51
|
Kelley GG, Kaproth-Joslin KA, Reks SE, Smrcka AV, Wojcikiewicz RJH. G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cbeta3 in a temporally distinct manner. J Biol Chem 2006; 281:2639-48. [PMID: 16314422 PMCID: PMC1483126 DOI: 10.1074/jbc.m507681200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase Cepsilon (PLCepsilon) is one of the newest members of the phosphatidylinositol-specific phospholipase C (PLC) family. Previous studies have suggested that G-protein-coupled receptors (GPCRs) stimulate phosphoinositide (PI) hydrolysis by activating PLCbeta isoforms through G(q) family G proteins and Gbetagamma subunits. Using RNA interference to knock down PLC isoforms, we demonstrate that the GPCR agonists endothelin (ET-1), lysophosphatidic acid (LPA), and thrombin, acting through endogenous receptors, couple to both endogenous PLCepsilon and the PLCbeta isoform, PLCbeta3, in Rat-1 fibroblasts. Examination of the temporal activation of these PLC isoforms, however, reveals agonist- and isoform-specific profiles. PLCbeta3 is activated acutely within the first minute of ET-1, LPA, or thrombin stimulation but does not contribute to sustained PI hydrolysis induced by LPA or thrombin and accounts for only part of ET-1 sustained stimulation. PLCepsilon, on the other hand, predominantly accounts for sustained PI hydrolysis. Consistent with this observation, reconstitution of PLCepsilon in knockdown cells dose-dependently increases sustained, but not acute, agonist-stimulated PI hydrolysis. Furthermore, combined knockdown of both PLCepsilon and PLCbeta3 additively inhibits PI hydrolysis, suggesting independent regulation of each isoform. Importantly, ubiquitination of inositol 1,4,5-trisphosphate receptors correlates with sustained, but not acute, activation of PLCepsilon or PLCbeta3. In conclusion, GPCR agonists ET-1, LPA, and thrombin activate endogenous PLCepsilon and PLCbeta3 in Rat-1 fibroblasts. Activation of these PLC isoforms displays agonist-specific temporal profiles; however, PLCbeta3 is predominantly involved in acute and PLCepsilon in sustained PI hydrolysis.
Collapse
Affiliation(s)
- Grant G Kelley
- Department of Medicine and Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | |
Collapse
|
52
|
Cockcroft S. The latest phospholipase C, PLCeta, is implicated in neuronal function. Trends Biochem Sci 2005; 31:4-7. [PMID: 16310357 DOI: 10.1016/j.tibs.2005.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/13/2005] [Accepted: 11/14/2005] [Indexed: 11/23/2022]
Abstract
Members of the phosphoinositide-specific phospholipase C (PLC) family have key roles in cell signalling. In response to many extracellular stimuli, such as hormones, neurotransmitters, antigens and growth factors, PLCs catalyse the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)], thereby generating two well-established second messengers, inositol (1,4,5)-trisphosphate and diacylglycerol. Eleven PLC isozymes encoded by different genes have been identified in mammals and, on the basis of their structure and sequence relationships, have been classified into five families designated PLCbeta (1-4), PLCgamma (1 and 2), PLCdelta (1, 3 and 4), PLCepsilon (1) and PLCzeta (1). All PLCs contain the catalytic X and Y domain, in addition to other regulatory domains including the C2 domain and the EF-hand domain. In 2005, four groups independently identified an entirely new family of PLCs--eta1 and eta2--using data mining of mammalian genomes. The properties of the PLCeta enzyme suggest that it might act as a Ca(2+) sensor, in particular, functioning during formation and maintenance of the neuronal network in the postnatal brain.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Department of Physiology, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
53
|
Thore S, Dyachok O, Gylfe E, Tengholm A. Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting β-cells. J Cell Sci 2005; 118:4463-71. [PMID: 16159958 DOI: 10.1242/jcs.02577] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C (PLC) regulates various cellular processes by catalyzing the formation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol from phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we have investigated the influence of Ca2+ on receptor-triggered PLC activity in individual insulin-secreting β-cells. Evanescent wave microscopy was used to record PLC activity using green fluorescent protein (GFP)-tagged PIP2/IP3-binding pleckstrin homology domain from PLCδ1, and the cytoplasmic Ca2+ concentration ([Ca2+]i) was simultaneously measured using the indicator Fura Red. Stimulation of MIN6 β-cells with the muscarinic-receptor agonist carbachol induced rapid and sustained PLC activation. By contrast, only transient activation was observed after stimulation in the absence of extracellular Ca2+ or in the presence of the non-selective Ca2+ channel inhibitor La3+. The Ca2+-dependent sustained phase of PLC activity did not require voltage-gated Ca2+ influx, as hyperpolarization with diazoxide or direct Ca2+ channel blockade with nifedipine had no effect. Instead, the sustained PLC activity was markedly suppressed by the store-operated channel inhibitors 2-APB and SKF96365. Depletion of intracellular Ca2+ stores with the sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid abolished Ca2+ mobilization in response to carbachol, and strongly suppressed the PLC activation in Ca2+-deficient medium. Analogous suppressions were observed after loading cells with the Ca2+ chelator BAPTA. Stimulation of primary mouse pancreatic β-cells with glucagon elicited pronounced [Ca2+]i spikes, reflecting protein kinase A-mediated activation of Ca2+-induced Ca2+ release via IP3 receptors. These [Ca2+]i spikes were found to evoke rapid and transient activation of PLC. Our data indicate that receptor-triggered PLC activity is enhanced by positive feedback from Ca2+ entering the cytoplasm from intracellular stores and via store-operated channels in the plasma membrane. Such amplification of receptor signalling should be important in the regulation of insulin secretion by hormones and neurotransmitters.
Collapse
Affiliation(s)
- Sophia Thore
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
54
|
Horowitz LF, Hirdes W, Suh BC, Hilgemann DW, Mackie K, Hille B. Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol 2005; 126:243-62. [PMID: 16129772 PMCID: PMC2266577 DOI: 10.1085/jgp.200509309] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 01/22/2023] Open
Abstract
We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin-sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor-mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.
Collapse
Affiliation(s)
- Lisa F Horowitz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
55
|
Hur EM, Park YS, Huh YH, Yoo SH, Woo KC, Choi BH, Kim KT. Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling. ACTA ACUST UNITED AC 2005; 169:657-67. [PMID: 15911880 PMCID: PMC2171708 DOI: 10.1083/jcb.200411034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca(2+) signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca(2+) when administrated alone, becomes capable of evoking [Ca(2+)](i) increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP(3)R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP(3)R complex functions as a focal point to promote Ca(2+) release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP(3)R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP(3)R1 at the Ca(2+) store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP(3)R complex connects different signaling pathways to define the fidelity and specificity of Ca(2+) signaling.
Collapse
Affiliation(s)
- Eun-Mi Hur
- National Research Laboratory of Molecular Neurophysiology, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
56
|
Nakahara M, Shimozawa M, Nakamura Y, Irino Y, Morita M, Kudo Y, Fukami K. A Novel Phospholipase C, PLCη2, Is a Neuron-specific Isozyme. J Biol Chem 2005; 280:29128-34. [PMID: 15899900 DOI: 10.1074/jbc.m503817200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twelve phospholipase C (PLC) isozymes have been cloned so far, and they are divided into six classes, beta-, gamma-, delta-, epsilon-, zeta-, and eta-type, on the basis of structure and activation mechanisms. Here we report the identification of a novel PLC isozyme, PLC(eta)2. PLC(eta)2 is composed of conserved domains including pleckstrin homology, EF-hand, X and Y catalytic, and C2 domains and the isozyme-specific C-terminal region. PLC(eta)2 consists of 1164 amino acids with a molecular mass of 125 kDa. The PLC activity of PLC(eta)2 was more sensitive to calcium concentration than the PLC activity of the PLCdelta-type enzyme, which is thought to be the most calcium-sensitive PLC. Immunofluorescence analysis showed that PLC(eta)2 was localized predominantly to the plasma membrane at resting state via the pleckstrin homology domain. This observation was supported by Western blot analysis of cytosol and membrane fractions. In addition, expression of PLC(eta)2 was detected after birth and showed a restricted distribution in the brain; it was particularly abundant in the hippocampus, cerebral cortex, and olfactory bulb. The pattern was similar to that of the neuronal marker microtubule-associated protein 2 by Western blot. Furthermore, in situ hybridization showed positive signals for PLC(eta)2 in pyramidal cells of the hippocampus. Finally, we found that PLC(eta)2 was expressed abundantly in neuron-containing primary culture but not in astrocyte-enriched culture. These results indicate that PLC(eta)2 is a neuron-specific isozyme that may be important for the formation and/or maintenance of the neuronal network in the postnatal brain.
Collapse
Affiliation(s)
- Masamichi Nakahara
- Laboratory of Genome and Biosignal, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Stallings JD, Tall EG, Pentyala S, Rebecchi MJ. Nuclear Translocation of Phospholipase C-δ1 Is Linked to the Cell Cycle and Nuclear Phosphatidylinositol 4,5-Bisphosphate. J Biol Chem 2005; 280:22060-9. [PMID: 15809301 DOI: 10.1074/jbc.m413813200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-delta(1) accumulates in the nucleus at the G(1)/S boundary and in G(0) phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3-5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-delta(1), which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G(1)/S and in G(0). These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-delta(1) and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Chromatography, Thin Layer
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Detergents/pharmacology
- Fibroblasts/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- G1 Phase
- Glioma/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Image Processing, Computer-Assisted
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Lipid Metabolism
- Mice
- Microscopy, Fluorescence
- Models, Biological
- NIH 3T3 Cells
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phospholipase C delta
- Point Mutation
- Protein Structure, Tertiary
- Protein Transport
- Resting Phase, Cell Cycle
- S Phase
- Subcellular Fractions
- Time Factors
- Transfection
- Type C Phospholipases/chemistry
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Jonathan D Stallings
- Department of Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
58
|
Sidhu RS, Clough RR, Bhullar RP. Regulation of Phospholipase C-δ1 through Direct Interactions with the Small GTPase Ral and Calmodulin. J Biol Chem 2005; 280:21933-41. [PMID: 15817490 DOI: 10.1074/jbc.m412966200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Second messengers generated from membrane lipids play a critical role in signaling and control diverse cellular processes. Despite being one of the most evolutionarily conserved of all the phosphoinositide-specific phospholipase C (PLC) isoforms, a family of enzymes responsible for hydrolysis of the membrane lipid phosphatidylinositol bisphosphate, the mechanism of PLC-delta1 activation is still poorly understood. Here we report a novel regulatory mechanism for PLC-delta1 activation that involves direct interaction of the small GTPase Ral and the universal calcium-signaling molecule calmodulin (CaM) with PLC-delta1. In addition, we have identified a novel IQ type CaM binding motif within the catalytic region of PLC-delta1 that is not found in other PLC isoforms. Binding of CaM at the IQ motif inhibits PLC-delta1 activity, while addition of Ral reverses the inhibition. The overexpression of various Ral mutants in cells potentiates PLC-delta1 activity. Thus, the Ral-CaM complex defines a multifaceted regulatory mechanism for PLC-delta1 activation.
Collapse
Affiliation(s)
- Ranjinder S Sidhu
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | | | | |
Collapse
|
59
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
60
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
61
|
Abstract
Phospholipase Cbeta (PLCbeta) isoforms, which are under the control of Galphaq and Gbetagamma subunits, generate Ca2+ signals induced by a broad array of extracellular agonists, whereas PLCdelta isoforms depend on a rise in cytosolic Ca2+ for their activation. Here we find that PLCbeta2 binds strongly to PLCdelta1 and inhibits its catalytic activity in vitro and in living cells. In vitro, this PLC complex can be disrupted by increasing concentrations of free Gbetagamma subunits. Such competition has consequences for signaling, because in HEK293 cells PLCbeta2 suppresses elevated basal [Ca2+] and inositol phosphates levels and the sustained agonist-induced elevation of Ca2+ levels caused by PLCdelta1. Also, expression of both PLCs results in a synergistic release of [Ca2+] upon stimulation in A10 cells. These results support a model in which PLCbeta2 suppresses the basal catalytic activity of PLCdelta1, which is relieved by binding of Gbetagamma subunits to PLCbeta2 allowing for amplified calcium signals.
Collapse
Affiliation(s)
- Yuanjian Guo
- Department of Physiology and Biophysics, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
62
|
Murthy KS, Zhou H, Huang J, Pentyala SN. Activation of PLC-delta1 by Gi/o-coupled receptor agonists. Am J Physiol Cell Physiol 2004; 287:C1679-87. [PMID: 15525688 DOI: 10.1152/ajpcell.00257.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of phospholipase (PLC)-delta activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca(2+) stimulated an eightfold increase in PLC-delta1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three G(i/o)-coupled receptor agonists (somatostatin, delta-opioid agonist [D-Pen(2),D-Pen(5)]enkephalin, and A(1) agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-delta1(E341R/D343R; 65-76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca(2+) influx and was not observed in the absence of extracellular Ca(2+), but was partly inhibited by nifedipine (16-30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca(2+) channels. Treatment of the cells with a G(q/13)-coupled receptor agonist, CCK-8, caused only transient, PLC-beta1-mediated PI hydrolysis. Unlike G(i/o)-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-delta1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or Galpha(13) minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-delta1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca(2+) influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine ( approximately 25%) and strongly inhibited by SKF-96365 ( approximately 75%) and in cells expressing PLC-delta1(E341R/D343R). Agonist-independent Ca(2+) release or Ca(2+) influx via voltage-gated Ca(2+) channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-delta1 antibody or nifedipine. We conclude that PLC-delta1 is activated by G(i/o)-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca(2+) influx via store-operated Ca(2+) channels.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Calcium/metabolism
- Calcium/pharmacokinetics
- Cells, Cultured
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/agonists
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Isoenzymes/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Phospholipase C beta
- Phospholipase C delta
- Rabbits
- Somatostatin/pharmacology
- Stomach/cytology
- Type C Phospholipases/metabolism
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Karnam S Murthy
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
63
|
Fall CP, Wagner JM, Loew LM, Nuccitelli R. Cortically restricted production of IP3 leads to propagation of the fertilization Ca2+ wave along the cell surface in a model of the Xenopus egg. J Theor Biol 2004; 231:487-96. [PMID: 15488526 DOI: 10.1016/j.jtbi.2004.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 06/09/2004] [Accepted: 06/23/2004] [Indexed: 11/24/2022]
Abstract
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free cytosolic Ca2+ concentration that emanates from the point of sperm-egg fusion and traverses the entire diameter of the egg. This phenomenon appears to involve an increase in inositol-1,4,5-trisphosphate (IP3) resulting from interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. We have proposed models based on a static elevated distribution of IP3, and dynamic [IP3], however, these models have suggested that the fertilization wave passes through the center of the egg. Complementing these earlier models, we propose a more detailed model of the fertilization Ca2+ wave in Xenopus eggs to explore the hypothesis that IP3 is produced only at or near the plasma membrane. In this case, we find that the wave propagates primarily through the cortex of the egg, and that Ca2+ -induced production of IP3 at the plasma membrane allows IP3 to propagate in advance of the wave. Our model includes Ca2+ -dependent production of IP3 at the plasma membrane and IP3 degradation. Simulations in 1 dimension and axi-symmetric 3 dimensions illustrate the basic features of the wave.
Collapse
Affiliation(s)
- Christopher P Fall
- Center for Neural Science, New York University, 4 Washington Place Room 809, New York, NY 10003, USA.
| | | | | | | |
Collapse
|
64
|
Seifert JP, Wing MR, Snyder JT, Gershburg S, Sondek J, Harden TK. RhoA activates purified phospholipase C-epsilon by a guanine nucleotide-dependent mechanism. J Biol Chem 2004; 279:47992-7. [PMID: 15322077 DOI: 10.1074/jbc.m407111200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Phospholipase C-epsilon (PLC-epsilon) is a recently identified PLC isoform activated by subunits of heterotrimeric G proteins (Galpha(12), Galpha(13), and Gbetagamma) as well as by the low molecular weight GTPases, Rho and Ras. To define the enzymatic activity and substrate specificity of PLC-epsilon as well as its potential direct activation by Rho family GTPases, a major fragment of PLC-epsilon encompassing the catalytic core (EF-hand repeats through the tandem Ras-associating domains; approximately 118 kDa) was purified to near homogeneity and assayed after reconstitution under various conditions. Similar to the enzymatic profiles of previously purified PLC-beta isozymes, the purified fragment of PLC-epsilon maximally hydrolyzed phosphatidylinositol 4-phosphate at a rate of approximately 10 mumol/mg of protein/min, exhibited phospholipase activity dependent on the concentration of free calcium, and favored phosphatidylinositol 4,5-bisphosphate as substrate relative to other phosphoinositides. Furthermore, in mixed detergent phospholipid micelles, RhoA stimulated the phospholipase activity of the PLC-epsilon fragment in both a concentration-dependent and guanosine 5'-O-(3-thiotriphosphate)-dependent manner. This activation was abolished by the deletion of a unique approximately 65 amino acid-insert within the catalytic core of PLC-epsilon. Although Rac1 activated purified PLC-beta2ina guanine nucleotide-dependent manner, Rac1 failed to promote guanine nucleotide-dependent activation of purified PLC-epsilon. These results indicate that PLC-epsilon is a direct downstream effector for RhoA and that RhoA-dependent activation of PLC-epsilon depends on a unique insert within the catalytic core of the phospholipase.
Collapse
Affiliation(s)
- Jason P Seifert
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
65
|
Bembenek ME, Jain S, Prack A, Li P, Chee L, Cao W, Spurling H, Roy R, Fish S, Rokas M, Parsons T, Meyers R. Development of a high-throughput assay for two inositol-specific phospholipase Cs using a scintillation proximity format. Assay Drug Dev Technol 2004; 1:435-43. [PMID: 15090180 DOI: 10.1089/154065803322163740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inositol-specific PLCs comprise a family of enzymes that utilize phosphoinositide substrates, e.g., PIP(2), to generate intracellular second messengers for the regulation of cellular responses. In the past, monitoring this reaction has been difficult due to the need for radiolabeled substrates, separation of the reaction products by organic-phase extraction, and finally radiometric measurements of the segregated products. In this report, we have studied the enzymatic characteristics of two novel PLCs that were derived from functional genomic analyses using a phospholipid-modified solid scintillating support. This method allows for the hydrophobic capture of the [(3)H]phosphoinositide substrate on a well defined scintillation surface and the homogenous measurement of the enzymatic hydrolysis of the substrate by proximity effects. Our results show that the assay format is robust and well suited for this class of lipid-metabolizing enzymes.
Collapse
|
66
|
Spruce BA, Campbell LA, McTavish N, Cooper MA, Appleyard MVL, O'Neill M, Howie J, Samson J, Watt S, Murray K, McLean D, Leslie NR, Safrany ST, Ferguson MJ, Peters JA, Prescott AR, Box G, Hayes A, Nutley B, Raynaud F, Downes CP, Lambert JJ, Thompson AM, Eccles S. Small molecule antagonists of the sigma-1 receptor cause selective release of the death program in tumor and self-reliant cells and inhibit tumor growth in vitro and in vivo. Cancer Res 2004; 64:4875-86. [PMID: 15256458 DOI: 10.1158/0008-5472.can-03-3180] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The acquisition of resistance to apoptosis, the cell's intrinsic suicide program, is essential for cancers to arise and progress and is a major reason behind treatment failures. We show in this article that small molecule antagonists of the sigma-1 receptor inhibit tumor cell survival to reveal caspase-dependent apoptosis. sigma antagonist-mediated caspase activation and cell death are substantially attenuated by the prototypic sigma-1 agonists (+)-SKF10,047 and (+)-pentazocine. Although several normal cell types such as fibroblasts, epithelial cells, and even sigma receptor-rich neurons are resistant to the apoptotic effects of sigma antagonists, cells that can promote autocrine survival such as lens epithelial and microvascular endothelial cells are as susceptible as tumor cells. Cellular susceptibility appears to correlate with differences in sigma receptor coupling rather than levels of expression. In susceptible cells only, sigma antagonists evoke a rapid rise in cytosolic calcium that is inhibited by sigma-1 agonists. In at least some tumor cells, sigma antagonists cause calcium-dependent activation of phospholipase C and concomitant calcium-independent inhibition of phosphatidylinositol 3'-kinase pathway signaling. Systemic administration of sigma antagonists significantly inhibits the growth of evolving and established hormone-sensitive and hormone-insensitive mammary carcinoma xenografts, orthotopic prostate tumors, and p53-null lung carcinoma xenografts in immunocompromised mice in the absence of side effects. Release of a sigma receptor-mediated brake on apoptosis may offer a new approach to cancer treatment.
Collapse
Affiliation(s)
- Barbara A Spruce
- Department of Surgery and Molecular Oncology, The University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Stope MB, Vom Dorp F, Szatkowski D, Böhm A, Keiper M, Nolte J, Oude Weernink PA, Rosskopf D, Evellin S, Jakobs KH, Schmidt M. Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol 2004; 24:4664-76. [PMID: 15143162 PMCID: PMC416426 DOI: 10.1128/mcb.24.11.4664-4676.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 01/16/2004] [Accepted: 03/08/2004] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase regulation of phospholipase C-epsilon (PLC-epsilon), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-gamma1 and PLC-epsilon, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-epsilon, and Rap2B-dependent translocation of PLC-epsilon to the plasma membrane. GTP loading of Rap2B by EGF was inhibited by chelation of intracellular Ca(2+) and expression of lipase-inactive PLC-gamma1 but not of PLC-epsilon. Expression of RasGRP3, a Ca(2+)/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, but not expression of various other exchange factors enhanced GTP loading of Rap2B and PLC/Ca(2+) signaling by the EGF receptor. EGF induced tyrosine phosphorylation of RasGRP3, but not RasGRP1, apparently caused by c-Src; inhibition of c-Src interfered with EGF-induced Rap2B activation and PLC stimulation. Collectively, these data suggest that the EGF receptor triggers activation of Rap2B via PLC-gamma1 activation and tyrosine phosphorylation of RasGRP3 by c-Src, finally resulting in stimulation of PLC-epsilon.
Collapse
Affiliation(s)
- Matthias B Stope
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Wagner J, Fall CP, Hong F, Sims CE, Allbritton NL, Fontanilla RA, Moraru II, Loew LM, Nuccitelli R. A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Cell Calcium 2004; 35:433-47. [PMID: 15003853 DOI: 10.1016/j.ceca.2003.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022]
Abstract
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free Ca2+ that is initiated at the point of sperm-egg fusion and traverses the entire width of the egg. This Ca2+ wave involves an increase in inositol-1,4,5-trisphosphate (IP3) resulting from the interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. The extraordinarily large size of this cell (1.2 mm diameter) together with the small surface region of sperm-receptor activation makes special demands on the IP3-dependent Ca2+ mobilizing machinery. We propose a detailed model of the fertilization Ca2+ wave in Xenopus eggs that requires an accompanying wave of IP3 production. While the Ca2+ wave is initiated by a localized increase of IP3 near the site of sperm-egg fusion, the Ca2+ wave propagates via IP3 production correlated with the Ca2+ wave-possibly via Ca(2+)-mediated PLC activation. Such a Ca(2+)-mediated IP(3) production wave has not been required previously to explain the fertilization Ca2+ wave in eggs; we argue this is necessary to explain the observed IP3 dynamics in Xenopus eggs. To test our hypothesis, we have measured the IP3 levels from 20 nl "sips" of the egg cortex during wave propagation. We were unable to detect the low IP3 levels in unfertilized eggs, but after fertilization, [IP3] ranged from 175 to 430 nM at the sperm entry point and from 120 to 700 nM 90 degrees away once the Ca2+ wave passed that region about 2 min after fertilization. Prior to the Ca2+ wave reaching that region the IP3 levels were undetectable. Since significant IP3 could not diffuse to this region from the sperm entry point within 2 min, this observation is consistent with a regenerative wave of IP3 production.
Collapse
Affiliation(s)
- John Wagner
- Department of Physiology, Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, CT 06030-1507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sugimoto K, Nishida M, Otsuka M, Makino K, Ohkubo K, Mori Y, Morii T. Novel Real-Time Sensors to Quantitatively Assess In Vivo Inositol 1,4,5-Trisphosphate Production in Intact Cells. ACTA ACUST UNITED AC 2004; 11:475-85. [PMID: 15123242 DOI: 10.1016/j.chembiol.2004.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 01/02/2004] [Accepted: 01/09/2004] [Indexed: 11/16/2022]
Abstract
Real-time observation of messenger molecules in individual intact cells is essential for physiological studies of signaling mechanisms. We have developed a novel inositol 1,4,5-trisphosphate (IP(3)) sensor based on the pleckstrin homology (PH) domain from phospholipase C (PLC) delta. The environmentally sensitive fluorophore 6-bromoacetyl-2-dimethyl-aminonaphtalene was conjugated to the genetically introduced cysteine at the mouth of the IP(3) binding pocket for enhanced IP(3) selectivity and for rapid and direct visualization of intracellular IP(3) > or = 0.5 microM as fluorescence emission decreased. The probe, tagged with arginine-rich sequences for efficient translocation into various cell types, revealed a major contribution of Ca2+ influx to PLC-mediated IP(3) production that boosts Ca2+ release from endoplasmic reticulum. Thus, our IP(3) probe was extremely effective to quantitatively assess real-time physiological IP(3) production via those pathways formed only in the intact cellular configuration.
Collapse
Affiliation(s)
- Kenji Sugimoto
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
70
|
Hur EM, Park YS, Lee BD, Jang IH, Kim HS, Kim TD, Suh PG, Ryu SH, Kim KT. Sensitization of Epidermal Growth Factor-induced Signaling by Bradykinin Is Mediated by c-Src. J Biol Chem 2004; 279:5852-60. [PMID: 14630916 DOI: 10.1074/jbc.m311687200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Communication between receptor tyrosine kinase (RTK)- and G protein-coupled receptor (GPCR)-mediated signaling systems has received increasing attention in recent years. Here, we report that activation of G protein-coupled bradykinin B2 receptor induces an up-regulation of cellular responses mediated by epidermal growth factor receptor (EGFR) and provide essential mechanistic characteristics of this sensitization process. EGF, which failed to evoke detectable amount of calcium increase and neurotransmitter release when administrated alone in primary cultures of rat adrenal chromaffin cells and PC12 cells, became capable of inducing these responses specifically after bradykinin pretreatment. Both EGFR and non-receptor tyrosine kinase p60Src, whose kinase activities were required in the sensitization, were found to be enriched in cholesterol-rich lipid rafts. Bradykinin caused activation of p60Src and Src-dependent phosphorylation of the EGFR on Tyr-845 in lipid rafts, as well as recruitment of phospholipase C (PLC) gamma1 to the rafts. Depletion of cholesterol by methyl-beta-cyclodextrin disrupted the raft localization of EGFR and Src, as well as bradykinin-induced translocation of PLCgamma1. Furthermore, sensitization, which was impaired by cholesterol depletion, was restored by repletion of cholesterol. Therefore, we suggest that lipid rafts are essential participants in the regulation of receptor-mediated signal transduction and cross-talk via organizing signaling complexes in membrane microdomains.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Fukami K, Inoue T, Kurokawa M, Fissore RA, Nakao K, Nagano K, Nakamura Y, Takenaka K, Yoshida N, Mikoshiba K, Takenawa T. Phospholipase Cdelta4: from genome structure to physiological function. ADVANCES IN ENZYME REGULATION 2004; 43:87-106. [PMID: 12791385 DOI: 10.1016/s0065-2571(02)00029-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kiyoko Fukami
- Department of Biochemistry, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8039, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. ACTA ACUST UNITED AC 2004; 44:13-47. [PMID: 14739001 DOI: 10.1016/j.brainresrev.2003.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipases are a diverse group of enzymes whose activation may be responsible for the development of injury following insult to the brain. Amongst the numerous isoforms of phospholipase proteins expressed in mammals are 19 different phospholipase A2's (PLA2s), classified functionally as either secretory, calcium dependent, or calcium independent, 11 isozymes belonging to three structural groups of PLC, and 3 PLD gene products. Many of these phospholipases have been identified in selected brain regions. Under normal conditions, these enzymes regulate the turnover of free fatty acids (FFAs) in membrane phospholipids affecting membrane stability, fluidity, and transport processes. The measurement of free fatty acids thus provides a convenient method to follow phospholipase activity and their regulation. Phospholipase activity is also responsible for the generation of an extensive list of intracellular messengers including arachidonic acid metabolites. Phospholipases are regulated by many factors including selective phosphorylation, intracellular calcium and pH. However, under abnormal conditions, excessive phospholipase activation, along with a decreased ability to resynthesize membrane phospholipids, can lead to the generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apoptosis/necrosis. This review evaluates the critical contribution of the various phospholipases to brain injury following ischemia and trauma and in neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
73
|
Carraway RE, Gui X, Cochrane DE. Ca 2+Channel Blockers Enhance Neurotensin (NT) Binding and Inhibit NT-Induced Inositol Phosphate Formation in Prostate Cancer PC3 Cells. J Pharmacol Exp Ther 2003. [DOI: 10.1124/jpet.103.052688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
74
|
Wing MR, Snyder JT, Sondek J, Harden TK. Direct activation of phospholipase C-epsilon by Rho. J Biol Chem 2003; 278:41253-8. [PMID: 12900402 DOI: 10.1074/jbc.m306904200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unique among the phospholipase C isozymes, the recently identified phospholipase C-epsilon (PLC-epsilon) contains an amino-terminal CDC25 domain capable of catalyzing nucleotide exchange on Ras family GTPases as well as a tandem array of Ras-associating (RA) domains near its carboxyl terminus that are effector binding sites for activated H-Ras and Rap. To determine whether other small GTPases activate PLC-epsilon, we measured inositol phosphate accumulation in COS-7 cells expressing a broad range of GTPase-deficient mutants of Ras superfamily proteins. RhoA, RhoB, and RhoC all markedly stimulated inositol phosphate accumulation in PLC-epsilon-expressing cells. This stimulation matched or exceeded phospholipase activation promoted by co-expression of PLC-epsilon with the known regulators Ras, Galpha12/13, or Gbeta1gamma2. In contrast, little effect was observed with the other Rho family members Rac1, Rac2, Rac3, and Cdc42. Truncation of the two carboxyl-terminal RA domains caused loss of responsiveness to H-Ras but not to Rho. Truncation of PLC-epsilon to remove the CDC25 and pleckstrin homology (PH) domains also did not cause loss of responsiveness to Rho, Galpha12/13, or Gbeta1gamma2. Comparative sequence analysis of mammalian phospholipase C isozymes revealed a unique approximately 65 amino acid insert within the catalytic core of PLC-epsilon not present in PLC-beta, gamma, delta, or zeta. A PLC-epsilon construct lacking this region was no longer activated by Rho or Galpha12/13 but retained regulation by Gbetagamma and H-Ras. GTP-dependent interaction of Rho with PLC-epsilon was illustrated in pull-down experiments with GST-Rho, and this interaction was retained in the PLC-epsilon construct lacking the unique insert within the catalytic core. These results are consistent with the conclusion that Rho family GTPases directly interact with PLC-epsilon by a mechanism independent of the CDC25 or RA domains. A unique insert within the catalytic core of PLC-epsilon imparts responsiveness to Rho, which may signal downstream of Galpha12/13 in the regulation of PLC-epsilon, because activation by both Rho and Galpha12/13 is lost in the absence of this sequence.
Collapse
Affiliation(s)
- Michele R Wing
- Department of Pharmacology, the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
75
|
Nishida M, Sugimoto K, Hara Y, Mori E, Morii T, Kurosaki T, Mori Y. Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCgamma2 in B lymphocytes. EMBO J 2003; 22:4677-88. [PMID: 12970180 PMCID: PMC212724 DOI: 10.1093/emboj/cdg457] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 07/22/2003] [Accepted: 07/23/2003] [Indexed: 11/14/2022] Open
Abstract
In non-excitable cells, receptor-activated Ca2+ signalling comprises initial transient responses followed by a Ca2+ entry-dependent sustained and/or oscillatory phase. Here, we describe the molecular mechanism underlying the second phase linked to signal amplification. An in vivo inositol 1,4,5-trisphosphate (IP3) sensor revealed that in B lymphocytes, receptor-activated and store-operated Ca2+ entry greatly enhanced IP3 production, which terminated in phospholipase Cgamma2 (PLCgamma2)-deficient cells. Association between receptor-activated TRPC3 Ca2+ channels and PLCgamma2, which cooperate in potentiating Ca2+ responses, was demonstrated by co-immunoprecipitation. PLCgamma2-deficient cells displayed diminished Ca2+ entry-induced Ca2+ responses. However, this defect was canceled by suppressing IP3-induced Ca2+ release, implying that IP3 and IP3 receptors mediate the second Ca2+ phase. Furthermore, confocal visualization of PLCgamma2 mutants demonstrated that Ca2+ entry evoked a C2 domain-mediated PLCgamma2 translocation towards the plasma membrane in a lipase-independent manner to activate PLCgamma2. Strikingly, Ca2+ entry-activated PLCgamma2 maintained Ca2+ oscillation and extracellular signal-regulated kinase activation downstream of protein kinase C. We suggest that coupling of Ca2+ entry with PLCgamma2 translocation and activation controls the amplification and co-ordination of receptor signalling.
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Molecular and Cellular Physiology, Center for Integrative Bioscience, Okazaki National Research Institutes, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
76
|
Morita M, Yoshiki F, Kudo Y. Simultaneous imaging of phosphatidyl inositol metabolism and Ca2+ levels in PC12h cells. Biochem Biophys Res Commun 2003; 308:673-8. [PMID: 12927771 DOI: 10.1016/s0006-291x(03)01457-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the spatial and temporal relationships between phosphatidyl inositol metabolism and changes in intracellular calcium levels, we developed a simultaneous imaging system using green fluorescent protein fused with the pleckstrin homology domain, and the fluorescent calcium indicator, FuraRed. The redistribution of the fusion protein, which represents the phosphatidyl inositol metabolism process, was quantified by calculating the coefficient of variance of the fluorescence over the entire cytosolic region, excluding the nucleus. This calculation increased the reproducibility, compared to the normalized fluorescence changes in arbitrarily selected cytosolic regions used in conventional analysis. The application of this method to analyzing the response of PC12h cells to a number of pharmacological stimuli showed that the extent of the phosphatidyl inositol metabolism was related to the calcium level, but not induced by calcium alone.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, 192-0392 Tokyo, Japan.
| | | | | |
Collapse
|
77
|
Woodcock EA, Mitchell CJ, Biden TJ. Phospholipase Cdelta(1) does not mediate Ca(2+) responses in neonatal rat cardiomyocytes. FEBS Lett 2003; 546:325-8. [PMID: 12832062 DOI: 10.1016/s0014-5793(03)00608-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phospholipase C (PLC) activation in neonatal rat ventricular cardiomyocytes (NRVM) generates inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) in response to elevations in Ca(2+) or inositol(1,4)bisphosphate in response to G protein stimulation. Overexpression of PLCdelta(1) increased total [(3)H]inositol phosphate (InsP) content and elevated [(3)H]Ins(1,4,5)P(3), but failed to increase [(3)H]InsP responses to the Ca(2+) ionophore A23187. Antisense PLCdelta(1) expression reduced endogenous PLCdelta(1) content but did not decrease the A23187 response. In permeabilized NRVM, [(3)H]InsP responses to elevated Ca(2+) were not inhibited by Ins(1,4,5)P(3), even at concentrations 1000-fold greater than required for selective inhibition of PLCdelta(1). Taken together these data provide evidence that PLCdelta(1) does not mediate the InsP response to elevated Ca(2+) in NRVM.
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Vic 8008, Australia.
| | | | | |
Collapse
|
78
|
Nakamura Y, Fukami K, Yu H, Takenaka K, Kataoka Y, Shirakata Y, Nishikawa SI, Hashimoto K, Yoshida N, Takenawa T. Phospholipase Cdelta1 is required for skin stem cell lineage commitment. EMBO J 2003; 22:2981-91. [PMID: 12805213 PMCID: PMC162154 DOI: 10.1093/emboj/cdg302] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in phosphoinositide turnover and is involved in a variety of physiological functions. Here we report that PLCdelta(1)-deficient mice undergo progressive hair loss in the first postnatal hair cycle. Epidermal hyperplasia was observed, and many hairs in the skin of PLCdelta(1)-deficient mice failed to penetrate the epidermis and became zigzagged owing to occlusion of the hair canal. Two major downstream signals of PLC, calcium elevation and protein kinase C activation, were impaired in the keratinocytes and skin of PLCdelta(1)-deficient mice. In addition, many cysts that had remarkable similarities to interfollicular epidermis, as well as hyperplasia of sebaceous glands, were observed. Furthermore, PLCdelta(1)-deficient mice developed spontaneous skin tumors that had characteristics of both interfollicular epidermis and sebaceous glands. From these results, we conclude that PLCdelta(1) is required for skin stem cell lineage commitment.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Biochemistry, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Inoue T, Kikuchi K, Hirose K, Iino M, Nagano T. Spatiotemporal laser inactivation of inositol 1,4,5-trisphosphate receptors using synthetic small-molecule probes. CHEMISTRY & BIOLOGY 2003; 10:503-9. [PMID: 12837383 DOI: 10.1016/s1074-5521(03)00122-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A malachite green-conjugated inositol 1,4,5-trisphosphate (MGIP(3)) induces specific inactivation of IP(3) receptor (IP(3)R) in tissue samples upon laser irradiation. To verify potential usefulness of the method for studies of cellular Ca(2+) signaling, we conducted laser inactivation at the single-cell level and show that IP(3)R was inactivated with extremely high spatiotemporal resolution. In the presence of MGIP(3), the Ca(2+) release function of IP(3)R in single B lymphoma cells decayed exponentially with increasing duration of laser irradiation with a time constant of 3.4 s. Moreover, by confining laser irradiation to a spatially distinct region of differentiated PC12 cells, subcellular inactivation of IP(3)R was attained, as revealed by a loss of local Ca(2+) signal. Such real-time inactivation of IP(3)R only within a subcellular region may provide a powerful method for investigating spatiotemporal dynamics of Ca(2+) signaling.
Collapse
MESH Headings
- Animals
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels/radiation effects
- Calcium Signaling/drug effects
- Calcium Signaling/radiation effects
- Chickens
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Channel Gating
- Lasers
- Lymphoma, B-Cell
- Methods
- Molecular Probes
- PC12 Cells
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/radiation effects
- Rosaniline Dyes/chemistry
- Time Factors
Collapse
Affiliation(s)
- Takanari Inoue
- Graduate School of Pharmaceutical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
80
|
Bae YS, Lee TG, Park JC, Hur JH, Kim Y, Heo K, Kwak JY, Suh PG, Ryu SH. Identification of a compound that directly stimulates phospholipase C activity. Mol Pharmacol 2003; 63:1043-50. [PMID: 12695532 DOI: 10.1124/mol.63.5.1043] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) plays a pivotal role in the signal transduction of various cellular responses. However, although it is undeniably important that modulators of PLC activity be identified, no direct PLC activity modulator has been identified until now. In this study, by screening more than 10,000 different compounds in human neutrophils, we identified a compound that strongly enhances superoxide-generating activity, which is well known to be PLC-dependent. The active compound 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS) stimulated a transient intracellular calcium concentration ([Ca(2+)](i)) increase in neutrophils. Moreover, m-3M3FBS stimulated the formation of inositol phosphates in U937 cells, indicating that it stimulates PLC activity. The compound showed no cell-type specificity in terms of [Ca(2+)](i) increase in the various cell lines including leukocytes, fibroblasts, and neuronal cells. We also ruled out the possible involvement of heterotrimeric G proteins in m-3M3FBS-stimulated signaling by confirming the following: 1) pertussis toxin does not inhibit m-3M3FBS-induced [Ca(2+)](i) increase; 2) m-3M3FBS does not stimulate cyclic AMP generation; and 3) the inhibition of G(q) by the regulator of G protein-signaling 2 does not affect the m-3M3FBS-induced [Ca(2+)](i) increase. We also observed that m-3M3FBS stimulated PLC activity in vitro. The purified isoforms of PLC that were tested (i.e., beta2, beta3, gamma1, gamma2, and delta1) were activated by m-3M3FBS and showed no isoform specificity. Taken together, these results demonstrate that m-3M3FBS modulates neutrophil functions by directly activating PLC. Because m-3M3FBS is the first compound known to directly activate PLC, it should prove useful in the study of the basic molecular mechanisms of PLC activation and PLC-mediated cell signaling.
Collapse
Affiliation(s)
- Yoe-Sik Bae
- Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S. Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol Chem 2003; 278:6075-84. [PMID: 12471042 DOI: 10.1074/jbc.m204702200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1), the mammalian orthologue of frequenin, belongs to a family of EF-hand-containing Ca(2+) sensors. NCS-1/frequenin has been shown to enhance synaptic transmission in PC12 cells and Drosophila and Xenopus, respectively. However, the precise molecular mechanism for the enhancement of exocytosis is largely unknown. In PC12 cells, NCS-1 potentiated exocytosis evoked by ATP, an agonist to phospholipase C-linked receptors, but had no effect on depolarization-evoked release. NCS-1 also enhanced exocytosis triggered by ionomycin, a Ca(2+) ionophore that bypasses K(+) and Ca(2+) channels. Overexpression of NCS-1 caused a shift in the dose-response curve of inhibition of ATP-evoked secretion using phenylarsine oxide, an inhibitor of phosphatidylinositol 4-OH kinase (PI4K). Plasma membrane phosphatidylinositol 4,5-bisphosphate pools were increased upon NCS-1 transfection as visualized using a phospholipase C-delta pleckstrin homology domain-green fluorescent protein construct. NCS-1-transfected cell extracts displayed increased phosphatidylinositol-4-phosphate biosynthesis, indicating an increase in PI4K activity. Mutations in NCS-1 equivalent to those that abolish the interaction of recoverin, another EF-hand-containing Ca(2+) sensor, with its downstream target rhodopsin kinase, lost their ability to enhance exocytosis. Taken together, the present data indicate that NCS-1 modulates the activity of PI4K, leading to increased levels of phosphoinositides and concomitant enhancement of exocytosis.
Collapse
Affiliation(s)
- Manisha Rajebhosale
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
82
|
Mammalian phospholipase C. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
83
|
Sakurada K, Kato H, Nagumo H, Hiraoka H, Furuya K, Ikuhara T, Yamakita Y, Fukunaga K, Miyamoto E, Matsumura F, Matsuo YI, Naito Y, Sasaki Y. Synapsin I is phosphorylated at Ser603 by p21-activated kinases (PAKs) in vitro and in PC12 cells stimulated with bradykinin. J Biol Chem 2002; 277:45473-9. [PMID: 12237306 DOI: 10.1074/jbc.m206673200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of synapsin I is regulated by phosphorylation of the molecule at multiple sites; among them, the Ser(603) residue (site 3) is considered to be a pivotal site targeted by Ca(2+)/calmodulin-dependent kinase II (CaMKII). Although phosphorylation of the Ser(603) residue responds to several kinds of stimuli, it is unlikely that many or all of the stimuli activate the CaMKII-involved pathway. Among the several stimulants tested in PC12 cells, bradykinin evoked the phosphorylation of Ser(603) without inducing the autophosphorylation of CaMKII, which was determined using phosphorylation site-specific antibodies against phospho-Ser(603)-synapsin I (pS603-Syn I-Ab) and phospho-Thr(286/287)-CaMKII. The bradykinin-evoked phosphorylation of Ser(603) was not suppressed by the CaMKII inhibitor KN62, whereas high KCl-evoked phosphorylation was accompanied by CaMKII autophosphorylation and inhibited by KN62. Thus, we attempted to identify Ser(603) kinase(s) besides CaMKII. We consequently detected four and three fractions with Ca(2+)/calmodulin-independent Ser(603) kinase activity on the DEAE column chromatography of bovine brain homogenate and PC12 cell lysate, respectively, two of which were purified and identified by amino acid sequence of proteolytic fragments as p21-activated kinase (PAK) 1 and PAK3. The immunoprecipitants from bovine brain homogenate with anti-PAK1 and PAK3 antibodies incorporated (32)P into synapsin I in a Cdc42/GTPgammaS-dependent manner, and its phosphorylation site was confirmed as Ser(603) using pS603-Syn I-Ab. Additionally, recombinant GST-PAK2 could phosphorylate the Ser(603) residue in the presence of Cdc42/GTPgammaS. Finally, we confirmed by immunocytochemical analysis that the transfection of constitutively active rat alphaPAK (PAK1) in PC12 cells evokes the phosphorylation of Ser(603) even in the resting mutant cells and enhances it in the bradykinin-stimulated cells, whereas that of dominant-negative alphaPAK quenches the phosphorylation. These results raise the possibility that Ser(603) on synapsin I is alternatively phosphorylated by PAKs, not only by CaMKII, in neuronal cells in response to some stimulants.
Collapse
Affiliation(s)
- Katsuhiko Sakurada
- Frontier 21 Project, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd. 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL. The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 2002; 4:E263-72. [PMID: 12415286 DOI: 10.1038/ncb1102-e263] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The impact of calcium signalling on so many areas of cell biology reflects the crucial role of calcium signals in the control of diverse cellular functions. Despite the precision with which spatial and temporal details of calcium signals have been resolved, a fundamental aspect of the generation of calcium signals -- the activation of 'store-operated channels' (SOCs) -- remains a molecular and mechanistic mystery. Here we review new insights into the exchange of signals between the endoplasmic reticulum (ER) and plasma membrane that result in activation of calcium entry channels mediating crucial long-term calcium signals.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
85
|
Koizumi S, Rosa P, Willars GB, Challiss RAJ, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 2002; 277:30315-24. [PMID: 12034721 DOI: 10.1074/jbc.m201132200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) or the originally identified homologue frequenin belongs to a superfamily of EF-hand calcium binding proteins. Although NCS-1 is thought to enhance synaptic efficacy or exocytosis mainly by activating ion channel function, the detailed molecular basis for the enhancement is still a matter of debate. Here, mechanisms underlying the NCS-1-evoked enhancement of exocytosis were investigated using PC12 cells overexpressing NCS-1. NCS-1 was found to have a broad distribution in the cells being partially distributed in the cytosol and associated to vesicles and tubular-like structures. Biochemical and immunohistochemical studies indicated that NCS-1 partially colocalized with the light synaptic vesicle marker synaptophysin. When stimulated with UTP or bradykinin, agonists to phospholipase C-linked receptors, NCS-1 enhanced the agonist-mediated elementary and global Ca2+ signaling and increased the levels of downstream signals of phosphatidylinositol 4-kinase. NCS-1 enhanced the UTP-evoked exocytosis but not the depolarization-evoked Ca2+ responses or exocytosis, suggesting that the enhancement by NCS-1 should involve phospholipase C-linked receptor-mediated signals rather than the Ca2+ channels or exocytotic machinery per se. Taken together, NCS-1 enhances phosphoinositide turnover, resulting in enhancement of Ca2+ signaling and exocytosis. This is a novel regulatory mechanism of exocytosis that might involve the activation of phosphatidylinositol 4-kinase.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Section of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PAO, Jakobs KH, Webb EJ, Lomasney JW, Schmidt M. Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem 2002; 277:16805-13. [PMID: 11877431 DOI: 10.1074/jbc.m112024200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms. M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase were reduced by 2',5'-dideoxyadenosine (dd-Ado), a direct adenylyl cyclase inhibitor. On the other hand, overexpression of Galpha(s) or Epac1, a cyclic AMP-regulated guanine nucleotide exchange factor for Rap GTPases, enhanced M(3) mAChR-mediated PLC stimulation. Inactivation of Ras-related GTPases with clostridial toxins suppressed the M(3) mAChR responses. The inhibitory toxin effects were mimicked by expression of inactive Rap2B, but not of other inactive GTPases (Rac1, Ras, RalA, Rap1A, and Rap2A). Activation of the M(3) mAChR induced GTP loading of Rap2B, an effect strongly enhanced by overexpression of Galpha(s) and inhibited by dd-Ado. Overexpression of PLC-epsilon and PLC-beta1, but not PLC-gamma1 or PLC-delta1, enhanced M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase. In contrast, expression of a catalytically inactive PLC-epsilon mutant reduced PLC stimulation by the M(3) mAChR and abrogated the potentiating effect of Galpha(s). In conclusion, our findings suggest that PLC stimulation by the M(3) mAChR is a composite action of PLC-beta1 stimulation by Galpha(q) and stimulation of PLC-epsilon apparently mediated by G(s)-dependent cyclic AMP formation and subsequent activation of Rap2B.
Collapse
Affiliation(s)
- Sandrine Evellin
- Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patients with coronary artery spasm. Circulation 2002; 105:2024-9. [PMID: 11980680 DOI: 10.1161/01.cir.0000014613.36469.3f] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently demonstrated that phospholipase C (PLC)-delta1 activity in cultured skin fibroblasts obtained from patients with coronary spastic angina (CSA) is enhanced. We tested the hypothesis that structural abnormality in PLC-delta1 isoform is a cause of the enhanced activity. METHODS AND RESULTS Sequence analysis of the cDNA coding for PLC-delta1 obtained from fibroblasts revealed that one conversion of guanine to adenine (A) was present at nucleotide position 864 in one CSA patient, resulting in the amino acid replacement of arginine 257 by histidine (R257H). The incidence of 864A/A in genomic DNA, analyzed by single-strand conformation polymorphism, was greater in patients with CSA than in male control subjects (6 of 57 patients with CSA versus 1 of 62 control subjects, P<0.05). The activity of the variant PLC-delta1 protein under free calcium concentration between 10(-8) and 10(-7) mol/L was 2-fold higher than that of the wild-type protein. Baseline intracellular calcium concentration ([Ca2+]i) in human embryonic kidney 293 cells transfected with the variant PLC-delta1 was higher than that in cells with the wild type. The peak increase in [Ca2+]i in response to acetylcholine at 10(-6) and 10(-5) mol/L was greater in the cells with the variant PLC-delta1 than in those with the wild type. CONCLUSIONS These findings indicate that the R257H variant in the PLC-delta1 gene detected in patients with CSA is associated with enhancement of enzyme activity, and they describe a novel mechanism for the enhanced coronary vasomotility in CSA.
Collapse
Affiliation(s)
- Takao Nakano
- Second Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Kang SK, Kim DK, Damron DS, Baek KJ, Im MJ. Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1. Biochem Biophys Res Commun 2002; 293:383-90. [PMID: 12054611 DOI: 10.1016/s0006-291x(02)00197-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.
Collapse
Affiliation(s)
- Sung Koo Kang
- Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
89
|
Chen ZJ, Vetter M, Che D, Liu S, Tsai ML, Chang CH. The bradykinin/soluble guanylate cyclase signaling pathway is impaired in androgen-independent prostate cancer cells. Cancer Lett 2002; 177:181-7. [PMID: 11825665 DOI: 10.1016/s0304-3835(01)00788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of soluble guanylate cyclase by bradykinin and sodium nitroprusside (SNP), a direct activator of soluble guanylate cyclase, was evaluated in androgen-sensitive LNCaP and androgen-independent PC3 and DU145 prostate cancer cells. Bradykinin and SNP activated soluble guanylate cyclase in LNCaP cells, but not in PC3 and DU145 cells. Western blot analysis revealed that the bradykinin B2 receptor, Gqalpha, phospholipase Cgamma and endothelial nitric oxide synthase were expressed in LNCaP, PC3 and DU145 cells. However, both Western blotting and reverse transcriptase--polymerase chain reaction indicated that soluble guanylate cyclase was only expressed in LNCaP cells. These results demonstrate that the impaired bradykinin-soluble guanylate cyclase pathway in PC3 and DU145 cells is likely due to lack of expression of soluble guanylate cyclase.
Collapse
Affiliation(s)
- Zi Jiang Chen
- Departments of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
90
|
Wing MR, Houston D, Kelley GG, Der CJ, Siderovski DP, Harden TK. Activation of phospholipase C-epsilon by heterotrimeric G protein betagamma-subunits. J Biol Chem 2001; 276:48257-61. [PMID: 11641393 DOI: 10.1074/jbc.c100574200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PLC-epsilon was identified recently as a phosphoinositide-hydrolyzing phospholipase C (PLC) containing catalytic domains (X, Y, and C2) common to all PLC isozymes as well as unique CDC25- and Ras-associating domains. Novel regulation of this PLC isozyme by the Ras oncoprotein and alpha-subunits (Galpha(12)) of heterotrimeric G proteins was illustrated. Sequence analyses of PLC-epsilon revealed previously unrecognized PH and EF-hand domains in the amino terminus. The known interaction of Gbetagamma subunits with the PH domains of other proteins led us to examine the capacity of Gbetagamma to activate PLC-epsilon. Co-expression of Gbeta(1)gamma(2) with PLC-epsilon in COS-7 cells resulted in marked stimulation of phospholipase C activity. Gbeta(2) and Gbeta(4) in combination with Ggamma(1), Ggamma(2), Ggamma(3), or Ggamma(13) also activated PLC-epsilon to levels similar to those observed with Gbeta(1)-containing dimers of these Ggamma-subunits. Gbeta(3) in combination with the same Ggamma-subunits was less active, and Gbeta(5)-containing dimers were essentially inactive. Gbetagamma-promoted activation of PLC-epsilon was blocked by cotransfection with either of two Gbetagamma-interacting proteins, Galpha(i1) or the carboxyl terminus of G protein receptor kinase 2. Pharmacological inhibition of PI3-kinase-gamma had no effect on Gbeta(1)gamma(2)-promoted activation of PLC-epsilon. Similarly, activation of Ras in the action of Gbetagamma is unlikely, because a mutation in the second RA domain of PLC-epsilon that blocks Ras activation of PLC failed to alter the stimulatory activity of Gbeta(1)gamma(2). Taken together, these results reveal the presence of additional functional domains in PLC-epsilon and add a new level of complexity in the regulation of this novel enzyme by heterotrimeric G proteins.
Collapse
Affiliation(s)
- M R Wing
- Department of Pharmacology, Program in Neurobiology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
91
|
Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 2001; 3:1020-4. [PMID: 11715024 DOI: 10.1038/ncb1101-1020] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stimulation of phosphoinositide-hydrolysing phospholipase C (PLC) generating inositol-1,4,5-trisphosphate is a major calcium signalling pathway used by a wide variety of membrane receptors, activating distinct PLC-beta or PLC-gamma isoforms. Here we report a new PLC and calcium signalling pathway that is triggered by cyclic AMP (cAMP) and mediated by a small GTPase of the Rap family. Activation of the adenylyl cyclase-coupled beta2-adrenoceptor expressed in HEK-293 cells or the endogenous receptor for prostaglandin E1 in N1E-115 neuroblastoma cells induced calcium mobilization and PLC stimulation, seemingly caused by cAMP formation, but was independent of protein kinase A (PKA). We provide evidence that these receptor responses are mediated by a Rap GTPase, specifically Rap2B, activated by a guanine-nucleotide-exchange factor (Epac) regulated by cAMP, and involve the recently identified PLC-epsilon isoform.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, 45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
92
|
Okubo Y, Kakizawa S, Hirose K, Iino M. Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells. Neuron 2001; 32:113-22. [PMID: 11604143 DOI: 10.1016/s0896-6273(01)00464-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IP(3) signaling in Purkinje cells is involved in the regulation of cell functions including LTD. We have used a GFP-tagged pleckstrin homology domain to visualize IP(3) dynamics in Purkinje cells. Surprisingly, IP(3) production was observed in response not only to mGluR activation, but also to AMPA receptor activation in Purkinje cells in culture. AMPA-induced IP(3) production was mediated by depolarization-induced Ca(2+) influx because it was mimicked by depolarization and was blocked by inhibition of the P-type Ca(2+) channel. Furthermore, trains of complex spikes, elicited by climbing fiber stimulation (1 Hz), induced IP(3) production in Purkinje cells in cerebellar slices. These results revealed a novel IP(3) signaling pathway in Purkinje cells that can be elicited by synaptic inputs from climbing fibers.
Collapse
Affiliation(s)
- Y Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
93
|
Glazner GW, Camandola S, Geiger JD, Mattson MP. Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-kappaB binding activity in a calcium-independent manner. J Biol Chem 2001; 276:22461-7. [PMID: 11309390 DOI: 10.1074/jbc.m101315200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) plays critical roles in neuronal survival and plasticity and in activation of immune responses. The activation of NF-kappaB has been closely associated with changes in intracellular calcium levels, but the relationship between the two remains unclear. Here we report that inhibition of endoplasmic reticulum (ER) d-myo-inositol 1,4,5-trisphosphate (IP(3))-gated calcium release caused decreased basal NF-kappaB DNA-binding activity in cultured rat cortical neurons. Activation of NF-kappaB in response to tumor necrosis factor-alpha and glutamate was completely abolished when IP(3) receptors were blocked, and NF-kappaB activation in response to depletion of ER calcium by thapsigargin treatment was also decreased by IP(3) receptor blockade. We further investigated the relationship between IP(3) receptor activation and NF-kappaB activity using a cell-free system. Microsomes enriched in the ER were isolated from adult rat cerebral cortex, resuspended, and treated with agents that induce or inhibit ER calcium release. They were then recentrifuged, and the supernatant was added to cytoplasmic extract isolated from the same source tissue. We found that microsomes released an NF-kappaB-stimulating signal in response to activation of IP(3) receptors or inhibition of the ER Ca(2+)-ATPase, but not in response to ryanodine. Studies of intact cells and cell-free preparations indicated that the signal released from the ER was not calcium and was heat- and trypsin-sensitive. Our data suggest that activation of IP(3) receptors is required for a major component of both constitutive and inducible NF-kappaB binding activity in neurons and that decreasing ER intraluminal calcium levels triggers release of a diffusible NF-kappaB-activating signal from the ER.
Collapse
Affiliation(s)
- G W Glazner
- Laboratory of Neurosciences, NIA Gerontology Research Center, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
94
|
Nash MS, Saunders R, Young KW, Challiss RA, Nahorski SR. Reassessment of the Ca2+ sensing property of a type I metabotropic glutamate receptor by simultaneous measurement of inositol 1,4,5-trisphosphate and Ca2+ in single cells. J Biol Chem 2001; 276:19286-93. [PMID: 11278354 DOI: 10.1074/jbc.m007600200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.
Collapse
Affiliation(s)
- M S Nash
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, P. O. Box 138, University Road, Leicester, LE1 9HN, United Kingdom
| | | | | | | | | |
Collapse
|
95
|
Abstract
Mammalian homologues of the Drosophila transient receptor potential (TRP) channel gene encode a family of at least 20 ion channel proteins. They are widely distributed in mammalian tissues, but their specific physiological functions are largely unknown. A common theme that links the TRP channels is their activation or modulation by phosphatidylinositol signal transduction pathways. The channel subunits have six transmembrane domains that most probably assemble into tetramers to form non-selective cationic channels, which allow for the influx of calcium ions into cells. Three subgroups comprise the TRP channel family; the best understood of these mediates responses to painful stimuli. Other proposed functions include repletion of intracellular calcium stores, receptor-mediated excitation and modulation of the cell cycle.
Collapse
Affiliation(s)
- D E Clapham
- Howard Hughes Medical Institute, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
96
|
Mitchell CJ, Kelly MM, Blewitt M, Wilson JR, Biden TJ. Phospholipase C-gamma mediates the hydrolysis of phosphatidylinositol, but not of phosphatidylinositol 4,5-bisphoshate, in carbamylcholine-stimulated islets of langerhans. J Biol Chem 2001; 276:19072-7. [PMID: 11274217 DOI: 10.1074/jbc.m101406200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In pancreatic islets the activation of phospholipase C (PLC) by the muscarinic receptor agonist carbamyolcholine (carbachol) results in the hydrolysis of both phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)) and phosphatidylinositol (PtdIns). Here we tested the hypothesis that PtdIns hydrolysis is mediated by PLCgamma1, which is known to be regulated by activation of tyrosine kinases and PtdIns 3-kinase. PtdIns breakdown was more sensitive than that of PtdInsP(2) to the tyrosine kinase inhibitor, genistein. Conversely, the tyrosine phosphatase inhibitor, vanadate, alone promoted PtdIns hydrolysis and acted non-additively with carbachol. Vanadate did not stimulate PtdInsP(2) breakdown. Carbachol also stimulated a rapid (maximal at 1-2 min) tyrosine phosphorylation of several islet proteins, although not of PLCgamma1 itself. Two structurally unrelated inhibitors of PtdIns 3-kinase, wortmannin and LY294002, more effectively attenuated the hyrolysis of PtdIns compared with PtdInsP(2). Adenovirally mediated overexpression of PLCgamma1 significantly increased carbachol-stimulated PtdIns hydrolysis without affecting that of PtdInsP(2). Conversely overexpression of PLCbeta1 up-regulated the PtdInsP(2), but not PtdIns, response. These results indicate that the hydrolysis of PtdIns and PtdInsP(2) are independently regulated in pancreatic islets and that PLCgamma1 selectively mediates the breakdown of PtdIns. The activation mechanism of PLCgamma involves tyrosine phosphorylation (but not of PLCgamma directly) and PtdIns 3-kinase. Our findings point to a novel bifurcation of signaling pathways downstream of muscarinic receptors and suggest that hydrolysis of PtdIns and PtdInsP(2) might serve different physiological ends.
Collapse
Affiliation(s)
- C J Mitchell
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney 2010, Australia
| | | | | | | | | |
Collapse
|
97
|
Nash MS, Young KW, Willars GB, Challiss RA, Nahorski SR. Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J 2001; 356:137-42. [PMID: 11336645 PMCID: PMC1221821 DOI: 10.1042/0264-6021:3560137] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pleckstrin homology domain of phospholipase Cdelta1 (PH(PLCdelta)) binds Ins(1,4,5)P(3) and PtdIns(4,5)P(2) specifically, and can be used to detect changes in Ins(1,4,5)P(3) in single cells. A fusion construct of PH(PLCdelta) and enhanced green fluorescent protein (EGFP-PH(PLCdelta)) associates with the plasma membrane due to its association with PtdIns(4,5)P(2). However, PH(PLCdelta) has greater affinity for Ins(1,4,5)P(3) than PtdIns(4,5)P(2), and translocates to the cytosol as Ins(1,4,5)P(3) levels rise. Prolonged activation of group I metabotropic glutamate receptor 1alpha expressed in Chinese-hamster ovary cells or endogenous M(3) muscarinic receptors in SH-SY5Y neuroblastoma cells gave an initial transient peak in translocation, followed by a sustained plateau phase. This closely followed changes in cell population Ins(1,4,5)P(3) mass, but not PtdIns(4,5)P(2) levels, which decreased monophasically, as determined by radioreceptor assay. Translocation thus provides a real-time method to follow increases in Ins(1,4,5)P(3). Graded changes in Ins(1,4,5)P(3) in Chinese-hamster ovary-lac-mGlu1alpha cells could be detected with increasing glutamate concentrations, and dual loading with fura 2 and EGFP-PH(PLCdelta) showed that changes in intracellular Ca(2+) concentration closely paralleled Ins(1,4,5)P(3) production. Moreover, Ins(1,4,5)P(3) accumulation and intracellular Ca(2+) mobilization within single cells is graded in nature and dependent on both agonist concentration and receptor density.
Collapse
MESH Headings
- Animals
- Blood Proteins/metabolism
- CHO Cells
- Calcium Signaling
- Carbachol/pharmacology
- Cricetinae
- GTP-Binding Proteins/metabolism
- Green Fluorescent Proteins
- Inositol 1,4,5-Trisphosphate/isolation & purification
- Inositol 1,4,5-Trisphosphate/metabolism
- Luminescent Proteins
- Microscopy, Confocal/methods
- Peptide Fragments/metabolism
- Phosphatidylinositol 4,5-Diphosphate
- Phosphoproteins/metabolism
- Receptor, Muscarinic M3
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, Neurotransmitter/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M S Nash
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, P.O. Box 138, University Road, Leicester LE1 9HN, UK.
| | | | | | | | | |
Collapse
|
98
|
MacKenzie CJ, Lutz EM, Johnson MS, Robertson DN, Holland PJ, Mitchell R. Mechanisms of phospholipase C activation by the vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 receptor. Endocrinology 2001; 142:1209-17. [PMID: 11181537 DOI: 10.1210/endo.142.3.8013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 (VPAC(2)) receptor was shown to induce both [(3)H]inositol phosphate ([(3)H]InsP)and cAMP production in transfected COS7 cells and in GH(3) cells where it is natively expressed. Neither cholera toxin nor forskolin could elicit an equivalent [(3)H]InsP response, suggesting independent coupling of the two pathways. The VPAC(2) receptor-mediated [(3)H]InsP response was partially inhibited by pertussis toxin (Ptx) and by the G beta gamma-sequestering C-terminal fragment of GRK2 (GRK2-ct) in COS7 and GH(3) cells, whereas responses of control receptors were unaffected. Blockers of receptor-activated Ca(2+) influx pathways (Co(2+) and SKF 96365) also partially inhibited VPAC(2) receptor-mediated [(3)H]InsP responses. This inhibition was not present in the component of the response remaining after Ptx treatment. A range of blockers of voltage-sensitive Ca(2+) channels were ineffective, consistent with the reported lack of these channels in COS7 cells. The data suggest that the VPAC(2) receptor may couple to phospholipase C through both Ptx-insensitive and Ptx-sensitive G proteins (G(q/11) and G(i/o), respectively) to generate [(3)H]InsP. In addition to G beta gamma, G(i/o) activation appears to require receptor-activated Ca(2+) entry. This is consistent with the possibility that not only G alpha(q/11)-responsive and G beta gamma-responsive isoforms of phospholipase C but also Ca(2+)-responsive forms may contribute to the overall [(3)H]InsP response.
Collapse
Affiliation(s)
- C J MacKenzie
- Medical Research Council Membrane and Adapter Proteins Co-operative Group, Membrane Biology Group, Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom EH8 9XD
| | | | | | | | | | | |
Collapse
|
99
|
Baek KJ, Kang S, Damron D, Im M. Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J Biol Chem 2001; 276:5591-7. [PMID: 11087745 DOI: 10.1074/jbc.m008252200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Effectors involved in G protein-coupled receptor signaling modulate activity of GTPases through GTPase-activating protein or guanine nucleotide exchanging factor (GEF). Phospholipase Cdelta1 (PLCdelta1) is an effector in tissue transglutaminase (TGII)-mediated alpha1B-adrenoreceptor (alpha(1B)AR) signaling. We investigated whether PLCdelta1 modulates TGII activity. PLCdelta1 stimulated GDP release from TGII in a concentration-dependent manner, resulting in an increase in GTPgammaS binding to TGII. PLCdelta1 also inhibited GTP hydrolysis by TGII that was independent from the alpha(1B)AR. These results indicate that PLCdelta1 is GEF for TGII and stabilizes the GTP.TGII complex. When GEF function of PLCdelta1 was compared with that of the alpha(1B)AR, the alpha(1B)AR-mediated GTPgammaS binding to TGII was greater than PLCdelta1-mediated binding and was accelerated in the presence of PLCdelta1. Thus, the alpha(1B)AR is the prime GEF for TGII, and GEF activity of PLCdelta1 promotes coupling efficacy of this signaling system. Overexpression of TGII and its mutants with and without PLCdelta1 resulted in an increase in alpha(1B)AR-stimulated Ca2+ release from intracellular stores in a TGII-specific manner. We conclude that PLCdelta1 assists the alpha(1B)AR function through its GEF action and is primarily activated by the coupling of TGII to the cognate receptors.
Collapse
Affiliation(s)
- K J Baek
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
100
|
Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW. A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 2001; 276:2758-65. [PMID: 11022047 DOI: 10.1074/jbc.m008119200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three families of phospholipase C (PI-PLCbeta, gamma, and delta) are known to catalyze the hydrolysis of polyphosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) to generate the second messengers inositol 1,4,5 trisphosphate and diacylglycerol, leading to a cascade of intracellular responses that result in cell growth, cell differentiation, and gene expression. Here we describe the founding member of a novel, structurally distinct fourth family of PI-PLC. PLCepsilon not only contains conserved catalytic (X and Y) and regulatory domains (C2) common to other eukaryotic PLCs, but also contains two Ras-associating (RA) domains and a Ras guanine nucleotide exchange factor (RasGEF) motif. PLCepsilon hydrolyzes PIP(2), and this activity is stimulated selectively by a constitutively active form of the heterotrimeric G protein Galpha(12). PLCepsilon and a mutant (H1144L) incapable of hydrolyzing phosphoinositides promote formation of GTP-Ras. Thus PLCepsilon is a RasGEF. PLCepsilon, the mutant H1144L, and the isolated GEF domain activate the mitogen-activated protein kinase pathway in a manner dependent on Ras but independent of PIP(2) hydrolysis. Our findings demonstrate that PLCepsilon is a novel bifunctional enzyme that is regulated by the heterotrimeric G protein Galpha(12) and activates the small G protein Ras/mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- I Lopez
- Department of Pathology and Feinberg Cardiovascular Research Institute, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|