51
|
Ohmura-Hoshino M, Matsuki Y, Aoki M, Goto E, Mito M, Uematsu M, Kakiuchi T, Hotta H, Ishido S. Inhibition of MHC Class II Expression and Immune Responses by c-MIR. THE JOURNAL OF IMMUNOLOGY 2006; 177:341-54. [PMID: 16785530 DOI: 10.4049/jimmunol.177.1.341] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported a novel E3 ubiquitin ligase (E3), designated as c-MIR, which targets B7-2 to lysosomal degradation and down-regulates the B7-2 surface expression through ubiquitination of its cytoplasmic tail. B7-2 is well known as a costimulatory molecule for Ag presentation, suggesting that the manipulation of c-MIR expression modulates immune responses in vivo. To examine this hypothesis, we generated genetically modified mice in which c-MIR was expressed under an invariant chain (Ii) promoter. Dendritic cells derived from genetically engineered mice showed low ability to present Ags. In addition, these mice showed resistance to the onset of experimental autoimmune encephalomyelitis and an impaired development of CD4 T cells in the thymus and the periphery. These findings led us to conclude that MHC class II (MHC II) is an additional target for c-MIR. Indeed, forced expression of c-MIR in several B cell lines down-regulated the surface expression of MHC II, and down-regulation was found to depend on the presence of a single lysine residue in the cytoplasmic tail of the I-A beta-chain. In a reconstitution system using 293T cells, we found that the lysine residue at position 225 in the I-A beta-chain was ubiquitinated by c-MIR. To our knowledge, c-MIR is the first example of an E3 that is capable of inhibiting MHC II expression. Our findings suggest that c-MIR might potently regulate immune responses in vivo.
Collapse
Affiliation(s)
- Mari Ohmura-Hoshino
- Laboratory for Infectious Immunity, The Institute of Physical and Chemical Research (RIKEN), Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Taylor JL, Bennett HN, Snyder BA, Moore PS, Chang Y. Transcriptional analysis of latent and inducible Kaposi's sarcoma-associated herpesvirus transcripts in the K4 to K7 region. J Virol 2006; 79:15099-106. [PMID: 16306581 PMCID: PMC1315995 DOI: 10.1128/jvi.79.24.15099-15106.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gamma-2 herpesvirus with a genome containing a long unique coding region (LUR) flanked by GC-rich terminal repeat sequences. The LUR encodes approximately 90 annotated open reading frames (ORFs) with complex patterns of gene expression during viral latency, reactivation, and de novo infection. To identify unannotated KSHV genes, we examined the region between 21,500 and 30,000 bp of the KSHV LUR, representing approximately 8.5 kb of sequence. This region encodes seven known single-exon ORFs (K4, K4.1, K4.2, K5, K6, K7, and PAN), but previous computer analyses have failed to identify additional likely genes in the remaining 5.2 kb. We identified four novel transcripts using Northern blotting, phage library screening, and 5' rapid amplification of cDNA ends analysis in the region between ORFs K4.2 and K7. In vitro analysis of KSHV-infected primary effusion lymphoma cell lines in the presence of 12-O-tetradecanoylphorbol-13-acetate and phosphonoformic acid suggests that one latent transcript is coterminal with the previously annotated K3 gene encoding an ubiquitin-ligase known to downregulate major histocompatibility complex class I expression. This alternatively spliced transcript may contribute to KSHV adaptive immune evasion during latent infection. Other transcripts are inducible, including a 6.1-kb transcript that is the largest transcript found in the KSHV genome to date.
Collapse
Affiliation(s)
- Jennifer L Taylor
- Hillman Cancer Center, Molecular Virology Program, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.8, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
53
|
Wang X, Ye Y, Lencer W, Hansen TH. The viral E3 ubiquitin ligase mK3 uses the Derlin/p97 endoplasmic reticulum-associated degradation pathway to mediate down-regulation of major histocompatibility complex class I proteins. J Biol Chem 2006; 281:8636-44. [PMID: 16446359 DOI: 10.1074/jbc.m513920200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin E3 ligases are important cellular components for endoplasmic reticulum (ER)-associated degradation due to their role in substrate-specific ubiquitination, which is required for retrotranslocation (dislocation) of most unwanted proteins from the ER to the cytosol for proteasome degradation. However, our understanding of the molecular mechanisms of how E3 ligases confer substrate-specific recognition, and their role in substrate retrotranslocation is limited especially in mammalian cells. mK3 is a type III ER membrane protein encoded by murine gamma herpesvirus 68. As conferred by its N-terminal RING-CH domain, mK3 has E3 ubiquitin ligase activity. In its role as an immune evasion protein, mK3 specifically targets nascent major histocompatibility complex class I heavy chains (HC) for rapid degradation. The mechanism by which mK3 extracts HC from the ER membrane into the cytosol for proteasome-mediated degradation is unknown. Evidence is presented here that HC down-regulation by mK3 is dependent on the p97 AAA-ATPase. By contrast, the kK5 protein of Kaposi's sarcoma-associated herpesvirus is p97-independent despite the fact that it is highly homologous to mK3. mK3 protein was also found in physical association with Derlin1, an ER protein recently implicated in the retrotranslocation of HC by immune evasion protein US11, but not US2, of human cytomegalovirus. The mechanistic implications of these findings are discussed.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
54
|
Abstract
Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions.
Collapse
Affiliation(s)
- Joana Loureiro
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, USA
| | | |
Collapse
|
55
|
Collin N, Guérin JL, Drexler I, Blanié S, Gelfi J, Boullier S, Foucras G, Sutter G, Messud-Petit F. The poxviral scrapin MV-LAP requires a myxoma viral infection context to efficiently downregulate MHC-I molecules. Virology 2005; 343:171-8. [PMID: 16185739 DOI: 10.1016/j.virol.2005.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/30/2005] [Accepted: 07/30/2005] [Indexed: 11/22/2022]
Abstract
Downregulation of MHC class I molecules is a strategy developed by some viruses to escape cellular immune responses. Myxoma virus (MV), a poxvirus causing rabbit myxomatosis, encodes MV-LAP that is known to increase MHC-I endocytosis and degradation through a C(4)HC(3) motif critical for an E3 ubiquitin ligase activity. Here, we performed a functional mapping of MV-LAP and showed that not only the C(4)HC(3) motif is necessary for a marked downregulation of MHC-I but also a conserved region in the C-terminal part of the protein. We also showed that the putative transmembrane domains are responsible for a specific subcellular localization of the protein: they retain MV-LAP in the ER in transfected cells and in the endolysosomal compartments in infected cells. We observed that a specific MV infection context is necessary for a fully efficient downregulation of MHC-I. Our data suggest that the functionality of viral LAP factors, inherited by herpes- and poxviruses from mammalian cells, is more complex than anticipated.
Collapse
Affiliation(s)
- Nicolas Collin
- UMR 1225 Interactions Hôtes Agents pathogènes, INRA/ENVT, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, BP87614, 31076 Toulouse cedex 03, France
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lehner PJ, Hoer S, Dodd R, Duncan LM. Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases. Immunol Rev 2005; 207:112-25. [PMID: 16181331 DOI: 10.1111/j.0105-2896.2005.00314.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mK3, K3, and K5 gene products from the gamma2 group of gamma-herpesviruses are the founding members of a family of membrane-associated ubiquitin E3 ligases. As part of the viral immunoevasion strategy, expression of these proteins results in a decrease in cell-surface major histocompatibility complex class I molecules and other immunoreceptors including intercellular adhesion molecule-1, CD86, and CD1d. These viral gene products all possess a characteristic cytosolic N-terminal RING-CH domain, responsible for ubiquitination of the target protein, and two membrane-spanning segments required for substrate specificity. For the majority of substrates, ubiquitination at the cell surface leads to rapid internalization and endolysosomal degradation, while mK3 ubiquitinates class I molecules associated with the peptide-loading complex resulting in proteasome-mediated degradation. Related viral genes with similar functions have been found in poxviruses, suggesting appropriation of these genes from the eukaryotic host. Ten membrane-associated RING-CH (MARCH) human genes with a similar organization have now been identified, and their overexpression leads to ubiquitination and downregulation of a variety of cell-surface immunoreceptors. While all the MARCH proteins are predicted to act as ubiquitin E3 ligases, their physiological role and substrates remain to be defined.
Collapse
Affiliation(s)
- Paul J Lehner
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | |
Collapse
|
57
|
Abstract
Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases encoded by Kaposi's sarcoma-associated herpesvirus that mediate the ubiquitination of major histocompatibility complex class I (MHC I) molecules and subsequent internalization. Here, we found that MIR1, but not MIR2, promoted down-regulation of MHC I molecules lacking lysine residues in their intracytoplasmic domain. In the presence of MIR1, these MHC I molecules were ubiquitinated, and their association with ubiquitin was sensitive to beta2-mercaptoethanol, unlike lysine-ubiquitin bonds. This form of ubiquitination required a cysteine residue in the intracytoplasmic tail of MHC I molecules. An MHC I molecule containing a single cysteine residue in an artificial glycine and alanine intracytoplasmic domain was endocytosed and degraded in the presence of MIR1. Thus, ubiquitination can occur on proteins lacking accessible lysines or an accessible N terminus.
Collapse
Affiliation(s)
- Ken Cadwell
- Department of Molecular and Cell Biology, 142 Life Sciences Addition Room 3200, Berkeley, CA 94720, USA
| | | |
Collapse
|
58
|
Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 2005; 115:1369-78. [PMID: 15864354 PMCID: PMC1087176 DOI: 10.1172/jci24041] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/01/2005] [Indexed: 12/23/2022] Open
Abstract
Little is known about the role of CD1d-restricted T cells in antiviral immune responses. Here we show that the lytic replication cycle of the Kaposi sarcoma-associated herpesvirus (KSHV) promotes downregulation of cell-surface CD1d. This is caused by expression of the 2 modulator of immune recognition (MIR) proteins of the virus, each of which promotes the loss of surface CD1d expression following transfection into uninfected cells. Inhibition of CD1d surface expression is due to ubiquitination of the CD1d alpha-chain on a unique lysine residue in its cytoplasmic tail, which triggers endocytosis. Unlike MIR-mediated MHC class I downregulation, however, CD1d downregulation does not appear to include accelerated lysosomal degradation. MIR2-induced downregulation of CD1d results in reduced activation of CD1d-restricted T cells in vitro. KSHV modulation of CD1d expression represents a strategy for viral evasion of innate host immune responses and implicates CD1d-restricted T cells as regulators of this viral infection.
Collapse
Affiliation(s)
- David Jesse Sanchez
- George Williams Hooper Foundation, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|
59
|
Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 2005. [DOI: 10.1172/jci200524041] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
60
|
Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:55-72. [PMID: 15571809 DOI: 10.1016/j.bbamcr.2004.09.019] [Citation(s) in RCA: 964] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.
Collapse
Affiliation(s)
- Cecile M Pickart
- Department of Biochemistry and Molecular Biology/Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
61
|
Wang X, Lybarger L, Connors R, Harris MR, Hansen TH. Model for the interaction of gammaherpesvirus 68 RING-CH finger protein mK3 with major histocompatibility complex class I and the peptide-loading complex. J Virol 2004; 78:8673-86. [PMID: 15280476 PMCID: PMC479079 DOI: 10.1128/jvi.78.16.8673-8686.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mK3 protein of gammaherpesvirus 68 and the kK5 protein of Kaposi's sarcoma-associated herpesvirus are members of a family of structurally related viral immune evasion molecules that all possess a RING-CH domain with ubiquitin ligase activity. These proteins modulate the expression of major histocompatibility complex class I molecules (mK3 and kK5) as well as other molecules like ICAM-1 and B7.2 (kK5). Previously, mK3 was shown to ubiquitinate nascent class I molecules, resulting in their rapid degradation, and this process was found to be dependent on TAP and tapasin, endoplasmic reticulum molecules involved in class I assembly. Here, we demonstrate that in murine cells, kK5 does not affect class I expression but does downregulate human B7.2 molecules in a TAP/tapasin-independent manner. These differences in substrate specificity and TAP/tapasin dependence between mK3 and kK5 permitted us, using chimeric molecules, to map the sites of mK3 interaction with TAP/tapasin and to determine the requirements for substrate recognition by mK3. Our findings indicate that mK3 interacts with TAP1 and -2 via their C-terminal domains and with class I molecules via their N-terminal domains. Furthermore, by orienting the RING-CH domain of mK3 appropriately with respect to class I, mK3 binding to TAP/tapasin, rather than the presence of unique sequences in class I, appears to be the primary determinant of substrate specificity.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Box 8118, Washington University School of Medicine, 4566 Scott Ave., St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
62
|
Andersen H, Rossio JL, Coalter V, Poore B, Martin MP, Carrington M, Lifson JD. Characterization of rhesus macaque natural killer activity against a rhesus-derived target cell line at the single-cell level. Cell Immunol 2004; 231:85-95. [PMID: 15919373 DOI: 10.1016/j.cellimm.2004.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 12/09/2004] [Accepted: 12/10/2004] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells and NK cell activities in the rhesus macaque have been incompletely characterized. Using a recently developed rhesus NK target cell line with down-regulated MHC-I (B116Lo) as stimulators and FACS-sorted cells as effectors in a 4-h [51Cr]-release assay we showed that the CD3-CD8lo subpopulation is the primary effector population for NK cell-mediated cytolysis. The majority of these cells co-express CD16, CD11b, NKG2D, and NKp46. To evaluate functional activity at the individual cell level, we employed intracellular cytokine staining and a flow cytometric assay for degranulation, based on cell surface CD107a expression. Flow cytometric analysis revealed that a greater proportion of NK cells degranulated than produced cytokines in response to B116Lo stimulation; the frequency of CD107a-expressing cells within the total NK cell population ranging from 5 to 39%. Somewhat surprisingly, we did not find a significant correlation between lysis, measured by [51Cr]-release assay, and the size of the degranulating NK cell population, implying that additional mechanisms may regulate lytic activity. Use of these approaches should facilitate an improved understanding of NK activity in the rhesus macaque.
Collapse
Affiliation(s)
- Hanne Andersen
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Defective ribosomal products provide an important supply of endogenous peptides for entry into the classic MHC class I antigen presentation pathway. The recruitment of endoplasmic reticulum membrane during phagosome biogenesis allows exogenous antigens to be translocated into the cytosol as well as providing access to the class I peptide transport and loading machinery. This combination of features provides a mechanism for cross-presentation by specialised antigen presenting cells. Recent studies have shed new light on these pathways and have also described the emerging K3 family of viral ubiquitin E3 ligases, which constitutively ubiquitinate and degrade MHC class I molecules and other immunoreceptors.
Collapse
Affiliation(s)
- Paul J Lehner
- Lab 5.19, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Rd, CB2 2XY Cambridge, UK.
| | | |
Collapse
|
64
|
Abstract
Presumably because of the selective pressure exerted by the immune system, many viruses have evolved proteins that interfere with antigen presentation by major histocompatibility complex (MHC) class I molecules. These viruses utilize a whole variety of ingenious strategies to inhibit the MHC class I pathway. Viral proteins have been characterized that exploit bottlenecks in the MHC class I pathway, such as peptide translocation by the transporter associated with antigen processing. Alternatively, viral proteins can cause the degradation or mislocalization of MHC class I molecules. This is often achieved by the subversion of the host cell's own protein degradation and trafficking pathways. As a consequence elucidation of how these viral proteins act to subvert host cell function will continue to give important insights not only into virus-host interactions but also the function and mechanism of cellular pathways.
Collapse
Affiliation(s)
- Eric W Hewitt
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
65
|
Tomescu C, Law WK, Kedes DH. Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J Virol 2003; 77:9669-84. [PMID: 12915579 PMCID: PMC187401 DOI: 10.1128/jvi.77.17.9669-9684.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Under selective pressure from host cytotoxic T lymphocytes, many viruses have evolved to downregulate major histocompatibility complex (MHC) class I and/or T-cell costimulatory molecules from the surface of infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two proteins, MIR-1 and MIR-2, that serve this function during lytic replication. In vivo, however, KSHV exists in a predominantly latent state, with less than 5% of infected cells expressing discernible lytic gene products. Thus, mechanisms of immune evasion that depend on genes expressed only during lytic replication are unlikely to be active in most KSHV-infected cells. As a result, we searched for evidence of similar defensive strategies extant during latency, employing culture systems that strongly favor latent KSHV infection. We measured cell surface levels of immunomodulatory proteins on both primary dermal microvascular endothelial cells (pDMVEC) infected through coculture with induced primary effusion lymphoma cells and telomerase-immortalized DMVEC infected directly with cell-free virus. Employing a panel of antibodies against several endothelial cell surface proteins, we show that de novo infection with KSHV leads to the downregulation of MHC class I, CD31 (PE-CAM), and CD54 (ICAM-I) but not CD58 (LFA-3) or CD95 (Fas). Furthermore, flow cytometry with a fluorescently labeled monoclonal antibody to the latency-associated nuclear antigen (LANA) revealed that downregulation occurred predominantly on KSHV-infected (LANA-positive) cells. Although the vast majority of infected cells displayed this downregulation, less than 1% expressed either immediate-early or late lytic proteins detectable by immunofluorescence. Together, these results suggest that downregulation of immunomodulatory proteins on the surface of target cells may represent a constitutive mode of immune evasion employed by KSHV following de novo infection.
Collapse
Affiliation(s)
- Costin Tomescu
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
66
|
Rose TM, Ryan JT, Schultz ER, Raden BW, Tsai CC. Analysis of 4.3 kilobases of divergent locus B of macaque retroperitoneal fibromatosis-associated herpesvirus reveals a close similarity in gene sequence and genome organization to Kaposi's sarcoma-associated herpesvirus. J Virol 2003; 77:5084-97. [PMID: 12692211 PMCID: PMC153986 DOI: 10.1128/jvi.77.9.5084-5097.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously identified retroperitoneal fibromatosis-associated herpesvirus (RFHV) as a simian homolog of Kaposi's sarcoma-associated herpesvirus (KSHV) in a fibroproliferative malignancy of macaques that has similarities to Kaposi's sarcoma. In this report, we cloned 4.3 kb of divergent locus B (DL-B) flanking the DNA polymerase gene from two variants of RFHV from different species of macaque with a consensus degenerate hybrid oligonucleotide primer approach. Within the DL-B region of RFHV, viral homologs of the cellular interleukin-6, dihydrofolate reductase, and thymidylate synthase genes were identified, along with a homolog of the gammaherpesvirus open reading frame (ORF) 10. In addition, a homolog of the KSHV ORF K3, the modulator of immune recognition-1, was identified. Our data show a close similarity in sequence conservation, gene content, and genomic structure between RFHV and KSHV which strongly supports the grouping of these viral species within the same RV-1 rhadinovirus lineage and the hypothesis that RFHV is the macaque homolog of KSHV.
Collapse
Affiliation(s)
- Timothy M Rose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195, USA.
| | | | | | | | | |
Collapse
|
67
|
Goto E, Ishido S, Sato Y, Ohgimoto S, Ohgimoto K, Nagano-Fujii M, Hotta H. c-MIR, a human E3 ubiquitin ligase, is a functional homolog of herpesvirus proteins MIR1 and MIR2 and has similar activity. J Biol Chem 2003; 278:14657-68. [PMID: 12582153 DOI: 10.1074/jbc.m211285200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Kaposi's sarcoma associated-herpes virus encodes two proteins, MIR (modulator of immune recognition) 1 and 2, which are involved in the evasion of host immunity. MIR1 and 2 have been shown to function as an E3 ubiquitin ligase for immune recognition-related molecules (e.g. major histocompatibility complex class I, B7-2, and ICAM-1) through the BKS (bovine herpesvirus 4, Kaposi's sarcoma associated-herpes virus, and Swinepox virus) subclass of plant homeodomain (PHD) domain, termed the BKS-PHD domain. Here we show that the human genome also encodes a novel BKS-PHD domain-containing protein that functions as an E3 ubiquitin ligase and whose putative substrate is the B7-2 co-stimulatory molecule. This novel E3 ubiquitin ligase was designated as c-MIR (cellular MIR) based on its functional and structural similarity to MIR1 and 2. Forced expression of c-MIR induced specific down-regulation of B7-2 surface expression through ubiquitination, rapid endocytosis, and lysosomal degradation of the target molecule. This specific targeting was dependent upon the binding of c-MIR to B7-2. Replacing the BKS-PHD domain of MIR1 with the corresponding domain of c-MIR did not alter MIR1 function. The discovery of c-MIR, a novel E3 ubiquitin ligase, highlights the possibility that viral immune regulatory proteins originated in the host genome and presents unique functions of BKS-PHD domain-containing proteins in mammals.
Collapse
Affiliation(s)
- Eiji Goto
- Division of Microbiology, Department of Genome Sciences, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
68
|
Mansouri M, Bartee E, Gouveia K, Hovey Nerenberg BT, Barrett J, Thomas L, Thomas G, McFadden G, Früh K. The PHD/LAP-domain protein M153R of myxomavirus is a ubiquitin ligase that induces the rapid internalization and lysosomal destruction of CD4. J Virol 2003; 77:1427-40. [PMID: 12502858 PMCID: PMC140772 DOI: 10.1128/jvi.77.2.1427-1440.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genomes of several poxviruses contain open reading frames with homology to the K3 and K5 genes of Kaposi's sarcoma-associated herpesvirus (KSHV) and the K3 gene of murine gammaherpesvirus 68, which target major histocompatibility complex class I (MHC-I) as well as costimulatory molecules for proteasomal or lysosomal degradation. The homologous gene product of myxomavirus (MV), M153R, was recently shown to reduce the cell surface expression of MHC-I. In addition, normal MHC-I surface expression was observed in cells infected with MV lacking M153R (J. L. Guerin, J. Gelfi, S. Boullier, M. Delverdier, F. A. Bellanger, S. Bertagnoli, I. Drexler, G. Sutter, and F. Messud-Petit, J. Virol. 76:2912-2923, 2002). Here, we show that M153R also downregulates the T-cell coreceptor CD4 and we study the molecular mechanism by which M153R achieves the downregulation of CD4 and MHC-I. Upon M153R expression, CD4 was rapidly internalized and degraded in lysosomes, whereas deletion of M153R from the genome of MV restored CD4 expression. The downregulation of both CD4 and MHC-I was dependent on the presence of lysine residues in their cytoplasmic tails. Increased ubiquitination of CD4 was observed upon coexpression with M153R in the presence of inhibitors of lysosomal acidification. Surface expression of CD4 was restored upon overexpression of Hrs, a ubiquitin interaction motif-containing protein that sorts ubiquitinated proteins into endosomes. Moreover, the purified PHD/LAP zinc finger of M153R catalyzed the formation of multiubiquitin adducts in vitro. Our data suggest that M153R acts as a membrane-bound ubiquitin ligase that conjugates ubiquitin to the cytoplasmic domain of substrate glycoproteins, with ubiquitin serving as a lysosomal targeting signal. Since a similar mechanism was recently proposed for KSHV K5, it seems that members of the unrelated families of gamma-2 herpesviruses and poxviruses share a common immune evasion mechanism that targets host cell immune receptors.
Collapse
Affiliation(s)
- Mandana Mansouri
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland 97201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH. Virus subversion of the MHC class I peptide-loading complex. Immunity 2003; 18:121-30. [PMID: 12530981 DOI: 10.1016/s1074-7613(02)00509-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many viral proteins modulate class I expression, yet, in general, their mechanisms of specific class I recognition are poorly understood. The mK3 protein of gamma(2)-Herpesvirus 68 targets the degradation of nascent class I molecules via the ubiquitin/proteasome pathway. Here, we identify cellular components of the MHC class I assembly machinery, TAP and tapasin, that are required for mK3 function. mK3 failed to regulate class I in TAP- or tapasin-deficient cells, and mK3 interacted with TAP/tapasin, even in the absence of class I. Expression of mK3 resulted in the ubiquitination of TAP/tapasin-associated class I, and mutants of class I incapable of TAP/tapasin interaction were unaffected by mK3. Thus, mK3 subverts TAP/tapasin to specifically target class I molecules for destruction.
Collapse
Affiliation(s)
- Lonnie Lybarger
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
70
|
Moore PS, Chang Y. Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 2003; 57:609-39. [PMID: 14527293 PMCID: PMC3732455 DOI: 10.1146/annurev.micro.57.030502.090824] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) [or human herpesvirus 8 (HHV-8)] is the most frequent cause of malignancy among AIDS patients. KSHV and related herpesviruses have extensively pirated cellular cDNAs from the host genome, providing a unique opportunity to examine the range of viral mechanisms for controlling cell proliferation. Many of the viral regulatory homologs encode proteins that directly inhibit host adaptive and innate immunity. Other viral proteins target retinoblastoma protein and p53 control of tumor suppressor pathways, which also play key effector roles in intracellular immune responses. The immune evasion strategies employed by KSHV, by targeting tumor suppressor pathways activated during immune system signaling, may lead to inadvertent cell proliferation and tumorigenesis in susceptible hosts.
Collapse
Affiliation(s)
- Patrick S. Moore
- Molecular Virology Program, Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Yuan Chang
- Molecular Virology Program, Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| |
Collapse
|
71
|
Sarid R, Klepfish A, Schattner A. Virology, pathogenetic mechanisms, and associated diseases of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Mayo Clin Proc 2002; 77:941-9. [PMID: 12233927 DOI: 10.4065/77.9.941] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a recently discovered and characterized member of the herpesvirus family. It is one of a few viruses proved to be associated with tumorigenesis in humans. Its causal association with 4 clinical and epidemiologic variants of Kaposi sarcoma (classic, endemic, iatrogenic, and acquired immunodeficiency virus-associated) as well as with several lymphoproliferative disorders (notably primary effusion lymphoma and multicentric Castleman disease) is reviewed critically. Issues related to the epidemiology, transmission, and molecular and serologic diagnosis are discussed. Several intriguing oncogenic mechanisms of KSHV infection have been identified. These are often dependent on the interaction of KSHV with other viruses, such as human immunodeficiency virus, Epstein-Barr virus, or both. However, important problems remain and once resolved will substantially enhance our understanding of oncogenesis in general and viral-induced oncogenesis in particular. This may also translate into improved treatment and perhaps prevention of this common and intriguing viral infection.
Collapse
MESH Headings
- Castleman Disease/virology
- DNA, Viral/analysis
- Enzyme-Linked Immunosorbent Assay
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/isolation & purification
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, AIDS-Related/virology
- Lymphoma, B-Cell/virology
- Lymphoma, Large B-Cell, Diffuse/virology
- Multiple Myeloma/virology
- Polymerase Chain Reaction
- Sarcoma, Kaposi/complications
- Sarcoma, Kaposi/diagnosis
- Sarcoma, Kaposi/epidemiology
- Sarcoma, Kaposi/virology
Collapse
Affiliation(s)
- Ronit Sarid
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|