with their proposed role in Ca(2+)signaling make microvilli the most likely cellular site for the interaction with external electric and magnetic fields.
Collapse
Affiliation(s)
- K Lange
- Kladower Damm 25b, 14089 Berlin, Germany.
| |
Collapse
|
78
|
Langloh AL, Berdiev B, Ji HL, Keyser K, Stanton BA, Benos DJ. Charged residues in the M2 region of alpha-hENaC play a role in channel conductance. Am J Physiol Cell Physiol 2000; 278:C277-91. [PMID: 10666023 DOI: 10.1152/ajpcell.2000.278.2.c277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epithelial Na(+) channel (ENaC) is a low-conductance channel that is highly selective for Na(+) and Li(+) over K(+) and impermeable to anions. The molecular basis underlying these conduction properties is not well known. Previous studies with the ENaC subunits demonstrated that the M2 region of alpha-ENaC is critical to channel function. Here we examine the effects of reversing the negative charges of highly conserved amino acids in alpha-subunit human ENaC (alpha-hENaC) M1 and M2 domains. Whole cell and single-channel current measurements indicated that the M2 mutations E568R, E571R, and D575R significantly decreased channel conductance but did not affect Na(+):K(+) permeability. We observed no functional perturbations from the M1 mutation E108R. Whole cell amiloride-sensitive current recorded from oocytes injected with the M2 alpha-hENaC mutants along with wild-type (wt) beta- and gamma-hENaC was low (46-93 nA) compared with the wt channel (1-3 microA). To determine whether this reduced macroscopic current resulted from a decreased number of mutant channels at the plasma membrane, we coexpressed mutant alpha-hENaC subunits with green fluorescent protein-tagged beta- and gamma-subunits. Confocal laser scanning microscopy of oocytes demonstrated that plasma membrane localization of the mutant channels was the same as that of wt. These experiments demonstrate that acidic residues in the second transmembrane domain of alpha-hENaC affect ion permeation and are thus critical components of the conductive pore of ENaC.
Collapse
Affiliation(s)
- A L Langloh
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
The physiology of mineralocorticoid action, particularly with respect to epithelial sodium transport, is well defined. A full understanding of the molecular basis of mineralocorticoid action has however proven to be more elusive. In the last decade insights into structural and functional aspects of the mineralocorticoid receptor combined with emerging details of the components of the mediators of the sodium flux has resulted in a clearer picture. This review focuses on two aspects of these new developments; the mineralocorticoid receptor and putative aldosterone induced proteins.
Collapse
Affiliation(s)
- F M Rogerson
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | |
Collapse
|
80
|
Mrnka L, Pácha J. Permissive effect of thyroid hormones on induction of rat colonic Na+ transport by aldosterone is not localised at the level of Na+ channel transcription. Mol Cell Endocrinol 2000; 159:179-85. [PMID: 10687863 DOI: 10.1016/s0303-7207(99)00181-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interrelationship between thyroid hormones and aldosterone has been examined in the regulation of rat colonic amiloride-sensitive Na+ transport which translocates Na+ through apical amiloride-sensitive Na+ channels and basolateral Na+, K+-ATPase. Electrogenic Na+ transport was measured in an Ussing chamber by the short-circuit current and identified by Na+ channel blocker amiloride. Na+-pumping activity of the basolateral Na+,K+-ATPase was investigated in nystatin-treated epithelium by measuring the equivalent short-circuit current after addition of mucosal Na+. The abundance of mRNA coding for alpha, beta and gamma subunits of the Na+ channel (rENaC) was estimated using Northern blot analysis. Hyperaldosteronism was induced by a low-salt diet and hypothyroidism by methimazole. The low-Na+ diet induced electrogenic Na+ transport in euthyroid rats but its effect was almost completely inhibited in hypothyroid animals even if the plasma concentration of aldosterone was high enough to stimulate this transport pathway both in euthyroid and hypothyroid rats. A kinetic study of the basolateral Na+,K+-ATPase revealed a decrease of Na+ transport capacity in hypothyroid rats kept on the low-Na+ diet in comparison with euthyroid animals fed the same diet. No significant differences in steady-state levels of alpha, beta and gamma rENaC mRNA were detected between euthyroid and hypothyroid rats. These data suggest that hypothyroidism decreases the efficacy of the basolateral Na+ pump but fails to inhibit it completely even though it inhibits the transepithelial electrogenic Na+ transport in response to aldosterone. We conclude that the permissive effect of thyroid hormones on the induction of electrogenic Na+ transport by aldosterone is localised beyond the transcriptional step of Na+ channel regulation.
Collapse
Affiliation(s)
- L Mrnka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
81
|
Ferrandi M, Bianchi G. Genetic mechanisms underlying the regulation of urinary sodium excretion and arterial blood pressure: the role of adducin. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:187-93. [PMID: 10691799 DOI: 10.1046/j.1365-201x.2000.00635.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- M Ferrandi
- Prassis Sigma - Tau Research Institute, Settimo Milanese, Milan and Chair of Nephrology, Milan University, Division of Nephrology, Dialysis and Hypertension, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
82
|
Jovov B, Tousson A, Ji HL, Keeton D, Shlyonsky V, Ripoll PJ, Fuller CM, Benos DJ. Regulation of epithelial Na(+) channels by actin in planar lipid bilayers and in the Xenopus oocyte expression system. J Biol Chem 1999; 274:37845-54. [PMID: 10608849 DOI: 10.1074/jbc.274.53.37845] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypothesis that actin interactions account for the signature biophysical properties of cloned epithelial Na(+) channels (ENaC) (conductance, ion selectivity, and long mean open and closed times) was tested using planar lipid bilayer reconstitution and patch clamp techniques. We found the following. 1) In bilayers, actin produced a more than 2-fold decrease in single channel conductance, a 5-fold increase in Na(+) versus K(+) permselectivity, and a substantial increase in mean open and closed times of wild-type alphabetagamma-rENaC but had no effect on a mutant form of rENaC in which the majority of the C terminus of the alpha subunit was deleted (alpha(R613X)betagamma-rENaC). 2) When alpha(R613X)betagamma-rENaC was heterologously expressed in oocytes and single channels examined by patch clamp, 12.5-pS channels of relatively low cation permeability were recorded. These characteristics were identical to those recorded in bilayers for either alpha(R613X)betagamma-rENaC or wild-type alphabetagamma-rENaC in the absence of actin. Moreover, we show that rENaC subunits tightly associate, forming either homo- or heteromeric complexes when prepared by in vitro translation or when expressed in oocytes. Finally, we show that alpha-rENaC is properly assembled but retained in the endoplasmic reticulum compartment. We conclude that actin subserves an important regulatory function for ENaC and that planar bilayers are an appropriate system in which to study the biophysical and regulatory properties of these cloned channels.
Collapse
Affiliation(s)
- B Jovov
- Department of Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Lader AS, Kwiatkowski DJ, Cantiello HF. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C1277-83. [PMID: 10600780 DOI: 10.1152/ajpcell.1999.277.6.c1277] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin cytoskeleton is an important contributor to the modulation of the cell function. However, little is known about the regulatory role of this supermolecular structure in the membrane events that take place in the heart. In this report, the regulation of cardiac myocyte function by actin filament organization was investigated in neonatal mouse cardiac myocytes (NMCM) from both wild-type mice and mice genetically devoid of the actin filament severing protein gelsolin (Gsn-/-). Cardiac L-type calcium channel currents (I(Ca)) were assessed using the whole cell voltage-clamp technique. Addition of the actin filament stabilizer phalloidin to wild-type NMCM increased I(Ca) by 227% over control conditions. The basal I(Ca) of Gsn-/- NMCM was 300% higher than wild-type controls. This increase was completely reversed by intracellular perfusion of the Gsn-/- NMCM with exogenous gelsolin. Further, cytoskeletal disruption of either Gsn-/- or phalloidin-dialyzed wild-type NMCM with cytochalasin D (CD) decreased the enhanced I(Ca) by 84% and 87%, respectively. The data indicate that actin filament stabilization by either a lack of gelsolin or intracellular dialysis with phalloidin increase I(Ca), whereas actin filament disruption with CD or dialysis of Gsn-/- NMCM with gelsolin decrease I(Ca). We conclude that cardiac L-type calcium channel regulation is tightly controlled by actin filament organization. Actin filament rearrangement mediated by gelsolin may contribute to calcium channel inactivation.
Collapse
Affiliation(s)
- A S Lader
- Renal Unit, Massachusetts General Hospital East, Charlestown 02129, USA
| | | | | |
Collapse
|
84
|
Lee VH, Chu C, Mahlin ED, Basu SK, Ann DK, Bolger MB, Haworth IS, Yeung AK, Wu SK, Hamm-Alvarez S, Okamoto CT. Biopharmaceutics of transmucosal peptide and protein drug administration: role of transport mechanisms with a focus on the involvement of PepT1. J Control Release 1999; 62:129-40. [PMID: 10518644 DOI: 10.1016/s0168-3659(99)00030-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Non-invasive delivery of peptide and protein drugs will soon become a reality. This is due partly to a better understanding of the endogenous transport mechanisms, including paracellular transport, endocytosis, and carrier-mediated transport of mucosal routes of peptide and protein drug administration. This paper focuses on work related to the elucidation of structure-function, intracellular trafficking, and regulation of the intestinal dipeptide transporter, PepT1.
Collapse
Affiliation(s)
- V H Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Verrall J, Fraser SP, Djamgoz MB. Effects of gadolinium ions upon rat prostatic cancer cell lines of markedly different metastatic potential. Cancer Lett 1999; 145:79-83. [PMID: 10530773 DOI: 10.1016/s0304-3835(99)00234-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of gadolinium chloride, a non-specific blocker of mechanosensitive ion channels (MSICs), upon the motility and proliferation of two Dunning rat prostatic tumour cell lines of markedly different metastatic potential were investigated. Gadolinium (2-10 microM) caused a dose-dependent increase in the distance moved in 'wound' assays over a 48-h testing period. The highly metastatic MAT-LyLu cell line was significantly more sensitive to Gd3+, the weakly metastatic AT-2 cells responding only at the highest concentration (10 microM) used. There was no effect on the cells' proliferative rates. These data suggest that mechanosensitive channels could play a role in metastasis by modulating cell migration.
Collapse
Affiliation(s)
- J Verrall
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
86
|
Abstract
The actin cytoskeleton mediates a variety of essential biological functions in cells, including division, shape changes, and movement. A number of studies have suggested that the abundant submembranous actin cytoskeleton present in the cortex of many cell types is involved in the regulation of cell volume. This relationship is supported by numerous works which document the changes in the structural organization of the actin cytoskeleton which accompany cell volume changes and the F-actin-dependence of the regulatory volume responses. In addition, other studies demonstrate structural and functional relationships between the actin cytoskeleton and the membrane transporters known to be involved in cell volume homeostasis. This review provides a summary of the current level of knowledge in this area and discusses the mechanisms which may underlie the linkage between the actin cytoskeleton and cell volume regulation.
Collapse
Affiliation(s)
- J H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.
| |
Collapse
|
87
|
Kurashima K, D'Souza S, Szászi K, Ramjeesingh R, Orlowski J, Grinstein S. The apical Na(+)/H(+) exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem 1999; 274:29843-9. [PMID: 10514464 DOI: 10.1074/jbc.274.42.29843] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial isoform of the Na(+)/H(+) exchanger, NHE3, associates with at least two related regulatory factors called NHERF1/EBP50 and NHERF2/TKA-1/E3KARP. These factors in addition interact with the cytoskeletal protein ezrin, which in turn binds to actin. The possible linkage of NHE3 with the cytoskeleton prompted us to test the effect of actin-modifying agents on NHE3 activity. Cytochalasins B and D and latrunculin B, which interfere with actin polymerization, induced a profound inhibition of NHE3 activity. The effect was isoform-specific inasmuch as the "housekeeping" exchanger NHE1 was virtually unaffected. Cytoskeletal disorganization was associated with a subcellular redistribution of NHE3, which accumulated at sites where actin aggregated, suggesting a physical interaction of exchangers with the cytoskeleton. An interaction was further suggested by the co-sedimentation of a detergent-insoluble fraction of NHE3 with the actin cytoskeleton. Inhibition of transport was not due to diminution in the number of transporters at the plasmalemma. Functional analyses of NHE1/NHE3 chimeras revealed that the cytoplasmic domain of NHE3 conferred sensitivity to cytochalasin B. Progressive carboxyl-terminal and internal deletions of the cytoplasmic region of NHE3 indicated that the region between residues 650 and 684 is critical for this response. This region overlaps with the domain reported to interact with NHERF and also contains a putative ezrin-binding site; hence, it likely plays a role in interactions with the cytoskeleton.
Collapse
Affiliation(s)
- K Kurashima
- Cell Biology Programme, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | | | | | | | | | | |
Collapse
|
88
|
Ferrandi M, Salardi S, Tripodi G, Barassi P, Rivera R, Manunta P, Goldshleger R, Ferrari P, Bianchi G, Karlish SJ. Evidence for an interaction between adducin and Na(+)-K(+)-ATPase: relation to genetic hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1338-49. [PMID: 10516168 DOI: 10.1152/ajpheart.1999.277.4.h1338] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adducin point mutations are associated with genetic hypertension in Milan hypertensive strain (MHS) rats and in humans. In transfected cells, adducin affects actin cytoskeleton organization and increases the Na(+)-K(+)-pump rate. The present study has investigated whether rat and human adducin polymorphisms differently modulate rat renal Na(+)-K(+)-ATPase in vitro. We report the following. 1) Both rat and human adducins stimulate Na(+)-K(+)-ATPase activity, with apparent affinity in tens of nanomolar concentrations. 2) MHS and Milan normotensive strain (MNS) adducins raise the apparent ATP affinity for Na(+)-K(+)-ATPase. 3) The mechanism of action of adducin appears to involve a selective acceleration of the rate of the conformational change E(2) (K) --> E(1) (Na) or E(2)(K). ATP --> E(1)Na. ATP. 4) Apparent affinities for mutant rat and human adducins are significantly higher than those for wild types. 5) Recombinant human alpha- and beta-adducins stimulate Na(+)-K(+)-ATPase activity, as do the COOH-terminal tails, and the mutant proteins display higher affinities than the wild types. 6) The cytoskeletal protein ankyrin, which is known to bind to Na(+)-K(+)-ATPase, also stimulates enzyme activity, whereas BSA is without effect; the effects of adducin and ankyrin when acting together are not additive. 7) Pig kidney medulla microsomes appear to contain endogenous adducin; in contrast with purified pig kidney Na(+)-K(+)-ATPase, which does not contain adducin, added adducin stimulates the Na(+)-K(+)-ATPase activity of microsomes only about one-half as much as that of purified Na(+)-K(+)-ATPase. Our findings strongly imply the existence of a direct and specific interaction between adducin and Na(+)-K(+)-ATPase in vitro and also suggest the possibility of such an interaction in intact renal membranes.
Collapse
Affiliation(s)
- M Ferrandi
- Prassis Research Institute Sigma-Tau, 20019 Settimo Milanese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Jones KA, Perkins WJ, Lorenz RR, Prakash YS, Sieck GC, Warner DO. F-actin stabilization increases tension cost during contraction of permeabilized airway smooth muscle in dogs. J Physiol 1999; 519 Pt 2:527-38. [PMID: 10457068 PMCID: PMC2269509 DOI: 10.1111/j.1469-7793.1999.0527m.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Dynamic actin reorganization involving actin polymerization and depolymerization may play an important functional role in smooth muscle. 2. This study tested the hypothesis that F-actin stabilization by phalloidin increases tension cost (i.e. ATP hydrolysis rate per unit of isometric force) during Ca2+-induced activation of Triton X-100-permeabilized canine tracheal smooth muscle. 3. Adenosine 5'-triphosphate (ATP) hydrolysis rate was quantified using an enzyme-coupled NADH fluorometric technique, regulatory myosin light chain (rMLC) phosphorylation was measured by Western blot analysis, and maximum unloaded shortening velocity (Vmax) was estimated by interpolation of the force-velocity relationship to zero load during isotonic loading. 4. Maximal activation with 10 microM free Ca2+ induced sustained increases in isometric force, stiffness, and rMLC phosphorylation. However, the increase in ATP hydrolysis rate initially reached peak values, but then declined to steady-state levels above that of the unstimulated muscle. Thus, tension cost decreased throughout steady-state isometric force. 5. Following incubation of permeabilized strips with 50 microM phalloidin for 1 h, the increases in isometric force and stiffness were not sustained despite a sustained increase in rMLC phosphorylation. Also, after an initial decline, tension cost increased throughout activation. Phalloidin had no effect on Vmax during steady-state isometric force or on rMLC phosphorylation. 6. These findings suggest that dynamic reorganization of actin is necessary for optimal energy utilization during contraction of permeabilized airway smooth muscle.
Collapse
Affiliation(s)
- K A Jones
- Departments of Anesthesiology, and Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
90
|
Filippova N, Dudley R, Weiss DS. Evidence for phosphorylation-dependent internalization of recombinant human rho1 GABAC receptors. J Physiol 1999; 518 ( Pt 2):385-99. [PMID: 10381587 PMCID: PMC2269426 DOI: 10.1111/j.1469-7793.1999.0385p.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1999] [Accepted: 04/13/1999] [Indexed: 11/26/2022] Open
Abstract
1. Recombinant wild-type or mutant human rho1 GABA receptors were expressed in human embryonic kidney (HEK) 293 or monkey COS-7 cells and studied using the patch clamp technique. 2. Standard whole-cell recordings with 4 mM Mg-ATP in the patch pipette induced a time-dependent decrease in the GABA-activated current (IGABA) amplitude that was not the result of a decrease in GABA sensitivity. In contrast, IGABA remained stable when recordings were obtained using the perforated patch configuration or with standard whole-cell recording and no Mg-ATP in the patch pipette. 3. The inhibitors of serine/threonine protein kinases KN-62 (20 microM) or staurosporine (20 nM) prevented the time-dependent decrease in the amplitude of IGABA seen in the presence of ATP. Alkaline phosphatase (220 U ml-1), when added to the patch pipette in the absence of ATP, induced a transient potentiation of IGABA. Although the protein kinase C (PKC) activator 4beta-phorbol 12-myristate, 13-acetate (PMA) did not reduce the amplitude of IGABA, inclusion of the catalytic domain of PKC in the recording pipette accelerated the time-dependent decrease in current amplitude. These data suggest that phosphorylation is involved in the regulation of the amplitude of IGABA. 4. Mutation of the three PKC consensus sequences of the rho1 receptor had no significant effect on the decline in IGABA, indicating that direct phosphorylation of these putative sites on the rho1 receptor does not underlie the time-dependent decrease in amplitude. 5. In COS-7 cells transfected with wild-type rho1 receptors, the amplitude of IGABA had completely recovered to the original value when the same cells were repatched after 30-40 min, indicating that the decline in IGABA was a reversible process. 6. The inhibitor of actin filament formation cytochalasin B, when added to the patch pipette in the absence of ATP, induced a time-dependent inactivation suggesting that the actin cytoskeleton may play a role in the regulation of the amplitude. 7. Coincident with the decrease in the amplitude of IGABA, the cell capacitance significantly decreased in the presence of ATP in the patch pipette. This decrease in capacitance was not observed in the absence of Mg-ATP. The decrease in the membrane surface area suggests that receptor internalization could be a potential mechanism for the observed inactivation. 8. At 32 C, compared with 22 C, the rate and magnitude of the decline was increased dramatically. In contrast, at 16 C, no significant change in IGABA was observed over the 20 min recording time. This marked temperature sensitivity is consistent with receptor internalization as a mechanism for the time-dependent decline in IGABA. 9. The specificity of the decrease in IGABA was assessed by coexpressing the voltage-dependent potassium channel Kv1.4 along with the rho1 receptor in HEK293 cells. The amplitude of the potassium current (IKv1.4) exhibited very little decrement in comparison to IGABA suggesting that the putative GABA receptor internalization was not the consequence of a non-specific membrane retrieval.
Collapse
Affiliation(s)
- N Filippova
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, 1719 Sixth Avenue South, CIRC 410, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
91
|
Johnson BD. The company they keep: ion channels and their intracellular regulatory partners. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:203-28. [PMID: 10218120 DOI: 10.1016/s1040-7952(99)80011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- B D Johnson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269, USA
| |
Collapse
|
92
|
Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 1999; 137:1-70. [PMID: 10207304 DOI: 10.1007/3-540-65362-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CF is a well characterized disease affecting a variety of epithelial tissues. Impaired function of the cAMP activated CFTR Cl- channel appears to be the basic defect detectable in epithelial and non-epithelial cells derived from CF patients. Apart from cAMP-dependent Cl- channels also Ca2+ and volume activated Cl- currents may be changed in the presence of CFTR mutations. This is supported by recent additional findings showing that different intracellular messengers converge on the CFTR Cl- channel. Analysis of the ion transport in CF airways and intestinal epithelium identified additional defects in Na+ transport. It became clear recently that mutations of CFTR may also affect the activity of other membrane conductances including epithelial Na+ channels, KvLQT-1 K+ channels and aquaporins (Fig. 7). Several additional, initially unexpected effects of CFTR on cellular functions, such as exocytosis, mucin secretion and regulation of the intracellular pH were reported during the past. Taken together, these results clearly indicate that CFTR not only acts as a cAMP regulated Cl- channel, but may fulfill several other cellular functions, particularly by regulating other membrane conductances. Failure in CFTR dependent regulation of these membrane conductances is likely to contribute to the defects observed in CF. Currently, no general concept is available that can explain how CFTR controls this variety of cellular functions. Further studies will have to verify whether direct protein interaction, specific effects on membrane turnover, changes of the intracellular ion concentration or additional proteins are involved in these regulatory loops. At the end of this review one cannot share the provocative and reassuring title "CFTR!" of a review written a few years ago [114]. Today one might rather finish with the statement "CFTR?".
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
93
|
Matalon S, O'Brodovich H. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol 1999; 61:627-61. [PMID: 10099704 DOI: 10.1146/annurev.physiol.61.1.627] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At birth, fetal distal lung epithelial (FDLE) cells switch from active chloride secretion to active sodium (Na+) reabsorption. Sodium ions enter the FDLE and alveolar type II (ATII) cells mainly through apical nonselective cation and Na(+)-selective channels, with conductances of 4-26 pS (picoSiemens) in FDLE and 20-25 pS in ATII cells. All these channels are inhibited by amiloride with a 50% inhibitory concentration of < 1 microM, and some are also inhibited by [N-ethyl-N-isopropyl]-2'-4'-amiloride (50% inhibitory concentration of < 1 microM). Both FDLE and ATII cells contain the alpha-, beta-, and gamma-rENaC (rat epithelial Na+ channels) mRNAs; reconstitution of an ATII cell Na(+)-channel protein into lipid bilayers revealed the presence of 25-pS Na+ single channels, inhibited by amiloride and [N-ethyl-N-isopropyl]-2'-4'-amiloride. A variety of agents, including cAMP, oxygen, glucocorticoids, and in some cases Ca2+, increased the activity and/or rENaC mRNA levels. The phenotypic properties of these channels differ from those observed in other Na(+)-absorbing epithelia. Pharmacological blockade of alveolar Na+ transport in vivo, as well as experiments with newborn alpha-rENaC knock-out mice, demonstrate the importance of active Na+ transport in the reabsorption of fluid from the fetal lung and in reabsorbing alveolar fluid in the injured adult lung. Indeed, in a number of inflammatory diseases, increased production of reactive oxygen-nitrogen intermediates, such as peroxynitrite (ONOO-), may damage ATII and FDLE Na+ channels, decrease Na+ reabsorption in vivo, and thus contribute to the formation of alveolar edema.
Collapse
Affiliation(s)
- S Matalon
- Department of Anesthesiology, University of Alabama at Birmingham 35233, USA.
| | | |
Collapse
|
94
|
Manunta P, Burnier M, D'Amico M, Buzzi L, Maillard M, Barlassina C, Lanella G, Cusi D, Bianchi G. Adducin polymorphism affects renal proximal tubule reabsorption in hypertension. Hypertension 1999; 33:694-7. [PMID: 10024330 DOI: 10.1161/01.hyp.33.2.694] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormalities in renal sodium reabsorption may be involved in the development and maintenance of experimental and clinical hypertension. Adducin polymorphism is thought to regulate ion transport in the renal tubule. It has recently been shown that there is a significant linkage of alpha-adducin locus to essential hypertension and that the 460Trp allele is associated with hypertension. Patients with this allele display larger blood pressure changes with body sodium variation. The aim of this study was to test whether alpha-adducin polymorphism is involved in abnormalities of renal function. Because proximal tubular reabsorption has been shown to be tightly coupled to renal perfusion pressure, this segmental tubular function was investigated in 54 (29 Gly/Gly and 25 Gly/Trp) untreated hypertensive patients in basal conditions with the use of endogenous lithium concentration and uric acid. Fractional excretions of lithium and uric acid were significantly decreased in the Gly/Trp hypertensive patients compared with the Gly/Gly hypertensives. The contribution of alpha-adducin to fractional excretion of lithium was investigated by multiple regression analysis. Adducin genotype was significantly (R2=0.11, F=6.5; P<0.01) and directly related to fraction excretion of lithium; gender, age, urinary Na+, urinary uric acid, mean blood pressure, and plasma renin activity were not related. In conclusion, the adducin gene can be considered to be a 'renal hypertensive gene' that modulates the capacity of tubular epithelial cells to transport Na+ and hence contributes to the level of blood pressure.
Collapse
Affiliation(s)
- P Manunta
- Division of Nephrology, University of Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Chapter 11 Regulatory Aspects of Apx, a Novel Na+ Channel with Connections to the Cytoskeleton. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
96
|
Chapter 19 The Involvement of Amiloride-Sensitive Na+ Channels in Human Genetic Hypertension: Liddle's Syndrome. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Fuller C, Ismailov I, Berdiev B, Shlyonsky V, Benos D. Chapter 1 Mapping Structure/Function Relations in αbENaC. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
98
|
Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB. CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 1999; 79:S145-66. [PMID: 9922379 DOI: 10.1152/physrev.1999.79.1.s145] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CFTR Is a Conductance Regulator as well as a Chloride Channel. Physiol. Rev. 79, Suppl.: S145-S166, 1999. - Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter gene family. Although CFTR has the structure of a transporter that transports substrates across the membrane in a nonconductive manner, CFTR also has the intrinsic ability to conduct Cl- at much higher rates, a function unique to CFTR among this family of ABC transporters. Because Cl- transport was shown to be lost in cystic fibrosis (CF) epithelia long before the cloning of the CF gene and CFTR, CFTR Cl- channel function was considered to be paramount. Another equally valid perspective of CFTR, however, derives from its membership in a family of transporters that transports a multitude of different substances from chemotherapeutic drugs, to amino acids, to glutathione conjugates, to small peptides in a nonconductive manner. Moreover, at least two members of this ABC transporter family (mdr-1, SUR) can regulate other ion channels in the membrane. More simply, ABC transporters can regulate somehow the function of other cellular proteins or cellular functions. This review focuses on a plethora of studies showing that CFTR also regulates other ion channel proteins. It is the hope of the authors that the reader will take with him or her the message that CFTR is a conductance regulator as well as a Cl- channel.
Collapse
Affiliation(s)
- E M Schwiebert
- Department of Physiology and Biophysics, Gregory Fleming James CF Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
99
|
Ji HL, Fuller CM, Benos DJ. Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1182-90. [PMID: 9814964 DOI: 10.1152/ajpcell.1998.275.5.c1182] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis that amiloride-sensitive Na+ channels (ENaC) are involved in cell volume regulation was tested. Anisosmotic ND-20 media (ranging from 70 to 450 mosM) were used to superfuse Xenopus oocytes expressing alpha beta gamma-rat ENaC (alpha beta gamma-rENaC). Whole cell currents were reversibly dependent on external osmolarity. Under conditions of swelling (70 mosM) or shrinkage (450 mosM), current amplitude decreased and increased, respectively. In contrast, there was no change in current amplitude of H2O-injected oocytes to the above osmotic insults. Currents recorded from alpha beta gamma-rENaC-injected oocytes were not sensitive to external Cl- concentration or to the K+ channel inhibitor BaCl2. They were sensitive to amiloride. The concentration of amiloride necessary to inhibit one-half of the maximal rENaC current expressed in oocytes (Ki; apparent dissociation constant) decreased in swollen cells and increased in shrunken oocytes. The osmotic pressure-induced Na+ currents showed properties similar to those of stretch-activated channels, including inhibition by Gd3+ and La3+, and decreased selectivity for Na+. alpha beta gamma-rENaC-expressing oocytes maintained a nearly constant cell volume in hypertonic ND-20. The present study is the first demonstration that alpha beta gamma-rENaC heterologously expressed in Xenopus oocytes may contribute to oocyte volume regulation following shrinkage.
Collapse
Affiliation(s)
- H L Ji
- Department of Physiology and Biophysics, University of Alabama, Birmingham, Alabama 35294-0005, USA
| | | | | |
Collapse
|
100
|
Abstract
Neuropathic pain accompanies peripheral nerve injury after a wide variety of insults including metabolic disorders, traumatic nerve injury, and neurotoxic drugs. Chemotherapy-induced neuropathic pain, caused by drugs such as vincristine and taxol, occurs in cancer patients who receive these drugs as antineoplastic agents. Although a variety of remediations have been attempted, the absence of knowledge concerning mechanisms of chemotherapy-induced neuropathic pain has hindered the development of treatment strategies. Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy in humans and mechanical hyperalgesia in rats. To test the hypothesis that alterations in C-fiber nociceptor function occur during vincristine-induced painful peripheral neuropathy, we performed in vivo extracellular recordings of single neurons from the saphenous nerve of vincristine-treated rats. Forty-one percent of C-fiber nociceptors were significantly hyper-responsive to suprathreshold mechanical stimulation. As a population, these mechanically hyper-responsive nociceptors also had significantly greater responses to suprathreshold heat stimulation; however, heat hyper-responsiveness was found only in a subset of these nociceptors and was never detected in the absence of mechanical hyper-responsiveness. In addition, mean conduction velocities of A-fibers and C-fibers in vincristine-treated rats were significantly slowed. Mean heat and mechanical activation thresholds of C-fiber nociceptors, their distribution among subclasses, and the percentage of spontaneously active neurons in vincristine-treated rats were not statistically different from controls. Vincristine does not, therefore, cause generalized impairment of C-fiber nociceptor function but rather specifically interferes with mechanisms underlying responsiveness to suprathreshold stimuli. Furthermore, vincristine-induced nociceptor hyper-responsiveness may involve alterations specifically in mechanotransduction in some nociceptors and alterations in general cellular adaptation mechanisms in others.
Collapse
|