51
|
Staub C, Venturi E, Cirot M, Léonard L, Barrière P, Blard T, Gaudé Y, Gascogne T, Yvon JM, Lecompte F, Ramé C, Reigner F, Dupont J. Ultrasonographic measures of body fatness and their relationship with plasma levels and adipose tissue expression of four adipokines in Welsh pony mares. Domest Anim Endocrinol 2019; 69:75-83. [PMID: 31374538 DOI: 10.1016/j.domaniend.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
Obesity is responsible for metabolic dysregulations that alter fertility and induce pathologies. The objectives of the present study were to validate a reliable method for the evaluation of body fatness in mares and to associate the body fat estimation data to metabolic changes, including adipokines at the plasma and adipose tissue levels. To reach this purpose, animals were subjected to two extreme breeding conditions to study the variation of morphological, ultrasound, and physiological parameters. Twenty Welsh mares were followed up monthly from April to October before and after animals were moved outdoors to grasslands. Body weight (BW), body length (BL), height at the withers (HW), thoracic perimeter (TP), 5-point body condition score (BCS), and subcutaneous fat thickness (SFT) at the level of the shoulder, the lumbar region, and the rump, measured by ultrasonography, and plasma and adipose tissue metabolic indicators were assessed in parallel. Statistical analysis was performed using a linear mixed-effects model, whereas Pearson tests were used for the analysis of the correlations between the different parameters. Although mean BW did not increase significantly (P = 0.0940), TP (P = 0.0002) and BCS (P < 0.0001) increased during the study period. Ultrasonographic examination of subcutaneous adipose tissue showed an increase in SFT at the level of the shoulder (P < 0.0001), lumbar region (P < 0.0001), and rump (P < 0.0001). Plasma concentrations of nonesterified fatty acids (P < 0.0001), phospholipids (P < 0.0001), and cholesterol (P < 0.0001) increased significantly, whereas triglycerides (P < 0.0001) decreased significantly during the study period. Although both plasma concentrations and adipose tissue expression of leptin (P < 0.0001) and resistin (P < 0.0001) increased significantly, adiponectin (P < 0.0001) significantly decreased and visfatin remained unchanged (P = 0.8401). Expression of adipokine receptors studied showed the opposite pattern compared with their ligand. Ultrasonographic measurements of subcutaneous adipose tissue thickness at the shoulder, lumbar region, and rump are relevant indicators of fatness related with adipokine plasma concentrations and expression of adipokine-related receptors in adipose tissue, and particularly highlight seasonal effects.
Collapse
Affiliation(s)
- C Staub
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France.
| | - E Venturi
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - M Cirot
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - L Léonard
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - P Barrière
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - T Blard
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - Y Gaudé
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - T Gascogne
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - J M Yvon
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - F Lecompte
- INRA, Plateforme CIRE, Service d'imagerie, UMR0085 PRC, Nouzilly F-37380, France
| | - C Ramé
- INRA, UMR0085 Physiologie de la Reproduction et des Comportements, Nouzilly F-37380, France
| | - F Reigner
- INRA, UE1297 Physiologie Animale de l'Orfrasière, Nouzilly F-37380, France
| | - J Dupont
- INRA, UMR0085 Physiologie de la Reproduction et des Comportements, Nouzilly F-37380, France
| |
Collapse
|
52
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
53
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
54
|
Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: A reappraisal. Mech Ageing Dev 2019; 178:46-63. [DOI: 10.1016/j.mad.2019.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
55
|
Ahn J, Wu H, Lee K. Integrative Analysis Revealing Human Adipose-Specific Genes and Consolidating Obesity Loci. Sci Rep 2019; 9:3087. [PMID: 30816281 PMCID: PMC6395763 DOI: 10.1038/s41598-019-39582-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Identification of adipose-specific genes has contributed to an understanding of mechanisms underlying adipocyte development and obesity. Herein, our analyses of the recent Genotype-Tissue Expression (GTEx) database revealed 38 adipose-specific/enhanced protein coding genes, among which 3 genes were novel adipose-specific, and 414 highly differentially expressed genes (DEGs) between subcutaneous and omental adipose depots. By integrative analyses of genome-wide association studies (GWASs), 14 adipose-specific/enhanced genes and 60 DEGs were found to be associated with obesity-related traits and diseases, consolidating evidence for contribution of these genes to the regional fat distribution and obesity phenotypes. In addition, expression of HOXC cluster was up-regulated in subcutaneous adipose tissue, and the majority of the HOXB cluster was expressed highly in omental adipose tissue, indicating differential expression patterns of HOX clusters in adipose depots. Our findings on the distinct gene expression profiles in adipose tissue and their relation to obesity provide an important foundation for future functional biological studies and therapeutic targets in obesity and associated diseases.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Huiguang Wu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
56
|
Jasinski-Bergner S, Kielstein H. Adipokines Regulate the Expression of Tumor-Relevant MicroRNAs. Obes Facts 2019; 12:211-225. [PMID: 30999294 PMCID: PMC6547259 DOI: 10.1159/000496625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing prevalence of obesity requires the investigation of respective comorbidities, including tumor diseases like colorectal, renal, post-menopausal breast, prostate cancer, and leukemia. To date, molecular mechanisms of the malignant transformation of these peripheral tissues induced by obesity remain unclear. Adipose tissue secretes factors with hormone-like functions, the adipokines, and is therefore categorized as an endocrine organ. Current research demonstrates the ability of adipose tissue to alter DNA methylation and gene expression in peripheral tissues, probably affecting microRNA (miR) expression. METHODS Literature was analyzed for adipokine-regulated miRs. Many of these adipokine upregulated or downregulated miRs exert either oncogenic or anti-tumoral potential. RESULTS The three selected and analyzed adipokines, adiponectin, leptin, and resistin, induce more strongly oncogenic miRs and simultaneously reduce anti-tumoral miRs than vice versa. This effect is not only true for the pure number of regulated miRs, it is also the case by consideration of the abundance of the respective miR expression based on actual data sets derived from next-generation sequencing. CONCLUSION The link of obesity and cancer is analyzed under the aspect of adipokine-regulated miRs. At the same time the impact of miR abundance is considered as a regulatory variable. This context offers new strategies for tumor therapy and diagnostics.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
57
|
Hornik B, Duława J, Szewieczek J, Durmała J. Physical activity increases the resistin concentration in hemodialyzed patients without metabolic syndrome. Diabetes Metab Syndr Obes 2018; 12:43-57. [PMID: 30588054 PMCID: PMC6302825 DOI: 10.2147/dmso.s186674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Resistin (RES) concentration increases in end-stage renal disease patients. However, there have been no studies defining the role of physical activity in RES concentrations in hemodialyzed (HD) patients. This study was aimed to determine metabolic and inflammatory effects, including RES, of 4-week supervised rehabilitation program in HD patients, with or without metabolic syndrome (MS). METHODS The study was completed by 28 patients aged 56.9±13.3 years ( x ¯ ± SD ) who were HD for 50.6±73.4 months, and 30 controls aged 61.5±8.3 years with normal renal function. Both the groups were divided into two subgroups with respect to MS. Individualized supervised rehabilitation program based on physiotherapy, including exercises, was provided to each subject for 4 weeks. Baseline and post-intervention complete blood count, glycated hemoglobin (HbA1c) and levels of serum RES, leptin, adiponectin, cystatin C, erythropoietin, high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor alpha (TNF-α), interleukin-6, transforming growth factor- β1, plasminogen activator inhibitor-1 homocysteine, insulin, albumin, parathyroid hormone (PTH), and phosphorus were measured. RESULTS Compared to controls, HD patients showed higher baseline leucocytes count and higher serum concentrations of RES, leptin, cystatin C, hs-CRP, TNF-α, homocysteine, phosphorus, PTH while hemoglobin, glucose, and albumin concentrations. A positive correlation between serum albumin and RES concentrations was observed in HD patients. Post-intervention RES increase was observed in HD patients without MS (post-intervention 34.22±8.89 vs baseline 30.16±11.04 ng/mL; P=0.046) while no change was observed in patients with MS and in the control group. CONCLUSION MS modifies a RES response to the rehabilitation program in HD patients.
Collapse
Affiliation(s)
- Beata Hornik
- Department of Internal Nursing, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland,
| | - Jan Duława
- Department of Internal Medicine and Metabolic Diseases, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jan Szewieczek
- Department of Geriatrics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jacek Durmała
- Department of Rehabilitation, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
58
|
Alipoor E, Mohammad Hosseinzadeh F, Hosseinzadeh-Attar MJ. Adipokines in critical illness: A review of the evidence and knowledge gaps. Biomed Pharmacother 2018; 108:1739-1750. [PMID: 30372877 DOI: 10.1016/j.biopha.2018.09.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Adipose tissue products or adipokines play a major role in chronic endocrine and metabolic disorders; however, little is known about critical conditions. In this article, the experimental and clinical evidence of alterations of adipokines, adiponectin, leptin, resistin, visfatin, asymmetric dimethylarginine (ADMA), and ghrelin in critical illness, their potential metabolic, diagnostic, and prognostic value, and the gaps in the field have been reviewed. The results showed considerable changes in the concentration of the adipokines; while the impact of adipokines on metabolic disorders such as insulin resistance and inflammation has not been well documented in critically ill patients. There is no consensus about the circulatory and functional changes of leptin and adiponectin. However, it seems that lower concentrations of adiponectin at admission with gradual consequent increase might be a useful pattern in determining better outcomes of critical illness. Some evidence has suggested the adverse effects of elevated resistin concentration, potential prognostic importance of visfatin, and therapeutic value of ghrelin. High ADMA levels and low arginine:ADMA ratio were also proposed as predictors of ICU mortality and morbidities. However, there is no consensus on these findings. Although primary data indicated the role of adipokines in critical illness, further studies are required to clarify whether the reason of these changes is pathophysiological or compensatory. The relationship of pathophysiological background, disease severity, baseline nutritional status and nutrition support during hospitalization, and variations in body fat percentage and distribution with adipokines, as well as the potential prognostic or therapeutic role of these peptides should be further investigated in critically ill patients.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammad Hosseinzadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
59
|
Nakashima A, Yokoyama K, Kawanami D, Ohkido I, Urashima M, Utsunomiya K, Yokoo T. Association between resistin and fibroblast growth factor 23 in patients with type 2 diabetes mellitus. Sci Rep 2018; 8:13999. [PMID: 30228288 PMCID: PMC6143599 DOI: 10.1038/s41598-018-32432-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease and all-cause mortality in patients with diabetes mellitus. Insulin resistance has recently been reported to increase FGF23 levels, and resistin is a peptide that mainly regulates insulin resistance. However, few studies have investigated the association between FGF23 and resistin. A total of 422 patients with diabetes mellitus were recruited for this cross-sectional study to examine the association between resistin and intact FGF23. The mean ( ± standard deviation) age was 63.1 ± 11.9 years, and the median HbA1c was 6.7% (range, 6.1-7.1%). The mean estimated glomerular filtration rate (eGFR) was 66.2 ± 23.1 mL/min/m2. Multiple regression analysis for resistin showed that logFGF23 (coefficient (Coef): 1.551; standard error (SE): 0.739; P = 0.036), C-peptide (Coef: 0.798; SE: 0.229; P = 0.001), ghrelin (Coef: 1.061; SE: 0.332; P = 0.001), intact parathyroid hormone (Coef: 0.022; SE: 0.099; P = 0.030), and eGFR (Coef: -0.091; SE: 0.017; P < 0.001) were all significantly associated with the resistin level. These associations were modified in patients with higher age, lower body mass index, and higher vitamin D levels. These results suggest that resistin is positively associated with serum FGF23 levels.
Collapse
Affiliation(s)
- Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Keitaro Yokoyama
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | - Daiji Kawanami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Urashima
- Division of Molecular Epidemiology, Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
60
|
Schelke MW, Attia P, Palenchar DJ, Kaplan B, Mureb M, Ganzer CA, Scheyer O, Rahman A, Kachko R, Krikorian R, Mosconi L, Isaacson RS. Mechanisms of Risk Reduction in the Clinical Practice of Alzheimer's Disease Prevention. Front Aging Neurosci 2018; 10:96. [PMID: 29706884 PMCID: PMC5907312 DOI: 10.3389/fnagi.2018.00096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative dementia that affects nearly 50 million people worldwide and is a major source of morbidity, mortality, and healthcare expenditure. While there have been many attempts to develop disease-modifying therapies for late-onset AD, none have so far shown efficacy in humans. However, the long latency between the initial neuronal changes and onset of symptoms, the ability to identify patients at risk based on family history and genetic markers, and the emergence of AD biomarkers for preclinical disease suggests that early risk-reducing interventions may be able to decrease the incidence of, delay or prevent AD. In this review, we discuss six mechanisms—dysregulation of glucose metabolism, inflammation, oxidative stress, trophic factor release, amyloid burden, and calcium toxicity—involved in AD pathogenesis that offer promising targets for risk-reducing interventions. In addition, we offer a blueprint for a multi-modality AD risk reduction program that can be clinically implemented with the current state of knowledge. Focused risk reduction aimed at particular pathological factors may transform AD to a preventable disorder in select cases.
Collapse
Affiliation(s)
- Matthew W Schelke
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Peter Attia
- Attia Medical, PC, San Diego, CA, United States
| | | | - Bob Kaplan
- Attia Medical, PC, San Diego, CA, United States
| | - Monica Mureb
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Christine A Ganzer
- Hunter College, City University of New York, New York, NY, United States
| | - Olivia Scheyer
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Aneela Rahman
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | | - Robert Krikorian
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa Mosconi
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | |
Collapse
|
61
|
Abstract
Objective: Resistin, a cysteine-rich peptide, is associated with atherosclerosis and diabetes. Resistin levels increase corresponding to coronary artery disease (CAD) and heart failure severity. Since resistin level tends to elevate with symptomatic heart failure, it is expected to be associated with left ventricular end-diastolic pressure (LVEDP). However, there is no relevant literature on the relationship between resistin levels and LVEDP. We aimed to evaluate the association between resistin levels and LVEDP, severity of CAD, carotid intima-media thickness (CIMT), and echocardiographic diastolic dysfunction parameters. Methods: For this study, 128 euvolemic patients with creatinine clearance >50 mg/dL and without acute coronary syndrome, who had typical chest pain or were stress test positive, were enrolled. Resistin level was measured by Enzyme-linked immunosorbent assays (ELISA) method. Severe CAD is defined as ≥50% stenosis in one of the major coronary arteries. LVEDP was measured during left heart catheterization. Results: After coronary angiography, 60 patients (46.9%) had severe CAD. The mean LVEDPs were similar for patients with and without severe CAD (p=0.480). The resistin levels did not differ between the groups (p=0.154). The resistin levels did not correlate with LVEDP (r=−0.045, p=0.627), ejection fraction (EF; r=0.110, p=0.228), the Gensini score (r=−0.091, p=0.328), and CIMT (r=0.082, p=0.457). No significant correlation was found between the echocardiographic diastolic dysfunction parameters and resistin levels. Conclusion: There was no significant correlation between resistin level and LVEDP, CAD severity, echocardiographic diastolic dysfunction parameters, and CIMT. Further studies are warranted to determine the efficacy of resistin in clinical use.
Collapse
|
62
|
Banihani SA, Abu-Alia KF, Khabour OF, Alzoubi KH. Association between Resistin Gene Polymorphisms and Atopic Dermatitis. Biomolecules 2018; 8:biom8020017. [PMID: 29584687 PMCID: PMC6023010 DOI: 10.3390/biom8020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, relapsing, and inflammatory skin disorder. It is characterized by an inappropriate skin barrier function, allergen sensitization, and recurrent skin infections. Resistin is an adipokine expressed mainly in macrophages and monocytes; it has a role in the inflammatory process and is associated with multiple inflammatory human diseases; however, only few studies linked resistin to atopic dermatitis. This study tested the association between G>A (rs3745367) and C>T (rs3219177) single nucleotide polymorphisms (SNPs) of the RETN gene with atopic dermatitis. In addition, it explored the relationship between serum resistin protein and atopic dermatitis. To achieve objectives of this study, 162 atopic dermatitis patients and 161 healthy participants were recruited in the study. A significant association was detected between rs3745367 and atopic dermatitis with age and gender specificity (p < 0.05), while no significant association between rs3219177 and atopic dermatitis was found (p > 0.05). For the serum resistin levels, a significant decrease was indicated in atopic dermatitis patients compared to healthy subjects (p < 0.05). In conclusion, rs3745367 may play a gender and age-specific role in atopic dermatitis. In addition, the significant decrease in the resistin protein level confirmed this association.
Collapse
Affiliation(s)
- Saleem A Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Khawla F Abu-Alia
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
63
|
Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol 2018; 16:22. [PMID: 29523133 PMCID: PMC5845358 DOI: 10.1186/s12958-018-0336-z] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Both obesity and overweight are increasing worldwide and have detrimental influences on several human body functions including the reproductive health. In particular, obese women undergo perturbations of the 'hypothalamic pituitary ovarian axis', and frequently suffer of menstrual dysfunction leading to anovulation and infertility. Besides the hormone disorders and subfertility that are common in the polycystic ovary syndrome (PCOS), in obesity the adipocytes act as endocrine organ. The adipose tissue indeed, releases a number of bioactive molecules, namely adipokines, that variably interact with multiple molecular pathways of insulin resistance, inflammation, hypertension, cardiovascular risk, coagulation, and oocyte differentiation and maturation. Moreover, endometrial implantation and other reproductive functions are affected in obese women with complications including delayed conceptions, increased miscarriage rate, reduced outcomes in assisted conception treatments.On the contrary, weight loss programs through lifestyle modification in obese women, have been proven to restore menstrual cyclicity and ovulation and improve the likelihood of conception.
Collapse
Affiliation(s)
- Erica Silvestris
- Interdisciplinary Department of Medicine, Section of Obstetrics and Gynecology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| | - Giovanni de Pergola
- Departmentof Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| | - Raffaele Rosania
- Interdisciplinary Department of Medicine, Section of Obstetrics and Gynecology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| | - Giuseppe Loverro
- Interdisciplinary Department of Medicine, Section of Obstetrics and Gynecology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| |
Collapse
|
64
|
Central s-resistin deficiency ameliorates hypothalamic inflammation and increases whole body insulin sensitivity. Sci Rep 2018; 8:3921. [PMID: 29500410 PMCID: PMC5834531 DOI: 10.1038/s41598-018-22255-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
S-resistin, a non-secretable resistin isoform, acts as an intracrine factor that regulates adipocyte maduration, inflammatory and insulin response in 3T3-L1 cells. However, its intracellular function in vivo is still unknown. In this study, we analyze the central role of s-resistin, decreasing its hypothalamic expression using an intracerebroventricular injection of lentiviral RNAi. The data present herein support an improvement in the hypothalamic leptin and insulin signaling pathway upon s-resistin downregulation. Furthermore, hypothalamic levels of pro-inflammatory markers decrease, meanwhile those of the anti-inflammatory cytokine IL-10 increases. Interestingly, peripheral NEFA decreases alike circulating leptin and resistin levels. These data demonstrate that hypothalamic s-resistin controls fuel mobilization and adipokines secretion. Importantly, central s-resistin downregulation improves systemic insulin sensitivity, as demonstrated after an IPGTT. Interestingly, our data also indicate that s-resistin downregulation could improve hypothalamic inflammation in aged Wistar rats. Altogether, our findings suggest that hypothalamic s-resistin seems to be a key regulator of the brain-fat axis which links inflammation with metabolic homeostasis.
Collapse
|
65
|
Down-regulated resistin level in consequence of decreased neutrophil counts in untreated Grave's disease. Oncotarget 2018; 7:78680-78687. [PMID: 27637079 PMCID: PMC5346669 DOI: 10.18632/oncotarget.12019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 01/18/2023] Open
Abstract
Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients.
Collapse
|
66
|
Shim EH, Lee H, Lee MS, You S. Anti-adipogenic effects of the traditional herbal formula Dohongsamul-tang in 3T3-L1 adipocytes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:542. [PMID: 29258500 PMCID: PMC5738182 DOI: 10.1186/s12906-017-2038-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Background Blood stasis syndrome (BSS) is a general pattern identification and refers to pathological stagnation of blood circulation, dysfunction of endothelial cells or metabolic disorder in traditional Korean medicine (TKM). Dohongsamul-Tang (DHSMT) is a well-known traditional herbal formula which used for treatment and prevention of BSS by promoting blood circulation in TKM. Methods Cytotoxicity of DHSMT was examined by cell counting kit-8 (CCK-8). We also investigated the anti-adipogenesis effect of DHSMT by using Oil Red O staining, intracellular triglyceride assay leptin ELISA and western blot analysis in 3T3-L1 adipocytes. In addition, the accumulation of adiponectin, resistin and plasminogen activator inhibitor-1 (PAI-1) were measured by magnetic bead panel kit. Results Oil Red O staining showed that DHSMT markedly reduced fat accumulation without affecting cell cytotoxicity. DHSMT also significantly decreased accumulation of triglyceride and adipokines such as leptin, adiponectin, resistin and PAI-1 compared with fully differentiated adipocytes. Furthermore, our results found that DHSMT significantly suppressed the adipocyte differentiation by downregulating adipogenic-specific transcriptional factors such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding proteins alpha (C/EBPα) and fatty acid binding protein 4 (FABP4) in adipocytes. Conclusions Taken together, our findings provide that DHSMT has potential for treatment and prevention of obesity or MS related to BSS.
Collapse
|
67
|
Qiao Y, Tomonaga S, Suenaga M, Matsui T, Funaba M. WITHDRAWN: Modulation of adipocyte function by the TGF-β family. Cytokine 2017:S1043-4666(17)30139-4. [PMID: 28527661 DOI: 10.1016/j.cyto.2017.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yuhang Qiao
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masashi Suenaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
68
|
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res 2017; 118:1786-807. [PMID: 27230642 DOI: 10.1161/circresaha.115.306885] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.
Collapse
Affiliation(s)
- José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| |
Collapse
|
69
|
Doğan A, Demirci S, Apdik H, Bayrak OF, Gulluoglu S, Tuysuz EC, Gusev O, Rizvanov AA, Nikerel E, Şahin F. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 2017; 69:130-142. [PMID: 28285642 DOI: 10.1016/j.metabol.2017.01.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
Abstract
Obesity is a worldwide medical problem resulting in serious morbidity and mortality involving differentiation of pre-adipocytes into mature adipocytes (adipogenesis). Boron treatment has been reported to be associated with weight reduction in experimental animals; however, its effects on pre-adipocyte differentiation and anti-adipogenic molecular mechanisms are unknown. In this study, we demonstrate the inhibitory activities of boric acid (BA) and sodium pentaborate pentahydrate (NaB) on adipogenesis using common cellular models. Boron treatment repressed the expression of adipogenesis-related genes and proteins, including CCAAT-enhancer-binding protein α and peroxisome proliferator-activated receptor γ, by regulating critical growth factors and the β-catenin, AKT, and extracellular signal-regulated kinase signaling pathways. In addition, although boron treatment did not induce apoptosis in pre-adipocytes, it depressed mitotic clonal expansion by regulation of cell cycle genes. Overall, these data offer promising insights into the prevention/treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey; National Cancer Instıtute, CDBL, NIH, Frederıck, MD
| | - Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey; National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD.
| | - Hüseyin Apdik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Sukru Gulluoglu
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Riken Innovation Center, Riken, Yokohama, Japan
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| |
Collapse
|
70
|
Zayani N, Omezzine A, Boumaiza I, Achour O, Rebhi L, Rejeb J, Ben Rejeb N, Ben Abdelaziz A, Bouslama A. Association of ADIPOQ, leptin, LEPR, and resistin polymorphisms with obesity parameters in Hammam Sousse Sahloul Heart Study. J Clin Lab Anal 2017; 31. [PMID: 28195351 DOI: 10.1002/jcla.22148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adipose tissue is an important endocrine organ that secretes a number of adipokines, such as adiponectin (ADIPOQ), leptin (LEP), leptin receptor (LEPR), and resistin (RETN) which may be implicated in obesity. Some adipokines' polymorphisms of genes might influence their concentrations and/or activities. Our aim was to study the relationship between seven SNPs in ADIPOQ (+45T<G (rs2241766); +276G<T (rs1501299); -4255C<T (rs822393); -395G<T (rs17366568)), LEP (2548G<A (rs7799039)), LEPR (223Q<R (rs1137101)), and RETN (-420C<G (rs1862513)) and obesity in Hammam Sousse Sahloul Heart Study (HSHS). METHODS The study, carried out between February and June 2009, is mainly focused on 1121 respondents in HSHS which is a population-based epidemiological study of type "community-based" on cardiovascular risk. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum lipids and anthropometric parameters were measured. Statistic analysis was performed on SPSSv19. RESULTS The polymorphisms of ADIPOQ 4522C<T and 276G<T, LEP 2548G<A, and RETN 420C<G seem to contribute to obesity. In fact, adjusted odds ratios (ORs) of obesity associated with mutated genotypes of each polymorphism were respectively OR=1.38, P=.037; OR=0.608, P<.001; OR=2.23, P=.034; and OR=2.18, P<.001. The 276G<T, 4522C<T, and 420C<G were associated with increased BMI (P=.010, P=.028, and P<.001). A significant association was found between the 276G<T; 4522C<T, LEP 2548G<A and 420C<G, and the waist circumference and hip measurements. CONCLUSION ADIPOQ, LEP, and RETN gene polymorphisms were associated with obesity parameters in HSHS population.
Collapse
Affiliation(s)
- Nesrine Zayani
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Imen Boumaiza
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ons Achour
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Lamia Rebhi
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Jihen Rejeb
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nabila Ben Rejeb
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | | | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
71
|
Saleh R, Zahid ZI, Rahman MA, Jain P, Alam A, Kawaichi M, Reza HM. Prevalence of PPAR-γ2 (rs1801282), RETN (rs3745367) and ADIPOQ (rs2241766) SNP markers in the Bangladeshi type 2 diabetic population. Meta Gene 2016. [DOI: 10.1016/j.mgene.2016.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
72
|
Shi C, Pang L, Ji C, Wang J, Lin N, Chen J, Chen L, Yang L, Huang F, Zhou Y, Guo X, Liang H, Zhang M. Obesity-associated miR-148a is regulated by cytokines and adipokines via a transcriptional mechanism. Mol Med Rep 2016; 14:5707-5712. [DOI: 10.3892/mmr.2016.5940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 10/07/2016] [Indexed: 11/06/2022] Open
|
73
|
Li Q, Cai Y, Huang J, Yu X, Sun J, Yang Z, Zhou L. Resistin impairs glucose permeability in EA.hy926 cells by down-regulating GLUT1 expression. Mol Cell Endocrinol 2016; 434:127-134. [PMID: 27353463 DOI: 10.1016/j.mce.2016.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/25/2016] [Indexed: 11/23/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease which is now affecting the health of more and more people in the world. Resistin, discovered in 2001, is considered to be closely related to metabolic dysfunction and obesity. Previous study showed that hyperglycemia is always accompanied by a high serum resistin concentration. We therefore investigated whether resistin can mediate glucose transfer across the blood-tissue barrier. Here, we employed a transwell system to analyze glucose permeability in EA.hy926 human endothelial cells treated without or with human resistin. In EA.hy926 cells treated with resistin, the permeability to glucose was heavily impaired. This was due to the down-regulation of GLUT1 expression as a result of the treatment, rather than regulation of tight junctions. In addition, overexpression of GLUT1 in EA.hy926 cells was able to recover the blocking effect of resistin on glucose permeability. We further found that resistin could inhibit the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and consequently impede the transcription of GLUT1. The results of the present study suggested that resistin could cause glucose retention in serum and thus result in hyperglycemia. This provides a novel explanation for hyperglycemia and a potential new way of treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yuxi Cai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jing Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolan Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
74
|
Georgiou GP, Provatopoulou X, Kalogera E, Siasos G, Menenakos E, Zografos GC, Gounaris A. Serum resistin is inversely related to breast cancer risk in premenopausal women. Breast 2016; 29:163-9. [DOI: 10.1016/j.breast.2016.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023] Open
|
75
|
Huang X, Yang Z. Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans. J Endocrinol Invest 2016; 39:607-15. [PMID: 26662574 DOI: 10.1007/s40618-015-0408-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE This review aimed to discuss the conflicting findings from resistin research in rodents and humans as well as recent advances in our understanding of resistin's role in obesity and insulin resistance. METHODS A comprehensive review and synthesis of resistin's role in obesity and insulin resistance as well as conflicting findings from resistin research in rodents and humans. RESULTS In rodents, resistin is increased in high-fat/high-carbohydrate-fed, obese states characterized by impaired glucose uptake and insulin sensitivity. Resistin plays a causative role in the development of insulin resistance in rodents via 5' AMP-activated protein kinase (AMPK)-dependent and AMPK-independent suppressor of cytokine signaling-3 (SOCS-3) signaling. In contrast to rodents, human resistin is primarily secreted by peripheral-blood mononuclear cells (PBMCs) as opposed to white adipocytes. Circulating resistin levels have been positively associated with central/visceral obesity (but not BMI) as well as insulin resistance, while other studies show no such association. Human resistin has a role in pro-inflammatory processes that have been conclusively associated with obesity and insulin resistance. PBMCs, as well as vascular cells, have been identified as the primary targets of resistin's pro-inflammatory activity via nuclear factor-κB (NF-κB, p50/p65) and other signaling pathways. CONCLUSION Mounting evidence reveals a continuing disconnect between resistin's role in rodents and humans due to significant differences between these two species with respect to resistin's gene and protein structure, differential gene regulation, tissue-specific distribution, and insulin resistance induction as well as a paucity of evidence regarding the resistin receptor and downstream signaling mechanisms of action.
Collapse
Affiliation(s)
- X Huang
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Department of Internal Medicine, Hechuan Hospital of First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Yang
- Department of Internal Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
76
|
Pravenec M, Mlejnek P, Zídek V, Landa V, Šimáková M, Šilhavý J, Strnad H, Eigner S, Eigner Henke K, Škop V, Malínská H, Trnovská J, Kazdová L, Drahota Z, Mráček T, Houštěk J. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue. Physiol Genomics 2016; 48:420-7. [PMID: 27113533 DOI: 10.1152/physiolgenomics.00122.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/06/2016] [Indexed: 12/23/2022] Open
Abstract
Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic;
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Zídek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Landa
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Sebastian Eigner
- Nuclear Physics Institute, Czech Academy of Sciences, Husinec-Řež, Czech Republic, Faculty of Pharmacy, Charles University in Prague, Hradec Králové, Czech Republic
| | | | - Vojtěch Škop
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslava Trnovská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeněk Drahota
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Houštěk
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
77
|
ZAREI S, SAIDIJAM M, KARIMI J, YADEGARAZARI R, REZAEI FARIMANI A, HOSSEINI-ZIJOUD SS, GOODARZI MT. Effect of resveratrol on resistin and apelin gene expressions in adipose tissue of diabetic rats. Turk J Med Sci 2016; 46:1561-1567. [DOI: 10.3906/sag-1505-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/15/2015] [Indexed: 11/03/2022] Open
|
78
|
Zhang H, Li X, Kan Y, Yang F, Hou Y, DU Y. Analysis of the correlation between serum resistin and the variability of erythropoietin responsiveness in patients with chronic kidney disease. Exp Ther Med 2015; 10:1925-1930. [PMID: 26640574 DOI: 10.3892/etm.2015.2772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/05/2014] [Indexed: 11/05/2022] Open
Abstract
Chronic kidney disease (CKD) is commonly accompanied by inflammation and anemia; however, the pathogenesis of CKD is unclear. Expression of resistin, a cysteine-rich secretory plasma protein, is correlated with the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and lipoprotein-associated phospholipase A2, indicating that resistin may be involved in inflammatory events. In addition, inflammation inhibits the activity of erythropoietin (EPO) and, thus, erythropoiesis. The aim of the present study was to analyze the correlation between serum resistin and the variability of EPO responsiveness in CKD patients. The levels of serum creatinine (SCr), C-reactive protein (CRP), total cholesterol, triglycerides, IL-6 and serum resistin were measured in the samples obtained from 138 CKD patients and healthy control subjects. The levels of serum resistin in the CKD groups with and without hemodialysis were significantly higher than those observed in the normal control group (P<0.01) and the levels of serum resistin in the hemodialysis CKD group were higher than those observed in the CKD group without dialysis (P<0.01). The levels of serum resistin in patients in the randomly selected CKD group (with hemodialysis) were positively correlated with the duration of dialysis and the levels of SCr and CRP (P<0.05), however, were negatively correlated with the estimated glomerular filtration rate. The EPO resistance index (ERI) was identified to be associated with body mass index and the levels of CRP and resistin; furthermore, EPO reactivity was correlated with the level of resistin and ERI. The levels of serum resistin were correlated with the variability in EPO responsiveness that was observed in the CKD patients. Therefore, the measurement of serum resistin may aid with understanding the mechanisms, clinical diagnosis and treatment of CKD.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiujiang Li
- Intensive Care Unit, Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Yanhong Kan
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fan Yang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yujun DU
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
79
|
Fan C, Meuchel LW, Su Q, Angelini DJ, Zhang A, Cheadle C, Kolosova I, Makarevich OD, Yamaji-Kegan K, Rothenberg ME, Johns RA. Resistin-Like Molecule α in Allergen-Induced Pulmonary Vascular Remodeling. Am J Respir Cell Mol Biol 2015; 53:303-13. [PMID: 25569618 DOI: 10.1165/rcmb.2014-0322oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistin-like molecule α (RELMα) has mitogenic, angiogenic, vasoconstrictive, and chemokine-like properties and is highly relevant in lung pathology. Here, we used RELMα knockout (Retnla(-/-)) mice to investigate the role of RELMα in pulmonary vascular remodeling after intermittent ovalbumin (OVA) challenge. We compared saline- and OVA-exposed wild-type (WT) mice and found that OVA induced significant increases in right ventricular systolic pressure, cardiac hypertrophy, pulmonary vascular remodeling of intra-alveolar arteries, goblet cell hyperplasia in airway epithelium, and intensive lung inflammation, especially perivascular inflammation. Genetic ablation of Retnla prevented the OVA-induced increase in pulmonary pressure and cardiac hypertrophy seen in WT mice. Histological analysis showed that Retnla(-/-) mice exhibited less vessel muscularization, less perivascular inflammation, reduced medial thickness of intra-alveolar vessels, and fewer goblet cells in upper airway epithelium (250-600 μm) than did WT animals after OVA challenge. Gene expression profiles showed that genes associated with vascular remodeling, including those related to muscle protein, contractile fibers, and actin cytoskeleton, were expressed at a lower level in OVA-challenged Retnla(-/-) mice than in similarly treated WT mice. In addition, bronchoalveolar lavage from OVA-challenged Retnla(-/-) mice had lower levels of cytokines, such as IL-1β, -1 receptor antagonist, and -16, chemokine (C-X-C motif) ligand 1, -2, -9, -10, and -13, monocyte chemoattractant protein-1, macrophage colony-stimulating factor, TIMP metallopeptidase inhibitor-1, and triggering receptor expressed on myeloid cells-1, than did that from WT mice when analyzed by cytokine array dot blots. Retnla knockout inhibited the OVA-induced T helper 17 response but not the T helper 2 response. Altogether, our results suggest that RELMα is involved in immune response-induced pulmonary vascular remodeling and the associated increase in inflammation typically observed after OVA challenge.
Collapse
Affiliation(s)
- Chunling Fan
- 1 Department of Anesthesiology and Critical Care Medicine and
| | - Lucas W Meuchel
- 1 Department of Anesthesiology and Critical Care Medicine and
| | - Qingning Su
- 2 School of Medicine, Shenzhen University, Shenzhen, China
| | | | - Ailan Zhang
- 1 Department of Anesthesiology and Critical Care Medicine and
| | - Chris Cheadle
- 3 Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Irina Kolosova
- 1 Department of Anesthesiology and Critical Care Medicine and
| | | | | | - Marc E Rothenberg
- 5 Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger A Johns
- 1 Department of Anesthesiology and Critical Care Medicine and
| |
Collapse
|
80
|
Wen F, Li B, Huang C, Wei Z, Zhou Y, Liu J, Zhang H. MiR-34a is Involved in the Decrease of ATP Contents Induced by Resistin Through Target on ATP5S in HepG2 Cells. Biochem Genet 2015; 53:301-9. [PMID: 26385595 DOI: 10.1007/s10528-015-9693-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/05/2015] [Indexed: 01/22/2023]
Abstract
Resistin is associated with metabolic syndrome and deciphering its developmental and molecular mechanisms may help the development of new treatments. MiRNAs serve as negative regulators in many physiological and pathological processes. Here, miRNA microarrays were used to detect differences in expression between resistin-treated and control mice, and results showed miR-34a to be upregulated by resistin. The purpose of this study was to determine whether miR-34a played a role in resistin-induced decrease of ATP contents. Transient transfection of miR-34a mimics was used to overexpress miR-34a and quantitative RT-PCR was used to detect its expression. Western blot analysis was used to determine the rate of expression at the protein level. ATP content was measured using an ATP assay kit. The target gene of miR-34a was analyzed using bioinformatics and confirmed with dual-luciferase report system. MiR-34a was upregulated by resistin in HepG2 cells, and overexpression of miR-34a was found to diminish ATP levels significantly. This study is the first to show that ATP5S is one of the target genes of miR-34a. Resistin diminishes ATP content through the targeting of ATP5S mRNA 3'UTR by miR-34a.
Collapse
Affiliation(s)
- Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Bin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Chunyan Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Yingying Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Jianyu Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Haiwei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| |
Collapse
|
81
|
Smitka K, Marešová D. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment. Prague Med Rep 2015; 116:87-111. [PMID: 26093665 DOI: 10.14712/23362936.2015.49] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.
Collapse
Affiliation(s)
- Kvido Smitka
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dana Marešová
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
82
|
Singh AK, Tiwari S, Gupta A, Shukla KK, Chhabra KG, Pandey A, Pant AB. Association of Resistin with Insulin Resistance and Factors of Metabolic Syndrome in North Indians. Indian J Clin Biochem 2015; 30:255-262. [PMID: 26089609 PMCID: PMC4469062 DOI: 10.1007/s12291-014-0459-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/30/2014] [Indexed: 10/24/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated common clinical disorders. The role of resistin in insulin sensitivity and MetS is controversial till date. So, the aim of the present study was to investigate the relationship of plasma resistin levels with markers of the MetS in Indian subjects. In a case control study, total 528 subjects were selected for the study. 265 (194 male and 71 female) were cases (with MetS) and 263 (164 male and 99 female) were controls (without MetS). Required anthropometric measurements and calculations were carried out accordingly. All the Biochemical estimations were carried out according to standard protocol. Resistin level was measured by the standard protocol (By ELISA i.e. enzyme linked immunosorbent assay) as illustrated in the kit. Insulin level was also measured by the standard protocol as illustrated in the kit and insulin resistance was calculated by the standard procedures. Plasma resistin levels were significantly higher in cases compared with controls (male = 13.05 ± 4.31 vs. 7.04 ± 2.09 ng/ml; p ≤ 0.001 and female = 13.53 ± 4.14 vs. 7.42 ± 2.30 ng/ml; p ≤ 0.001). Plasma resistin levels were well correlated with waist circumference, glucose, triglycerides, waist/hip ratio, systolic and diastolic blood pressure, high density lipoprotein, total cholesterol, serum low density lipoprotein, serum very low density lipoprotein, insulin and insulin resistance. Plasma resistin levels were elevated in presence of the MetS and were associated with increased metabolic risk factors.
Collapse
Affiliation(s)
- Arun Kumar Singh
- />Department of Biochemistry, DBDC & H, Muktsar, 152026 Punjab India
| | - Sunita Tiwari
- />Department of Physiology, King George Medical University (KGMU), Lucknow, India
| | - Abhishek Gupta
- />Department of Physiology, King George Medical University (KGMU), Lucknow, India
| | - Kamla Kant Shukla
- />Department of Biochemistry, King George Medical University (KGMU), Lucknow, India
| | | | - Achileshwar Pandey
- />Department of Physiology, Uttaranchal Dental College and Medical Research Institute, Uttaranchal, India
| | | |
Collapse
|
83
|
Abstract
Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.
Collapse
|
84
|
Rodríguez M, Moltó E, Aguado L, Gallardo N, Andrés A, Arribas C. S-resistin, a non secretable resistin isoform, impairs the insulin signalling pathway in 3T3-L1 adipocytes. J Physiol Biochem 2015; 71:381-90. [PMID: 26036220 DOI: 10.1007/s13105-015-0418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2015] [Indexed: 01/14/2023]
Abstract
S-resistin is a non-secretable resistin spliced variant, which is expressed mainly in the white adipose tissue from Wistar rats. Previous results confirmed that 3T3-L1 cells expressing s-resistin (3T3-L1-s-res) showed an inflammatory response and exhibited a decrease in glucose transport, both basal and insulin-stimulated. Here we present evidences demonstrating for the first time that s-resistin, like resistin, blocks insulin signalling pathway by inhibiting insulin receptor, insulin receptor substrate 1, protein kinase B/Akt and the mammalian target of rapamycin phosphorylation, and increasing the suppressor of cytokine signalling 3 levels being the later probably due to augmented of leptin expression. Thus, our data suggest that s-resistin could act by a still unknown intracrine pathway as an intracellular sensor, regulating the adipocyte insulin sensitivity.
Collapse
Affiliation(s)
- María Rodríguez
- Área de Bioquímica. Facultad de Ciencias Ambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
85
|
Apalasamy YD, Rampal S, Salim A, Moy FM, Su TT, Majid HA, Bulgiba A, Mohamed Z. Polymorphisms of the Resistin Gene and Their Association with Obesity and Resistin Levels in Malaysian Malays. Biochem Genet 2015; 53:120-31. [DOI: 10.1007/s10528-015-9678-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
|
86
|
Codoñer-Franch P, Alonso-Iglesias E. Resistin: insulin resistance to malignancy. Clin Chim Acta 2015; 438:46-54. [PMID: 25128719 DOI: 10.1016/j.cca.2014.07.043] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
Adipose tissue is recognized as an endocrine organ that secretes bioactive substances known as adipokines. Excess adipose tissue and adipose tissue dysfunction lead to dysregulated adipokine production that can contribute to the development of obesity-related co-morbidities. Among the various adipokines, resistin, which was initially considered as a determinant of the emergence of insulin resistance in obesity, has appeared as an important link between obesity and inflammatory processes. Several experimental and clinical studies have suggested an association between increased resistin levels and severe conditions associated with obesity such as cardiovascular disease and malignancies. In this review, we present the growing body of evidence that human resistin is an inflammatory biomarker and potential mediator of obesity-associated diseases. A common pathway seems to involve the combined alteration of immune and inflammatory processes that favor metabolic disturbances, atherosclerosis and carcinogenesis. The mode of action and the signaling pathways utilized by resistin in its interactions with target cells could involve oxidative and nitrosative stress. Therefore, resistin could function as a key molecule in the complications of obesity development and could potentially be used as a diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Dr. Peset University Hospital, Valencia 46017, Spain; Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia 46010, Spain.
| | - Eulalia Alonso-Iglesias
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
87
|
Al Hannan F, Culligan KG. Human resistin and the RELM of Inflammation in diabesity. Diabetol Metab Syndr 2015; 7:54. [PMID: 26097512 PMCID: PMC4474570 DOI: 10.1186/s13098-015-0050-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
The initial discovery of resistin and resistin-like molecules (RELMs) in rodents suggested a role for these adipocytokines in molecular linkage of obesity, Type 2 Diabetes mellitus and metabolic syndrome. Since then, it became apparent that the story of resistin and RELMs was very much of mice and men. The putative role of this adipokine family evolved from that of a conveyor of insulin resistance in rodents to instigator of inflammatory processes in humans. Structural dissimilarity, variance in distribution profiles and a lack of corroborating evidence for functional similarities separate the biological functions of resistin in humans from that of rodents. Although present in gross visceral fat deposits in humans, resistin is a component of inflammation, being released from infiltrating white blood cells of the sub-clinical chronic low grade inflammatory response accompanying obesity, rather than from the adipocyte itself. This led researchers to further explore the functions of the resistin family of proteins in inflammatory-related conditions such as atherosclerosis, as well as in cancers such as endometrial and gastric cancers. Although elevated levels of resistin have been found in these conditions, whether it is causative or as a result of these conditions still remains to be determined.
Collapse
Affiliation(s)
- Fatima Al Hannan
- />Department of Biomedical Sciences, Royal College of Surgeons in Ireland – Bahrain, Building No. 2441, Road 2835, Busaiteen, Kingdom of Bahrain
| | - Kevin Gerard Culligan
- />Department of Biomedical Sciences, Royal College of Surgeons in Ireland – Bahrain, Building No. 2441, Road 2835, Busaiteen, Kingdom of Bahrain
- />Royal College of Surgeons in Ireland – Bahrain, PO Box 15503, Adliya, Kingdom of Bahrain
| |
Collapse
|
88
|
Abstract
Epidemiological surveys indicate that nutrition in infancy is implicated in the long-term tendency to obesity and that a longer duration of breastfeeding is associated with a protective effect against metabolic disorders later in life. However, the precise cause of this association is not well understood. Recent studies on the compounds present in human breast milk have identified various adipokines, including leptin, adiponectin, resistin, obestatin, nesfatin, ghrelin and apelins. Some of these compounds are involved in the regulation of food intake and energy balance. The presence of these adipokines in breast milk suggests that they may be responsible for the regulation of growth in early infancy and that they could influence the energy balance and development of metabolic disorders in childhood and adulthood.
Collapse
Affiliation(s)
- Gönül Çatlı
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey. E-ma-il:
| | - Nihal Olgaç Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Neurology, İzmir, Turkey
| | - Bumin Nuri Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
,* Address for Correspondence: Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 469 6969 E-mail:
| |
Collapse
|
89
|
Kang SK, Park YD, Kang SI, Kim DK, Kang KL, Lee SY, Lee HJ, Kim EC. Role of resistin in the inflammatory response induced by nicotine plus lipopolysaccharide in human periodontal ligament cells in vitro. J Periodontal Res 2014; 50:602-13. [PMID: 25393899 DOI: 10.1111/jre.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Resistin was recently reported to play a role in inflammation-related diseases such as arthritis. However, the precise role of resistin in chronic inflammatory diseases, such as periodontal disease, remains unclear. The aim of this study was to investigate the combined effects of nicotine and lipopolysaccharide (LPS) on the expression of resistin and to assess whether resistin expression influences the levels of inflammatory cytokines, extracellular matrix (ECM) molecules and MMPs in human periodontal ligament cells (PDLCs) stimulated with both nicotine and LPS. MATERIAL AND METHODS PDLCs were pretreated with isoproterenol or resistin-specific small interfering RNA (siRNA), stimulated with LPS plus nicotine for 24 h, and then monitored for the production of inflammatory mediators. The concentrations of prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by radioimmunoassay and the Griess method, respectively. RT-PCR and western blot analysis were used to measure the levels of mRNA and protein, respectively. Western blot analysis was also used to assess the activation of various signal-transduction pathways. RESULTS Treatment with nicotine plus LPS up-regulated the expression of resistin mRNA and the production of resistin protein in PDLCs in a time- and concentration-dependent manner. Isoproterenol-mediated interference with the function of resistin, or siRNA-mediated knockdown of resistin expression, markedly attenuated the LPS plus nicotine-mediated stimulation of PGE2 and NO production, the production of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase proteins and the expression of proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-12] and MMPs (MMP-1, MMP-2 and MMP-9); however, these treatments restored the expression of ECM molecules. Furthermore, pretreatment with isoproterenol or resistin-specific siRNA blocked nicotine plus LPS-induced activation of phosphoinositide-3-kinase, glycogen synthase kinase-3 beta, β-catenin, p38, ERK, JNK and nuclear factor-κB. CONCLUSION This is the first study to show that the inhibition of resistin, by either a pharmacological or a genetic silencing approach, has anti-inflammatory effects. These effects include decreased levels of inflammatory cytokines and the prevention of ECM breakdown in a nicotine plus LPS-stimulated PDLC model.
Collapse
Affiliation(s)
- S K Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Y D Park
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - S I Kang
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - D K Kim
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - K L Kang
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - S Y Lee
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - H J Lee
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E C Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
90
|
Chen N, Zhou L, Zhang Z, Xu J, Wan Z, Qin L. Resistin induces lipolysis and suppresses adiponectin secretion in cultured human visceral adipose tissue. ACTA ACUST UNITED AC 2014; 194-195:49-54. [DOI: 10.1016/j.regpep.2014.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
|
91
|
Murad A, Hassan H, Husein H, Ayad A. Serum resistin levels in nonalcoholic fatty liver disease and their relationship to severity of liver disease. JOURNAL OF ENDOCRINOLOGY, METABOLISM AND DIABETES OF SOUTH AFRICA 2014. [DOI: 10.1080/22201009.2010.10872225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
92
|
Kim MJ, Jun HY, Kim JH. Antiadipogenic Effect of Korean Glasswort (Salicornia herbacea L.) Water Extract on 3T3-L1 Adipocytes. ACTA ACUST UNITED AC 2014. [DOI: 10.3746/jkfn.2014.43.6.814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
93
|
Jiang X, Yang L, Pang L, Chen L, Guo X, Ji C, Shi C, Ni Y. Expression of obesity‑related miR‑1908 in human adipocytes is regulated by adipokines, free fatty acids and hormones. Mol Med Rep 2014; 10:1164-9. [PMID: 24898511 DOI: 10.3892/mmr.2014.2297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
Abstract
White adipose tissue mass is governed by competing processes that control lipid synthesis and storage, as well as the development of new adipocytes, and also trigger metabolic and inflammatory changes. microRNAs (miRNAs) have been suggested to act as negative regulators controlling varied biological processes at the level of post‑transcriptional repression. The present study focused on investigating the expression of miR‑1908 in mature human adipocytes and its responses to adipokines [tumor necrosis factor α (TNF‑α), interleukin 6 (IL‑6), leptin and resistin), free fatty acids (FFAs), growth hormone (GH) and dexamethasone (DEX). miR‑1908 was highly expressed in mature human adipocytes. The mature human adipocytes responded to proinflammatory cytokines (TNF‑α and IL‑6) by markedly increasing the expression of miR‑1908 at 4 h of incubation. Adipokines (resistin and leptin) and FFAs were shown to downregulate the expression of miR‑1908 in human adipocytes. Furthermore, the expression of miR‑1908 was decreased 4 h after treatment with GH; however, DEX treatment of human adipocytes did not affect the expression of miR‑1908 during the 24‑h experimental period. In conclusion, the present study showed that the expression of miR‑1908 is affected by a variety of factors that are associated with obesity and insulin sensitivity. miR‑1908 may be an important mediator in the development of obesity‑related complications.
Collapse
Affiliation(s)
- Xinye Jiang
- Department of Child Health Care, Wuxi Maternal and Child Health Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Lei Yang
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lingxia Pang
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ling Chen
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xirong Guo
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenbo Ji
- Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chunmei Shi
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuhui Ni
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
94
|
Chen X, Zhang QF, He SH, Zhang Y, Zhou SG. Role of resistin in insulin resistance and obesity. Shijie Huaren Xiaohua Zazhi 2014; 22:1241-1246. [DOI: 10.11569/wcjd.v22.i9.1241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistin is an adipose-derived hormone postulated to link adiposity to insulin resistance. Rodent animal experiments and in vitro experimental studies showed that resistin can induce insulin resistance, glucose and lipid metabolism disorders, and be closely related to metabolic syndrome. However, the specific mechanisms of action of resistin in humans are not clear. There is still controversy over the relationship between resistin and obesity. This review aims to elucidate the role of resistin in insulin resistance and discuss the relationship between resistin and obesity.
Collapse
|
95
|
Ikeda Y, Tsuchiya H, Hama S, Kajimoto K, Kogure K. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2014; 448:129-33. [PMID: 24667608 DOI: 10.1016/j.bbrc.2014.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/27/2022]
Abstract
Resistin and plasminogen activator inhibitor-1 (PAI-1) are adipokines, which are secreted from adipocytes. Increased plasma resistin and PAI-1 levels aggravate metabolic syndrome through exacerbation of insulin resistance and induction of chronic inflammation. However, the relationship between resistin and PAI-1 gene expression remains unclear. Previously, we found that resistin regulates lipid metabolism via carbohydrate responsive element-binding protein (ChREBP) during adipocyte maturation (Ikeda et al., 2013) [6]. In this study, to clarify the relationship between expression of resistin and PAI-1, PAI-1 expression in differentiated 3T3-L1 adipocytes was measured after transfection with anti-resistin siRNA. We found that PAI-1 gene expression and secreted PAI-1 protein were significantly decreased by resistin knockdown. Furthermore, phosphorylation of Akt, which can inhibit PAI-1 expression, was accelerated and the activity of protein phosphatase 2A (PP2A) was suppressed in resistin knockdown 3T3-L1 adipocytes. In addition, the expression of glucose transporter type 4, a ChREBP target gene, was reduced and was associated with inhibition of PP2A. The addition of culture medium collected from COS7 cells transfected with a resistin expression plasmid rescued the suppression of PAI-1 expression in resistin knockdown 3T3-L1 adipocytes. Our findings suggest that resistin regulates PAI-1 expression in 3T3-L1 adipocytes via Akt phosphorylation.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroyuki Tsuchiya
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Susumu Hama
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kazuaki Kajimoto
- Laboratory of Innovative Nanomedicine, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0808, Japan
| | - Kentaro Kogure
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
96
|
Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun 2014; 445:517-23. [PMID: 24548410 DOI: 10.1016/j.bbrc.2014.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Resistin is associated with insulin resistance, and determining its developmental and molecular mechanisms may help the development of novel treatments. MicroRNAs (miRNAs) are involved in many physiological and pathological processes as negative regulators. However, it remains unclear whether miRNAs play a role in resistin-induced insulin resistance. We performed mouse liver miRNA microarrays to analyze the differences in expression between resistin-treated and control mice. Resistin upregulated miR-145 both in vivo and in vitro. Therefore, we aimed to study whether miR-145 played a role in resistin-induced insulin resistance. METHODS AND RESULTS We transfected HepG2 cells, and used miR-145 mimics and inhibitors to assess the role of miR-145 in resistin-induced insulin resistance. The overexpression of miR-145 inhibited glucose uptake in HepG2 cells, diminished the phosphorylation of Akt and IRS-1, and induced insulin resistance in hepatocytes. Next, a study of transcriptional regulation revealed that p65 was essential for the upregulation of miR-145 by resistin, and chromatin immunoprecipitation (ChIP) confirmed that p65 could bind to the promoter region of miR-145. CONCLUSION miR-145 plays a role in the development of resistin-induced insulin resistance via the p65 pathway.
Collapse
Affiliation(s)
- Fengyun Wen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Yi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Dan Jin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xiaoling Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
97
|
Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN INFLAMMATION 2013; 2013:139239. [PMID: 24455420 PMCID: PMC3881510 DOI: 10.1155/2013/139239] [Citation(s) in RCA: 713] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
Adipose tissue is a complex organ that comprises a wide range of cell types with diverse energy storage, metabolic regulation, and neuroendocrine and immune functions. Because it contains various immune cells, either adaptive (B and T lymphocytes; such as regulatory T cells) or innate (mostly macrophages and, more recently identified, myeloid-derived suppressor cells), the adipose tissue is now considered as a bona fide immune organ, at the cross-road between metabolism and immunity. Adipose tissue disorders, such as those encountered in obesity and lipodystrophy, cause alterations to adipose tissue distribution and function with broad effects on cytokine, chemokine, and hormone expression, on lipid storage, and on the composition of adipose-resident immune cell populations. The resulting changes appear to induce profound consequences for basal systemic inflammation and insulin sensitivity. The purpose of this review is to synthesize the current literature on adipose cell composition remodeling in obesity, which shows how adipose-resident immune cells regulate inflammation and insulin resistance—notably through cytokine and chemokine secretion—and highlights major research questions in the field.
Collapse
|
98
|
Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol 2000 2013; 64:161-97. [DOI: 10.1111/j.1600-0757.2012.00458.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
99
|
Nieva-Vazquez A, Pérez-Fuentes R, Torres-Rasgado E, López-López JG, Romero JR. Serum resistin levels are associated with adiposity and insulin sensitivity in obese Hispanic subjects. Metab Syndr Relat Disord 2013; 12:143-8. [PMID: 24266722 DOI: 10.1089/met.2013.0118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND AIMS Resistin is involved in the development of obesity and insulin resistance (IR) in mice and may play a similar role in humans through mechanisms that remain unresolved. The objective of this study was to characterize the relationship between resistin levels in obese subjects with and without IR among Hispanic subjects. MATERIAL AND METHODS A cross-sectional study was performed on 117 nondiabetic Hispanic subjects of both genders that were allocated into three study groups: A control group (n=47) of otherwise healthy individuals in metabolic balance, a group with obesity (OB) (n=36), and a group with obesity and IR (OB-IR) (n=34). Anthropometric and clinical characterization was carried out, and resistin levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS We found that resistin levels were higher in OB and OB-IR groups when compared to the control group (1331.79±142.15 pg/mL, 1266.28±165.97 pg/mL vs. 959.21±171.43 pg/mL; P<0.05), an effect that was not confounded by age (control, 34.04±10.00 years; OB, 37.30±10.78 years; and OB-IR, 35.67±10.15 years). In addition, we observed a significant correlation (P<0.001) between resistin levels and higher adiposity and insulin sensitivity (IS) in our cohort. CONCLUSIONS Our results suggest that higher resistin levels are associated with higher adiposity and lower IS among obese Hispanic subjects.
Collapse
Affiliation(s)
- Adriana Nieva-Vazquez
- 1 Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP) , Puebla, México
| | | | | | | | | |
Collapse
|
100
|
Atalayer D, Astbury NM. Anorexia of aging and gut hormones. Aging Dis 2013; 4:264-75. [PMID: 24124632 DOI: 10.14336/ad.2013.0400264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Abstract
We are expected to live longer than if we had been born 100 years ago however, the additional years are not necessarily spent in good health or free from disability. Body composition changes dramatically over the course of life. There is a gradual increase in body weight throughout adult life until the age of about 60-65 years. In contrast, body weight appears to decrease with age after the age of 65-75 years, even in those demonstrating a previous healthy body weight. This age related decrease in body weight, often called unintentional weight loss or involuntary weight loss can be a significant problem for the elderly. This has been shown to be related to decline in appetite and food intake is common amongst the elderly and is often referred to the anorexia of aging. Underlying mechanisms regulate energy homeostasis and appetite may change as people age. In this review, peripheral factors regulating appetite have been summarized in regards to their age-dependent changes and role in the etiology of anorexia of aging. Understanding the alterations in the mechanisms regulating appetite and food intake in conjunction with aging may help inform strategies that promote healthy aging and promote health and wellbeing in the elderly years, with the end goal to add life to the years and not just years to our lives.
Collapse
Affiliation(s)
- Deniz Atalayer
- Department of Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA ; Department of Medicine, New York Obesity Research and Nutrition Center, St. Luke's-Roosevelt Hospital, New York, NY 10025, USA
| | | |
Collapse
|