51
|
Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. BIOLOGY 2020; 10:1. [PMID: 33375175 PMCID: PMC7822156 DOI: 10.3390/biology10010001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
52
|
Srivastava AD, Unione L, Wolfert MA, Valverde P, Ardá A, Jiménez-Barbero J, Boons GJ. Mono- and Di-Fucosylated Glycans of the Parasitic Worm S. mansoni are Recognized Differently by the Innate Immune Receptor DC-SIGN. Chemistry 2020; 26:15605-15612. [PMID: 32957164 PMCID: PMC7894523 DOI: 10.1002/chem.202002619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Indexed: 12/13/2022]
Abstract
The parasitic worm, Schistosoma mansoni, expresses unusual fucosylated glycans in a stage-dependent manner that can be recognized by the human innate immune receptor DC-SIGN, thereby shaping host immune responses. We have developed a synthetic approach for mono- and bis-fucosylated LacdiNAc (LDN-F and LDN-DF, respectively), which are epitopes expressed on glycolipids and glycoproteins of S. mansoni. It is based on the use of monosaccharide building blocks having carefully selected amino-protecting groups, facilitating high yielding and stereoselective glycosylations. The molecular interaction between the synthetic glycans and DC-SIGN was studied by NMR and molecular modeling, which demonstrated that the α1,3-fucoside of LDN-F can coordinate with the Ca2+ -ion of the canonical binding site of DC-SIGN allowing for additional interactions with the underlying LDN backbone. The 1,2-fucoside of LDN-DF can be complexed in a similar manner, however, in this binding mode GlcNAc and GalNAc of the LDN backbone are placed away from the protein surface resulting in a substantially lower binding affinity. Glycan microarray binding studies showed that the avidity and selectivity of binding is greatly enhanced when the glycans are presented multivalently, and in this format Lex and LDN-F gave strong responsiveness, whereas no binding was detected for LDN-DF. The data indicates that S. mansoni has developed a strategy to avoid detection by DC-SIGN in a stage-dependent manner by the addition of a fucoside to a number of its ligands.
Collapse
Affiliation(s)
- Apoorva D Srivastava
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
| | - Margreet A Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Pablo Valverde
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Bizkaia, Spain
- Department of Organic Chemistry II, UPV/EHU, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
53
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
54
|
Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells. Cells 2020; 9:cells9092087. [PMID: 32932639 PMCID: PMC7564404 DOI: 10.3390/cells9092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the synthesis of carbohydrate and glycodendron structures for dendritic cell targeting, which were subsequently bound to hydroxyethyl starch (HES) nanocapsules prepared by the inverse miniemulsion technique. The uptake of the carbohydrate-functionalized HES nanocapsules into immature human dendritic cells (hDCs) revealed a strong dependence on the used carbohydrate. A multivalent mannose-terminated dendron was found to be far superior in uptake compared to the structurally more complex oligosaccharides used.
Collapse
|
55
|
Zhu Q, Shen Z, Chiodo F, Nicolardi S, Molinaro A, Silipo A, Yu B. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat Commun 2020; 11:4142. [PMID: 32811831 PMCID: PMC7434892 DOI: 10.1038/s41467-020-17992-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Glycans are involved in various life processes and represent critical targets of biomedical developments. Nevertheless, the accessibility to long glycans with precise structures remains challenging. Here we report on the synthesis of glycans consisting of [→4)-α-Rha-(1 → 3)-β-Man-(1 → ] repeating unit, which are relevant to the O-antigen of Bacteroides vulgatus, a common component of gut microbiota. The optimal combination of assembly strategy, protecting group arrangement, and glycosylation reaction has enabled us to synthesize up to a 128-mer glycan. The synthetic glycans are accurately characterized by advanced NMR and MS approaches, the 3D structures are defined, and their potent binding activity with human DC-SIGN, a receptor associated with the gut lymphoid tissue, is disclosed.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhengnan Shen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai, 201210, China
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, De Boelelaan 1108, 1081HZ, Amsterdam, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy.
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
56
|
Polycarpou A, Howard M, Farrar CA, Greenlaw R, Fanelli G, Wallis R, Klavinskis LS, Sacks S. Rationale for targeting complement in COVID-19. EMBO Mol Med 2020; 12:e12642. [PMID: 32559343 PMCID: PMC7323084 DOI: 10.15252/emmm.202012642] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
A novel coronavirus, SARS-CoV-2, has recently emerged in China and spread internationally, posing a health emergency to the global community. COVID-19 caused by SARS-CoV-2 is associated with an acute respiratory illness that varies from mild to the life-threatening acute respiratory distress syndrome (ARDS). The complement system is part of the innate immune arsenal against pathogens, in which many viruses can evade or employ to mediate cell entry. The immunopathology and acute lung injury orchestrated through the influx of pro-inflammatory macrophages and neutrophils can be directly activated by complement components to prime an overzealous cytokine storm. The manifestations of severe COVID-19 such as the ARDS, sepsis and multiorgan failure have an established relationship with activation of the complement cascade. We have collected evidence from all the current studies we are aware of on SARS-CoV-2 immunopathogenesis and the preceding literature on SARS-CoV-1 and MERS-CoV infection linking severe COVID-19 disease directly with dysfunction of the complement pathways. This information lends support for a therapeutic anti-inflammatory strategy against complement, where a number of clinically ready potential therapeutic agents are available.
Collapse
MESH Headings
- Adult
- Alveolar Epithelial Cells/immunology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/virology
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/physiology
- COVID-19
- Child
- Complement Activation/drug effects
- Complement C3b/antagonists & inhibitors
- Complement C3b/physiology
- Complement Inactivating Agents/pharmacology
- Complement Inactivating Agents/therapeutic use
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Cytokine Release Syndrome/drug therapy
- Cytokine Release Syndrome/etiology
- Cytokine Release Syndrome/immunology
- Glycosylation
- Humans
- Immunity, Innate
- Ligands
- Mice
- Models, Animal
- Models, Molecular
- Pandemics
- Pattern Recognition, Automated
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Protein Conformation
- Protein Processing, Post-Translational
- Receptors, Virus/metabolism
- Respiratory Distress Syndrome/etiology
- Respiratory Distress Syndrome/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Anastasia Polycarpou
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Mark Howard
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Conrad A Farrar
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Roseanna Greenlaw
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Giorgia Fanelli
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Russell Wallis
- Department of Respiratory Science and InfectionLeicester Institute of Chemical and Structural BiologyUniversity of LeicesterLeicesterUK
| | - Linda S Klavinskis
- Department of Infectious DiseasesSchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Steven Sacks
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| |
Collapse
|
57
|
The Interaction of Fluorinated Glycomimetics with DC-SIGN: Multiple Binding Modes Disentangled by the Combination of NMR Methods and MD Simulations. Pharmaceuticals (Basel) 2020; 13:ph13080179. [PMID: 32759765 PMCID: PMC7463913 DOI: 10.3390/ph13080179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/22/2022] Open
Abstract
Fluorinated glycomimetics are frequently employed to study and eventually modulate protein–glycan interactions. However, complex glycans and their glycomimetics may display multiple binding epitopes that enormously complicate the access to a complete picture of the protein–ligand complexes. We herein present a new methodology based on the synergic combination of experimental 19F-based saturation transfer difference (STD) NMR data with computational protocols, applied to analyze the interaction between DC-SIGN, a key lectin involved in inflammation and infection events with the trifluorinated glycomimetic of the trimannoside core, ubiquitous in human glycoproteins. A novel 2D-STD-TOCSYreF NMR experiment was employed to obtain the experimental STD NMR intensities, while the Complete Relaxation Matrix Analysis (CORCEMA-ST) was used to predict that expected for an ensemble of geometries extracted from extensive MD simulations. Then, an in-house built computer program was devised to find the ensemble of structures that provide the best fit between the theoretical and the observed STD data. Remarkably, the experimental STD profiles obtained for the ligand/DC-SIGN complex could not be satisfactorily explained by a single binding mode, but rather with a combination of different modes coexisting in solution. Therefore, the method provides a precise view of those ligand–receptor complexes present in solution.
Collapse
|
58
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
59
|
Wagener K, Bros M, Krumb M, Langhanki J, Pektor S, Worm M, Schinnerer M, Montermann E, Miederer M, Frey H, Opatz T, Rösch F. Targeting of Immune Cells with Trimannosylated Liposomes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Karolin Wagener
- Institute of Nuclear Chemistry Johannes Gutenberg University Fritz‐Strassmann‐Weg 2 Mainz 55128 Germany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center Langenbeckstraße 1 Mainz 55101 Germany
| | - Matthias Krumb
- Department of ChemistryJohannes Gutenberg University Duesbergweg 10–14 Mainz 55128 Germany
| | - Jens Langhanki
- Department of ChemistryJohannes Gutenberg University Duesbergweg 10–14 Mainz 55128 Germany
| | - Stefanie Pektor
- Clinic and Polyclinic of Nuclear MedicineUniversity Medical Center Langenbeckstraße 1 Mainz 55101 Germany
| | - Matthias Worm
- Department of ChemistryJohannes Gutenberg University Duesbergweg 10–14 Mainz 55128 Germany
| | - Meike Schinnerer
- Department of ChemistryJohannes Gutenberg University Duesbergweg 10–14 Mainz 55128 Germany
- Institute of Physical ChemistryJohannes Gutenberg University Jakob‐Welder‐Weg 11 Mainz 55128 Germany
| | - Evelyn Montermann
- Department of DermatologyUniversity Medical Center Langenbeckstraße 1 Mainz 55101 Germany
| | - Matthias Miederer
- Clinic and Polyclinic of Nuclear MedicineUniversity Medical Center Langenbeckstraße 1 Mainz 55101 Germany
| | - Holger Frey
- Department of ChemistryJohannes Gutenberg University Duesbergweg 10–14 Mainz 55128 Germany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University Duesbergweg 10–14 Mainz 55128 Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry Johannes Gutenberg University Fritz‐Strassmann‐Weg 2 Mainz 55128 Germany
| |
Collapse
|
60
|
Blundell PA, Lu D, Dell A, Haslam S, Pleass RJ. Choice of Host Cell Line Is Essential for the Functional Glycosylation of the Fc Region of Human IgG1 Inhibitors of Influenza B Viruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1022-1034. [PMID: 31907284 PMCID: PMC6994840 DOI: 10.4049/jimmunol.1901145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Abs are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc whose presence and fine structure profoundly impacts on their in vivo immunogenicity, pharmacokinetics, and functional attributes. The host cell line used to produce IgG plays a major role in this glycosylation, as different systems express different glycosylation enzymes and transporters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. In this study, we compare two panels of glycan-adapted IgG1-Fc mutants expressed in either the human endothelial kidney 293-F or Chinese hamster ovary-K1 systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary greatly and in particular, with respect, to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B-mediated agglutination of human erythrocytes when expressed in Chinese hamster ovary-K1, but not in human endothelial kidney 293-F cells.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
61
|
Abstract
The respiratory tract is tasked with responding to a constant and vast influx of foreign agents. It acts as an important first line of defense in the innate immune system and as such plays a crucial role in preventing the entry of invading pathogens. While physical barriers like the mucociliary escalator exert their effects through the clearance of these pathogens, diverse and dynamic cellular mechanisms exist for the activation of the innate immune response through the recognition of pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by pattern recognition receptors (PRRs) that are expressed on a number of myeloid cells such as dendritic cells, macrophages, and neutrophils found in the respiratory tract. C-type lectin receptors (CLRs) are PRRs that play a pivotal role in the innate immune response and its regulation to a variety of respiratory pathogens such as viruses, bacteria, and fungi. This chapter will describe the function of both activating and inhibiting myeloid CLRs in the recognition of a number of important respiratory pathogens as well as the signaling events initiated by these receptors.
Collapse
|
62
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
63
|
Rogers KJ, Brunton B, Mallinger L, Bohan D, Sevcik KM, Chen J, Ruggio N, Maury W. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis 2019; 13:e0007819. [PMID: 31825972 PMCID: PMC6905523 DOI: 10.1371/journal.pntd.0007819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ebolavirus (EBOV) outbreaks, while sporadic, cause tremendous morbidity and mortality. No therapeutics or vaccines are currently licensed; however, a vaccine has shown promise in clinical trials. A critical step towards development of effective therapeutics is a better understanding of factors that govern host susceptibility to this pathogen. As macrophages are an important cell population targeted during virus replication, we explore the effect of cytokine polarization on macrophage infection. METHODS/MAIN FINDINGS We utilized a BSL2 EBOV model virus, infectious, recombinant vesicular stomatitis virus encoding EBOV glycoprotein (GP) (rVSV/EBOV GP) in place of its native glycoprotein. Macrophages polarized towards a M2-like anti-inflammatory state by combined IL-4 and IL-13 treatment were more susceptible to rVSV/EBOV GP, but not to wild-type VSV (rVSV/G), suggesting that EBOV GP-dependent entry events were enhanced by these cytokines. Examination of RNA expression of known surface receptors that bind and internalize filoviruses demonstrated that IL-4/IL-13 stimulated expression of the C-type lectin receptor DC-SIGN in human macrophages and addition of the competitive inhibitor mannan abrogated IL-4/IL-13 enhanced infection. Two murine DC-SIGN-like family members, SIGNR3 and SIGNR5, were upregulated by IL-4/IL-13 in murine macrophages, but only SIGNR3 enhanced virus infection in a mannan-inhibited manner, suggesting that murine SIGNR3 plays a similar role to human DC-SIGN. In vivo IL-4/IL-13 administration significantly increased virus-mediated mortality in a mouse model and transfer of ex vivo IL-4/IL-13-treated murine peritoneal macrophages into the peritoneal cavity of mice enhanced pathogenesis. SIGNIFICANCE These studies highlight the ability of macrophage polarization to influence EBOV GP-dependent virus replication in vivo and ex vivo, with M2a polarization upregulating cell surface receptor expression and thereby enhancing virus replication. Our findings provide an increased understanding of the host factors in macrophages governing susceptibility to filoviruses and identify novel murine receptors mediating EBOV entry.
Collapse
Affiliation(s)
- Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Laura Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Kristina M. Sevcik
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Jing Chen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
- * E-mail:
| |
Collapse
|
64
|
Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Rep 2019; 25:3136-3147.e5. [PMID: 30540945 PMCID: PMC6302666 DOI: 10.1016/j.celrep.2018.11.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Alphaviruses are enveloped pathogens that cause arthritis and encephalitis. Here, we report a 4.4-Å cryoelectron microscopy (cryo-EM) structure of eastern equine encephalitis virus (EEEV), an alphavirus that causes fatal encephalitis in humans. Our analysis provides insights into viral entry into host cells. The envelope protein E2 showed a binding site for the cellular attachment factor heparan sulfate. The presence of a cryptic E2 glycan suggests how EEEV escapes surveillance by lectin-expressing myeloid lineage cells, which are sentinels of the immune system. A mechanism for nucleocapsid core release and disassembly upon viral entry was inferred based on pH changes and capsid dissociation from envelope proteins. The EEEV capsid structure showed a viral RNA genome binding site adjacent to a ribosome binding site for viral genome translation following genome release. Using five Fab-EEEV complexes derived from neutralizing antibodies, our investigation provides insights into EEEV host cell interactions and protective epitopes relevant to vaccine design. EEEV cryo-EM structure shows the basis of receptor binding and pH-triggered disassembly Cryptic envelope protein glycosylation interferes with immune detection EEEV RNA genome binding site on capsid protein has an extended conformation Antibody inhibition of EEEV entry involves cross-linking of viral envelope proteins
Collapse
|
65
|
Solution structure, glycan specificity and of phenol oxidase inhibitory activity of Anopheles C-type lectins CTL4 and CTLMA2. Sci Rep 2019; 9:15191. [PMID: 31645596 PMCID: PMC6811590 DOI: 10.1038/s41598-019-51353-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
Malaria, the world's most devastating parasitic disease, is transmitted between humans by mosquitoes of the Anopheles genus. An. gambiae is the principal malaria vector in Sub-Saharan Africa. The C-type lectins CTL4 and CTLMA2 cooperatively influence Plasmodium infection in the malaria vector Anopheles. Here we report the purification and biochemical characterization of CTL4 and CTLMA2 from An. gambiae and An. albimanus. CTL4 and CTLMA2 are known to form a disulfide-bridged heterodimer via an N-terminal tri-cysteine CXCXC motif. We demonstrate in vitro that CTL4 and CTLMA2 intermolecular disulfide formation is promiscuous within this motif. Furthermore, CTL4 and CTLMA2 form higher oligomeric states at physiological pH. Both lectins bind specific sugars, including glycosaminoglycan motifs with β1-3/β1-4 linkages between glucose, galactose and their respective hexosamines. Small-angle x-ray scattering data supports a compact heterodimer between the CTL domains. Recombinant CTL4/CTLMA2 is found to function in vivo, reversing the enhancement of phenol oxidase activity in dsCTL4-treated mosquitoes. We propose these molecular features underline a common function for CTL4/CTLMA2 in mosquitoes, with species and strain-specific variation in degrees of activity in response to Plasmodium infection.
Collapse
|
66
|
Jan M, Upadhyay C, Hioe CE. HIV-1 Envelope Glycan Composition as a Key Determinant of Efficient Virus Transmission via DC-SIGN and Resistance to Inhibitory Lectins. iScience 2019; 21:413-427. [PMID: 31704652 PMCID: PMC6889591 DOI: 10.1016/j.isci.2019.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 02/04/2023] Open
Abstract
The HIV-1 envelope (Env) surface is shrouded with an assortment of oligomannose-, hybrid-, and complex-type glycans that enable virus interaction with carbohydrate-recognizing lectins. This study examined the importance of glycan heterogeneity for HIV-1 transmission through the trans-infection pathway by the host mannose-binding lectin DC-SIGN. A diversity of glycan content was observed among HIV-1 strains and associated with varying degrees of trans-infection via DC-SIGN and sensitivity to trans-infection blockage by antiviral lectins. When Env glycans were modified to display only the oligomannose type, DC-SIGN-mediated virus capture was enhanced; however, virus trans-infection was diminished because of increased degradation, which was alleviated by incorporation with hybrid-type glycans. Amino acid changes in the Env signal peptide (SP) modulated the Env glycan content, leading to alterations in DC-SIGN-dependent trans-infection and virus sensitivity to antiviral lectins. Hence, SP variation and glycosylation that confer varied types of oligosaccharides to HIV-1 Env are critical determinants for virus fitness and phenotypic diversity.
Collapse
Affiliation(s)
- Muzafar Jan
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA,Corresponding author
| |
Collapse
|
67
|
Abstract
Multivalent protein-protein interactions serve central roles in many essential biological processes, ranging from cell signaling and adhesion to pathogen recognition. Uncovering the rules that govern these intricate interactions is important not only to basic biology and chemistry but also to the applied sciences where researchers are interested in developing molecules to promote or inhibit these interactions. Here we report the synthesis and application of atomically precise inorganic cluster nanomolecules consisting of an inorganic core and a covalently linked densely packed layer of saccharides. These hybrid agents are stable under biologically relevant conditions and exhibit multivalent binding capabilities, which enable us to study the complex interactions between glycosylated structures and a dendritic cell lectin receptor. Importantly, we find that subtle changes in the molecular structure lead to significant differences in the nanomolecule's protein-binding properties. Furthermore, we demonstrate an example of using these hybrid nanomolecules to effectively inhibit protein-protein interactions in a human cell line. Ultimately, this work reveals an intricate interplay between the structural design of multivalent agents and their biological activities toward protein surfaces.
Collapse
|
68
|
Chéneau C, Coulon F, Porkolab V, Fieschi F, Laurant S, Razanajaona-Doll D, Pin JJ, Borst EM, Messerle M, Bressollette-Bodin C, Halary F. Fine Mapping the Interaction Between Dendritic Cell-Specific Intercellular Adhesion Molecule (ICAM)-3-Grabbing Nonintegrin and the Cytomegalovirus Envelope Glycoprotein B. J Infect Dis 2019; 218:490-503. [PMID: 29648611 PMCID: PMC6049025 DOI: 10.1093/infdis/jiy194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a leading cause of virally induced congenital disorders and morbidities in immunocompromised individuals, ie, transplant, cancer, or acquired immune deficiency syndrome patients. Human cytomegalovirus infects virtually all cell types through the envelope glycoprotein complex gH/gL/gO with or without a contribution of the pentameric gH/gL/pUL128L. Together with gH/gL, the HCMV envelope glycoprotein B (gB) contributes to the viral fusion machinery. Methods We previously showed that gB is a ligand for the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) contributing to HCMV attachment to and infection of DC-SIGN-expressing cells. However, the features of the DC-SIGN/gB interaction remain unclear. To address this point, the role of glycans on gB and the consequences of mutagenesis and antibody-mediated blockades on both partners were examined in this study. Results We identified DC-SIGN amino acid residues involved in this interaction through an extensive mutagenesis study. We also showed the importance of high-mannose N-glycans decorating the asparagine residue at position 208, demonstrating that the antigenic domain 5 on gB is involved in the interaction with DC-SIGN. Finally, antibody-mediated blockades allowed us to identify DC-SIGN as a major HCMV attachment receptor on monocyte-derived dendritic cells. Conclusions Taken together, these results have permitted us to fine-map the interaction between DC-SIGN and HCMV gB.
Collapse
Affiliation(s)
- Coraline Chéneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Flora Coulon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Vanessa Porkolab
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | | | | | | | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France.,Service de Virologie Clinique, CHU Hotel Dieu, Nantes, France
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| |
Collapse
|
69
|
Valverde P, Delgado S, Martínez JD, Vendeville JB, Malassis J, Linclau B, Reichardt NC, Cañada FJ, Jiménez-Barbero J, Ardá A. Molecular Insights into DC-SIGN Binding to Self-Antigens: The Interaction with the Blood Group A/B Antigens. ACS Chem Biol 2019; 14:1660-1671. [PMID: 31283166 PMCID: PMC6646960 DOI: 10.1021/acschembio.9b00458] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The
dendritic cell-specific intracellular adhesion molecule-3-grabbing
nonintegrin (DC-SIGN) is an important receptor of the immune system.
Besides its role as pathogen recognition receptor (PRR), it also interacts
with endogenous glycoproteins through the specific recognition of
self-glycan epitopes, like LeX. However, this lectin represents
a paradigmatic case of glycan binding promiscuity, and it also has
been shown to recognize antigens with α1−α2 linked
fucose, such as the histo blood group antigens, with similar affinities
to LeX. Herein, we have studied the interaction in solution
between DC-SIGN and the blood group A and B antigens, to get insights
into the atomic details of such interaction. With a combination of
different NMR experiments, we demonstrate that the Fuc coordinates
the primary Ca2+ ion with a single binding mode through
3-OH and 4-OH. The terminal αGal/αGalNAc affords marginal
direct polar contacts with the protein, but provides a hydrophobic
hook in which V351 of the lectin perfectly fits. Moreover, we have
found that αGal, but not αGalNAc, is a weak binder itself
for DC-SIGN, which could endow an additional binding mode for the
blood group B antigen, but not for blood group A.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - J. Daniel Martínez
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | | | - Julien Malassis
- School of Chemistry, University of Southampton Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield, Southampton SO17 1BJ, United Kingdom
| | | | | | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
70
|
Abstract
Dendritic cell (DC) lectins mediate the recognition, uptake, and processing of antigens, but they can also be coopted by pathogens for infection. These distinct activities depend upon the routing of antigens within the cell. Antigens directed to endosomal compartments are degraded, and the peptides are presented on major histocompatibility complex class II molecules, thereby promoting immunity. Alternatively, HIV-1 can avoid degradation, as virus engagement with C-type lectin receptors (CLRs), such as DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin) results in trafficking to surface-accessible invaginated pockets. This process appears to enable infection of T cells in trans We sought to explore whether antigen fate upon CLR-mediated internalization was affected by antigen physical properties. To this end, we employed the ring-opening metathesis polymerization to generate glycopolymers that each display multiple copies of mannoside ligand for DC-SIGN, yet differ in length and size. The rate and extent of glycopolymer internalization depended upon polymer structure-longer polymers were internalized more rapidly and more efficiently than were shorter polymers. The trafficking, however, did not differ, and both short and longer polymers colocalized with transferrin-labeled early endosomes. To explore how DC-SIGN directs larger particles, such as pathogens, we induced aggregation of the polymers to access particulate antigens. Strikingly, these particulate antigens were diverted to the invaginated pockets that harbor HIV-1. Thus, antigen structure has a dramatic effect on DC-SIGN-mediated uptake and trafficking. These findings have consequences for the design of synthetic vaccines. Additionally, the results suggest strategies for targeting DC reservoirs that harbor viral pathogens.
Collapse
|
71
|
Martínez JD, Valverde P, Delgado S, Romanò C, Linclau B, Reichardt NC, Oscarson S, Ardá A, Jiménez-Barbero J, Cañada FJ. Unraveling Sugar Binding Modes to DC-SIGN by Employing Fluorinated Carbohydrates. Molecules 2019; 24:molecules24122337. [PMID: 31242623 PMCID: PMC6631030 DOI: 10.3390/molecules24122337] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022] Open
Abstract
A fluorine nuclear magnetic resonance (19F-NMR)-based method is employed to assess the binding preferences and interaction details of a library of synthetic fluorinated monosaccharides towards dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a lectin of biomedical interest, which is involved in different viral infections, including HIV and Ebola, and is able to recognize a variety of self- and non-self-glycans. The strategy employed allows not only screening of a mixture of compounds, but also obtaining valuable information on the specific sugar–protein interactions. The analysis of the data demonstrates that monosaccharides Fuc, Man, Glc, and Gal are able to bind DC-SIGN, although with decreasing affinity. Moreover, a new binding mode between Man moieties and DC-SIGN, which might have biological implications, is also detected for the first time. The combination of the 19F with standard proton saturation transfer difference (1H-STD-NMR) data, assisted by molecular dynamics (MD) simulations, permits us to successfully define this new binding epitope, where Man coordinates a Ca2+ ion of the lectin carbohydrate recognition domain (CRD) through the axial OH-2 and equatorial OH-3 groups, thus mimicking the Fuc/DC-SIGN binding architecture.
Collapse
Affiliation(s)
- J Daniel Martínez
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Cecilia Romanò
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Niels C Reichardt
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastián, Gipuzkoa, Spain.
- CIBER-BBN, Paseo Miramon 182, 20009 San Sebastián, Gipuzkoa, Spain.
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain.
- Department of Organic Chemistry II, Faculty of Science and Technology, EHU-UPV, 48160 Leioa, Spain.
| | - F Javier Cañada
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
72
|
Ren J, Wang Z, Chen E. Different Associations between DC-SIGN Promoter-336G/A ( rs4804803) Polymorphism with Severe Dengue in Asians and South-Central Americans: a Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081475. [PMID: 31027310 PMCID: PMC6518176 DOI: 10.3390/ijerph16081475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022]
Abstract
Objective: This study was conducted to identify the association between rs4804803 polymorphism in DC-SIGN with the susceptibility of severe dengue. Methods: A comprehensive search was conducted to identify all eligible papers in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Google Scholar. Odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were used to assess the association. Subgroup analyses were performed by ethnicity. Sensitivity analyses were performed through employing different statistical models (fixed versus random effect model). Results: A total of nine papers and 12 studies, with 1520 severe dengue and 1496 clinical dengue infection were included. The overall meta-analysis revealed significant associations between rs4804803 and severe dengue under the recession (GG versus GA/AA: OR = 0.44, 95%CI, 0.23–0.82) and a codominant model (GG versus AA: OR = 0.43, 95%CI, 0.23–0.81), but sensitivity analysis indicated that the significant pooled ORs were not robust. The subgroup analysis suggested that the carrier of G in rs4804803 was a risk factor for severe dengue under dominant (GG/GA versus AA: OR = 1.86,95%CI, 1.01–3.45), superdominant (GA versus GG/AA: OR = 1.81,95%CI, 1.02–3.21) and a codominant (GA versus AA: OR=1.82,95%CI, 1.02–3.26) models in Asians, while it was a protective factor for severe dengue in South-central Americans under recessive (GG versus GA/AA: OR = 0.27,95%CI, 0.10–0.70) and codominant (GG versus AA: OR=0.24,95%CI, 0.09–0.64) models. The results from subgroup analysis were robust. Conclusions: Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) promoter-336G/A (rs4804803) polymorphism is association with severe dengue, and it acts in different directions for Asians and South-central Americans.
Collapse
Affiliation(s)
- Jiangping Ren
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China.
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China.
- Field Epidemiology Training Program of Zhejiang Province, Hangzhou 310051, China.
| | - Zhengting Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China.
| | - Enfu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China.
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China.
| |
Collapse
|
73
|
Taouai M, Porkolab V, Chakroun K, Cheneau C, Luczkowiak J, Abidi R, Lesur D, Cragg PJ, Halary F, Delgado R, Fieschi F, Benazza M. Unprecedented Thiacalixarene Fucoclusters as Strong Inhibitors of Ebola cis-Cell Infection and HCMV-gB Glycoprotein/DC-SIGN C-type Lectin Interaction. Bioconjug Chem 2019; 30:1114-1126. [DOI: 10.1021/acs.bioconjchem.9b00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Coraline Cheneau
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - David Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Franck Halary
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| |
Collapse
|
74
|
Geissner A, Reinhardt A, Rademacher C, Johannssen T, Monteiro J, Lepenies B, Thépaut M, Fieschi F, Mrázková J, Wimmerova M, Schuhmacher F, Götze S, Grünstein D, Guo X, Hahm HS, Kandasamy J, Leonori D, Martin CE, Parameswarappa SG, Pasari S, Schlegel MK, Tanaka H, Xiao G, Yang Y, Pereira CL, Anish C, Seeberger PH. Microbe-focused glycan array screening platform. Proc Natl Acad Sci U S A 2019; 116:1958-1967. [PMID: 30670663 PMCID: PMC6369816 DOI: 10.1073/pnas.1800853116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Reinhardt
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Timo Johannssen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - João Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michel Thépaut
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Jana Mrázková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Michaela Wimmerova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Frank Schuhmacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Götze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dan Grünstein
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Xiaoqiang Guo
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heung Sik Hahm
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jeyakumar Kandasamy
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Daniele Leonori
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christopher E Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Sandip Pasari
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark K Schlegel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Hidenori Tanaka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Guozhi Xiao
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - You Yang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
75
|
Schulze J, Baukmann H, Wawrzinek R, Fuchsberger FF, Specker E, Aretz J, Nazaré M, Rademacher C. CellFy: A Cell-Based Fragment Screen against C-Type Lectins. ACS Chem Biol 2018; 13:3229-3235. [PMID: 30480432 DOI: 10.1021/acschembio.8b00875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fragment-based drug discovery is a powerful complement to conventional high-throughput screening, especially for difficult targets. Screening low-molecular-weight fragments usually requires highly sensitive biophysical methods, because of the generally low affinity of the identified ligands. Here, we developed a cell-based fragment screening assay (cellFy) that allows sensitive identification of fragment hits in a physiologically more relevant environment, in contrast to isolated target screenings in solution. For this, a fluorescently labeled multivalent reporter was employed, enabling direct measurement of displacement by low-molecular-weight fragments without requiring enzymatic reactions or receptor activation. We applied this technique to identify hits against two challenging targets of the C-type lectin receptor (CLR) family: Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN) and Langerin. Both receptors are involved in pathogen recognition and initiation of an immune response, which renders them attractive targets for immune modulation. Because of their shallow and hydrophilic primary binding site, hit identification for CLRs is challenging and druglike ligands for CLRs are sparse. Screening of a fragment library followed by hit validation identified several promising candidates for further fragment evolution for DC-SIGN. In addition, a multiplexed assay format was developed for simultaneous screening against multiple CLRs, allowing a selectivity counterscreening. Overall, this sensitive cell-based fragment screening assay provides a powerful tool for rapid identification of bioactive fragments, even for difficult targets.
Collapse
Affiliation(s)
- Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hannes Baukmann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Robert Wawrzinek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Felix F. Fuchsberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jonas Aretz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
76
|
Decout A, Silva-Gomes S, Drocourt D, Blattes E, Rivière M, Prandi J, Larrouy-Maumus G, Caminade AM, Hamasur B, Källenius G, Kaur D, Dobos KM, Lucas M, Sutcliffe IC, Besra GS, Appelmelk BJ, Gilleron M, Jackson M, Vercellone A, Tiraby G, Nigou J. Deciphering the molecular basis of mycobacteria and lipoglycan recognition by the C-type lectin Dectin-2. Sci Rep 2018; 8:16840. [PMID: 30443026 PMCID: PMC6237770 DOI: 10.1038/s41598-018-35393-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/04/2023] Open
Abstract
Dectin-2 is a C-type lectin involved in the recognition of several pathogens such as Aspergillus fumigatus, Candida albicans, Schistosoma mansonii, and Mycobacterium tuberculosis that triggers Th17 immune responses. Identifying pathogen ligands and understanding the molecular basis of their recognition is one of the current challenges. Purified M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) was shown to induce signaling via Dectin-2, an activity that requires the (α1 → 2)-linked mannosides forming the caps. Here, using isogenic M. tuberculosis mutant strains, we demonstrate that ManLAM is a bona fide and actually the sole ligand mediating bacilli recognition by Dectin-2, although M. tuberculosis produces a variety of cell envelope mannoconjugates, such as phosphatidyl-myo-inositol hexamannosides, lipomannan or manno(lipo)proteins, that bear (α1 → 2)-linked mannosides. In addition, we found that Dectin-2 can recognize lipoglycans from other bacterial species, such as Saccharotrix aerocolonigenes or the human opportunistic pathogen Tsukamurella paurometabola, suggesting that lipoglycans are prototypical Dectin-2 ligands. Finally, from a structure/function relationship perspective, we show, using lipoglycan variants and synthetic mannodendrimers, that dimannoside caps and multivalent interaction are required for ligand binding to and signaling via Dectin-2. Better understanding of the molecular basis of ligand recognition by Dectin-2 will pave the way for the rational design of potent adjuvants targeting this receptor.
Collapse
Affiliation(s)
- Alexiane Decout
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,InvivoGen, Research Department, 31400, Toulouse, France.,Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandro Silva-Gomes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,GlaxoSmithKline (GSK), Stevenage Herts, SG1 2NY, UK
| | | | - Emilyne Blattes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,Innovative Medecine for Tuberculosis (iM4TB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Michel Rivière
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Jacques Prandi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Gérald Larrouy-Maumus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Beston Hamasur
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.,Biopromic AB, 171 65, Solna, Sweden
| | - Gunilla Källenius
- Department of Medicine, Karolinska Institutet Solna 171 76, Stockholm, Sweden
| | - Devinder Kaur
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.,Massachusetts Supranational TB Reference Laboratory, University of Massachusetts Medical School, Jamaica Plain, MA, 0213, USA
| | - Karen M Dobos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Megan Lucas
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ben J Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Gérard Tiraby
- InvivoGen, Research Department, 31400, Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.
| |
Collapse
|
77
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
78
|
Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme Microb Technol 2018; 117:45-55. [DOI: 10.1016/j.enzmictec.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023]
|
79
|
Ning S, Yao M, Wu Y, Zhou X, Zhong C, Yan K, Wei Z, Xie Y. Correlation of variable repeat number in the neck regions of DC-SIGN and DC-SIGNR with susceptibility to nasopharyngeal carcinoma in a Chinese population. Cancer Manag Res 2018; 10:3193-3198. [PMID: 30233235 PMCID: PMC6130306 DOI: 10.2147/cmar.s167114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective To evaluate the potential association of variations in the number of tandem repeats in the dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin-related (DC-SIGNR) neck region with susceptibility to nasopharyngeal carcinoma (NPC). Methods Variations in the number of repeats in the genotypes and alleles in the neck region of DC-SIGN/DC-SIGNR were analyzed in 477 unrelated NPC patients and 561 cancer-free controls. Results Genotypes and alleles in the DC-SIGN neck region did not differ significantly between NPC patients and controls, but the 9-repeat genotype in the DC-SIGNR neck region was significantly more frequent among patients (OR 1.339, 95% CI 1.018–1.760, P=0.037). The association between this genotype and NPC remained significant after adjusting for sex, age, smoking history, and presence of immunoglobulin against Epstein–Barr virus viral capsid antigen (OR 1.625, 95% CI 1.134–2.329, P=0.0082). Conclusion These results suggest that genotypes/alleles in the DC-SIGN neck region are not associated with NPC susceptibility, whereas the 9-repeat variant in the neck region of DC-SIGNR may increase the risk of NPC.
Collapse
Affiliation(s)
- Sisi Ning
- Graduate School of Guangxi Medical University, Nanning, China
| | - Mengwei Yao
- Graduate School of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Graduate School of Guangxi Medical University, Nanning, China
| | - Xunzhao Zhou
- Graduate School of Guangxi Medical University, Nanning, China
| | - Changtao Zhong
- Graduate School of Guangxi Medical University, Nanning, China
| | - Kui Yan
- Graduate School of Guangxi Medical University, Nanning, China
| | - Zhengbo Wei
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China,
| | - Ying Xie
- Life Sciences Institute of Guangxi Medical University, Nanning, China, .,Key Laboratory for High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China,
| |
Collapse
|
80
|
Ng S, Bennett NJ, Schulze J, Gao N, Rademacher C, Derda R. Genetically-encoded fragment-based discovery of glycopeptide ligands for DC-SIGN. Bioorg Med Chem 2018; 26:5368-5377. [PMID: 30344001 DOI: 10.1016/j.bmc.2018.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022]
Abstract
We have employed genetically-encoded fragment-based discovery to identify novel glycopeptides with affinity for the dendritic cell receptor DC-SIGN. Starting from libraries of 108 mannose-conjugated peptides, we identified glycopeptides that exhibited up to a 650-fold increase in multivalent binding affinity for DC-SIGN, which is also preserved in cells. Monovalently, our most potent glycopeptides have a similar potency to a Man3 oligosaccharide, representing a 15-fold increase in activity compared to mannose. These compounds represent the first examples of glycopeptide ligands that target the CRD of DC-SIGN. The natural framework of glycopeptide conjugates and the simplicity of orthogonal conjugation to make these glycopeptides anticipates a promising future for development of DC-SIGN-targeting moieties.
Collapse
Affiliation(s)
- Simon Ng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Nan Gao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
81
|
Fujihira H, Usami K, Matsuno K, Takeuchi H, Denda-Nagai K, Furukawa JI, Shinohara Y, Takada A, Kawaoka Y, Irimura T. A Critical Domain of Ebolavirus Envelope Glycoprotein Determines Glycoform and Infectivity. Sci Rep 2018; 8:5495. [PMID: 29615747 PMCID: PMC5882653 DOI: 10.1038/s41598-018-23357-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/09/2018] [Indexed: 11/09/2022] Open
Abstract
Ebolaviruses comprises 5 species that exert varying degrees of mortality/infectivity in humans with Reston ebolaviruses (REBOV) showing the lowest and Zaire ebolaviruses (ZEBOV) showing the highest. However, the molecular basis of this differential mortality/infectivity remains unclear. Here, we report that the structural features of ebolavirus envelope glycoproteins (GPs) and one of their counter receptors, macrophage galactose-type calcium-type lectin (MGL/CD301), play crucial roles in determining viral infectivity. The low infectivity of REBOV mediated by the interaction between GPs and MGL/CD301 dramatically increased when the N-terminal 18 amino acids (33rd through 50th) of GPs were replaced with that of ZEBOV. Furthermore, structural analysis of glycans of GPs revealed that N-glycans were more extended in REBOV than in ZEBOV. N-glycan extension was reversed by the replacement of aforementioned N-terminal 18 amino acid residues. Therefore, these data strongly suggest that extended N-glycans on GPs reduce MGL/CD301-mediated viral infectivity by hindering the interaction between GPs and MGL/CD301 preferentially binds O-glycans.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. .,Glycometabolome Team, Systems Glycobiology Research Group, Global Research Cluster, RIKEN, Saitama, 351-0198, Japan.
| | - Katsuaki Usami
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Division of International Services, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan
| | - Hideyuki Takeuchi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Molecular Biochemistry, Nagoya University School of Medicine, Nagoya, 4668550, Japan
| | - Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.,Department of Advanced clinical glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.,Department of Pharmacy, Kinjo Gakuin University, Nagoya, 4638521, Japan
| | - Ayato Takada
- Division of International Services, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Yoshihiro Kawaoka
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
82
|
Yolitz J, Schwing C, Chang J, Van Ryk D, Nawaz F, Wei D, Cicala C, Arthos J, Fauci AS. Signal peptide of HIV envelope protein impacts glycosylation and antigenicity of gp120. Proc Natl Acad Sci U S A 2018; 115:2443-2448. [PMID: 29463753 PMCID: PMC5877976 DOI: 10.1073/pnas.1722627115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope protein (Env) of early-replicating viruses encodes several distinct transmission signatures. One such signature involves a reduced number of potential N-linked glycosylation sites (PNGs). This transmission signature underscores the importance of posttranslational modifications in the fitness of early-replicating isolates. An additional signature in Env involves the overrepresentation of basic amino acid residues at a specific position in the Env signal peptide (SP). In this report, we investigated the potential impact of this SP signature on gp120 glycosylation and antigenicity. Two recombinant gp120s were constructed, one derived from an isolate that lacks this signature and a second from an early-replicating isolate that includes this signature. Chimeric gp120s were also constructed in which the two SPs were swapped between the isolates. All four gp120s were probed with glycan-, structure- and receptor- specific probes in a surface plasmon resonance binding assay. We found that the SP of Env influences qualitative aspects of Env glycosylation that in turn affect the antigenicity of Env in a major way. The SP impacts the affinity of Env for DC-SIGN, a lectin receptor expressed on dendritic cells that is believed to play a role in mucosal transmission. Additionally, affinity for the monoclonal antibodies 17b and A32, which recognize a CD4-induced, open conformation of Env is also altered. These results demonstrate that natural variation in the SP of HIV Env can significantly impact the antigenicity of mature gp120. Thus, the SP is likely subject to antibody-mediated immune pressure.
Collapse
Affiliation(s)
- Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-Johns Hopkins University Graduate Partnership Program, National Institutes of Health, Bethesda, MD 20892
| | - Catherine Schwing
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julia Chang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
83
|
Probing Multivalent Protein–Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer. Methods Enzymol 2018; 598:71-100. [DOI: 10.1016/bs.mie.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
84
|
Sager CP, Eriş D, Smieško M, Hevey R, Ernst B. What contributes to an effective mannose recognition domain? Beilstein J Org Chem 2017; 13:2584-2595. [PMID: 29259668 PMCID: PMC5727865 DOI: 10.3762/bjoc.13.255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
Abstract
In general, carbohydrate-lectin interactions are characterized by high specificity but also low affinity. The main reason for the low affinities are desolvation costs, due to the numerous hydroxy groups present on the ligand, together with the typically polar surface of the binding sites. Nonetheless, nature has evolved strategies to overcome this hurdle, most prominently in relation to carbohydrate-lectin interactions of the innate immune system but also in bacterial adhesion, a process key for the bacterium's survival. In an effort to better understand the particular characteristics, which contribute to a successful carbohydrate recognition domain, the mannose-binding sites of six C-type lectins and of three bacterial adhesins were analyzed. One important finding is that the high enthalpic penalties caused by desolvation can only be compensated for by the number and quality of hydrogen bonds formed by each of the polar hydroxy groups engaged in the binding process. In addition, since mammalian mannose-binding sites are in general flat and solvent exposed, the half-lives of carbohydrate-lectin complexes are rather short since water molecules can easily access and displace the ligand from the binding site. In contrast, the bacterial lectin FimH benefits from a deep mannose-binding site, leading to a substantial improvement in the off-rate. Together with both a catch-bond mechanism (i.e., improvement of affinity under shear stress) and multivalency, two methods commonly utilized by pathogens, the affinity of the carbohydrate-FimH interaction can be further improved. Including those just described, the various approaches explored by nature to optimize selectivity and affinity of carbohydrate-lectin interactions offer interesting therapeutic perspectives for the development of carbohydrate-based drugs.
Collapse
Affiliation(s)
- Christoph P Sager
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Deniz Eriş
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
85
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
86
|
Morbioli I, Porkolab V, Magini A, Casnati A, Fieschi F, Sansone F. Mannosylcalix[n]arenes as multivalent ligands for DC-SIGN. Carbohydr Res 2017; 453-454:36-43. [PMID: 29121497 DOI: 10.1016/j.carres.2017.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/30/2022]
Abstract
DC-SIGN is a receptor protruded from the membrane of immature dendritic cells (DCs) that participates in the activation of the immune response through the recognition of pathogen-associated molecular patterns (PAMPs). On the other hand, HIV exploits the interaction between high-mannose structures of its envelope glycoprotein gp120 and DC-SIGN to be transported towards and infect T-cells. DC-SIGN is involved in the recognition process in the form of a tetramer and the multiple exposition of carbohydrate recognition sites (CRSs) is amplified by the formation on the DCs membrane of patches of tetramers. DC-SIGN is then considered an interesting target to fight the virus and multivalent systems exposing multiple copies of ligating units for its CRSs are becoming valuable tools to reach this goal. We herein prepared four mannosylated calix[n]arenes (1a-d) and tested them by Surface Plasmon Resonance (SPR) competition assays as inhibitors of the binding between DC-SIGN and a mannosylated BSA used as model of HIV gp120. IC50s in the μM range were found evidencing in particular for compound 1a that, although rather moderate, a multivalent effect is taking place in the inhibition activity of this cluster. A relative potency (rp/n) around 4, respect to the monovalent methyl α-mannoside and normalized for the number of monosaccharide on the scaffold, was observed. This result, compared with previously reported data relative to dendrimers with the same valency, indicates the calixarene as a promising scaffold to build efficient inhibitors for DC-SIGN and, in perspective, for HIV.
Collapse
Affiliation(s)
- Ilaria Morbioli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Vanessa Porkolab
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| | - Andrea Magini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France.
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
87
|
Wang X, Jiang Y, Yuan M, Chen C, Wang K, Zhang Q, Zuo Y, Ren S. Overexpression of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related protein in cervical cancer and correlation with squamous cell carcinoma antigen. Oncol Lett 2017; 14:2813-2821. [PMID: 28927040 PMCID: PMC5588121 DOI: 10.3892/ol.2017.6508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related protein (DC-SIGNR) is a type II transmembrane protein that has been reported to bind to various pathogens and participate in immunoregulation and tumorigenesis. However, further research is required to investigate whether the level of DC-SIGNR and cervical cancer are associated. The present study aimed to explore the clinical diagnostic significance of DC-SIGNR in cervical cancer. Immunohistochemical staining of DC-SIGNR was performed in samples from 25 patients with early stage cervical cancer, 14 patients with cervical intraepithelial neoplasia (CIN) and cervical polyp samples from 15 individuals. DC-SIGNR expression in cervical cancer tissue was significantly higher compared with that in CIN and cervical polyp tissue (P=0.0184 and P=0.0236, respectively). However, there was no significant difference in DC-SIGNR expression between CIN and cervical polyp tissue (P=0.8103). Additionally, the serum DC-SIGNR levels in 84 cervical cancer patients and 69 healthy female individuals were measured using an ELISA. Serum (s)DC-SIGNR levels were significantly higher in cervical cancer patients compared with healthy female individuals (P<0.0001). A sDC-SIGNR level of 93.7 ng/ml was revealed by receiver operating characteristic curve analysis to predict the presence of cervical cancer with 69.57% sensitivity and 66.67% specificity (area under the curve, 0.6989; P<0.0001). Levels of sDC-SIGNR in cervical cancer patients were also correlated with serum levels of squamous cell carcinoma antigen (r=0.2583; P=0.0348). The results of the present study demonstrate that DC-SIGNR is overexpressed in cervical cancer tissue, and suggest that DC-SIGNR could serve as a biomarker for the early diagnosis of cervical cancer. Nevertheless, further studies are required to demonstrate what role DC-SIGNR serves in cervical cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yangmei Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Menglang Yuan
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chunlin Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Keyong Wang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qianshi Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuangyi Ren
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
88
|
Mitchell DA, Zhang Q, Voorhaar L, Haddleton DM, Herath S, Gleinich AS, Randeva HS, Crispin M, Lehnert H, Wallis R, Patterson S, Becer CR. Manipulation of cytokine secretion in human dendritic cells using glycopolymers with picomolar affinity for DC-SIGN. Chem Sci 2017; 8:6974-6980. [PMID: 29147524 PMCID: PMC5642150 DOI: 10.1039/c7sc01515a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/11/2017] [Indexed: 12/25/2022] Open
Abstract
The human C-type lectin DC-SIGN (CD209) is a significant receptor on the surface of dendritic cells (DCs) - crucial components of host defense that bridge the innate and adaptive immune systems. A range of linear glycopolymers, constructed via controlled radical polymerization techniques have been shown to interact with DC-SIGN with affinities in the physiologically active range. However, these first generation glycopolymers possess limited structural definition and their effects on DCs were not known. Here we report the development of star-shaped mannose glycopolymers with the aim of targeting the clustered domain arrangement of DC-SIGN and these were shown to bind with picomolar affinity. Increased secretion of IL-10 with simultaneous decrease in secreted IL-12p70 occurred in activated DCs incubated with star-shaped glycopolymers - a cytokine secretion pattern characteristic of wound-healing tissue environments. Incorporating stellar architecture into glycopolymer design could be key to developing selective and very high-affinity therapeutic materials with distinct immunomodulatory and tissue repair potential.
Collapse
Affiliation(s)
- Daniel A Mitchell
- Clinical Sciences Research Laboratories , University of Warwick , Coventry CV2 2DX , United Kingdom . .,University Hospital Coventry , Warwickshire NHS Trust , Coventry CV2 2DX , United Kingdom
| | - Qiang Zhang
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Lenny Voorhaar
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - David M Haddleton
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Shan Herath
- Chelsea & Westminster Hospital , Imperial College School of Medicine , London SW10 9NH , United Kingdom
| | - Anne S Gleinich
- Clinical Sciences Research Laboratories , University of Warwick , Coventry CV2 2DX , United Kingdom .
| | - Harpal S Randeva
- Clinical Sciences Research Laboratories , University of Warwick , Coventry CV2 2DX , United Kingdom . .,University Hospital Coventry , Warwickshire NHS Trust , Coventry CV2 2DX , United Kingdom
| | - Max Crispin
- Glycobiology Institute , University of Oxford , Oxford OX1 3QU , United Kingdom
| | | | - Russell Wallis
- Department of Biochemistry , University of Leicester , Leicester LE1 9HN , United Kingdom
| | - Steven Patterson
- Chelsea & Westminster Hospital , Imperial College School of Medicine , London SW10 9NH , United Kingdom
| | - C Remzi Becer
- School of Engineering and Materials Science , Queen Mary University , London E1 4NS , United Kingdom .
| |
Collapse
|
89
|
Dodagatta-Marri E, Mitchell DA, Pandit H, Sonawani A, Murugaiah V, Idicula-Thomas S, Nal B, Al-Mozaini MM, Kaur A, Madan T, Kishore U. Protein-Protein Interaction between Surfactant Protein D and DC-SIGN via C-Type Lectin Domain Can Suppress HIV-1 Transfer. Front Immunol 2017; 8:834. [PMID: 28824609 PMCID: PMC5534670 DOI: 10.3389/fimmu.2017.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin (collagen-containing calcium-dependent lectin) family, which acts as an innate immune pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, bacterial, and fungal pathogens and trigger clearance mechanisms. SP-D binds to gp120, the envelope protein expressed on HIV-1, through its C-type lectin or carbohydrate recognition domain. This is of importance since SP-D is secreted by human mucosal epithelial cells and is present in the female reproductive tract, including vagina. Another C-type lectin, dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), present on the surface of the DCs, also binds to HIV-1 gp120 and facilitates viral transfer to the lymphoid tissues. DCs are also present at the site of HIV-1 entry, embedded in vaginal or rectal mucosa. In the present study, we report a direct protein-protein interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN via their C-type lectin domains. Both SP-D and DC-SIGN competed for binding to immobilized HIV-1 gp120. Pre-incubation of human embryonic kidney cells expressing surface DC-SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to activated peripheral blood mononuclear cells. In silico analysis revealed that SP-D and gp120 may occupy same sites on DC-SIGN, which may explain the reduced transfer of HIV-1. In summary, we demonstrate, for the first time, that DC-SIGN is a novel binding partner of SP-D, and this interaction can modulate HIV-1 capture and transfer to CD4+ T cells. In addition, the present study also reveals a novel and distinct mechanism of host defense by SP-D against HIV-1.
Collapse
Affiliation(s)
- Eswari Dodagatta-Marri
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire Campus, Coventry, United Kingdom
| | - Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Archana Sonawani
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Valarmathy Murugaiah
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Susan Idicula-Thomas
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Béatrice Nal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Maha M Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
90
|
Te Riet J, Joosten B, Reinieren-Beeren I, Figdor CG, Cambi A. N-glycan mediated adhesion strengthening during pathogen-receptor binding revealed by cell-cell force spectroscopy. Sci Rep 2017; 7:6713. [PMID: 28751750 PMCID: PMC5532264 DOI: 10.1038/s41598-017-07220-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/23/2017] [Indexed: 01/13/2023] Open
Abstract
Glycan-protein lateral interactions have gained increased attention as important modulators of receptor function, by regulating surface residence time and endocytosis of membrane glycoproteins. The pathogen-recognition receptor DC-SIGN is highly expressed at the membrane of antigen-presenting dendritic cells, where it is organized in nanoclusters and binds to different viruses, bacteria and fungi. We recently demonstrated that DC-SIGN N-glycans spatially restrict receptor diffusion within the plasma membrane, favoring its internalization through clathrin-coated pits. Here, we investigated the involvement of the N-glycans of DC-SIGN expressing cells on pathogen binding strengthening when interacting with Candida fungal cells by using atomic force microscope (AFM)-assisted single cell-pathogen adhesion measurements. The use of DC-SIGN mutants lacking the N-glycans as well as blocking glycan-mediated lateral interactions strongly impaired cell stiffening during pathogen binding. Our findings demonstrate for the first time the direct involvement of the cell membrane glycans in strengthening cell-pathogen interactions. This study, therefore, puts forward a possible role for the glycocalyx as extracellular cytoskeleton contributing, possibly in connection with the intracellular actin cytoskeleton, to optimize strengthening of cell-pathogen interactions in the presence of mechanical forces.
Collapse
Affiliation(s)
- Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Medical Life Sciences, Radboud University Medical Center, Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Radboud Institute for Medical Life Sciences, Radboud University Medical Center, Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Medical Life Sciences, Radboud University Medical Center, Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
91
|
Gunay G, Sardan Ekiz M, Ferhati X, Richichi B, Nativi C, Tekinay AB, Guler MO. Antigenic GM3 Lactone Mimetic Molecule Integrated Mannosylated Glycopeptide Nanofibers for the Activation and Maturation of Dendritic Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16035-16042. [PMID: 28445638 DOI: 10.1021/acsami.7b04094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and tumors, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery.
Collapse
Affiliation(s)
- Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
- Neuroscience Graduate Program, Bilkent University , Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Xhenti Ferhati
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino, Florence 50019, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino, Florence 50019, Italy
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino, Florence 50019, Italy
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
- Neuroscience Graduate Program, Bilkent University , Ankara 06800, Turkey
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
92
|
Kim SY, Li B, Linhardt RJ. Pathogenesis and Inhibition of Flaviviruses from a Carbohydrate Perspective. Pharmaceuticals (Basel) 2017; 10:E44. [PMID: 28471403 PMCID: PMC5490401 DOI: 10.3390/ph10020044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are enveloped, positive single stranded ribonucleic acid (RNA) viruses with various routes of transmission. While the type and severity of symptoms caused by pathogenic flaviviruses vary from hemorrhagic fever to fetal abnormalities, their general mechanism of host cell entry is similar. All pathogenic flaviviruses, such as dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and Zika virus, bind to glycosaminglycans (GAGs) through the putative GAG binding sites within their envelope proteins to gain access to the surface of host cells. GAGs are long, linear, anionic polysaccharides with a repeating disaccharide unit and are involved in many biological processes, such as cellular signaling, cell adhesion, and pathogenesis. Flavivirus envelope proteins are N-glycosylated surface proteins, which interact with C-type lectins, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) through their glycans. In this review, we discuss both host and viral surface receptors that have the carbohydrate components, focusing on the surface interactions in the early stage of flavivirus entry. GAG-flavivirus envelope protein interactions as well as interactions between flavivirus envelope proteins and DC-SIGN are discussed in detail. This review also examines natural and synthetic inhibitors of flaviviruses that are carbohydrate-based or carbohydrate-targeting. Both advantages and drawbacks of these inhibitors are explored, as are potential strategies to improve their efficacy to ultimately help eradicate flavivirus infections.
Collapse
Affiliation(s)
- So Young Kim
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China.
| | - Robert J Linhardt
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
93
|
Tanaka J, Gleinich AS, Zhang Q, Whitfield R, Kempe K, Haddleton DM, Davis TP, Perrier S, Mitchell DA, Wilson P. Specific and Differential Binding of N-Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules 2017; 18:1624-1633. [PMID: 28418238 DOI: 10.1021/acs.biomac.7b00228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A range of glycopolymers composed of N-acetylgalactosamine were prepared via sequential Cu(I)-mediated polymerization and alkyne-azide click (CuAAC). The resulting polymers were shown, via multichannel surface plasmon resonance, to interact specifically with human macrophage galactose lectin (MGL; CD301) with high affinity (KD = 1.11 μM), but they did not bind to the mannose/fucose-selective human lectin dendritic-cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). The effect of sugar ligand valency on the binding (so-called "glycoside cluster effect") of poly(N-acetylgalactosamine) to MGL was investigated by varying first the polymer chain length (DP: 100, 64, 40, 23, 12) and then the architecture (4- and 8-arm star glycopolymers). The chain length did not have a significant effect on the binding to MGL (KD = 0.17-0.52 μM); however, when compared to a hepatic C-type lectin of a similar monosaccharide specificity, the asialoglycoprotein receptor (ASGPR), the binding affinity was more noticeably affected (KD = 0.37- 6.65 μM). These data suggest that known differences in the specific configuration/orientation of the carbohydrate recognition domains of MGL and ASGPR are responsible for the differences in binding observed between the different polymers of varied chain length and architecture. In the future, this model has the potential to be employed for the development of tissue-selective delivery systems.
Collapse
Affiliation(s)
- Joji Tanaka
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Anne S Gleinich
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Qiang Zhang
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Richard Whitfield
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Kristian Kempe
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M Haddleton
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P Davis
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Sébastien Perrier
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Daniel A Mitchell
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Paul Wilson
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
94
|
Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017; 9:E59. [PMID: 28327518 PMCID: PMC5371814 DOI: 10.3390/v9030059] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Recognition of viral glycans by pattern recognition receptors (PRRs) in innate immunity contributes to antiviral immune responses. C-type lectin receptors (CLRs) are PRRs capable of sensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigen processing and presentation, and subsequent T cell activation. The ability of CLRs to elicit and shape adaptive immunity plays a critical role in the inhibition of viral spread within the host. However, certain viruses exploit CLRs for viral entry into host cells to avoid immune recognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalent glycan carrier systems. In this review, we describe the role of CLRs in antiviral immunity and we highlight their dual function in viral clearance and exploitation by viral pathogens.
Collapse
Affiliation(s)
- João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
95
|
Na H, Liu X, Li X, Zhang X, Wang Y, Wang Z, Yuan M, Zhang Y, Ren S, Zuo Y. Novel roles of DC-SIGNR in colon cancer cell adhesion, migration, invasion, and liver metastasis. J Hematol Oncol 2017; 10:28. [PMID: 28109307 PMCID: PMC5251210 DOI: 10.1186/s13045-016-0383-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/30/2016] [Indexed: 01/14/2023] Open
Abstract
Background Tumor metastasis is an essential cause of the poor prognosis of colon cancer. DC-SIGNR is a C-type lectin that is frequently found on human liver sinusoidal endothelial cells. LSECtin, which is a homologue of DC-SIGNR, has been demonstrated to participate in colon cancer liver metastasis. Due to the similarities in the expression pattern and structure of the two proteins, we speculated that DC-SIGNR could also be involved in this process. Methods Colon cancer cells were treated with the DC-SIGNR protein or control IgG, after which cell migration, invasion, and morphology were assayed. Xenograft mouse models were used to determine the role of DC-SIGNR in colon cancer liver metastasis in vivo. In addition, a human gene expression array was used to detect differential gene expression in colon cancer cells stimulated with the DC-SIGNR protein. The serum level of DC-SIGNR was examined in colon cancer patients by ELISA, and the significance of DC-SIGNR was determined. Results In our research, we investigated whether DC-SIGNR promotes colon cancer cell adhesion, migration, and invasion. Knocking down mouse DC-SIGNR decreased the liver metastatic potency of colon cancer cells and increased survival time. Expressing human DC-SIGNR enhanced colon cancer liver metastasis. Furthermore, DC-SIGNR conferred metastatic capability on cancer cells by upregulating various metallothionein isoforms. To validate the above results, we also found that the serum DC-SIGNR level was statistically higher in colon cancer patients with liver metastasis compared with those without metastasis. Conclusions These results imply that DC-SIGNR may promote colon carcinoma hepatic metastasis and could serve as a promising therapeutic target for anticancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0383-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heya Na
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaoli Liu
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaomeng Li
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xinsheng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yu Wang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Zhaohui Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Menglang Yuan
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yu Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shuangyi Ren
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
96
|
Saha S, Hosmani PS, Villalobos-Ayala K, Miller S, Shippy T, Flores M, Rosendale A, Cordola C, Bell T, Mann H, DeAvila G, DeAvila D, Moore Z, Buller K, Ciolkevich K, Nandyal S, Mahoney R, Van Voorhis J, Dunlevy M, Farrow D, Hunter D, Morgan T, Shore K, Guzman V, Izsak A, Dixon DE, Cridge A, Cano L, Cao X, Jiang H, Leng N, Johnson S, Cantarel BL, Richards S, English A, Shatters RG, Childers C, Chen MJ, Hunter W, Cilia M, Mueller LA, Munoz-Torres M, Nelson D, Poelchau MF, Benoit JB, Wiersma-Koch H, D’Elia T, Brown SJ. Improved annotation of the insect vector of citrus greening disease: biocuration by a diverse genomics community. Database (Oxford) 2017; 2017:3917099. [PMID: 29220441 PMCID: PMC5502364 DOI: 10.1093/database/bax032] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
Database URL https://citrusgreening.org/.
Collapse
Affiliation(s)
| | | | | | - Sherry Miller
- Division of Biology, Kansas State University, Manhattan, KS
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Hunter
- Division of Biology, Kansas State University, Manhattan, KS
| | - Taylar Morgan
- Division of Biology, Kansas State University, Manhattan, KS
| | - Kayla Shore
- Division of Biology, Kansas State University, Manhattan, KS
| | | | | | - Danielle E Dixon
- Boyce Thompson Institute, Ithaca, NY
- University of Puget Sound, Tacoma, WA, USA
| | - Andrew Cridge
- University of Otago, North Dunedin, Dunedin, New Zealand
| | - Liliana Cano
- Plant Pathology, University of Florida/IFAS Indian River Research and Education Center, Ft. Pierce, FL
| | | | - Haobo Jiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Nan Leng
- Department of Bioinformatics, UT Southwestern Medical Center, Bioinformatics Core Facility, Dallas, TX
| | | | - Brandi L Cantarel
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| | - Stephen Richards
- Illumina Inc., San Diego, CA
- Los Alamos National Laboratory, Los Alamos, NM
| | - Adam English
- Illumina Inc., San Diego, CA
- Los Alamos National Laboratory, Los Alamos, NM
| | | | - Chris Childers
- USDA ARS, U.S. Horticultural Research Laboratory, Ft. Pierce, FL
| | - Mei-Ju Chen
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD, USA
| | - Wayne Hunter
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Michelle Cilia
- USDA ARS, Emerging Pests and Pathogens Research Unit, Ithaca, NY
- Plant Pathology and Plant-Microbe Biology Section
| | - Lukas A Mueller
- Boyce Thompson Institute, Ithaca, NY
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY
| | - Monica Munoz-Torres
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | - Tom D’Elia
- Indian River State College, Fort Pierce, FL
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, KS
| |
Collapse
|
97
|
Brument S, Cheneau C, Brissonnet Y, Deniaud D, Halary F, Gouin SG. Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus. Org Biomol Chem 2017; 15:7660-7671. [DOI: 10.1039/c7ob01569k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dextrans coated with triazolylheptylmannoside ligands block human cytomegalovirus trans-infection at picomolar polymer concentrations.
Collapse
Affiliation(s)
- S. Brument
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - C. Cheneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064
- INSERM
- Université de Nantes
- Nantes
- France
| | - Y. Brissonnet
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - D. Deniaud
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - F. Halary
- Centre de Recherche en Transplantation et Immunologie UMR 1064
- INSERM
- Université de Nantes
- Nantes
- France
| | - S. G. Gouin
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| |
Collapse
|
98
|
Dos Santos Á, Hadjivasiliou A, Ossa F, Lim NK, Turgut A, Taylor ME, Drickamer K. Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences. Protein Sci 2016; 26:306-316. [PMID: 27859859 PMCID: PMC5275740 DOI: 10.1002/pro.3083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 11/05/2022]
Abstract
Human dendritic cell-specific intercellular adhesion molecule-1 grabbing nonintegrin, DC-SIGN, and the sinusoidal endothelial cell receptor DC-SIGNR or L-SIGN, are closely related sugar-binding receptors. DC-SIGN acts both as a pathogen-binding endocytic receptor and as a cell adhesion molecule, while DC-SIGNR has only the pathogen-binding function. In addition to differences in the sugar-binding properties of the carbohydrate-recognition domains in the two receptors, there are sequence differences in the adjacent neck domains, which are coiled-coil tetramerization domains comprised largely of 23-amino acid repeat units. A series of model polypeptides consisting of uniform repeat units have been characterized by gel filtration, differential scanning calorimetry and circular dichroism. The results demonstrate that two features characterize repeat units which form more stable tetramers: a leucine reside in the first position of the heptad pattern of hydrophobic residues that pack on the inside of the coiled coil and an arginine residue on the surface of the coiled coil that forms a salt bridge with a glutamic acid residue in the same polypeptide chain. In DC-SIGNR from all primates, very stable repeat units predominate, so the carbohydrate-recognition domains must be held relatively closely together. In contrast, stable repeat units are found only near the membrane in DC-SIGN. The presence of residues that disrupt tetramer formation in repeat units near the carbohydrate-recognition domains of DC-SIGN would allow these domains to splay further apart. Thus, the neck domains of DC-SIGN and DC-SIGNR can contribute to the different functions of these receptors by presenting the sugar-binding sites in different contexts.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | | | - Felipe Ossa
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Novandy K Lim
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Aylin Turgut
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| |
Collapse
|
99
|
Pednekar L, Pandit H, Paudyal B, Kaur A, Al-Mozaini MA, Kouser L, Ghebrehiwet B, Mitchell DA, Madan T, Kishore U. Complement Protein C1q Interacts with DC-SIGN via Its Globular Domain and Thus May Interfere with HIV-1 Transmission. Front Immunol 2016; 7:600. [PMID: 28066413 PMCID: PMC5177617 DOI: 10.3389/fimmu.2016.00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells capable of priming naïve T-cells. Its C-type lectin receptor, DC-SIGN, regulates a wide range of immune functions. Along with its role in HIV-1 pathogenesis through complement opsonization of the virus, DC-SIGN has recently emerged as an adaptor for complement protein C1q on the surface of immature DCs via a trimeric complex involving gC1qR, a receptor for the globular domain of C1q. Here, we have examined the nature of interaction between C1q and DC-SIGN in terms of domain localization, and implications of C1q–DC-SIGN-gC1qR complex formation on HIV-1 transmission. We first expressed and purified recombinant extracellular domains of DC-SIGN and its homologue DC-SIGNR as tetramers comprising of the entire extra cellular domain including the α-helical neck region and monomers comprising of the carbohydrate recognition domain only. Direct binding studies revealed that both DC-SIGN and DC-SIGNR were able to bind independently to the recombinant globular head modules ghA, ghB, and ghC, with ghB being the preferential binder. C1q appeared to interact with DC-SIGN or DC-SIGNR in a manner similar to IgG. Mutational analysis using single amino acid substitutions within the globular head modules showed that TyrB175 and LysB136 were critical for the C1q–DC-SIGN/DC-SIGNR interaction. Competitive studies revealed that gC1qR and ghB shared overlapping binding sites on DC-SIGN, implying that HIV-1 transmission by DCs could be modulated due to the interplay of gC1qR-C1q with DC-SIGN. Since C1q, gC1qR, and DC-SIGN can individually bind HIV-1, we examined how C1q and gC1qR modulated HIV-1–DC-SIGN interaction in an infection assay. Here, we report, for the first time, that C1q suppressed DC-SIGN-mediated transfer of HIV-1 to activated pooled peripheral blood mononuclear cells, although the globular head modules did not. The protective effect of C1q was negated by the addition of gC1qR. In fact, gC1qR enhanced DC-SIGN-mediated HIV-1 transfer, suggesting its role in HIV-1 pathogenesis. Our results highlight the consequences of multiple innate immune pattern recognition molecules forming a complex that can modify their functions in a way, which may be advantageous for the pathogen.
Collapse
Affiliation(s)
- Lina Pednekar
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR) , Mumbai , India
| | - Basudev Paudyal
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Maha Ahmed Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre , Riyadh , Saudi Arabia
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Berhane Ghebrehiwet
- Department of Medicine, State University of New York , Stony Brook, NY , USA
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, University of Warwick , Coventry , UK
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR) , Mumbai , India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| |
Collapse
|
100
|
Bavireddi H, Vasudeva Murthy R, Gade M, Sangabathuni S, Chaudhary PM, Alex C, Lepenies B, Kikkeri R. Understanding carbohydrate-protein interactions using homologous supramolecular chiral Ru(ii)-glyconanoclusters. NANOSCALE 2016; 8:19696-19702. [PMID: 27874116 DOI: 10.1039/c6nr06431k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multivalent glycodendrimers make promising tools to tackle the basic and translational research in the field of carbohydrate-mediated interactions. Despite advances in glycodendrimers and glycopolymers, the multivalent probes available to date are still far from being ideal biological mimics. This work demonstrates the inherent chirality of glycodendrimers to be one of the promising factors to generate different spatial carbohydrate micro-environments to modulate specific carbohydrate-protein interactions. By exploiting the host-guest strategy, chiral Ru(ii) complexes (Δ and Λ) and mannose capped β-cyclodextrin (β-CD), we generated a library of homologous metallo-glycodendrimers (MGDs) with sizes of 50-70 nm. These nanoclusters can enantioselectively bind to specific C-type lectins and displayed selectivity in cellular uptake. We also discovered their potential clathrin-mediated endocytotic pathway in DC-SIGN and SIGNR3-transfected cell lines. Finally, in vivo biodistribution and sequestration of MGDs was determined to understand the role of chirality mediated spatial arrangement in carbohydrate-mediated interactions.
Collapse
Affiliation(s)
- Harikrishna Bavireddi
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | | | - Madhuri Gade
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | - Sivakoti Sangabathuni
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | | | - Catherine Alex
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Raghavendra Kikkeri
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|