51
|
Bauer S, Oosterwijk-Wakka JC, Adrian N, Oosterwijk E, Fischer E, Wüest T, Stenner F, Perani A, Cohen L, Knuth A, Divgi C, Jäger D, Scott AM, Ritter G, Old LJ, Renner C. Targeted therapy of renal cell carcinoma: Synergistic activity of cG250-TNF and IFNg. Int J Cancer 2009; 125:115-23. [DOI: 10.1002/ijc.24359] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
52
|
Interferon beta induces mature dendritic cell apoptosis through caspase-11/caspase-3 activation. Blood 2009; 114:1344-54. [PMID: 19531658 DOI: 10.1182/blood-2008-12-196592] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although interferon beta (IFNbeta) decreases relapse rate and disease activity in multiple sclerosis (MS), the mechanisms involved have not been elucidated. The present study is the first report on the apoptotic effect of IFNbeta in mature, but not immature, myeloid dendritic cells (DCs). Both exogenous IFNbeta added to DCs matured through exposure to proinflammatory cytokines and endogenous IFNbeta secreted after lipopolysaccharide stimulation induced DC cell death. Apoptosis of mature DCs required both NF-kappaB and STAT-1 activation, and was mediated through the induction of caspase-11 expression and activation of caspase-3. In vivo, we observed increased caspase-11 expression and a significant decrease in the number of splenic DCs after lipopolysaccharide administration in wt but not in STAT-1-deficient mice. Since mature DCs are major contributors to the inflammatory response and essential partners in the induction of adaptive immunity, IFNbeta-dependent elimination of activated DCs could play an essential role in re-establishing homeostasis, and might represent a new molecular mechanism for the therapeutic effect of IFNbeta in MS.
Collapse
|
53
|
Buchwald M, Krämer OH, Heinzel T. HDACi--targets beyond chromatin. Cancer Lett 2009; 280:160-7. [PMID: 19342155 DOI: 10.1016/j.canlet.2009.02.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/16/2009] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
Histone deacetylases (HDACs) play an important role in gene regulation. Inhibitors of HDACs (HDACi) are novel anti-cancer drugs, which induce histone (hyper-) acetylation and counteract aberrant gene repression. On the other hand, HDACi treatment can also result in decreased gene expression, and targeting HDACs affects more than chromatin. Recently, HDACi were shown to evoke non-histone protein acetylation, which can alter signaling networks relevant for tumorgenesis. Furthermore, HDACi can promote the degradation of (proto-) oncoproteins. Here, we summarize these findings and discuss how these substances could be beneficial for the treatment and prevention of human ailments, such as cancer and unbalanced immune functions.
Collapse
Affiliation(s)
- Marc Buchwald
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Friedrich-Schiller-Universität Jena, Jena, Germany.
| | | | | |
Collapse
|
54
|
Clarke R, Shajahan AN, Riggins RB, Cho Y, Crawford A, Xuan J, Wang Y, Zwart A, Nehra R, Liu MC. Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol 2009; 114:8-20. [PMID: 19444933 PMCID: PMC2768542 DOI: 10.1016/j.jsbmb.2008.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resistance to endocrine therapies, whether de novo or acquired, remains a major limitation in the ability to cure many tumors that express detectable levels of the estrogen receptor alpha protein (ER). While several resistance phenotypes have been described, endocrine unresponsiveness in the context of therapy-induced tumor growth appears to be the most prevalent. The signaling that regulates endocrine resistant phenotypes is poorly understood but it involves a complex signaling network with a topology that includes redundant and degenerative features. To be relevant to clinical outcomes, the most pertinent features of this network are those that ultimately affect the endocrine-regulated components of the cell fate and cell proliferation machineries. We show that autophagy, as supported by the endocrine regulation of monodansylcadaverine staining, increased LC3 cleavage, and reduced expression of p62/SQSTM1, plays an important role in breast cancer cells responding to endocrine therapy. We further show that the cell fate machinery includes both apoptotic and autophagic functions that are potentially regulated through integrated signaling that flows through key members of the BCL2 gene family and beclin-1 (BECN1). This signaling links cellular functions in mitochondria and endoplasmic reticulum, the latter as a consequence of induction of the unfolded protein response. We have taken a seed-gene approach to begin extracting critical nodes and edges that represent central signaling events in the endocrine regulation of apoptosis and autophagy. Three seed nodes were identified from global gene or protein expression analyses and supported by subsequent functional studies that established their abilities to affect cell fate. The seed nodes of nuclear factor kappa B (NFkappaB), interferon regulatory factor-1 (IRF1), and X-box binding protein-1 (XBP1)are linked by directional edges that support signal flow through a preliminary network that is grown to include key regulators of their individual function: NEMO/IKKgamma, nucleophosmin and ER respectively. Signaling proceeds through BCL2 gene family members and BECN1 ultimately to regulate cell fate.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kravchenko-Balasha N, Mizrachy-Schwartz S, Klein S, Levitzki A. Shift from apoptotic to necrotic cell death during human papillomavirus-induced transformation of keratinocytes. J Biol Chem 2009; 284:11717-27. [PMID: 19221178 DOI: 10.1074/jbc.m900217200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncogenic transformation is a complex, multistep process, which goes through several stages before complete malignant transformation occurs. To identify early processes in carcinogenesis, we used an in vitro model, based on the initiating event in cervical cancer, papillomavirus transformation of keratinocytes. We compared gene expression in primary keratinocytes (K) and papillomavirus-transformed keratinocytes from early (E) and late (L) passages and from benzo[a]pyrene-treated L cells (BP). The transformed cells exhibit similar transcriptional changes to clinical cervical carcinoma. The number of transcripts expressed progressively decreased during the evolution from K to BP cells. Bioinformatic analysis, validated by detailed biochemical analysis, revealed substantial contraction of both pro- and antiapoptotic networks during transformation. Nonetheless, L and BP cells were not resistant to apoptotic stimuli. At doses of cisplatin that led to 30-60% apoptosis of K and E cells, transformed L and BP cells underwent 80% necrotic cell death, which became the default response to genotoxic stress. Moreover, appreciable necrotic fractions were observed in the cervical carcinoma cell line, HeLa, in response to comparable doses of cisplatin. The shrinkage of biochemical networks, including the apoptotic network, may allow a cancer cell to economize on energy usage to facilitate enhanced proliferation but leaves it vulnerable to stress. This study supports the hypothesis that the process of cancer transformation may be accompanied by a shift from apoptosis to necrosis.
Collapse
Affiliation(s)
- Nataly Kravchenko-Balasha
- Unit of Cellular Signaling, Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
56
|
Kapeu AS, Luostarinen T, Jellum E, Dillner J, Hakama M, Koskela P, Lenner P, Löve A, Mahlamaki E, Thoresen S, Tryggvadóttir L, Wadell G, Youngman L, Lehtinen M. Is smoking an independent risk factor for invasive cervical cancer? A nested case-control study within Nordic biobanks. Am J Epidemiol 2009; 169:480-8. [PMID: 19074773 DOI: 10.1093/aje/kwn354] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The strong correlation between smoking and exposure to oncogenic human papillomaviruses (HPVs) has made it difficult to verify the independent role of smoking in cervical carcinogenesis. Thus, the authors evaluated this role. Five large Nordic serum banks containing samples from more than 1,000,000 subjects were linked with nationwide cancer registries (1973-2003). Serum samples were retrieved from 588 women who developed invasive cervical cancer and 2,861 matched controls. The samples were analyzed for cotinine (a biomarker of tobacco exposure) and antibodies to HPV types 16 and 18, herpes simplex virus type 2, and Chlamydia trachomatis. Smoking was associated with the risk of squamous cell carcinoma (SCC) among HPV16- and/or HPV18-seropositive heavy smokers (odds ratio=2.7, 95% confidence interval: 1.7, 4.3). A similar risk of SCC (odds ratio=3.2, 95% confidence interval: 2.6, 4.0) was found in heavy smokers after adjustment for HPV16/18 antibodies. The point estimates increased with increasing age at diagnosis and increasing cotinine level. This study confirms that smoking is an independent risk factor for cervical cancer/SCC in women infected with oncogenic HPVs. These findings emphasize the importance of cervical cancer prevention among women exposed to tobacco smoke.
Collapse
Affiliation(s)
- Aline Simen Kapeu
- National Public Health Institute, P.O. Box 310, 90101 Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Iriyama T, Kamei Y, Kozuma S, Taketani Y. Bax-inhibiting peptide protects glutamate-induced cerebellar granule cell death by blocking Bax translocation. Neurosci Lett 2008; 451:11-5. [PMID: 19110033 DOI: 10.1016/j.neulet.2008.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/07/2008] [Accepted: 12/12/2008] [Indexed: 11/25/2022]
Abstract
Glutamate-induced excitotoxicity has been implicated in the pathogenesis of various neurological damages and disorders. In the brain damage of immature animals such as neonatal hypoxic-ischemic brain injury, the excitotoxicity appears to be more intimately involved through apoptosis. Bax, a member of the Bcl-2 family proteins, plays a key role in the promotion of apoptosis by translocation from the cytosol to the mitochondria and the release of apoptogenic factors such as cytochrome c. Recently, Bax-inhibiting peptide (BIP), a novel membrane-permeable peptide which can bind Bax in the cytosol and inhibit its translocation to the mitochondria, was developed. To investigate the possibility of a new neuroprotection strategy targeting Bax translocation in glutamate-induced neuronal cell death, cerebellar granule neurons (CGNs) were exposed to glutamate with or without BIP. Pretreatment of CGNs with BIP elicited a dose-dependent reduction of glutamate-induced neuronal cell death as measured by MTT assay. BIP significantly suppressed both the number of TUNEL-positive cells and the increase in caspases 3 and 9 activities induced by glutamate. In addition, immunoblotting after subcellular fractionation revealed that BIP prevented the glutamate-induced Bax translocation to the mitochondria and the release of cytochrome c from the mitochondria. These results suggest that agents capable of inhibiting Bax activity such as BIP might lead to new drugs for glutamate-related diseases in the future.
Collapse
Affiliation(s)
- Takayuki Iriyama
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
58
|
Chae M, Kim K, Park SM, Jang IS, Seo T, Kim DM, Kim IC, Lee JH, Park J. IRF-2 regulates NF-kappaB activity by modulating the subcellular localization of NF-kappaB. Biochem Biophys Res Commun 2008; 370:519-24. [PMID: 18395009 DOI: 10.1016/j.bbrc.2008.03.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 01/28/2023]
Abstract
Nuclear Factor-kappa B (NF-kappaB) is a transcription factor essential to the control of cell proliferation, survival, differentiation, immune response, and inflammation. Constitutive NF-kappaB activation has been observed in a broad variety of solid tumors and hematological malignancies, which suggests that NF-kappaB signaling may perform a critical role in the development of human cancers. Interferon regulatory factor-2 (IRF-2), an antagonistic transcriptional repressor of IRF-1, evidences oncogenic potential, but little is currently known regarding the mechanism underlying the oncogenic activities of IRF-2. In this study, we report that IRF-2 recruits RelA/p65 transcription factors into the nucleus via physical interaction. While the nuclear recruitment of RelA by IRF-2 augments TNFalpha-induced NF-kappaB dependent transcription, the N-terminal truncated mutant form of IRF-2 inhibits the nuclear localization of RelA, and thus interferes with NF-kappaB activation. Furthermore, the knockdown of IRF-2 by IRF-2 siRNA attenuates TNFalpha-induced NF-kappaB dependent transcription by inhibiting the nuclear localization of RelA. Thus, these results show that IRF-2 regulates NF-kappaB activity via the modulation of NF-kappaB subcellular localization.
Collapse
Affiliation(s)
- Myounghee Chae
- Korea Basic Science Institute, Gwangju Center, 300, Yongbong-Dong, Book-Ku, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Bose A, Haque E, Baral R. Neem leaf preparation induces apoptosis of tumor cells by releasing cytotoxic cytokines from human peripheral blood mononuclear cells. Phytother Res 2008; 21:914-20. [PMID: 17562567 DOI: 10.1002/ptr.2185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A neem leaf preparation (NLP) was investigated for its role in the induction of tumor cell apoptosis to elucidate the mechanism of NLP mediated immunoprophylaxis in tumor growth restriction. As NLP did not induce direct apoptosis of human tumor cell lines KB, MCF7 and K562, it was used instead to stimulate human peripheral blood mononuclear cells (PBMC) for 72 h. The PBMC derived culture supernatant (NLP-CS) was observed to induce the restriction of tumor cell proliferation as well as apoptosis. An enzyme linked immunosorbant assay revealed the presence of cytotoxic cytokines, IFN-gamma and TNF-alpha, in the NLP-CS. The inhibition of secretion of IFN-gamma and TNF-alpha in NLP-CS caused a significant decrease in tumor cell apoptosis. Furthermore, stimulation of these tumor cells with NLP-CS resulted in upregulation of the caspase 3 and downregulation of the Bcl 2 and cyclin D1. These observations suggested that NLP could induce tumor cellular apoptosis by releasing cytotoxic cytokines from human PBMC.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mookherjee Road, Kolkata 700026, India
| | | | | |
Collapse
|
60
|
Tliba O, Amrani Y. Airway smooth muscle cell as an inflammatory cell: lessons learned from interferon signaling pathways. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2008; 5:106-12. [PMID: 18094092 PMCID: PMC2645295 DOI: 10.1513/pats.200705-060vs] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/04/2007] [Indexed: 01/21/2023]
Abstract
The present article will describe the potential role of airway smooth muscle (ASM) in mediating both deleterious/beneficial effects of interferons (IFNs) in asthma. First described as beneficial in treating the main features of asthma, the interplay between IFNs and ASM could explain their deleterious actions recently described in a number of different studies. Through multiple mechanisms, including the suppression of steroid action, the synergistic pro-inflammatory actions when combined with other cytokines, and the modulation of calcium metabolism, IFNs are now seen as critical mediators in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | |
Collapse
|
61
|
Mathieu J, Flexor M, Lanotte M, Besançon F. A PARP-1/JNK1 cascade participates in the synergistic apoptotic effect of TNFα and all-trans retinoic acid in APL cells. Oncogene 2007; 27:3361-70. [DOI: 10.1038/sj.onc.1210997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
62
|
Zhu G, Wu CJ, Zhao Y, Ashwell JD. Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 2007; 17:1438-43. [PMID: 17702576 DOI: 10.1016/j.cub.2007.07.041] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/24/2022]
Abstract
NF-kappaB essential modulator (NEMO), the regulatory subunit of the IkappaB kinase (IKK) that activates NF-kappaB, is essential for NF-kappaB activation. NEMO was recently found to contain a region that preferentially binds Lys (K)63-linked but not K48-linked polyubiquitin (polyUb) chains, and the ability of NEMO to bind to K63-linked polyUb RIP (receptor-interacting protein) is necessary for efficient tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. Optineurin is a homolog of NEMO, and mutations in the optineurin gene are found in a subset of patients with glaucoma, a neurodegenerative disease involving the loss of retinal ganglion cells. Although optineurin shares considerable homology with NEMO, in resting cells, it is not present in the high-molecular-weight complex containing IKKalpha and IKKbeta, and optineurin cannot substitute for NEMO in lipopolysaccharide (LPS)-induced NF-kappaB activation. On the other hand, the overexpression of optineurin blocks the protective effect of E3-14.7K on cell death caused by the overexpression of TNFalpha receptor 1 (TNFR1). Here we show that optineurin has a K63-linked polyUb-binding region similar to that of NEMO, and like NEMO, it bound K63- but not K48-linked polyUb. Optineurin competitively antagonized NEMO's binding to polyUb RIP, and its overexpression inhibited TNFalpha-induced NF-kappaB activation. This competition occurs at physiologic protein levels because microRNA silencing of optineurin resulted in markedly enhanced TNFalpha-induced NF-kappaB activity. These results reveal a physiologic role for optineurin in dampening TNFalpha signaling, and this role might provide an explanation for its association with glaucoma.
Collapse
Affiliation(s)
- Guozhi Zhu
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
63
|
Wala I, Swanson SJ, Jing S. A non-radioactive method for detecting neutralizing antibodies against therapeutic proteins in serum. J Pharm Biomed Anal 2007; 45:583-9. [DOI: 10.1016/j.jpba.2007.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/26/2007] [Accepted: 08/03/2007] [Indexed: 11/25/2022]
|
64
|
Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci U S A 2007; 104:17028-33. [PMID: 17942705 DOI: 10.1073/pnas.0609852104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SUMOylation of transcription factors often attenuates transcription activity. This regulation of protein activity allows more diversity in the control of gene expression. Interferon regulatory factor-1 (IRF-1) was originally identified as a regulator of IFN-alpha/beta, and its expression is induced by viral infection or IFN stimulation. Accumulating evidence supports the theory that IRF-1 functions as a tumor suppressor and represses the transformed phenotype. Here we report that the level of SUMOylated IRF-1 is elevated in tumors. Site-directed mutagenesis experiments disclose that the SUMOylation sites of IRF-1 are identical to the major ubiquitination sites. Consequently, SUMOylated IRF-1 displays enhanced resistance to degradation. SUMOylation of IRF-1 attenuates its transcription activity, and SUMOylated IRF-1 inhibits apoptosis by repression of its transcriptional activity. These data support a mechanism whereby SUMOylation of IRF-1 inactivates its tumor suppressor function, which facilitates resistance to the immune response.
Collapse
|
65
|
Abstract
Interferon-gamma (IFN-gamma), a prototypic proinflammatory cytokine produced by several different cell types, including the Th1 subset of CD4(+) T cells, plays an important role in inflammation and autoimmune diseases. This review focuses on the varied and often contrasting roles of IFN-gamma in three murine models of autoimmune thyroid disease, experimentally induced autoimmune thyroiditis, the model of iodine-induced spontaneous autoimmune thyroiditis in NOD.H-2h4 mice and several different murine models of Graves' disease.
Collapse
Affiliation(s)
- Yujiang Fang
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| | | | | |
Collapse
|
66
|
Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, Suk K. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. J Neurosci Res 2007; 85:1989-95. [PMID: 17461416 DOI: 10.1002/jnr.21322] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hypoxia is an important biological signal that regulates a wide variety of physiological responses. At the same time, hypoxia is involved in multiple pathological situations. In particular, hypoxia is closely associated with neural injury in the brain. Hypoxia has been recently proposed as a neuroinflammatogen, as it can induce the inflammatory activation of microglia, a major cellular source of inflammatory mediators in the brain. In this article, we present evidence that hypoxia enhances Toll-like receptor 4 (TLR4) expression in cultured microglia and differentially regulates the downstream signaling pathways of TLR4. Hypoxia up-regulated TLR4 expression at the mRNA and protein levels in a microglia cell line, as well as in primary microglia cultures. Hypoxia, however, differentially regulated MyD88-dependent and -independent pathways of TLR4 signaling: Hypoxia enhanced lipopolysaccharide (LPS)-induced interferon regulatory factor-3 (IRF-3) activation and the subsequent expression of IFNbeta (MyD88-independent pathway), whereas it suppressed LPS-induced NF-kappaB activation (MyD88-dependent pathway). Hypoxia did not affect IFNgamma signaling, which was represented by signal transducer and activator of transcription-1 (STAT1) activation and interferon-regulatory factor-1 (IRF-1) induction. Taken together, although hypoxia up-regulates TLR4 expression, its downstream signaling pathways appear to be differentially modulated by hypoxia.
Collapse
Affiliation(s)
- Jiyeon Ock
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
67
|
Chen CC, Young JL, Monzon RI, Chen N, Todorović V, Lau LF. Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 2007; 26:1257-67. [PMID: 17318182 PMCID: PMC1817641 DOI: 10.1038/sj.emboj.7601596] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 01/12/2007] [Indexed: 12/31/2022] Open
Abstract
Cytokines of the tumor necrosis factor (TNF) family regulate inflammation and immunity, and a subset of this family can also induce cell death in a context-dependent manner. Although TNFalpha is cytotoxic to certain tumor cell lines, it induces apoptosis in normal cells only when NFkappaB signaling is blocked. Here we show that the matricellular protein CCN1/CYR61 can unmask the cytotoxic potential of TNFalpha without perturbation of NFkappaB signaling or de novo protein synthesis, leading to rapid apoptosis in the otherwise resistant primary human fibroblasts. CCN1 acts through binding to integrins alpha(v)beta(5), alpha(6)beta(1), and syndecan-4, triggering the generation of reactive oxygen species (ROS) through a Rac1-dependent mechanism via 5-lipoxygenase and the mitochondria, leading to the biphasic activation of JNK necessary for apoptosis. Mice with the genomic Ccn1 locus replaced with an apoptosis-defective Ccn1 allele are substantially resistant to TNFalpha-induced apoptosis in vivo. These results indicate that CCN1 may act as a physiologic regulator of TNFalpha cytotoxicity, providing the contextual cues from the extracellular matrix for TNFalpha-mediated cell death.
Collapse
Affiliation(s)
- Chih-Chiun Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Jennifer L Young
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Ricardo I Monzon
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Ningyu Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Viktor Todorović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| |
Collapse
|
68
|
Abstract
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors that mediate various biological responses, including cell proliferation, survival, apoptosis, and differentiation. Among the members of the STAT family, accumulating evidence now indicates an important role for STAT1 in various forms of cell death. Depending upon stimuli or cell types, STAT1 can modulate a broad spectrum of cell death, comprising both apoptotic and non-apoptotic pathways. STAT1-dependent regulation of cell death is largely dependent on a transcriptional mechanism such as the activation of death-promoting genes. However, non-transcriptional mechanisms such as STAT1 interaction with TRADD, p53, or HDAC have been implicated in the regulation of cell death by STAT1. Furthermore, STAT1 itself is also subject to complex forms of regulation such as post-translational protein modification, which can critically affect STAT1 signaling and STAT1-dependent cell death. Given the reports showing that dysregulation of STAT1 signaling is associated with various pathological conditions, including the development of cancer, a better understanding of the mechanism underlying STAT1 regulation of cell death may lead to successful strategies for targeting STAT1 in such pathological settings.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
69
|
Melichar B, Patenia R, Gallardo S, Melicharová K, Hu W, Freedman RS. Expression of CD40 and growth-inhibitory activity of CD40 ligand in ovarian cancer cell lines. Gynecol Oncol 2007; 104:707-13. [PMID: 17166566 DOI: 10.1016/j.ygyno.2006.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/19/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Soluble recombinant human CD40 ligand trimer (rhuCD40Lt) has shown antitumor activity in preclinical and clinical studies. We evaluated the effect of rhuCD40Lt on epithelial ovarian carcinoma (EOC) cell lines. METHODS Expression of the receptor, CD40, was determined by reverse transcriptase-polymerase chain reaction and flow cytometry, and antiproliferative effects of rhuCD40Lt, either alone or in combination with recombinant interferon-gamma (rIFN-gamma), were examined in 8 EOC lines. RESULTS Expression of CD40 was elevated in 5 out of 8 EOC cell lines examined by flow cytometry, and the presence of CD40 transcripts was detected by RT-PCR in all 8 cell lines. CD40 expression was increased by rIFN-gamma, but treatment with rhuCD40Lt decreased CD40 expression in 4 of the 5 lines that had shown elevated CD40 expression. rhuCD40Lt had a growth-inhibitory effect on 2774 cells, which also exhibited the highest level of CD40 expression. Growth-inhibitory effect of rhuCD40Lt was additive with rIFN-gamma on 2774, NMP-1, a cisplatin-resistant subline of OVCAR3, and HEY cell lines. The number of apoptotic tumor cells was increased following treatment with rhuCD40Lt. CONCLUSIONS CD40 is expressed on EOC cell lines, and expression was found at the transcript level in all of the EOC lines examined. rIFN-gamma enhances CD40 expression, though a decrease in CD40 expression was observed following treatment with rhuCD40Lt. Growth-inhibitory activity of rhuCD40Lt on EOC lines that express CD40 could be enhanced when rhuCD40Lt treatment was combined with rIFN-gamma. These results suggest that future studies of the combination of rhuCD40Lt and rIFN-gamma might warrant consideration.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology and Radiotherapy and Medicine, Charles University Medical School, Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
70
|
Komita H, Homma S, Saotome H, Zeniya M, Ohno T, Toda G. Interferon-gamma produced by interleukin-12-activated tumor infiltrating CD8+T cells directly induces apoptosis of mouse hepatocellular carcinoma. J Hepatol 2006; 45:662-72. [PMID: 16935390 DOI: 10.1016/j.jhep.2006.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 05/08/2006] [Accepted: 05/22/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Interleukin-12 (IL-12), a cytokine with antitumor activity, was examined for the suppressive effect on hepatocellular carcinoma (HCC) in mouse model, and its mechanism of antitumor activity was analyzed. METHODS Mice implanted with MIH-2 HCC cells were treated with recombinant mouse IL-12 (500 ng/mouse). Involvement of CD4(+), CD8(+), NK cells and interferon (IFN)-gamma on tumor suppression by IL-12 was examined by treatment of mice with each antibody. Interferon-gamma (IFN-gamma) production by tumor infiltrating cells was analyzed by immunofluorescence microscopy and flow cytometric analysis. Signal transduction for apoptosis induction was examined by immunoblot analysis. RESULTS The growth of implanted MIH-2 tumors was significantly suppressed by IL-12 and the suppression was inhibited by depletion of CD8(+)T cells. IL-12 treatment caused numerous IFN-gamma-producing CD8(+)T cells to infiltrate into MIH-2 tumors. Antitumor activity of IL-12 was blocked by treating mice with anti-IFN-gamma mAb. CD8(+)T cells from IL-12-treated mice attached to MIH-2 cells and produced IFN-gamma in vitro. Cell attachment might be associated with intercellular adhesion molecule-1 induced by IFN-gamma. In vitro treatment with IFN-gamma induced apoptosis of MIH-2 cells via a mitochondria-dependent pathway. CONCLUSIONS IL-12 suppressed HCC growth in mouse model. IFN-gamma produced by IL-12-activated tumor-infiltrating CD8(+)T cells directly induced apoptosis of HCC cells.
Collapse
Affiliation(s)
- Hideo Komita
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Gunnell AS, Tran TN, Torrång A, Dickman PW, Sparén P, Palmgren J, Ylitalo N. Synergy between Cigarette Smoking and Human Papillomavirus Type 16 in Cervical Cancer In situ Development. Cancer Epidemiol Biomarkers Prev 2006; 15:2141-7. [PMID: 17057029 DOI: 10.1158/1055-9965.epi-06-0399] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A majority of studies have implicated the involvement of cigarette smoking in cervical cancer development, although its mechanism of action remains unclear. We conducted a large population-based case-control study to address the potential interaction between smoking and human papillomavirus type 16 (HPV-16) in development of cervical cancer in situ (CIS). METHODS Information on risk factors for CIS was collected via interview, and archival cervical smears were tested for HPV-16 DNA presence in cases (n = 375) and controls (n = 363). Adjusted odds ratios (OR) for the effects of smoking, HPV-16 presence/absence, and load at first smear (taken, on average, 9 years before diagnosis) were calculated. RESULTS The risk for CIS among current smokers who were HPV-16 positive at time of first smear was >14-fold [adjusted OR, 14.4; confidence interval (95% CI), 5.6-36.8] compared with HPV-16-negative current smokers. In contrast, the risk for CIS among HPV-16-positive nonsmokers was only 6-fold (adjusted OR, 5.6; 95% CI, 2.7-11.5), compared with HPV-16-negative nonsmokers. HPV-16-positive smokers with high viral load at time of first smear exhibited a high risk for CIS (adjusted OR, 27.0; 95% CI, 6.5-114.2) compared with HPV-16-negative smokers. Within nonsmokers, however, high HPV-16 load contributed only a 6-fold increased risk compared with HPV-16-negative nonsmokers (adjusted OR, 5.9; 95% CI, 2.4-14.6). Interaction was observed (P = 0.03) between duration of smoking and HPV-16 presence in CIS development. CONCLUSION Results suggest a synergistic effect between smoking and both HPV-16 status and HPV-16 viral load, which may occur almost a decade before CIS detection.
Collapse
Affiliation(s)
- Anthony S Gunnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, P.O. Box 281, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
72
|
Roda JM, Parihar R, Lehman A, Mani A, Tridandapani S, Carson WE. Interleukin-21 enhances NK cell activation in response to antibody-coated targets. THE JOURNAL OF IMMUNOLOGY 2006; 177:120-9. [PMID: 16785506 DOI: 10.4049/jimmunol.177.1.120] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/physiology
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/therapeutic use
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Chemokines/biosynthesis
- Chemokines/physiology
- Chemotaxis, Leukocyte/immunology
- Cytotoxicity Tests, Immunologic
- Disease Models, Animal
- Female
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/metabolism
- Interferon-gamma/biosynthesis
- Interferon-gamma/blood
- Interleukins/administration & dosage
- Interleukins/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Neoplasm Transplantation
- Receptor, ErbB-2/immunology
- T-Lymphocyte Subsets/immunology
- Trastuzumab
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Julie M Roda
- Integrated Biomedical Sciences Graduate Program, Department of Molecular Virology, Arthur G. James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
73
|
Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH, Grez M, Pfitzner E, Heinzel T. Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 2006; 20:473-85. [PMID: 16481475 PMCID: PMC1369049 DOI: 10.1101/gad.364306] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP. Remarkably both inhibitors of HDACs and the cytokine interferon alpha alter this equilibrium and induce Stat1 acetylation. The analysis of Stat1 mutants reveals Lys 410 and Lys 413 as acetylation sites. Experiments with Stat1 mutants mimicking either constitutively acetylated or nonacetylated states show that only acetylated Stat1 is able to interact with NF-kappaB p65. As a consequence, p65 DNA binding, nuclear localization, and expression of anti-apoptotic NF-kappaB target genes decrease. These findings show how the acetylation of Stat1 regulates NF-kappaB activity and thus ultimately apoptosis.
Collapse
|
74
|
Liu M, Mendicino M, Ning Q, Ghanekar A, He W, McGilvray I, Shalev I, Pivato D, Clark DA, Phillips MJ, Levy GA. Cytokine-Induced Hepatic Apoptosis Is Dependent on FGL2/Fibroleukin: The Role of Sp1/Sp3 and STAT1/PU.1 CompositecisElements. THE JOURNAL OF IMMUNOLOGY 2006; 176:7028-38. [PMID: 16709865 DOI: 10.4049/jimmunol.176.11.7028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies from our laboratory have shown that fulminant hepatitis caused by the mouse hepatitis virus, MHV-3, is dependent on production of the novel immune coagulant fgl2/fibroleukin. In this study, we investigate the role of IFN-gamma and TNF-alpha in the induction of fgl2 expression and fgl2-dependent hepatic apoptosis. Infusion of IFN-gamma in combination with TNF-alpha through the portal vein of fgl2+/+ mice led to widespread hepatic apoptosis and fibrin deposition. Livers from fgl2-/- mice were normal, although strong expression of the fgl2 knockout reporter gene Lac Z was seen in both resident hepatic macrophages and endothelial cells. In vitro, IFN-gamma and TNF-alpha induced fgl2 expression in a macrophage and endothelial cell-specific manner. In macrophages (peritoneal and RAW 264.7 cells), IFN-gamma, but not IFN-alpha, LPS, TNF-alpha, or IL-1 induced fgl2 mRNA transcription and protein expression, while in endothelial cells TNF-alpha, but not IFN-gamma, induced fgl2 transcription. In addition, while TNF-alpha enhanced IFN-gamma-induced macrophage fgl2 transcription, IFN-gamma also enhanced TNF-alpha-induced endothelial cell fgl2 transcription. The induction of fgl2 by IFN-gamma in macrophages involved a STAT1-dependent pathway, involving the composite cis elements Sp1/Sp3 and GAS/PU.1. The latter interacted with IFN-gamma-dependent Sp1/Sp3, STAT1, and the ETS family of transcription factors member PU.1. The interaction of PU.1 with the IFN-gamma-activated sequence/ETS family of transcription factors site determined the macrophage-specific induction of fgl2 by IFN-gamma. Overall, this study demonstrates that IFN-gamma and TNF-alpha induce hepatocyte apoptosis in vivo, which is dependent on induction of fgl2, and defines the molecular basis of transcription of fgl2 in vitro.
Collapse
Affiliation(s)
- Mingfeng Liu
- Multi-Organ Transplant Program, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Choi DK, Lee H, Jeong J, Lim B, Suk K. Differential effects of ethanol on glial signal transduction initiated by lipopolysaccharide and interferon-gamma. J Neurosci Res 2006; 82:225-31. [PMID: 16175582 DOI: 10.1002/jnr.20647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the pathogenic effects of alcohol abuse on brain are well established, its specific effects on the intracellular signal transduction pathways of glial cells in the central nervous system (CNS) are poorly understood. In this study, we evaluated how ethanol affects the glial signal transduction associated with inflammatory activation. Lipopolysaccharide (LPS), gangliosides, and interferon (IFN)-gamma induced the inflammatory activation of glia, which was differentially influenced by ethanol: 1) ethanol inhibited LPS- or gangliosides-induced, but not IFNgamma-induced, glial activation as demonstrated by the production of nitric oxide and the expression of inflammatory genes such as interleukin-1beta, tumor necrosis factor-alpha, IP-10, and CD86; 2) nuclear factor (NF)-kappaB or JAK/STAT1 pathway was necessary for LPS- or IFNgamma-induced glial activation, respectively; 3) ethanol inhibited LPS-induced NF-kappaB activation; and 4) ethanol did not significantly affect IFNgamma-induced STAT1/IRF-1 activation. Based on these results, ethanol seems to inhibit selectively some parts of the glial signal transduction pathways that are associated with inflammatory activation, which may lead to the deregulation of CNS inflammatory responses.
Collapse
Affiliation(s)
- Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | | | | | | |
Collapse
|
76
|
Ganster RW, Guo Z, Shao L, Geller DA. Differential effects of TNF-alpha and IFN-gamma on gene transcription mediated by NF-kappaB-Stat1 interactions. J Interferon Cytokine Res 2006; 25:707-19. [PMID: 16318585 DOI: 10.1089/jir.2005.25.707] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulation of gene transcription by the cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) involves complex interactions between NF-kappaB and Stat families of transcription factors. The purpose of this study was to identify the spatial promoter requirements that govern cytokine synergy for gene transcription regulated by NF-kappaB and Stat factors. Using a set of transcription reporter-luciferase constructs, we show that the relative orientation of juxtaposed NF-kappaB-Stat (SIE) cis-elements determines the ability of TNF-alpha and IFN- gamma to induce gene transcription. Further, NF-kappaB and Stat1 proteins directly regulate transcription by interacting cooperatively on NF-kappaB-SIE DNA binding in response to TNF-alpha plus IFN-gamma. Coimmunoprecipitation provides evidence for a direct NF-kappaB/Stat1 protein-protein interaction. In contrast, IFN-gamma inhibits TNF-alpha-induced transcription of an NF-kappaB reporter gene in a Stat1-dependent mechanism in 2fTGH fibroblasts. Similarly, Stat1 is inhibitory to NF-kappaB overexpression-induced transcription. IFN-gamma and Stat1-dependent inhibition of NF-kappaB transcription occurs independent of TNF-alpha-induced NF-kappaB DNA binding. Interestingly, IFN-gamma pretreatment of 2fTGH fibroblasts potentiates TNF-alpha induction of Stat1 DNA binding. Further, ChIP analysis was applied to detect cytokine-induced in vivo binding and transcriptional regulation of the human inducible nitric oxide synthase (iNOS) gene by NF-kappaB and Stat1. These data demonstrate complex transcriptional regulatory mechanisms elicited by TNF-alpha and IFN-gamma and have potentially important implications for other genes differentially controlled by cytokines.
Collapse
Affiliation(s)
- Raymond W Ganster
- Department of Surgery, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
77
|
Almeida A, Correia-da-Silva G, Cepa M, Bell SC, Teixeira NA. Synergistic induction of apoptosis in primary rat decidual cells by INF-γ and TNF. Mol Reprod Dev 2006; 74:371-7. [PMID: 16967500 DOI: 10.1002/mrd.20524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the rat, in response to blastocyst implantation, stromal cells of the endometrium proliferate and differentiate into decidual cells, forming the decidua. After reaching its maximum development, the decidua undergoes regression. This phenomenon appears to be due to an active process involving apoptosis. As there is sparse knowledge concerning the mechanisms of induction of decidual cell death, the potential role of cytokines present in the uterine environment during pregnancy, such as tumor necrosis factor (TNF) and interferon-gamma (INF-gamma) was explored in primary cultures of rat decidual cells. The effects of these factors upon cellular viability, nuclear morphologic alterations, expression, and enzymatic activities of the effector caspases-3/7 were evaluated. The results obtained demonstrated that in contrast to TNF, which did not induce any alteration, INF-gamma and in association with TNF caused a decrease in cell viability and an increase in the appearance of apoptotic bodies in a time-dependent manner that was augmented in the co-presence of TNF. An increase in caspase-3/7 activities after 12 hr of TNF/INF-gamma treatment was also observed. These findings suggest that INF-gamma expressed in the uterine environment may play an important role in regulating apoptosis through potential synergistic mechanisms with TNF and thereby modulate decidual stability and regression during pregnancy.
Collapse
Affiliation(s)
- A Almeida
- Biochemistry Department, Faculty of Pharmacy and Institute of Molecular and Cellular Biology, University of Oporto, Porto, Portugal
| | | | | | | | | |
Collapse
|
78
|
Affiliation(s)
- Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Kyoung-Ah Kim
- Department of Medicine, Ilsan International Hospital, Dongguk University School of Medicine, Korea
| |
Collapse
|
79
|
Bais AG, Beckmann I, Lindemans J, Ewing PC, Meijer CJLM, Snijders PJF, Helmerhorst TJM. A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions. J Clin Pathol 2005; 58:1096-100. [PMID: 16189158 PMCID: PMC1770745 DOI: 10.1136/jcp.2004.025072] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A shifted balance between T helper 1 (Th1)-type and Th2-type cytokines has been hypothesised in cervical dysplasia. AIMS To evaluate possible deregulation of the cytokine network by estimating the expression of peripheral cytokines in different stages of cervical disease and in relation to the presence or absence of high risk human papillomavirus (HR-HPV). METHODS Twenty one HR-HPV positive women with high grade cervical intraepithelial neoplasia (CIN II-III) and 12 patients with invasive cervical carcinoma formed the study groups. Two control groups consisted of 10 HR-HPV positive and 11 HR-HPV negative women without CIN. Differences in leucocyte subgroups were evaluated by a differential leucocyte count. Plasma concentrations of tumour necrosis factor alpha (TNFalpha), TNFalpha receptors TNFRI and TNFRII, interferon gamma (IFNgamma), interleukin 2 (IL-2), IL-12, IL-4, and IL-10 were determined by enzyme linked immunosorbent assays. RESULTS Leucocyte counts in patients with CIN III and carcinoma were significantly higher than in controls. Plasma IFNgamma concentrations were significantly lower in patients with CIN III and carcinoma than in women with CIN II or controls. Plasma concentrations of IL-12, IL-2, IL-4, and TNFalpha did not differ significantly between groups, but significantly lower plasma concentrations of TNFRII were found in CIN III and carcinoma compared with CIN II. IL-10 was detected with increased frequency in the plasma of patients with CIN III and carcinoma. CONCLUSIONS These results indicate that a shift to a Th2-type cytokine pattern during the carcinogenesis of cervical cancer occurs in women with CIN III lesions.
Collapse
Affiliation(s)
- A G Bais
- Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
80
|
Kim HS, Kim S, Lee MS. IFN-γ sensitizes MIN6N8 insulinoma cells to TNF-α-induced apoptosis by inhibiting NF-κB-mediated XIAP upregulation. Biochem Biophys Res Commun 2005; 336:847-53. [PMID: 16154537 DOI: 10.1016/j.bbrc.2005.08.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic beta-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-alpha-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-alpha-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-alpha-induced apoptosis; (iv) XIAP expression was induced by TNF-alpha through a nuclear factor-kappaB (NF-kappaB)-dependent pathway, and interferon (IFN)-gamma prevented such an induction in a manner independent of NF-kappaB, which presents a potential mechanism underlying cytotoxic IFN-gamma/TNF-alpha synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-alpha-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic beta-cells might play an important role in pancreatic beta-cell apoptosis and in the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
81
|
Kim HS, Lee MS. Essential role of STAT1 in caspase-independent cell death of activated macrophages through the p38 mitogen-activated protein kinase/STAT1/reactive oxygen species pathway. Mol Cell Biol 2005; 25:6821-33. [PMID: 16024814 PMCID: PMC1190352 DOI: 10.1128/mcb.25.15.6821-6833.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Unlike other immune cells, activation of macrophages by stimulating agents, such as lipopolysaccharide (LPS), confers significant resistance to many apoptotic stimuli, but the underlying mechanism of this phenomenon remains largely unknown. Here, we demonstrate that LPS-induced early caspase activation is essential for macrophage survival because blocking caspase activation with a pancaspase inhibitor (zVAD [benzyloxycarbonyl-Val-Ala-Asp]) rapidly induced death of activated macrophages. This type of death process by zVAD/LPS was principally mediated by intracellular generation of superoxide. STAT1 knockout macrophages demonstrated profoundly decreased superoxide production and were resistant to treatment with zVAD/LPS, indicating the crucial involvement of STAT1 in macrophage death by zVAD/LPS. STAT1 level and activity were reciprocally regulated by caspase activation and were associated with cell death. Activation of STAT1 was critically dependent upon serine phosphorylation induced by p38 mitogen-activated protein kinase (MAPK) because a p38 MAPK inhibitor nullified STAT1 serine phosphorylation, reactive oxygen species (ROS) production, and macrophage death by zVAD/LPS. Conversely, p38 MAPK activation was dependent upon superoxide and was also nullified in STAT1 knockout macrophages, probably due to impaired generation of superoxide. Our findings collectively indicate that STAT1 signaling modulates intracellular oxidative stress in activated macrophages through a positive-feedback mechanism involving the p38 MAPK/STAT1/ROS pathway, which is interrupted by caspase activation. Furthermore, our study may provide significant insights in regards to the unanticipated critical role of STAT1 in the caspase-independent death pathway.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Kangnam-ku, Seoul 135-710, South Korea
| | | |
Collapse
|
82
|
Kim HS, Chang I, Kim JY, Choi KH, Lee MS. Caspase-Mediated p65 Cleavage Promotes TRAIL-Induced Apoptosis. Cancer Res 2005; 65:6111-9. [PMID: 16024612 DOI: 10.1158/0008-5472.can-05-0472] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is cytotoxic to a wide variety of transformed cells, but not to most normal cells, implying potential therapeutic value against advanced cancer. However, signal transduction in TRAIL-mediated apoptosis is not clearly understood compared with other TNF family members. Specifically, it is not yet understood how TRAIL controls nuclear factor kappaB (NF-kappaB) activation and overcomes its anti-apoptotic effect. We explored the regulation of NF-kappaB activity by TRAIL and its role in apoptosis. TRAIL combined with IkappaBalpha-"superrepressor" induced potent apoptosis of SK-Hep1 hepatoma cells at low concentrations of TRAIL that do not independently induce apoptosis. Apoptosis by high concentrations of TRAIL was not affected by IkappaBalpha-superrepressor. Although TRAIL alone did not induce NF-kappaB activity, TRAIL combined with z-VAD significantly increased NF-kappaB activation. Analysis of the NF-kappaB activation pathway indicated that TRAIL unexpectedly induced cleavage of p65 at Asp97, which was blocked by z-VAD, accounting for all of these findings. p65 expression abrogated apoptosis and increased NF-kappaB activity in TRAIL-treated cells. Cleavage-resistant p65D97A further increased NF-kappaB activity in TRAIL-treated cells, whereas the COOH-terminal p65 fragment acted as a dominant-negative inhibitor. XIAP levels were increased by TRAIL in combination with z-VAD, whereas XIAP levels were decreased by TRAIL alone. Cleavage of p65 was also detected after FRO thyroid cancer cells were treated with TRAIL. These results suggest that TRAIL induces NF-kappaB activation, but simultaneously abrogates NF-kappaB activation by cleaving p65, and thereby inhibits the induction of anti-apoptotic proteins such as XIAP, which contributes to the strong apoptotic activity of TRAIL compared with other TNF family members.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Kangnam-ku, Seoul, Korea
| | | | | | | | | |
Collapse
|
83
|
Abstract
Brain microglial cells are thought to undergo apoptosis following the exposure to inflammatory stimuli such as lipopolysaccharide (LPS) and IFNgamma, which is considered as an autoregulatory mechanism to control their own activation state. Here, we report that N-myc constitutes a novel apoptotic pathway of LPS/IFNgamma-activated microglia. The expression of N-myc was synergistically enhanced by LPS and IFNgamma in microglia. Tetracycline-based conditional expression of N-myc sensitized microglia to nitric oxide (NO)-induced apoptosis. Knockdown of N-myc expression using small interfering RNA (siRNA) attenuated LPS/IFNgamma-induced microglial apoptosis. An increase in N-myc expression, however, did not affect microglial production of NO or TNFalpha. The synergistic effect of LPS/IFNgamma on the microglial N-myc induction was mediated through Janus kinase (JAK)/STAT1 (signal transducer and activator of transcription 1) pathway. Taken together, LPS/IFNgamma-induced N-myc participated in the activation-induced cell death of microglia by sensitizing the cells to NO-induced apoptosis; however, N-myc did not influence the processes of inflammatory activation of microglia.
Collapse
Affiliation(s)
- Dae Young Jung
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | |
Collapse
|
84
|
Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, Wang A, Clarke R. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 2005; 26:1527-35. [PMID: 15878912 DOI: 10.1093/carcin/bgi113] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have directly assessed the ability of interferon regulatory factor-1 (IRF-1) to act as a tumor suppressor gene in human breast cancer cells and explored whether this suppressor function is mechanistically conferred by affecting cell cycle transition, apoptosis and/or caspase activation. We have used a dual approach, measuring whether overexpression of wild-type IRF-1 or a dominant negative IRF-1 (dnIRF-1) produce opposing effects on breast cancer cell proliferation in vitro or tumorigenicity in athymic nude mice. Mechanistic studies determined the effects of blocking endogenous IRF-1 expression on cell cycle transition by flow cytometry, on apoptosis by Annexin V staining, and on caspase activation by fluorescent substrate cleavage. IRF-1 mRNA (P < or = 0.001) and protein (P < or = 0.001) are highly expressed in non-tumorigenic, normal, mammary epithelial cells, with intermediate expression in tumorigenic, but non-metastatic, cells and very low expression in metastatic cell lines. In MCF-7 cells transfected with a wild-type IRF-1 (MCF-7/IRF-1), IRF-1 mRNA expression inversely correlates with the rate of cell proliferation (r = -0.91; P = 0.002). Conversely, expression of dnIRF-1 in both MCF-7 (MCF-7/dnIRF-1; p53 wild-type) and T47D cells (T47D/dnIRF-1; p53 mutant) increases cell proliferation (P < or = 0.001). In athymic nude mice, the incidence of MCF-7/IRF-1 xenografts is reduced (P = 0.045), whereas MCF-7/dnIRF-1 xenografts exhibit a significantly higher tumor incidence (P < or = 0.001). Effects of IRF-1/dnIRF-1 are mediated through changes in the rates of apoptosis and not through cell cycle regulation. MCF-7/dnIRF-1 cells exhibit a 50% decrease in basal apoptosis (P = 0.007) and a significant reduction in caspase 8 activity (P = 0.03); similar effects occur in T47D/dnIRF-1 cells, where the effects on apoptosis appear to be mediated through inhibition of caspases 3/7 (P < 0.001) and caspase 8 (P = 0.03). These data establish a functional role for IRF-1 in the growth suppression of breast cancer cells and strongly implicate IRF-1 as a tumor suppressor gene in breast cancer that acts, independent of p53, to control apoptosis.
Collapse
Affiliation(s)
- Kerrie B Bouker
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Thomas M, Finnegan CE, Rogers KMA, Purcell JW, Trimble A, Johnston PG, Boland MP. STAT1: a modulator of chemotherapy-induced apoptosis. Cancer Res 2005; 64:8357-64. [PMID: 15548705 DOI: 10.1158/0008-5472.can-04-1864] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anthracyclines, such as doxorubicin, are widely used in the treatment of breast cancer. Previously, we showed that these drugs could activate the transcription factor, nuclear factor kappaB, in a DNA damage-dependent manner. We now show that these drugs can potentiate the activation of signal transducer and activator of transcription 1 (STAT1) in MDA-MB 435 breast cancer cells treated with IFN-gamma. We observed that key markers of STAT1 activation, including tyrosine 701 and serine 727 phosphorylation, were enhanced in the presence of doxorubicin. This potentiation resulted in enhanced nuclear localization of activated STAT1 and led to an increase in the nuclear binding of activated STAT complexes. The observed potentiation was specific for STAT1 and IFN-gamma, as no effects were observed with either STAT3 or STAT5. Furthermore, the type I IFNs (alpha and beta) had little or no effect. The observed effects on STAT1 phosphorylation have previously been linked with maximal transcriptional activation and apoptosis. Cell viability was assessed by crystal violet staining followed by analysis with CalcuSyn to determine combination index values, a measure of synergy. We confirmed that significant synergy existed between IFN-gamma and doxorubicin (combination index = 0.34) at doses lower than IC(50) values for this drug (0.67 micromol/L). In support of this, we observed that apoptotic cell death was also enhanced by measuring poly(ADP-ribose) polymerase and caspase-3 cleavage. Finally, suppression of STAT1 expression by small-interfering RNA resulted in a loss of synergistic apoptotic cell death compared with cells, where no suppression of STAT1 expression was attained with scrambled small-interfering RNA control. We conclude that doxorubicin potentiates STAT1 activation in response to IFN-gamma, and that this combination results in enhanced apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Michelle Thomas
- Centre for Cancer Research, Queens University Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | | | | | | | | | | | | |
Collapse
|
86
|
Cho SG, Yi SY, Yoo YS. IFNgamma and TNFalpha synergistically induce neurite outgrowth on PC12 cells. Neurosci Lett 2005; 378:49-54. [PMID: 15763171 DOI: 10.1016/j.neulet.2004.12.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 11/25/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
PC12 cells are commonly used in the study of neuronal cells. It was reported that IFNgamma enhances neurite outgrowth of PC12 cells by NGF-stimuli. Accordingly, IFNgamma was examined to determine if it could solely produce neurite outgrowth. In addition, because the synergism between TNFalpha and IFNgamma is well-known, this study investigated whether or not a mixture of IFNgamma and TNFalpha might augment neurite outgrowth on PC12 cells. Finally, this study examined how an AG490 treatment, which was used to inhibit the IFNgamma signal in this study, affected the cytokine-mediated phenomenon. The results showed that the cytokines did not cause an increase in apoptosis in the PC12 cells and the serum-starved condition blocked the cytokine-mediated neurite outgrowth. Interestingly, AG490 enhanced this effect. In conclusion, it was shown that IFNgamma has the potential to form neurites, and TNFalpha can enhance this ability.
Collapse
Affiliation(s)
- Sung Gook Cho
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul 130-650, South Korea
| | | | | |
Collapse
|
87
|
Lee H, Jeong J, Son E, Mosa A, Cho GJ, Choi WS, Ha JH, Kim IK, Lee MG, Kim CY, Suk K. Ethanol selectively modulates inflammatory activation signaling of brain microglia. J Neuroimmunol 2004; 156:88-95. [PMID: 15465599 DOI: 10.1016/j.jneuroim.2004.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/16/2004] [Accepted: 07/19/2004] [Indexed: 11/19/2022]
Abstract
In spite of well-known deleterious effects of alcohol on the nervous system in general, its specific effect on the brain immune system remains poorly understood. In order to better understand the effect of alcohol consumption on the innate immunity and inflammatory responses in the central nervous system (CNS), we sought to determine how ethanol influences inflammatory activation of microglia that function as the resident immune defense system of the brain. After treatment of BV-2 mouse microglial cells or rat primary microglia cultures with various stimuli, nitric oxide (NO) production was measured as an indicator of microglial activation. Pretreatment of the cells with ethanol (10-100 mM) for 1 h resulted in a significant decrease in lipopolysaccharide (LPS)-induced, but not interferon-gamma (IFNgamma)-induced, NO production, indicating that ethanol specifically inhibits LPS-induced inflammatory activation of microglia. This was further supported by the ethanol inhibition of LPS-induced IL-1beta expression. In addition, ethanol pretreatment selectively regulated LPS-induced NF-kappaB signaling pathway without affecting IFNgamma-induced signal transducer and activator of transcription 1 (STAT1) phosphorylation, interferon regulatory factor-1 (IRF-1) induction or IFNgamma-inducible IP-10 expression. The modulation of LPS-induced NF-kappaB by ethanol was due to the inhibition of coactivator p300. Altogether, these results suggest that acute ethanol exposure may selectively modulate signal transduction pathways associated with inflammatory activation of microglia, which may lead to derangement of CNS immune and inflammatory responses.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, #101 Dong-In, Joong-gu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
We have investigated the possible effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on signal transduction pathways associated with inflammatory activation of BV-2 mouse microglia cells. Pretreatment of the cells with PACAP resulted in a significant decrease in LPS- or IFNgamma-induced NO production as well as iNOS and IL-1beta mRNA levels. The inhibitory effect of PACAP appeared to be mediated through an increase in intracellular cAMP. PACAP inhibition of LPS-induced NO production was accompanied by inhibition of p38 MAPK activation, but not ERK, JNK, or NF-kappaB. IFNgamma-induced STAT-1 activation or IRF-1 induction was not significantly influenced by PACAP. Therefore, PACAP appears to suppress inflammatory activation of BV-2 microglia via specific inhibition of LPS-induced p38 MAPK pathway.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, #101 Dong-In, Joong-gu, Daegu, 700-422 Korea
| | | |
Collapse
|
89
|
Suk K. Minocycline suppresses hypoxic activation of rodent microglia in culture. Neurosci Lett 2004; 366:167-71. [PMID: 15276240 DOI: 10.1016/j.neulet.2004.05.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/08/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Hypoxia is one of the important physiological stimuli that are often associated with a variety of pathological states such as ischemia, respiratory diseases, and tumorigenesis. In the central nervous system, hypoxia that is accompanied by cerebral ischemia not only causes neuronal cell injury, but may also induce pathological microglial activation. We have previously shown that hypoxia induces inflammatory activation of cultured microglia, and the hypoxic induction of nitric oxide production in microglia is mediated through p38 mitogen-activated protein kinase pathway. Now, we present evidence that minocycline, a tetracycline derivative, suppresses the hypoxic activation of cultured microglia by inhibiting p38 mitogen-activated protein kinase pathway. The drug markedly inhibited hypoxia-induced production of inflammatory mediators such as nitric oxide, TNFalpha, and IL-1beta as well as iNOS protein expression. The signal transduction pathway that leads to the activation of p38 mitogen-activated protein kinase was the molecular target of minocycline. Thus, the known neuroprotective effects of minocycline in animal models of cerebral ischemia may be partly due to its direct actions on brain microglia.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, #101 Dong-In, Joong-gu, Daegu 700-422, South Korea.
| |
Collapse
|
90
|
Pedersen KB, Andersen K, Fodstad Ø, Mælandsmo GM. Sensitization of interferon-gamma induced apoptosis in human osteosarcoma cells by extracellular S100A4. BMC Cancer 2004; 4:52. [PMID: 15318945 PMCID: PMC515304 DOI: 10.1186/1471-2407-4-52] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 08/19/2004] [Indexed: 02/07/2023] Open
Abstract
Background S100A4 is a small Ca2+-binding protein of the S100 family with metastasis-promoting properties. Recently, secreted S100A4 protein has been shown to possess a number of functions, including induction of angiogenesis, stimulation of cell motility and neurite extension. Methods Cell cultures from two human osteosarcoma cell lines, OHS and its anti-S100A4 ribozyme transfected counterpart II-11b, was treated with IFN-γ and recombinant S100A4 in order to study the sensitizing effects of extracellular S100A4 on IFN-γ mediated apoptosis. Induction of apoptosis was demonstrated by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase and Lamin B. Results In the present work, we found that the S100A4-expressing human osteosarcoma cell line OHS was more sensitive to IFN-γ-mediated apoptosis than the II-11b cells. S100A4 protein was detected in conditioned medium from OHS cells, but not from II-11b cells, and addition of recombinant S100A4 to the cell medium sensitized II-11b cells to apoptosis induced by IFN-γ. The S100A4/IFN-γ-mediated induction of apoptosis was shown to be independent of caspase activation, but dependent on the formation of reactive oxygen species. Furthermore, addition of extracellular S100A4 was demonstrated to activate nuclear factor-κB (NF-κB). Conclusion In conclusion, we have shown that S100A4 sensitizes osteosarcoma cells to IFN-γ-mediated induction of apoptosis. Additionally, extracellular S100A4 activates NF-κB, but whether these events are causally related remains unknown.
Collapse
Affiliation(s)
- Kjetil Boye Pedersen
- Department of Tumor Biology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | - Kristin Andersen
- Department of Tumor Biology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| |
Collapse
|
91
|
Bouker KB, Skaar TC, Fernandez DR, O'Brien KA, Riggins RB, Cao D, Clarke R. interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (faslodex, fulvestrant). Cancer Res 2004; 64:4030-9. [PMID: 15173018 DOI: 10.1158/0008-5472.can-03-3602] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiestrogens induce both cytostasis (cell cycle arrest) and apoptosis, but the relationship between these end points and the signaling that regulates their induction are unclear. We have previously implicated the transcription factor and putative tumor suppressor IFN regulatory factor-1 (IRF-1) in acquired antiestrogen resistance (Gu et al., Cancer Res, 62: 3428-3437, 2002). We now show the functional significance of IRF-1 in affecting antiestrogen responsiveness in estrogen receptor-positive antiestrogen-sensitive models (MCF-7, T47D, and ZR-75-1), a model of acquired antiestrogen resistance (MCF7/LCC9; estrogen receptor positive), and a model of de novo antiestrogen resistance (MDA-MB-231; estrogen receptor negative). Basal IRF-1 mRNA expression is lower in MCF7/LCC9 cells when compared with MCF-7, T47D, and ZR-75-1 cells. IRF-1 transcriptional activity in MCF-7/LCC9 cells is 18-fold lower than that seen in the parental cells (MCF-7/LCC1) and is comparable with that in MDA-MB-231 cells. Although IRF-1 mRNA expression is induced by ICI 182,780 in sensitive cells, this regulation is lost in MCF-7/LCC9 and is absent in MDA-MB-231 cells. Loss of IRF-1 regulation appears specific to antiestrogen resistance-resistant cells induce IRF-1 mRNA in response to the cytotoxic drug doxorubicin. A dominant-negative IRF-1 eliminates the ICI 182,780-induced apoptotic response (reduced >4-fold) and reduces MCF-7 and T47D cell sensitivity to the antiproliferative effects of ICI 182,780. This effect is not mediated by changes in cell cycle distribution; rather, dominant-negative IRF-1 reduces ICI 182,780-induced apoptosis. These data identify a novel mechanism of antiestrogen resistance and implicate IRF-1 as a key component in signaling some ER-mediated effects on apoptosis/cell survival.
Collapse
Affiliation(s)
- Kerrie B Bouker
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia 20007, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Abadie A, Besançon F, Wietzerbin J. Type I interferon and TNFalpha cooperate with type II interferon for TRAIL induction and triggering of apoptosis in SK-N-MC EWING tumor cells. Oncogene 2004; 23:4911-20. [PMID: 15077162 DOI: 10.1038/sj.onc.1207614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ewing's sarcoma is the second most common human bone tumor in childhood. Here, we investigated the sensitivity of the Ewing tumor cell line, SK-N-MC, to the apoptotic effect of type I (IFNalpha) and type II (IFNgamma) interferons and TNFalpha. We demonstrate that although IFNalpha and TNFalpha alone are unable to induce cell death, they act in synergy with IFNgamma to induce SK-N-MC cell apoptosis. The synergistic induction of apoptosis correlated with the synergistic induction of TNFalpha-related apoptosis-inducing ligand (TRAIL) mRNA and TRAIL protein synthesis as well as of TRAIL secretion. Preparations of inducer-free supernatants from SK-N-MC cells stimulated with combinations of cytokines were shown to be cytotoxic for untreated SK-N-MC cells. This cytotoxicity was partially inhibited by addition of TRAILR2/Fc fusion protein, indicating that the secreted TRAIL mediates, at least in part, the apoptotic effect displayed by the supernatants of stimulated SK-N-MC cells. We have shown that the presence of IFNgamma is required to allow the sustained expression of IRF1 in SK-N-MC cells stimulated by addition of IFNalpha or TNFalpha suggesting that IRF1 plays a role in the synergistic induction of apoptosis by combinations of cytokines. Furthermore, we have shown that inhibition of NF-kappaB activation contributes to the IFNgamma-mediated sensitization to the apoptotic effect of TNFalpha. To our knowledge, this is the first report showing that interferon/cytokine combinations are able to induce TRAIL gene expression and TRAIL protein synthesis and secretion in Ewing sarcoma-derived cells. We believe that the observations reported here might contribute to the development of alternative new approaches to the treatment of Ewing tumors resistant to conventional therapy.
Collapse
Affiliation(s)
- Annie Abadie
- INSERM U365 Institut Curie, Section Recherche, 26, rue D'Ulm, 75 248, Paris Cedex 05, France
| | | | | |
Collapse
|
93
|
Fredriksson K, Stridh H, Lundahl J, Rennard SI, Skold CM. Red blood cells inhibit proliferation and stimulate apoptosis in human lung fibroblasts in vitro. Scand J Immunol 2004; 59:559-65. [PMID: 15182251 DOI: 10.1111/j.1365-3083.2004.01433.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell proliferation and apoptosis are both important mechanisms for the regulation of tissue homeostasis. For instance, proliferation is crucial in wound repair, whereas apoptosis is important for removal of damaged cells and resolution of inflammation. Imbalance between cell proliferation and apoptosis can therefore lead to pathological conditions and disease. In inflammatory and fibrotic lung disorders, red blood cells (RBCs) can interact with fibroblasts and connective tissue. In the present study, we therefore hypothesized that the presence of RBCs can affect fibroblast proliferation and apoptosis. Human foetal lung fibroblasts (HFL-1) were cultured in the presence or absence of purified whole RBCs and RBC-conditioned media. RBC significantly decreased fibroblast proliferation as determined both by DNA content analysis (Hoechst 33258 staining, P < 0.01; WST-1, P < 0.001) and BrdU incorporation. After treatment with staurosporine (STS) for 48 h, apoptosis was determined by TUNEL and propidium iodide staining followed by flow cytometry analysis. RBCs augmented STS-induced apoptosis (median: 46.4%; range 12.0-90.4) compared to control cells (median 26.2%; range 7.1-45.5). Thus, our data indicate that the presence of RBCs affects both fibroblast proliferation and susceptibility to undergo apoptosis. Our findings therefore suggest a role for RBCs in regulating fibroblast homeostasis after tissue injury.
Collapse
Affiliation(s)
- K Fredriksson
- Department of Medicine, Division of Respiratory Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
94
|
Atrasheuskaya AV, Bukin EK, Fredeking TM, Ignatyev GM. Protective effect of exogenous recombinant mouse interferon-gamma and tumour necrosis factor-alpha on ectromelia virus infection in susceptible BALB/c mice. Clin Exp Immunol 2004; 136:207-14. [PMID: 15086382 PMCID: PMC1809029 DOI: 10.1111/j.1365-2249.2004.02460.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The resistance to mousepox is correlated with the production of type I cytokines: interleukin (IL)-2, IL-12, interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha. We intend to describe the modulation of generalized ectromelia virus (EV) infection with exogenous administration of mrIFN-gamma and mrTNF-alpha separately and in combination using susceptible BALB/c mice. The treatment schemes presented resulted in the localization of the generalized EV infection and its development into non-fatal sloughing of the infected limb. This was accompanied by low virus titres in the treated mice due to control of systemic virus replication and virus clearance. The balance of type I versus type II cytokines was dominated by a type I response in the treated groups. The group treated with the combination of IFN-gamma and TNF-alpha exhibited the best survival with Th1-dominant (IFN-gamma and IL-12) cytokine profiles, whereas the TNF-alpha-treated group of mice was less successful in clearance of virus and demonstrated the lowest survival rate. The successful cytokine treatment schemes in this orthopoxvirus model system may have important implications in the treatment of viral diseases in humans and, in particular, of variola virus infection.
Collapse
Affiliation(s)
- A V Atrasheuskaya
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia.
| | | | | | | |
Collapse
|
95
|
Chen K, Wei Y, Sharp GC, Braley-Mullen H. Mechanisms of spontaneous resolution versus fibrosis in granulomatous experimental autoimmune thyroiditis. THE JOURNAL OF IMMUNOLOGY 2004; 171:6236-43. [PMID: 14634140 DOI: 10.4049/jimmunol.171.11.6236] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When granulomatous experimental autoimmune thyroiditis (G-EAT) was induced in CBA/J or DBA/1 mice, thyroid lesions resolved in less severe (3+) G-EAT in wild-type mice or severe (5+) G-EAT in IFN-gamma(-/-) mice, but progressed to fibrosis in 5+ G-EAT in wild-type mice. To define the mechanisms leading to these distinct outcomes, the expression of inflammatory and apoptotic molecules and infiltrating cells was evaluated using immunohistochemistry, RT-PCR, and confocal microscopy. The ratio of CD4(+)/CD8(+) T cells in thyroid infiltrates was one factor that predicted G-EAT outcome. CD4(+) T cells outnumbered CD8(+) T cells when lesions progressed to fibrosis, while CD8(+) T cells outnumbered CD4(+) T cells in thyroids that resolved. Fas, Fas ligand, FLIP, TNF-alpha, inducible NO synthase, TGF-beta, and IFN-gamma were highly expressed by infiltrating cells when G-EAT progressed to fibrosis. The expression of active caspase-3 was low, possibly contributing to the persistence of CD4(+) T cells in fibrosis. In contrast, FLIP was mainly expressed by thyrocytes in resolving G-EAT, the expression of active caspase-3 was high, and resolution correlated with apoptosis of infiltrating cells. There was also relatively less expression of TGF-beta, IFN-gamma, TNF-alpha, and inducible NO synthase and higher expression of IL-10 in resolving G-EAT than in G-EAT that progressed to fibrosis. These differences were particularly striking when comparing IFN-gamma(-/-) vs wild-type mice. These results suggest that several opposing biological mechanisms contribute to the outcome of an ongoing autoimmune response. These include differential expression of pro- and antiapoptotic molecules, cytokines, and the ratio of CD4(+) vs CD8(+) T cells.
Collapse
Affiliation(s)
- Kemin Chen
- Department of Internal Medicine, University of Missouri School of Medicine, and Veterans Affairs Research Service, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
96
|
Lee H, Cha S, Lee MS, Cho GJ, Choi WS, Suk K. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. THE JOURNAL OF IMMUNOLOGY 2004; 171:5802-11. [PMID: 14634089 DOI: 10.4049/jimmunol.171.11.5802] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse brain microglial cells undergo apoptosis on exposure to inflammatory stimuli, which is considered as an autoregulatory mechanism to control their own activation. Here, we present evidence that an antiproliferative B cell translocation gene 1 (BTG1) constitutes a novel apoptotic pathway of LPS/IFN-gamma-activated microglia. The expression of BTG1 was synergistically enhanced by LPS and IFN-gamma in BV-2 mouse microglial cells as well as in primary microglia cultures. Levels of BTG1 expression inversely correlated with a proliferative capacity of the microglial cells. Tetracycline-based conditional expression of BTG1 not only suppressed microglial proliferation but also increased the sensitivity of microglial cells to NO-induced apoptosis, suggesting a novel mechanism of cooperation between LPS and IFN-gamma in the induction of microglial apoptosis. An increase in BTG1 expression, however, did not affect microglial production of NO, TNF-alpha, or IL-1beta, indicating that the antiproliferative BTG1 is important in the activation-induced apoptosis of microglia, but not in the activation itself. The synergistic action of LPS and IFN-gamma in the microglial BTG1 induction and apoptosis was dependent on the Janus kinase/STAT1 pathway, but not IFN-regulatory factor-1, as demonstrated by a pharmacological inhibitor of Janus kinase (AG490), STAT1 dominant negative mutant, and IFN-regulatory factor-1-deficient mice. Taken together, antiproliferative BTG1 may participate in the activation-induced cell death of microglia by lowering the threshold for apoptosis; BTG1 increases the sensitivity of microglia to apoptogenic action of autocrine cytotoxic mediator, NO. Our results point out an important link between the proliferative state of microglia and their sensitivity to apoptogenic agents.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Anatomy and Neurobiology and Research Institute of Natural Science, Gyeongsang National University College of Medicine, Institute of Health Sciences, Jinju, Korea
| | | | | | | | | | | |
Collapse
|
97
|
Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. ACTA ACUST UNITED AC 2004; 44:65-81. [PMID: 14739003 DOI: 10.1016/j.brainresrev.2003.08.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptosis, also known as programmed cell death, is the major type of cell death involved in normal development, regeneration, proliferation and pathologic degeneration in the central nervous system (CNS). The apoptotic process can be divided further into two pathways depending on the involvement of mitochondria and related biochemical cascades. The internal pathway of apoptosis is initiated by a variety of cytotoxic stimuli and mediated by the release of cytochrome c and subsequent activation of downstream caspases. The external pathway is mainly triggered by ligation of death receptors such as Fas, tumor necrosis factor (TNF)-related apoptosis inducing ligand-R1 (TRAIL-R1), TRAIL-R2 and TNFRp55, and mediated by direct activation of upstream caspases. The Fas-FasL system has been known as a prototypic inducer of extrinsic cell death responsible for cell-mediated cytotoxicity, peripheral immune regulation, immune privilege and "counterattack" of malignant tumor cells against the host immune system. Fas and FasL are expressed in the normal CNS, and expression increases in inflamed and degenerated brains. Like other specialized tissues such as the eye and testis, the Fas-FasL system is thought to be involved in immune suppressed status in the CNS. Expression of Fas and FasL is significantly elevated in a variety of the neurologic disorders, suggesting the possibility that this system may play roles in degenerative and inflammatory responses in the CNS. Therefore, the FasL-Fas system should be considered as a double-edged sword in the CNS: maintaining the immune suppressed status in normal brain and inducing neuronal cell death and inflammation in a variety of neurologic disorders.
Collapse
Affiliation(s)
- Chulhee Choi
- The Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, 11-1 Daehyun-dong, Sudaemun-gu, Seoul 120-750, South Korea.
| | | |
Collapse
|
98
|
Ruiz de Almodóvar C, López-Rivas A, Ruiz-Ruiz C. Interferon-Gamma and TRAIL in Human Breast Tumor Cells. TRAIL (TNF-RELATED APOPTOSIS-INDUCING LIGAND) 2004; 67:291-318. [PMID: 15110183 DOI: 10.1016/s0083-6729(04)67016-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Induction of apoptosis in tumor cells by death receptor activation is a novel therapeutic strategy. However, in systemic antitumor treatments, severe toxic effects have been observed with tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand. TNF-alpha causes a lethal inflammatory response and CD95L produces lethal liver damage. Preclinical studies in mice and nonhuman primates showed no systemic cytotoxicity upon injection of recombinant TNF-related apoptosis-inducing ligand (TRAIL) at doses that effectively suppressed solid tumors such as colon and mammary carcinomas. Although unwanted effects of some TRAIL preparations have been reported in normal cells, these data suggest that TRAIL could be a suitable approach in cancer therapy. However, several mechanisms of resistance to TRAIL-mediated apoptosis have been described in tumor cells such as lack of TRAIL apoptotic receptors, enhanced expression of TRAIL-decoy receptors, and expression of apoptosis inhibitors. In combination regimes, interferon-gamma (IFN-gamma) could provide a promising antitumor therapeutic approach as it has been described to enhance cellular susceptibility to apoptosis in a variety of tumor cells. The mechanism by which IFN-gamma promotes cell death seems to be via the regulation of the expression of different proteins involved in apoptosis. Altogether, these data suggest a combination strategy to selectively kill tumor cells that need to be further explored.
Collapse
Affiliation(s)
- Carmen Ruiz de Almodóvar
- Department of Cellular Biology and Immunology Instituto de Parasitología y Biomedicina Consejo Superior de Investigaciones Científicas Granada E-18001, Spain
| | | | | |
Collapse
|
99
|
Park SY, Chang I, Kim JY, Kang SW, Park SH, Singh K, Lee MS. Resistance of mitochondrial DNA-depleted cells against cell death: role of mitochondrial superoxide dismutase. J Biol Chem 2003; 279:7512-20. [PMID: 14660625 DOI: 10.1074/jbc.m307677200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have shown that mitochondrial DNA-depleted (rho(0)) SK-Hep1 hepatoma cells are resistant to apoptosis, contrary to previous papers reporting normal apoptotic susceptibility of rho(0) cells. We studied the changes of gene expression in SK-Hep1 rho(0) cells. DNA chip analysis showed that MnSOD expression was profoundly increased in rho(0) cells. O(2)(.) contents increased during rho(0) cell derivation but became normalized after establishment of rho(0) phenotypes, suggesting that MnSOD induction is an adaptive process to increased O(2)(.). rho(0) cells were resistant to menadione, paraquat, or doxorubicin, and O(2)(.) contents after treatment with them were lower in rho(0) cells compared with parental cells because of MnSOD overexpression. Expression levels and activity of glutathione peroxidases were also increased in rho(0) cells, rendering them resistant to exogenous H(2)O(2). rho(0) cells were resistant to p53, and intracellular ROS contents after p53 expression were lower compared with parental cells. Other types of rho(0) cells also showed increased MnSOD expression and resistance against ROS. Heme oxygenase-1 expression was increased in rho(0) cells, and a heme oxygenase-1 inhibitor decreased the induction of MnSOD in rho(0) cells and their resistance against ROS donors. These results indicate that rho(0) cells are resistant to cell death contrary to previous reports and suggest that an adaptive increase in the expression of antioxidant enzymes renders cancer cells or aged cells with frequent mitochondrial DNA mutations to resist against oxidative stress, host anti-cancer surveillance, or chemotherapeutic agents, conferring survival advantage on them.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwondong Kangnam-ku, Seoul 135-710, Korea
| | | | | | | | | | | | | |
Collapse
|
100
|
Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O'Brien K, Wang Y, Hilakivi-Clarke LA. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 2003; 22:7316-39. [PMID: 14576841 DOI: 10.1038/sj.onc.1206937] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiestrogens include agents such as tamoxifen, toremifene, raloxifene, and fulvestrant. Currently, tamoxifen is the only drug approved for use in breast cancer chemoprevention, and it remains the treatment of choice for most women with hormone receptor positive, invasive breast carcinoma. While antiestrogens have been available since the early 1970s, we still do not fully understand their mechanisms of action and resistance. Essentially, two forms of antiestrogen resistance occur: de novo resistance and acquired resistance. Absence of estrogen receptor (ER) expression is the most common de novo resistance mechanism, whereas a complete loss of ER expression is not common in acquired resistance. Antiestrogen unresponsiveness appears to be the major acquired resistance phenotype, with a switch to an antiestrogen-stimulated growth being a minor phenotype. Since antiestrogens compete with estrogens for binding to ER, clinical response to antiestrogens may be affected by exogenous estrogenic exposures. Such exposures include estrogenic hormone replacement therapies and dietary and environmental exposures that directly or indirectly increase a tumor's estrogenic environment. Whether antiestrogen resistance can be conferred by a switch from predominantly ERalpha to ERbeta expression remains unanswered, but predicting response to antiestrogen therapy requires only measurement of ERalpha expression. The role of altered receptor coactivator or corepressor expression in antiestrogen resistance also is unclear, and understanding their roles may be confounded by their ubiquitous expression and functional redundancy. We have proposed a gene network approach to exploring the mechanistic aspects of antiestrogen resistance. Using transcriptome and proteome analyses, we have begun to identify candidate genes that comprise one component of a larger, putative gene network. These candidate genes include NFkappaB, interferon regulatory factor-1, nucleophosmin, and the X-box binding protein-1. The network also may involve signaling through ras and MAPK, implicating crosstalk with growth factors and cytokines. Ultimately, signaling affects the expression/function of the proliferation and/or apoptotic machineries.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology and Vincent T. Lombardi Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|