51
|
Fan L, Cacicedo JM, Ido Y. Impaired nicotinamide adenine dinucleotide (NAD + ) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J Diabetes Investig 2020; 11:1403-1419. [PMID: 32428995 PMCID: PMC7610120 DOI: 10.1111/jdi.13303] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
One of the biochemical abnormalities found in diabetic tissues is a decrease in the cytosolic oxidized to reduced forms of the nicotinamide adenine dinucleotide ratio (NAD+/NADH also known as pseudohypoxia) caused by oxidation of excessive substrates (glucose through the polyol pathway, free fatty acids and lactate). Subsequently, a decline in NAD+ levels as a result of the activation of poly adenine nucleotide diphosphate‐ribose polymerase (mainly in type 1 diabetes) or the inhibition of adenine nucleotide monophosphate‐activated protein kinase (in type 2 diabetes). Thus, replenishment of NAD+ levels by nicotinamide‐related compounds could be beneficial. However, these compounds also increase nicotinamide catabolites that cause oxidative stress. This is particularly troublesome for patients with diabetes, because they have impaired nicotinamide salvage pathway reactions at the level of nicotinamide phosphoribosyl transferase and phosphoribosyl pyrophosphate, which occurs by the following mechanisms. First, phosphoribosyl pyrophosphate synthesis from pentose phosphate pathway is compromised by a decrease in plasma thiamine and transketolase activity. Second, nicotinamide phosphoribosyl transferase expression is decreased because of reduced adenosine monophosphate‐activated protein kinase activity, which occurs in type 2 diabetes. The adenosine monophosphate‐activated protein kinase inhibition is caused by an activation of protein kinase C and D1 as a result of enhanced diacylglycerol synthesis caused by pseudohypoxia and increased fatty acids levels. In this regard, nicotinamide‐related compounds should be given with caution to treat diabetes. To minimize the risk and maximize the benefit, nicotinamide‐related compounds should be taken with insulin sensitizers (for type 2 diabetes), polyphenols, benfotiamine, acetyl‐L‐carnitine and aldose reductase inhibitors. The efficacy of these regimens can be monitored by measuring serum NAD+ and urinary nicotinamide catabolites.
Collapse
Affiliation(s)
- Lan Fan
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jose M Cacicedo
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
52
|
Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases. Free Radic Biol Med 2020; 152:33-42. [PMID: 32160947 DOI: 10.1016/j.freeradbiomed.2020.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria are well known for their roles as energy and metabolic factory. Mitochondrial reactive oxygen species (mtROS) refer to superoxide anion radical (•O2-) and hydrogen peroxide (H2O2). They are byproducts of electron transport in mitochondrial respiratory chain and are implicated in the regulation of physiological and pathological signal transduction. Especially when mitochondrial •O2-/H2O2 production is disturbed, this disturbance is closely related to the occurrence and development of metabolic diseases. In this review, the sources of mitochondrial •O2-/H2O2 as well as mitochondrial antioxidant mechanisms are summarized. Furthermore, we particularly emphasize the essential role of mitochondrial •O2-/H2O2 in metabolic diseases. Specifically, perturbed mitochondrial •O2-/H2O2 regulation aggravates the progression of metabolic diseases, including diabetes, gout and nonalcoholic fatty liver disease (NAFLD). Given the deleterious effect of mitochondrial •O2-/H2O2 in the development of metabolic diseases, antioxidants targeting mitochondrial •O2-/H2O2 might be an attractive therapeutic approach for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
53
|
Antiphospholipid antibodies can specifically target placental mitochondria and induce ROS production. J Autoimmun 2020; 111:102437. [PMID: 32224053 DOI: 10.1016/j.jaut.2020.102437] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
Abstract
Women with antiphospholipid antibodies (aPL) have increased risks of pregnancy complications, including a ten-fold increased risk of preeclampsia, which is potentially triggered by the release of placental toxins. Previously, aPL were shown to enter the outer layer of the placenta, the syncytiotrophoblast, associate with mitochondria, and alter mitochondrial function. We hypothesised that aPL may also increase mitochondrial reactive oxygen species (ROS) production, leading to cellular dysfunction and release of toxins. First trimester placental explants were incubated with monoclonal aPL, ID2 and IIC5 (25, 50, and 100 μg/mL), for 3 h at 37 °C and ROS production followed using CellROX Deep Red. In addition, the candidate treatment compounds chloroquine, melatonin, and Mito-Q were tested at therapeutic concentrations for their ability to prevent ROS production. Mitochondria isolated from term placentae were incubated with fluorescently-labelled ID2, IIC5, or control IgG antibodies (2.5, 5, 10, or 20 μg/mL) for 30 min, and mitochondria with bound antibodies were quantified using flow cytometry. In addition, respirometry coupled with fluorimetry was used to interrogate explant mitochondrial respiration and ROS production following incubation with 25, 50, or 100 μg/mL ID2, IIC5, or control IgG for 3 h at 37 °C. ID2 increased explant ROS production in a manner that was completely prevented by the endocytosis inhibitor chloroquine, and partially prevented by the antioxidants melatonin and Mito-Q. Both ID2 and IIC5 displayed a greater ability to bind isolated mitochondria than control antibodies, and increased ROS production attributable to the mitochondrial enzyme glycerol 3-phosphate dehydrogenase (mGPDH). Our evidence supports the hypothesis that aPL interact with syncytiotrophoblast mitochondria, likely via the binding of cardiolipin and β2 glycoprotein I in mitochondrial membranes, and induce ROS production which contributes to overall oxidative stress and placental dysfunction.
Collapse
|
54
|
El-Hafidi M, Correa F, Zazueta C. Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165744. [PMID: 32105822 DOI: 10.1016/j.bbadis.2020.165744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Cardiolipin (CL) is an acidic phospholipid almost exclusively found in the inner mitochondrial membrane, that not only stabilizes the structure and function of individual components of the mitochondrial electron transport chain, but regulates relevant mitochondrial processes, like mitochondrial dynamics and cristae structure maintenance among others. Alterations in CL due to peroxidation, correlates with loss of such mitochondrial activities and disease progression. In this review it is recapitulated the current state of knowledge of the role of cardiolipin remodeling associated with mitochondrial dysfunction in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México.
| |
Collapse
|
55
|
Napolitano G, Fasciolo G, Di Meo S, Venditti P. Vitamin E Supplementation and Mitochondria in Experimental and Functional Hyperthyroidism: A Mini-Review. Nutrients 2019; 11:nu11122900. [PMID: 31805673 PMCID: PMC6950234 DOI: 10.3390/nu11122900] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are both the main sites of production and the main target of reactive oxygen species (ROS). This can lead to mitochondrial dysfunction with harmful consequences for the cells and the whole organism, resulting in metabolic and neurodegenerative disorders such as type 2 diabetes, obesity, dementia, and aging. To protect themselves from ROS, mitochondria are equipped with an efficient antioxidant system, which includes low-molecular-mass molecules and enzymes able to scavenge ROS or repair the oxidative damage. In the mitochondrial membranes, a major role is played by the lipid-soluble antioxidant vitamin E, which reacts with the peroxyl radicals faster than the molecules of polyunsaturated fatty acids, and in doing so, protects membranes from excessive oxidative damage. In the present review, we summarize the available data concerning the capacity of vitamin E supplementation to protect mitochondria from oxidative damage in hyperthyroidism, a condition that leads to increased mitochondrial ROS production and oxidative damage. Vitamin E supplementation to hyperthyroid animals limits the thyroid hormone-induced increases in mitochondrial ROS and oxidative damage. Moreover, it prevents the reduction of the high functionality components of the mitochondrial population induced by hyperthyroidism, thus preserving cell function.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38, I-0133 Napoli, Italy;
| | - Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia, I-80126 Napoli, Italy; (G.F.); (S.D.M.)
| | - Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia, I-80126 Napoli, Italy; (G.F.); (S.D.M.)
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia, I-80126 Napoli, Italy; (G.F.); (S.D.M.)
- Correspondence: ; Tel.: +39-081-2535080; Fax: +39-081-679233
| |
Collapse
|
56
|
Luft JG, Steffens L, Morás AM, da Rosa MS, Leipnitz G, Regner GG, Pflüger PF, Gonçalves D, Moura DJ, Pereira P. Rosmarinic acid improves oxidative stress parameters and mitochondrial respiratory chain activity following 4-aminopyridine and picrotoxin-induced seizure in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:1347-1358. [PMID: 31201429 DOI: 10.1007/s00210-019-01675-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
Studies have indicated that epilepsy, an important neurological disease, can generate oxidative stress and mitochondrial dysfunction, among other damages to the brain. In this context, the use of antioxidant compounds could provide neuroprotection and help to reduce the damage caused by epileptic seizures and thereby the use of anticonvulsant drugs. Rosmarinic acid (RA) is an ester of caffeic acid and 3,4-dihydroxyphenylactic acid that prevents cell damage caused by free radicals, acting as an antioxidant. It also presents anti-inflammatory, antimutagenic, and antiapoptotic properties. In this work, we used two models of acute seizure, 4-aminopyridine (4-AP) and picrotoxin (PTX)-induced seizures in mice, to investigate the anticonvulsant, antioxidant, and neuroprotective profile of RA. Diazepam and valproic acid, antiepileptic drugs already used in the treatment of epilepsy, were used as positive controls. Although RA could not prevent seizures in the models used in this study, neither enhance the latency time to first seizure at the tested doses, it exhibited an antioxidant and neuroprotective effect. RA (8 and 16 mg/kg) decreased reactive oxygen species production, superoxide dismutase activity, and DNA damage, measured in hippocampus, after seizures induced by PTX and 4-AP. Catalase activity was decreased by RA only after seizures induced by 4-AP. The activity of the mitochondrial complex II was increased by RA in hippocampus samples after both seizure models. The results obtained in this study suggest that RA is able to reduce cell damage generated by the 4-AP and PTX seizures and therefore could represent a potential candidate in reducing pathophysiological processes involved in epilepsy.
Collapse
Affiliation(s)
- Jordana Griebler Luft
- Neuropharmacology and Preclinical Toxicology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Luiza Steffens
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., Porto Alegre, RS, 245, Brazil
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., Porto Alegre, RS, 245, Brazil
| | - Mateus Strucker da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Fisiologia, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-190, Brazil
| | - Gabriela Gregory Regner
- Neuropharmacology and Preclinical Toxicology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Pricila Fernandes Pflüger
- Neuropharmacology and Preclinical Toxicology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Débora Gonçalves
- Neuropharmacology and Preclinical Toxicology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., Porto Alegre, RS, 245, Brazil
| | - Patrícia Pereira
- Neuropharmacology and Preclinical Toxicology Laboratory, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
57
|
Gaviraghi A, Correa Soares JBR, Mignaco JA, Fontes CFL, Oliveira MF. Mitochondrial glycerol phosphate oxidation is modulated by adenylates through allosteric regulation of cytochrome c oxidase activity in mosquito flight muscle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103226. [PMID: 31446033 DOI: 10.1016/j.ibmb.2019.103226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The huge energy demand posed by insect flight activity is met by an efficient oxidative phosphorylation process that takes place within flight muscle mitochondria. In the major arbovirus vector Aedes aegypti, mitochondrial oxidation of pyruvate, proline and glycerol 3-phosphate (G3P) represent the major energy sources of ATP to sustain flight muscle energy demand. Although adenylates exert critical regulatory effects on several mitochondrial enzyme activities, the potential consequences of altered adenylate levels to G3P oxidation remains to be determined. Here, we report that mitochondrial G3P oxidation is controlled by adenylates through allosteric regulation of cytochrome c oxidase (COX) activity in A. aegypti flight muscle. We observed that ADP significantly activated respiratory rates linked to G3P oxidation, in a protonmotive force-independent manner. Kinetic analyses revealed that ADP activates respiration through a slightly cooperative mechanism. Despite adenylates caused no effects on G3P-cytochrome c oxidoreductase activity, COX activity was allosterically activated by ADP. Conversely, ATP exerted powerful inhibitory effects on respiratory rates linked to G3P oxidation and on COX activity. We also observed that high energy phosphate recycling mechanisms did not contribute to the regulatory effects of adenylates on COX activity or G3P oxidation. We conclude that mitochondrial G3P oxidation in A. aegypti flight muscle is regulated by adenylates through the allosteric modulation of COX activity, underscoring the bioenergetic relevance of this novel mechanism and the potential consequences for mosquito dispersal.
Collapse
Affiliation(s)
- Alessandro Gaviraghi
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Juliana B R Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Julio A Mignaco
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Frederico L Fontes
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
58
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
59
|
The Impact of High-Fat Diet on Mitochondrial Function, Free Radical Production, and Nitrosative Stress in the Salivary Glands of Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2606120. [PMID: 31354904 PMCID: PMC6637679 DOI: 10.1155/2019/2606120] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/30/2019] [Accepted: 06/16/2019] [Indexed: 11/25/2022]
Abstract
Oxidative stress plays a crucial role in the salivary gland dysfunction in insulin resistance; however, the cause of increased free radical formation in these conditions is still unknown. Therefore, the aim of the study was to investigate the effect of high-fat diet (HFD) on the mitochondrial respiratory system, prooxidant enzymes, ROS production, and nitrosative/oxidative stress in the submandibular and parotid glands of rats. The experiment was performed on male Wistar rats divided into two groups (n = 10): control and HFD. The 8-week feeding of HFD affects glucose metabolism observed as significant increase in plasma glucose and insulin as well as HOMA-IR as compared to the control rats. The activity of mitochondrial Complex I and Complex II+III was significantly decreased in the parotid and submandibular glands of HFD rats. Mitochondrial cytochrome c oxidase (COX) activity and the hydrogen peroxide level were significantly increased in the parotid and submandibular glands of the HFD group as compared to those of the controls. HFD rats also showed significantly lower reduced glutathione (GSH) and reduced : oxidized glutathione (GSH : GSSG) ratio, as well as a higher GSSG level in the parotid glands of HFD rats. The activity of NADPH oxidase, xanthine oxidase, and levels of oxidative/nitrosative stress (malonaldehyde, nitric oxide, nitrotyrosine, and peroxynitrite) and inflammation/apoptosis (interleukin-1β and caspase-3) biomarkers were statistically elevated in the HFD group in comparison to the controls. HFD impairs mitochondrial function in both types of salivary glands by enhancing ROS production, as well as stimulating inflammation and apoptosis. However, free radical production, protein nitration, and lipid peroxidation were more pronounced in the parotid glands of HFD rats.
Collapse
|
60
|
Zheng Y, Qu H, Xiong X, Wang Y, Liu X, Zhang L, Liao X, Liao Q, Sun Z, Ouyang Q, Yang G, Zhu Z, Xu J, Zheng H. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Contributes to Hepatic Steatosis. Hepatology 2019; 70:84-97. [PMID: 30653687 PMCID: PMC6597300 DOI: 10.1002/hep.30507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
Mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is an integral component of the respiratory chain, and recent studies have suggested that it plays an important role in hepatic glucose homeostasis. However, its function in hepatic lipid metabolism is unclear. Here, we identified a role for mGPDH in nonalcoholic fatty liver disease (NAFLD). Specifically, mGPDH expression and activity were lower in fatty livers from patients and mice with NAFLD (ob/ob, high-fat diet [HFD] and db/db). Liver-specific depletion of mGPDH in mice or mGPDH knockdown in cultured hepatocytes exacerbated diet-induced triglyceride accumulation and steatosis through enhanced lipogenesis. RNA-sequencing revealed that mGPDH regulated endoplasmic reticulum (ER)-related proteins and processes. mGPDH deletion exacerbated tunicamycin (ER stress inducer)-induced hepatic steatosis, whereas tauroursodeoxycholic acid (ER stress inhibitor) rescued mGPDH depletion-induced steatosis on an HFD. Moreover, ER stress induced by mGPDH depletion could be abrogated by the intracellular Ca2+ chelator 1,2-bis (2-aminophenoxy) ethane N,N,N´,N´-tetraacetic acid acetoxymethyl ester, mitochondrial permeability transition pore (mPTP) inhibitor cyclosporine A, or cyclophilin-D (Cyp-D) knockdown. mGPDH promoting Cyp-D ubiquitination was also observed. Finally, liver-specific mGPDH overexpression attenuated hepatic steatosis in ob/ob and HFD mice. Conclusion: mGPDH is a pivotal regulator of hepatic lipid metabolism. Its deficiency induces ER stress by suppressing Cyp-D ubiquitination, a key regulator of the mitochondrial Ca2+ conductance channel mPTP, and results in hepatic steatosis. mGPDH may be a potential therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Qu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zheng Sun
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Correspondence addressed to: Hongting Zheng, M.D., Ph.D., Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, , Phone: +8602368755709, Fax: +8602368755707
| |
Collapse
|
61
|
Higgins L, Palee S, Chattipakorn SC, Chattipakorn N. Effects of metformin on the heart with ischaemia-reperfusion injury: Evidence of its benefits from in vitro, in vivo and clinical reports. Eur J Pharmacol 2019; 858:172489. [PMID: 31233747 DOI: 10.1016/j.ejphar.2019.172489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023]
Abstract
Ischaemia reperfusion (I/R) injury following myocardial infarction reperfusion therapy is a phenomenon that results in further loss of cardiomyocytes and cardiac contractility. Among the potential therapeutics to counter cardiac I/R injury, the antidiabetic drug metformin has shown promising experimental results. This review encompasses evidence available from studies of metformin's protective effects on the heart following cardiac I/R in vitro, ex vivo and in vivo, alongside clinical trials. Experimental data describes potential mechanisms of metformin, including activation of AMPK, an energy sensing kinase with many downstream effects. Suggested effects include upregulation of superoxide dismutases (SODs), which reduce oxidative stress and improve mitochondrial function. Additionally, metformin demonstrates anti-apoptotic effects, most likely by inhibiting mitochondrial permeability transition pore (mPTP) opening, and anti-inflammatory effects, by JNK inhibition. Recent reports of metformin's role in modulating complex I activity of the electron transport chain following cardiac I/R are also presented and discussed. Furthermore, clinical reports present mixed findings, suggesting that beneficial effects may depend on dosage, timing and condition of patients receiving metformin treatment. Conclusively there is an increased need for prospective, placebo-controlled clinical studies to confirm the mechanisms and to demonstrate that metformin is a suitable and safe drug for treatment of cardiac I/R injury.
Collapse
Affiliation(s)
- Louis Higgins
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, England, UK
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
62
|
de-Souza-Ferreira E, Rios-Neto IM, Martins EL, Galina A. Mitochondria-coupled glucose phosphorylation develops after birth to modulate H 2 O 2 release and calcium handling in rat brain. J Neurochem 2019; 149:624-640. [PMID: 31001830 DOI: 10.1111/jnc.14705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H2 O2 ) and calcium (Ca2+ ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H2 O2 generation and Ca2+ handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H2 O2 generation and Ca2+ uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H2 O2 generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca2+ signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.
Collapse
Affiliation(s)
- Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Izac Miranda Rios-Neto
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduarda Lopes Martins
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
63
|
Cormier RPJ, Champigny CM, Simard CJ, St-Coeur PD, Pichaud N. Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster. Sci Rep 2019; 9:4531. [PMID: 30872605 PMCID: PMC6418259 DOI: 10.1038/s41598-018-36060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria can utilize different fuels according to physiological and nutritional conditions to promote cellular homeostasis. However, during nutrient overload metabolic inflexibility can occur, resulting in mitochondrial dysfunctions. High-fat diets (HFDs) are usually used to mimic this metabolic inflexibility in different animal models. However, how mitochondria respond to the duration of a HFD exposure is still under debate. In this study, we investigated the dynamic of the mitochondrial and physiological functions in Drosophila melanogaster at several time points following an exposure to a HFD. Our results showed that after two days on the HFD, mitochondrial respiration as well as ATP content of thorax muscles are increased, likely due to the utilization of carbohydrates. However, after four days on the HFD, impairment of mitochondrial respiration at the level of complex I, as well as decreased ATP content were observed. This was associated with an increased contribution of complex II and, most notably of the mitochondrial glycerol-3-phosphate dehydrogenase (mG3PDH) to mitochondrial respiration. We suggest that this increased mG3PDH capacity reflects the occurrence of metabolic inflexibility, leading to a loss of homeostasis and alteration of the cellular redox status, which results in senescence characterized by decreased climbing ability and premature death.
Collapse
Affiliation(s)
- Robert P J Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Camille M Champigny
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Chloé J Simard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Patrick-Denis St-Coeur
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
64
|
Abstract
SIGNIFICANCE NAD+ and NADP+ are important cosubstrates in redox reactions and participate in regulatory networks operating in adjustment of metabolic pathways. Moreover, NAD+ is a cosubstrate in post-translational modification of proteins and is involved in DNA repair. NADPH is indispensable for reductive syntheses and the redox chemistry involved in attaining and maintaining correct protein conformation. Recent Advances: Within a couple of decades, a wealth of information has been gathered on NAD(H)+/NADP(H) redox imaging, regulatory role of redox potential in assembly of spatial protein structures, and the role of ADP-ribosylation of regulatory proteins affecting both gene expression and metabolism. All these have a bearing also on disease, healthy aging, and longevity. CRITICAL ISSUES Knowledge of the signal propagation pathways of NAD+-dependent post-translational modifications is still fragmentary for explaining the mechanism of cellular stress effects and nutritional state on these actions. Evaluation of the cosubstrate and regulator roles of NAD(H) and NADP(H) still suffers from some controversies in experimental data. FUTURE DIRECTIONS Activating or inhibiting interventions in NAD+-dependent protein modifications for medical purposes has shown promise, but restraining tumor growth by inhibiting DNA repair in tumors by means of interference in sirtuins is still in the early stage. The same is true for the use of this technology in improving health and healthy aging. New genetically encoded specific NAD and NADP probes are expected to modernize the research on redox biology.
Collapse
Affiliation(s)
- Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
65
|
Glossmann HH, Lutz OMD. Commentary: Lactate-Induced Glucose Output Is Unchanged by Metformin at a Therapeutic Concentration-A Mass Spectrometry Imaging Study of the Perfused Rat Liver. Front Pharmacol 2019; 10:90. [PMID: 30837871 PMCID: PMC6389785 DOI: 10.3389/fphar.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hartmut H Glossmann
- Institute for Biochemical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
66
|
The Importance of Calcium Ions for Determining Mitochondrial Glycerol-3-Phosphate Dehydrogenase Activity When Measuring Uncoupling Protein 1 (UCP1) Function in Mitochondria Isolated from Brown Adipose Tissue. Methods Mol Biol 2019; 1782:325-336. [PMID: 29851009 DOI: 10.1007/978-1-4939-7831-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycerol-3-phosphate is an excellent substrate for FAD-linked mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in brown adipose tissue mitochondria and is regularly used as the primary substrate to measure oxygen consumption and reactive oxygen consumption by these mitochondria. mGPDH converts cytosolic glycerol-3-phosphate to dihydroxyacetone phosphate, feeding electrons directly from the cytosolic side of the mitochondrial inner membrane to the CoQ-pool within the inner membrane. mGPDH activity is allosterically activated by calcium, and when calcium chelators are present in the mitochondrial preparation medium and/or experimental incubation medium, calcium must be added to insure maximal mGPDH activity. It was demonstrated that in isolated brown adipose tissue mitochondria (1) mGPDH enzyme activity is maximal at free calcium ion concentrations in the 350 nM-1 μM range, (2) that ROS production also peaks in the 10-100 nM range in the presence of a UCP1 inhibitory ligand (GDP) but wanes with further increasing calcium concentration, and (3) that oxygen consumption rates peak in the 10-100 nM range with rates being maintained at higher calcium concentrations. This article provides easy-to-follow protocols to facilitate the measurement of mGPDH-dependent UCP1 activity in the presence of calcium for isolated brown adipose tissue mitochondria.
Collapse
|
67
|
Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Front Physiol 2019; 10:78. [PMID: 30809153 PMCID: PMC6379835 DOI: 10.3389/fphys.2019.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are cellular organelles that control metabolic homeostasis and ATP generation, but also play an important role in other processes, like cell death decisions and immune signaling. Mitochondria produce a diverse array of metabolites that act in the mitochondria itself, but also function as signaling molecules to other parts of the cell. Communication of mitochondria with the nucleus by metabolites that are produced by the mitochondria provides the cells with a dynamic regulatory system that is able to respond to changing metabolic conditions. Dysregulation of the interplay between mitochondrial metabolites and the nucleus has been shown to play a role in disease etiology, such as cancer and type II diabetes. Multiple recent studies emphasize the crucial role of nutritional cofactors in regulating these metabolic networks. Since B-vitamins directly regulate mitochondrial metabolism, understanding the role of B-vitamins in mito-nuclear communication is relevant for therapeutic applications and optimal dietary lifestyle. In this review, we will highlight emerging concepts in mito-nuclear communication and will describe the role of B-vitamins in mitochondrial metabolite-mediated nuclear signaling.
Collapse
Affiliation(s)
| | | | | | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
68
|
Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem 2019; 148:731-745. [PMID: 30582748 DOI: 10.1111/jnc.14654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023]
Abstract
Reactive oxygen species (ROS) are by-products of physiological mitochondrial metabolism that are involved in several cellular signaling pathways as well as tissue injury and pathophysiological processes, including brain ischemia/reperfusion injury. The mitochondrial respiratory chain is considered a major source of ROS; however, there is little agreement on how ROS release depends on oxygen concentration. The rate of H2 O2 release by intact brain mitochondria was measured with an Amplex UltraRed assay using a high-resolution respirometer (Oroboros) equipped with a fluorescent optical module and a system of controlled gas flow for varying the oxygen concentration. Three types of substrates were used: malate and pyruvate, succinate and glutamate, succinate alone or glycerol 3-phosphate. For the first time we determined that, with any substrate used in the absence of inhibitors, H2 O2 release by respiring brain mitochondria is linearly dependent on the oxygen concentration. We found that the highest rate of H2 O2 release occurs in conditions of reverse electron transfer when mitochondria oxidize succinate or glycerol 3-phosphate. H2 O2 production by complex III is significant only in the presence of antimycin A and, in this case, the oxygen dependence manifested mixed (linear and hyperbolic) kinetics. We also demonstrated that complex II in brain mitochondria could contribute to ROS generation even in the absence of its substrate succinate when the quinone pool is reduced by glycerol 3-phosphate. Our results underscore the critical importance of reverse electron transfer in the brain, where a significant amount of succinate can be accumulated during ischemia providing a backflow of electrons to complex I at the early stages of reperfusion. Our study also demonstrates that ROS generation in brain mitochondria is lower under hypoxic conditions than in normoxia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Anna Stepanova
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, UK.,Department of Pediatrics, Columbia University, New York, NY, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Roger Springett
- Cardiovascular Division, King's College London, British Heart Foundation Centre of Excellence London, London, UK
| | - Vadim Ten
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, UK.,Department of Pediatrics, Columbia University, New York, NY, USA
| |
Collapse
|
69
|
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep 2018; 38:BSR20171492. [PMID: 30201689 PMCID: PMC6167499 DOI: 10.1042/bsr20171492] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules that result from aerobic metabolism. The common forms are the superoxide anion (O2∙-) and hydrogen peroxide (H2O2) and their derived forms, hydroxyl radical (HO∙) and hydroperoxyl radical (HOO∙). Their production sites in mitochondria are reviewed. Even though being highly toxic products, ROS seem important in transducing information from dysfunctional mitochondria. Evidences of signal transduction mediated by ROS in mitochondrial deficiency contexts are then presented in different organisms such as yeast, mammals or photosynthetic organisms.
Collapse
Affiliation(s)
- Véronique Larosa
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| |
Collapse
|
70
|
Treberg JR, Braun K, Zacharias P, Kroeker K. Multidimensional mitochondrial energetics: Application to the study of electron leak and hydrogen peroxide metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:121-128. [DOI: 10.1016/j.cbpb.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
71
|
“Alternative” fuels contributing to mitochondrial electron transport: Importance of non-classical pathways in the diversity of animal metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:185-194. [DOI: 10.1016/j.cbpb.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
|
72
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
73
|
Komlódi T, Geibl FF, Sassani M, Ambrus A, Tretter L. Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria. J Bioenerg Biomembr 2018; 50:355-365. [PMID: 30116920 PMCID: PMC6209044 DOI: 10.1007/s10863-018-9766-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Succinate-driven reverse electron transport (RET) is one of the main sources of mitochondrial reactive oxygen species (mtROS) in ischemia-reperfusion injury. RET is dependent on mitochondrial membrane potential (Δψm) and transmembrane pH difference (ΔpH), components of the proton motive force (pmf); a decrease in Δψm and/or ΔpH inhibits RET. In this study we aimed to determine which component of the pmf displays the more dominant effect on RET-provoked ROS generation in isolated guinea pig brain and heart mitochondria respiring on succinate or α-glycerophosphate (α-GP). Δψm was detected via safranin fluorescence and a TPP+ electrode, the rate of H2O2 formation was measured by Amplex UltraRed, the intramitochondrial pH (pHin) was assessed via BCECF fluorescence. Ionophores were used to dissect the effects of the two components of pmf. The K+/H+ exchanger, nigericin lowered pHin and ΔpH, followed by a compensatory increase in Δψm that led to an augmented H2O2 production. Valinomycin, a K+ ionophore, at low [K+] increased ΔpH and pHin, decreased Δψm, which resulted in a decline in H2O2 formation. It was concluded that Δψm is dominant over ∆pH in modulating the succinate- and α-GP-evoked RET. The elevation of extramitochondrial pH was accompanied by an enhanced H2O2 release and a decreased ∆pH. This phenomenon reveals that from the pH component not ∆pH, but rather absolute value of pH has higher impact on the rate of mtROS formation. Minor decrease of Δψm might be applied as a therapeutic strategy to attenuate RET-driven ROS generation in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tímea Komlódi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tűzoltó St, Budapest, 1094, Hungary
| | - Fanni F Geibl
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tűzoltó St, Budapest, 1094, Hungary.,Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - Matilde Sassani
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tűzoltó St, Budapest, 1094, Hungary.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tűzoltó St, Budapest, 1094, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tűzoltó St, Budapest, 1094, Hungary.
| |
Collapse
|
74
|
ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak. Cell Rep 2018; 21:1667-1680. [PMID: 29117569 DOI: 10.1016/j.celrep.2017.10.060] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 10/15/2017] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial distribution and motility are recognized as central to many cellular functions, but their regulation by signaling mechanisms remains to be elucidated. Here, we report that reactive oxygen species (ROS), either derived from an extracellular source or intracellularly generated, control mitochondrial distribution and function by dose-dependently, specifically, and reversibly decreasing mitochondrial motility in both rat hippocampal primary cultured neurons and cell lines. ROS decrease motility independently of cytoplasmic [Ca2+], mitochondrial membrane potential, or permeability transition pore opening, known effectors of oxidative stress. However, multiple lines of genetic and pharmacological evidence support that a ROS-activated mitogen-activated protein kinase (MAPK), p38α, is required for the motility inhibition. Furthermore, anchoring mitochondria directly to kinesins without involvement of the physiological adaptors between the organelles and the motor protein prevents the H2O2-induced decrease in mitochondrial motility. Thus, ROS engage p38α and the motor adaptor complex to exert changes in mitochondrial motility, which likely has both physiological and pathophysiological relevance.
Collapse
|
75
|
Plate-Based Measurement of Superoxide and Hydrogen Peroxide Production by Isolated Mitochondria. Methods Mol Biol 2018. [PMID: 29851006 DOI: 10.1007/978-1-4939-7831-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Superoxide and hydrogen peroxide produced by mitochondria play important roles in various physiological and pathological processes. This chapter describes a plate-based method to measure rates of superoxide and/or hydrogen peroxide production at specific sites in isolated mitochondria.
Collapse
|
76
|
Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:241-260. [PMID: 29047090 DOI: 10.1007/978-3-319-63245-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.
Collapse
|
77
|
Bartelt A, Widenmaier SB, Schlein C, Johann K, Goncalves RLS, Eguchi K, Fischer AW, Parlakgül G, Snyder NA, Nguyen TB, Bruns OT, Franke D, Bawendi MG, Lynes MD, Leiria LO, Tseng YH, Inouye KE, Arruda AP, Hotamisligil GS. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 2018; 24:292-303. [PMID: 29400713 PMCID: PMC5839993 DOI: 10.1038/nm.4481] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
Adipocytes possess remarkable adaptive capacity to respond to nutrient excess, fasting or cold exposure, and they are thus an important cell type for the maintenance of proper metabolic health. Although the endoplasmic reticulum (ER) is a critical organelle for cellular homeostasis, the mechanisms that mediate adaptation of the ER to metabolic challenges in adipocytes are unclear. Here we show that brown adipose tissue (BAT) thermogenic function requires an adaptive increase in proteasomal activity to secure cellular protein quality control, and we identify the ER-localized transcription factor nuclear factor erythroid 2-like 1 (Nfe2l1, also known as Nrf1) as a critical driver of this process. We show that cold adaptation induces Nrf1 in BAT to increase proteasomal activity and that this is crucial for maintaining ER homeostasis and cellular integrity, specifically when the cells are in a state of high thermogenic activity. In mice, under thermogenic conditions, brown-adipocyte-specific deletion of Nfe2l1 (Nrf1) resulted in ER stress, tissue inflammation, markedly diminished mitochondrial function and whitening of the BAT. In mouse models of both genetic and dietary obesity, stimulation of proteasomal activity by exogenously expressing Nrf1 or by treatment with the proteasome activator PA28α in BAT resulted in improved insulin sensitivity. In conclusion, Nrf1 emerges as a novel guardian of brown adipocyte function, providing increased proteometabolic quality control for adapting to cold or to obesity.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Scott B Widenmaier
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Christian Schlein
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kornelia Johann
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Renata L S Goncalves
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kosei Eguchi
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alexander W Fischer
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Günes Parlakgül
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nicole A Snyder
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Truc B Nguyen
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Oliver T Bruns
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Daniel Franke
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luiz O Leiria
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen E Inouye
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ana Paula Arruda
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
78
|
Fazakerley DJ, Chaudhuri R, Yang P, Maghzal GJ, Thomas KC, Krycer JR, Humphrey SJ, Parker BL, Fisher-Wellman KH, Meoli CC, Hoffman NJ, Diskin C, Burchfield JG, Cowley MJ, Kaplan W, Modrusan Z, Kolumam G, Yang JY, Chen DL, Samocha-Bonet D, Greenfield JR, Hoehn KL, Stocker R, James DE. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. eLife 2018; 7:32111. [PMID: 29402381 PMCID: PMC5800848 DOI: 10.7554/elife.32111] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance. After we eat, our blood sugar levels increase. To counteract this, the pancreas releases a hormone called insulin. Part of insulin’s effect is to promote the uptake of sugar from the blood into muscle and fat tissue for storage. Under certain conditions, such as obesity, this process can become defective, leading to a condition known as insulin resistance. This condition makes a number of human diseases more likely to develop, including type 2 diabetes. Working out how insulin resistance develops could therefore unveil new treatment strategies for these diseases. Mitochondria – structures that produce most of a cell’s energy supply – appear to play a role in the development of insulin resistance. Mitochondria convert nutrients such as fats and sugars into molecules called ATP that fuel the many processes required for life. However, ATP production can also generate potentially harmful intermediates often referred to as ‘reactive oxygen species’ or ‘oxidants’. Previous studies have suggested that an increase in the amount of oxidants produced in mitochondria can cause insulin resistance. Fazakerley et al. therefore set out to identify the reason for increased oxidants in mitochondria, and did so by analysing the levels of proteins and oxidants found in cells grown in the laboratory, and mouse and human tissue samples. This led them to find that concentrations of a molecule called coenzyme Q (CoQ), an essential component of mitochondria that helps to produce ATP, were lower in mitochondria from insulin-resistant fat and muscle tissue. Further experiments suggested a link between the lower levels of CoQ and the higher levels of oxidants in the mitochondria. Replenishing the mitochondria of the lab-grown cells and insulin-resistant mice with CoQ restored ‘normal’ oxidant levels and prevented the development of insulin resistance. Strategies that aim to increase mitochondria CoQ levels may therefore prevent or reverse insulin resistance. Although CoQ supplements are readily available, swallowing CoQ does not efficiently deliver CoQ to mitochondria in humans, so alternative treatment methods must be found. It is also of interest that statins, common drugs taken by millions of people around the world to lower cholesterol, also lower CoQ and have been reported to increase the risk of developing type 2 diabetes. Further research is therefore needed to investigate whether CoQ might provide the link between statins and type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Rima Chaudhuri
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Pengyi Yang
- School of Mathematics and Statistics, University of Sydney, Camperdown, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Kristen C Thomas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Kelsey H Fisher-Wellman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States
| | - Christopher C Meoli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Nolan J Hoffman
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Ciana Diskin
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Jean Yh Yang
- School of Mathematics and Statistics, University of Sydney, Camperdown, Australia
| | - Daniel L Chen
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Kyle L Hoehn
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.,Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown NSW, Australia
| |
Collapse
|
79
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
80
|
Shi Y, Wang H, Yan Y, Cao H, Liu X, Lin F, Lu J. Glycerol-3-Phosphate Shuttle Is Involved in Development and Virulence in the Rice Blast Fungus Pyricularia oryzae. FRONTIERS IN PLANT SCIENCE 2018; 9:687. [PMID: 29875789 PMCID: PMC5974175 DOI: 10.3389/fpls.2018.00687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/04/2018] [Indexed: 05/07/2023]
Abstract
The glycerol-3-phosphate (G-3-P) shuttle is an important pathway for delivery of cytosolic reducing equivalents into mitochondrial oxidative phosphorylation, and plays essential physiological roles in yeast, plants, and animals. However, its role has been unclear in filamentous and pathogenic fungi. Here, we characterize the function of the G-3-P shuttle in Pyricularia oryzae by genetic and molecular analyses. In P. oryzae, a glycerol-3-phosphate dehydrogenase 1 (PoGpd1) is involved in NO production, conidiation, and utilization of several carbon sources (pyruvate, sodium acetate, glutamate, and glutamine). A glycerol-3-phosphate dehydrogenase 2 (PoGpd2) is essential for glycerol utilization and fungal development. Deletion of PoGPD2 led to delayed aerial hyphal formation, accelerated aerial hyphal collapse, and reduced conidiation on complete medium (CM) under a light-dark cycle. Aerial mycelial surface hydrophobicity to water and Tween 20 was decreased in ΔPogpd2. Melanin synthesis genes required for cell wall construction and two transcription factor genes (COS1 and CONx2) required for conidiation and/or aerial hyphal differentiation were down-regulated in the aerial mycelia of ΔPogpd2 and ΔPogpd1. Culturing under continuous dark could complement the defects of aerial hyphal differentiation of ΔPogpd2 observed in a light-dark cycle. Two light-sensitive protein genes (PoSIR2 encoding an NAD+-dependent deacetylase and TRX2 encoding a thioredoxin 2) were up-regulated in ΔPogpd2 cultured on CM medium in a light-dark cycle. ΔPogpd2 showed an increased intracellular NAD+/NADH ratio and total NAD content, and alteration of intracellular ATP production. Culturing on minimal medium also could restore aerial hyphal differentiation of ΔPogpd2, which is deficient on CM medium in a light-dark cycle. Two glutamate synthesis genes, GDH1 and PoGLT1, which synthesize glutamate coupled with oxidation of NADH to NAD+, were significantly up-regulated in ΔPogpd2 in a light-dark cycle. Moreover, deletion of PoGpd1 or PoGpd2 led to reduced virulence of conidia or hyphae on rice. The glycerol-3-phosphate shuttle is involved in cellular redox, fungal development, and virulence in P. oryzae.
Collapse
Affiliation(s)
- Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huan Wang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- *Correspondence: Jianping Lu,
| |
Collapse
|
81
|
Martins EL, Ricardo JC, de-Souza-Ferreira E, Camacho-Pereira J, Ramos-Filho D, Galina A. Rapid regulation of substrate use for oxidative phosphorylation during a single session of high intensity interval or aerobic exercises in different rat skeletal muscles. Comp Biochem Physiol B Biochem Mol Biol 2017; 217:40-50. [PMID: 29222029 DOI: 10.1016/j.cbpb.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Different exercise protocols lead to long-term adaptations that are related to increased mitochondrial content through the activation of mitochondrial biogenesis. However, immediate mitochondrial response to exercise and energetic substrate utilization is still unknown. We evaluate the mitochondrial physiology of two types rat skeletal muscle fibres immediately after a single session of high intensity interval exercise (HIIE) or aerobic exercise (AER). We found AER was able to reduce the ATP synthesis dependent oxygen flux in the tibialis (TA) when stimulated by complex I and II substrates. On the other hand, there was an increase of the maximum velocity (Vmax) for glycerol-phosphate oxidation and Vmax and affinity (KM) of palmitoyl-carnitine oxidation (PC). The exercise did not affect oxygen flux coupled to ATP synthesis in red gastrocnemius (RG) but, surprisingly, reduced its affinity for PC, decreasing the apparent catalytic efficiency (Vmax/KM) of oxidation for PC. Neither exercise protocol was able to change the electron transfer system capacity of the mitochondria or markers of mitochondrial content. The AER group had increased H2O2 production compared to the SED and HIIE groups, with the mechanism being predominantly the escape of electrons through reverse flux in complex I and other sites in TA, and only through other sites in RG. There were no changes in the activities of antioxidant enzymes. Our results show that mitochondria from different muscles submitted to distinct exercise protocols show alterations in the specific fluxes of substrate utilization and oxygen metabolism, indicating that the dynamics of mitochondria are linked to the metabolic flexibility.
Collapse
Affiliation(s)
- Eduarda Lopes Martins
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Carvalho Ricardo
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Camacho-Pereira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dionizio Ramos-Filho
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
82
|
Meng D, Zhang P, Zhang L, Wang H, Ho CT, Li S, Shahidi F, Zhao H. Detection of cellular redox reactions and antioxidant activity assays. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
83
|
Hussain R, Shaukat Z, Khan M, Saint R, Gregory SL. Phosphoenolpyruvate Carboxykinase Maintains Glycolysis-driven Growth in Drosophila Tumors. Sci Rep 2017; 7:11531. [PMID: 28912546 PMCID: PMC5599506 DOI: 10.1038/s41598-017-11613-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Tumors frequently fail to pass on all their chromosomes correctly during cell division, and this chromosomal instability (CIN) causes irregular aneuploidy and oxidative stress in cancer cells. Our objective was to test knockdowns of metabolic enzymes in Drosophila to find interventions that could exploit the differences between normal and CIN cells to block CIN tumor growth without harming the host animal. We found that depleting by RNAi or feeding the host inhibitors against phosphoenolpyruvate carboxykinase (PEPCK) was able to block the growth of CIN tissue in a brat tumor explant model. Increasing NAD+ or oxidising cytoplasmic NADH was able to rescue the growth of PEPCK depleted tumors, suggesting a problem in clearing cytoplasmic NADH. Consistent with this, blocking the glycerol-3-phosphate shuttle blocked tumor growth, as well as lowering ROS levels. This work suggests that proliferating CIN cells are particularly vulnerable to inhibition of PEPCK, or its metabolic network, because of their compromised redox status.
Collapse
Affiliation(s)
- Rashid Hussain
- Department of Genetics and Evolution, University of Adelaide, Adelaide, 5006, Australia
| | - Zeeshan Shaukat
- Department of Genetics and Evolution, University of Adelaide, Adelaide, 5006, Australia
| | - Mahwish Khan
- Department of Genetics and Evolution, University of Adelaide, Adelaide, 5006, Australia
| | | | - Stephen L Gregory
- Department of Genetics and Evolution, University of Adelaide, Adelaide, 5006, Australia.
| |
Collapse
|
84
|
Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 2017; 292:16804-16809. [PMID: 28842493 DOI: 10.1074/jbc.r117.789271] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial production of superoxide and hydrogen peroxide is potentially important in cell signaling and disease. Eleven distinct mitochondrial sites that differ markedly in capacity are known to leak electrons to oxygen to produce O2̇̄ and/or H2O2 We discuss their contributions to O2̇̄/H2O2 production under native conditions in mitochondria oxidizing different substrates and in conditions mimicking physical exercise and the changes in their capacities after caloric restriction. We review the use of S1QELs and S3QELs, suppressors of mitochondrial O2̇̄/H2O2 generation that do not inhibit oxidative phosphorylation, as tools to characterize the contributions of specific sites in situ and in vivo.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Pratiksha A Dighe
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Vojtech Mezera
- From the Buck Institute for Research on Aging, Novato, California 94945
| | | | - Martin D Brand
- From the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
85
|
Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, Kumari M, Kong X, Erickson BK, Szpyt J, Rosen ED, Murphy MP, Kristal BS, Gygi SP, Spiegelman BM. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci U S A 2017; 114:7981-7986. [PMID: 28630339 PMCID: PMC5544316 DOI: 10.1073/pnas.1705406114] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.
Collapse
Affiliation(s)
- Lawrence Kazak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Irina G Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215
| | - Gina Z Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | - Daniel F Egan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Brian K Erickson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Bruce S Kristal
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115;
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
86
|
Patel M, McElroy PB. Mitochondrial Dysfunction in Parkinson’s Disease. OXIDATIVE STRESS AND REDOX SIGNALLING IN PARKINSON’S DISEASE 2017. [DOI: 10.1039/9781782622888-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders where oxidative stress and mitochondrial dysfunction have been implicated as etiological factors. Mitochondria are the major producers of reactive oxygen species (ROS) that can have damaging effects to cellular macromolecules leading to neurodegeneration. The most compelling evidence for the role of mitochondria in the pathogenesis of PD has been derived from toxicant-induced models of parkinsonism. Over the years, epidemiological studies have suggested a link between exposure to environmental toxins such as pesticides and the risk of developing PD. Data from human and experimental studies involving the use of chemical agents like paraquat, diquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone and maneb have provided valuable insight into the underlying mitochondrial mechanisms contributing to PD and associated neurodegeneration. In this review, we have discussed the role of mitochondrial ROS and dysfunction in the pathogenesis of PD with a special focus on environmental agent-induced parkinsonism. We have described the various mitochondrial mechanisms by which such chemicals exert neurotoxicity, highlighting some landmark epidemiological and experimental studies that support the role of mitochondrial ROS and oxidative stress in contributing to these effects. Finally, we have discussed the significance of these studies in understanding the mechanistic underpinnings of PD-related dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| | - Pallavi Bhuyan McElroy
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| |
Collapse
|
87
|
Morales AE, Cardenete G, Hidalgo MC, Garrido D, Martín MV, Almansa E. Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance. Front Physiol 2017; 8:427. [PMID: 28670288 PMCID: PMC5473251 DOI: 10.3389/fphys.2017.00427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023] Open
Abstract
The culture of the common octopus (Octopus vulgaris) is promising since the species has a relatively short lifecycle, rapid growth, and high food conversion ratios. However, recent attempts at successful paralarvae culture have failed due to slow growth and high mortality rates. Establishing an optimal nutritional regime for the paralarvae seems to be the impeding step in successful culture methods. Gaining a thorough knowledge of food regulation and assimilation is essential for paralarvae survival and longevity under culture conditions. The aim of this study, then, was to elucidate the characteristic metabolic organization of octopus paralarvae throughout an ontogenic period of 12 days post-hatching, as well as assess the effect of diet enrichment with live prey containing abundant marine phospholipids. Our results showed that throughout the ontogenic period studied, an increase in anaerobic metabolism took place largely due to an increased dependence of paralarvae on exogenous food. Our studies showed that this activity was supported by octopine dehydrogenase activity, with a less significant contribution of lactate dehydrogenase activity. Regarding aerobic metabolism, the use of amino acids was maintained for the duration of the experiment. Our studies also showed a significant increase in the rate of oxidation of fatty acids from 6 days after-hatching. A low, although sustained, capacity for de novo synthesis of glucose from amino acids and glycerol was also observed. Regardless of the composition of the food, glycerol kinase activity significantly increased a few days prior to a massive mortality event. This could be related to a metabolic imbalance in the redox state responsible for the high mortality. Thus, glycerol kinase might be used as an effective nutritional and welfare biomarker. The studies in this report also revealed the important finding that feeding larvae with phospholipid-enriched Artemia improved animal viability and welfare, significantly increasing the rate of survival and growth of paralarvae.
Collapse
Affiliation(s)
- Amalia E Morales
- Departamento de Zoología, Facultad de Ciencias, Universidad de GranadaGranada, Spain
| | - Gabriel Cardenete
- Departamento de Zoología, Facultad de Ciencias, Universidad de GranadaGranada, Spain
| | - M Carmen Hidalgo
- Departamento de Zoología, Facultad de Ciencias, Universidad de GranadaGranada, Spain
| | - Diego Garrido
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - M Virginia Martín
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| |
Collapse
|
88
|
Pohjoismäki JL, Goffart S. The role of mitochondria in cardiac development and protection. Free Radic Biol Med 2017; 106:345-354. [PMID: 28216385 DOI: 10.1016/j.freeradbiomed.2017.02.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential for the development as well as maintenance of the myocardium, the most energy consuming tissue in the human body. Mitochondria are not only a source of ATP energy but also generators of reactive oxygen species (ROS), that cause oxidative damage, but also regulate physiological processes such as the switch from hyperplastic to hypertrophic growth after birth. As excess ROS production and oxidative damage are associated with cardiac pathology, it is not surprising that much of the research focused on the deleterious aspects of free radicals. However, cardiomyocytes are naturally highly adapted against repeating oxidative insults, with evidence suggesting that moderate and acute ROS exposure has beneficial consequences for mitochondrial maintenance and cardiac health. Antioxidant defenses, mitochondrial quality control, mtDNA maintenance mechanisms as well as mitochondrial fusion and fission improve mitochondrial function and cardiomyocyte survival under stress conditions. As these adaptive processes can be induced, promoting mitohormesis or mitochondrial biogenesis using controlled ROS exposure could provide a promising strategy to increase cardiomyocyte survival and prevent pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Jaakko L Pohjoismäki
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.
| | - Steffi Goffart
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
89
|
Attenuation of liver cancer development by oral glycerol supplementation in the rat. Eur J Nutr 2017; 57:1215-1224. [PMID: 28255652 DOI: 10.1007/s00394-017-1404-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Glycerol usage is increasing in food industry for human and animal nutrition. This study analyzed the impact of glycerol metabolism when orally supplemented during the early stage of rat liver carcinogenesis. METHODS Wistar rats were subjected to a 2-phase model of hepatocarcinogenesis (initiated-promoted, IP group). IP animals also received glycerol by gavage (200 mg/kg body weight, IPGly group). RESULTS Glycerol treatment reduced the volume of preneoplastic lesions by decreasing the proliferative status of liver foci, increasing the expression of p53 and p21 proteins and reducing the expression of cyclin D1 and cyclin-dependent kinase 1. Besides, apoptosis was enhanced in IPGly animals, given by an increment of Bax/Bcl-2 ratio, Bad and PUMA mitochondrial expression, a concomitant increase in cytochrome c release and caspase-3 activation. Furthermore, hepatic levels of glycerol phosphate and markers of oxidative stress were increased in IPGly rats. Oxidative stress intermediates act as intracellular messengers, inducing p53 activation and changes in JNK and Erk signaling pathways, with JNK activation and Erk inhibition. CONCLUSION The present work provides novel data concerning the preventive actions of glycerol during the development of liver cancer and represents an economically feasible intervention to treat high-risk individuals.
Collapse
|
90
|
Reina S, Checchetto V, Saletti R, Gupta A, Chaturvedi D, Guardiani C, Guarino F, Scorciapino MA, Magrì A, Foti S, Ceccarelli M, Messina AA, Mahalakshmi R, Szabo I, De Pinto V. VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications. Oncotarget 2016; 7:2249-68. [PMID: 26760765 PMCID: PMC4823033 DOI: 10.18632/oncotarget.6850] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
Voltage-Dependent Anion selective Channels (VDAC) are pore-forming mitochondrial outer membrane proteins. In mammals VDAC3, the least characterized isoform, presents a set of cysteines predicted to be exposed toward the intermembrane space. We find that cysteines in VDAC3 can stay in different oxidation states. This was preliminary observed when, in our experimental conditions, completely lacking any reducing agent, VDAC3 presented a pattern of slightly different electrophoretic mobilities. This observation holds true both for rat liver mitochondrial VDAC3 and for recombinant and refolded human VDAC3. Mass spectroscopy revealed that cysteines 2 and 8 can form a disulfide bridge in native VDAC3. Single or combined site-directed mutagenesis of cysteines 2, 8 and 122 showed that the protein mobility in SDS-PAGE is influenced by the presence of cysteine and by the redox status. In addition, cysteines 2, 8 and 122 are involved in the stability control of the pore as shown by electrophysiology, complementation assays and chemico-physical characterization. Furthermore, a positive correlation between the pore conductance of the mutants and their ability to complement the growth of porin-less yeast mutant cells was found. Our work provides evidence for a complex oxidation pattern of a mitochondrial protein not directly involved in electron transport. The most likely biological meaning of this behavior is to buffer the ROS load and keep track of the redox level in the inter-membrane space, eventually signaling it through conformational changes.
Collapse
Affiliation(s)
- Simona Reina
- Department of Biomedicine and Biotechnology BIOMETEC, Section of Biology and Genetics, University of Catania, Catania, Italy.,National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vanessa Checchetto
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Rosaria Saletti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ankit Gupta
- Department of Chemical Sciences, Mass Spectrometry Unit, University of Catania, Catania, Italy
| | - Deepti Chaturvedi
- Department of Chemical Sciences, Mass Spectrometry Unit, University of Catania, Catania, Italy
| | - Carlo Guardiani
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Francesca Guarino
- Department of Biomedicine and Biotechnology BIOMETEC, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Mariano Andrea Scorciapino
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Andrea Magrì
- Department of Biomedicine and Biotechnology BIOMETEC, Section of Biology and Genetics, University of Catania, Catania, Italy
| | | | - Matteo Ceccarelli
- Department of Chemical Sciences, Mass Spectrometry Unit, University of Catania, Catania, Italy.,Department of Physics, University of Cagliari, Cagliari, Italy
| | - Angela Anna Messina
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cagliari, Italy
| | | | - Ildiko Szabo
- National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedicine and Biotechnology BIOMETEC, Section of Biology and Genetics, University of Catania, Catania, Italy
| |
Collapse
|
91
|
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016; 100:14-31. [PMID: 27085844 DOI: 10.1016/j.freeradbiomed.2016.04.001] [Citation(s) in RCA: 673] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD+; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site IIIQo) and the site in complex I active during reverse electron transport (site IQ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites IIIQo and IQ are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts.
Collapse
Affiliation(s)
- Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, United States.
| |
Collapse
|
92
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 779] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
93
|
Oliveira MP, Correa Soares JBR, Oliveira MF. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology. PLoS One 2016; 11:e0158429. [PMID: 27380021 PMCID: PMC4933344 DOI: 10.1371/journal.pone.0158429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute to redox biology among parasite sexes.
Collapse
Affiliation(s)
- Matheus P. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Juliana B. R. Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
94
|
Munro D, Banh S, Sotiri E, Tamanna N, Treberg JR. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays. Free Radic Biol Med 2016; 96:334-46. [PMID: 27101737 DOI: 10.1016/j.freeradbiomed.2016.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
Abstract
The most common methods of measuring mitochondrial hydrogen peroxide production are based on the extramitochondrial oxidation of a fluorescent probe such as amplex ultra red (AUR) by horseradish peroxidase (HRP). These traditional HRP-based assays only detect H2O2 that has escaped the matrix, raising the potential for substantial underestimation of production if H2O2 is consumed by matrix antioxidant pathways. To measure this underestimation, we characterized matrix consumers of H2O2 in rat skeletal muscle mitochondria, and developed specific means to inhibit these consumers. Mitochondria removed exogenously added H2O2 (2.5µM) at rates of 4.7 and 5.0nmol min(-1) mg protein(-1) when respiring on glutamate+malate and succinate+rotenone, respectively. In the absence of respiratory substrate, or after disrupting membranes by cycles of freeze-thaw, rates of H2O2 consumption were negligible. We concluded that matrix consumers are respiration-dependent (requiring respiratory substrates), suggesting the involvement of either the thioredoxin (Trx) and/or glutathione (GSH)-dependent enzymatic pathways. The Trx-reductase inhibitor auranofin (2µM), and a pre-treatment of mitochondria with 35µM of 1-chloro-2,4-dintrobenzene (CDNB) to deplete GSH specifically compromise these two consumption pathways. These inhibition approaches presented no undesirable "off-target" effects during extensive preliminary tests. These inhibition approaches independently and additively decreased the rate of consumption of H2O2 exogenously added to the medium (2.5µM). During traditional HRP-based H2O2 efflux assays, these inhibition approaches independently and additively increased apparent efflux rates. When used in combination (double inhibition), these inhibition approaches allowed accumulation of (endogenously produced) H2O2 in the medium at a comparable rate whether it was measured with an end point assay where 2.5µM H2O2 is initially added to the medium or with traditional HRP-based efflux assays. This finding confirms that a high degree of inhibition of all matrix consumers is attained with the double inhibition. Importantly, this double inhibition of the matrix consumers allowed revealing that a large part of the H2O2 produced in muscle mitochondria is consumed before escaping the matrix during traditional HRP-based efflux assays. The degree of this underestimation was substrate dependent, reaching >80% with malate, which complicates comparisons of substrates for their capacity to generate H2O2 in normal conditions i.e. when matrix consumers are active. Our results also urge caution in interpreting changes in H2O2 efflux in response to a treatment; when HRP-based assays are used, large changes in apparent H2O2 efflux may come from altered capacity of the matrix consumers.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| | - Sheena Banh
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Emianka Sotiri
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Nahid Tamanna
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
95
|
Protein undernutrition during development and oxidative impairment in the central nervous system (CNS): potential factors in the occurrence of metabolic syndrome and CNS disease. J Dev Orig Health Dis 2016; 7:513-524. [DOI: 10.1017/s2040174416000246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria play a regulatory role in several essential cell processes including cell metabolism, calcium balance and cell viability. In recent years, it has been postulated that mitochondria participate in the pathogenesis of a number of chronic diseases, including central nervous system disorders. Thus, the concept of mitochondrial function now extends far beyond the common view of this organelle as the ‘powerhouse’ of the cell to a new appreciation of the mitochondrion as a transducer of early metabolic insult into chronic disease in later life. In this review, we have attempted to describe some of the associations between nutritional status and mitochondrial function (and dysfunction) during embryonic development with the occurrence of neural oxidative imbalance and neurogenic disease in adulthood.
Collapse
|
96
|
Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2016; 5:98-118. [PMID: 27386151 PMCID: PMC4916887 DOI: 10.1080/21623945.2015.1122857] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy.
Collapse
Affiliation(s)
- María Calderon-Dominguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan F. Mir
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Fucho
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Minéia Weber
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
97
|
Velayutham M, Hemann CF, Cardounel AJ, Zweier JL. Sulfite Oxidase Activity of Cytochrome c: Role of Hydrogen Peroxide. Biochem Biophys Rep 2016; 5:96-104. [PMID: 26709389 PMCID: PMC4689149 DOI: 10.1016/j.bbrep.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c) is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c) in the absence and presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3-) was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which occur to humans born with molybdenum cofactor and sulfite oxidase deficiencies. Cytochrome c oxidizes sulfite to sulfite radical. In the presence of H2O2, sulfite radical generation from cyt c increases. The formation of sulfite radical is sulfite concentration dependent. This mechanism of sulfite radical formation may be important in sulfite toxicity.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210 ; Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219
| | - Craig F Hemann
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Arturo J Cardounel
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
98
|
Goncalves RLS, Bunik VI, Brand MD. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radic Biol Med 2016; 91:247-55. [PMID: 26708453 DOI: 10.1016/j.freeradbiomed.2015.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/28/2015] [Accepted: 12/16/2015] [Indexed: 01/12/2023]
Abstract
In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.
Collapse
Affiliation(s)
| | - Victoria I Bunik
- A.N. Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Martin D Brand
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
99
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
100
|
de Lima Portella R, Lynn Bickta J, Shiva S. Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. Antioxid Redox Signal 2015; 23:307-27. [PMID: 26094636 DOI: 10.1089/ars.2015.6260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nitrite is now recognized as an intrinsic signaling molecule that mediates a number of biological processes. One of the most reproducible effects of nitrite is its ability to mediate cytoprotection after ischemia/reperfusion (I/R). This robust phenomenon has been reproduced by a number of investigators in varying animal models focusing on different target organs. Furthermore, nitrite's cytoprotective versatility is highlighted by its ability to mediate delayed preconditioning and remote conditioning in addition to acute protection. RECENT ADVANCES In the last 10 years, significant progress has been made in elucidating the mechanisms underlying nitrite-mediated ischemic tolerance. CRITICAL ISSUES The mitochondrion, which is essential to both the progression of I/R injury and the protection afforded by preconditioning, has emerged as a major subcellular target for nitrite. This review will outline the role of the mitochondrion in I/R injury and preconditioning, review the accumulated preclinical studies demonstrating nitrite-mediated cytoprotection, and finally focus on the known interactions of nitrite with mitochondria and their role in the mechanism of nitrite-mediated ischemic tolerance. FUTURE DIRECTIONS These studies set the stage for current clinical trials testing the efficacy of nitrite to prevent warm and cold I/R injury.
Collapse
Affiliation(s)
- Rafael de Lima Portella
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Janelle Lynn Bickta
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|