51
|
Mishra VK, Mishra S. Flipped regiospecificity in L434F mutant of 8-lipoxygenase. Phys Chem Chem Phys 2020; 22:16013-16022. [DOI: 10.1039/d0cp02351e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conformational change of Phe434 controls regio- and stereospecificity of L434F lipoxygenase catalysis.
Collapse
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
52
|
Kagan VE, Tyurina YY, Vlasova II, Kapralov AA, Amoscato AA, Anthonymuthu TS, Tyurin VA, Shrivastava IH, Cinemre FB, Lamade A, Epperly MW, Greenberger JS, Beezhold DH, Mallampalli RK, Srivastava AK, Bayir H, Shvedova AA. Redox Epiphospholipidome in Programmed Cell Death Signaling: Catalytic Mechanisms and Regulation. Front Endocrinol (Lausanne) 2020; 11:628079. [PMID: 33679610 PMCID: PMC7933662 DOI: 10.3389/fendo.2020.628079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/16/2023] Open
Abstract
A huge diversification of phospholipids, forming the aqueous interfaces of all biomembranes, cannot be accommodated within a simple concept of their role as membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid molecules has been discovered. Among these signaling lipids, a particular group of oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been thoroughly investigated over several decades. This group includes oxygenated octadecanoids, eicosanoids, and docosanoids and includes several hundreds of individual species. Oxygenation of PUFA can occur when they are esterified into major classes of phospholipids. Initially, these events have been associated with non-specific oxidative injury of biomembranes. An alternative concept is that these post-synthetically oxidatively modified phospholipids and their adducts with proteins are a part of a redox epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular communications. The redox epiphospholipidome may include hundreds of thousands of individual molecular species acting as meaningful biological signals. This review describes the signaling role of oxygenated phospholipids in programs of regulated cell death. Although phospholipid peroxidation has been associated with almost all known cell death programs, we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and quantitative information on the respective peroxidation products of CLs and PEs. We focused on molecular mechanisms through which two proteins, a mitochondrial hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their catalytic properties to fulfill new functions of generating oxygenated CL and PE species. Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic reactions catalyzed by cyt c/CL complexes and 15-lipoxygenase/phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-inflammatory) responses. Finally, we propose that small molecule mechanism-based regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-apoptotic and anti-ferroptotic therapeutic modalities.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irina I Vlasova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander A Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indira H Shrivastava
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Fatma B Cinemre
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Lamade
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hulya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna A Shvedova
- Exposure Assessment Branch, The National Institute for Occupational Safety and Health/Centers for Disease Control and Prevention (NIOSH/CDC), Morgantown, WV, United States
| |
Collapse
|
53
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
54
|
Vo NNQ, Nomura Y, Muranaka T, Fukushima EO. Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes. JOURNAL OF NATURAL PRODUCTS 2019; 82:3311-3320. [PMID: 31774676 DOI: 10.1021/acs.jnatprod.9b00538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pentacyclic triterpenes may be active agents and provide a rich natural resource of promising compounds for drug development. The inhibitory activities of 29 natural oleanane and ursane pentacyclic triterpenes were evaluated against four major enzymes involved in the inflammatory process: 5-LOX, 15-LOX-2, COX-1, and COX-2. It was found that 3-O-acetyl-β-boswellic acid potently inhibited human 15-LOX-2 (IC50 = 12.2 ± 0.47 μM). Analysis of the structure-activity relationships revealed that the presence of a hydroxy group at position 24 was beneficial in terms of both 5-LOX and COX-1 inhibition. Notably, the introduction of a carboxylic acid group at position 30 was important for dual 5-LOX/COX inhibitory activity; furthermore, its combination with a carbonyl group at C-11 considerably increased 5-LOX inhibition. Also, the presence of an α-hydroxy group at C-2 or a carboxylic acid group at C-23 markedly suppressed the 5-LOX activity. The present findings reveal that the types and configurations of polar moieties at positions C-2, -3, -11, -24, and -30 are important structural aspects of pentacyclic triterpenes for their potential as anti-inflammatory lead compounds.
Collapse
Affiliation(s)
- Nhu Ngoc Quynh Vo
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Yuhta Nomura
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- Center for Open Innovation Research and Education, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- Department of Biotechnology, Faculty of Life Sciences , Universidad Regional Amazónica IKIAM , Vía Muyuna Km 7 , Tena , Ecuador
| |
Collapse
|
55
|
Boshra AN, Abdu-Allah HHM, Mohammed AF, Hayallah AM. Click chemistry synthesis, biological evaluation and docking study of some novel 2'-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorg Chem 2019; 95:103505. [PMID: 31901755 DOI: 10.1016/j.bioorg.2019.103505] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
A hybrid pharmacophore approach is used to design and synthesize two novel series of 2'-hydroxychalcone-triazole hybrid molecules 6a-j and 8a-j. These compounds were fully characterized by spectral and elemental analyses. They were evaluated in vitro and in vivo for anti-inflammatory activity. Most of compounds were selective inhibitors for COX-2. Among them, compounds 6d, 6f, 6i, 8c, 8e and 8h demonstrated highly potent dual inhibition of COX-2 (IC50 = 0.037-0.041 µM) and 15-LOX (IC50 = 1.41-1.80 µM). Compounds 6i, 8c and 8h showed 116%, 113% and 109% of the in vivo anti-inflammatory activity of celecoxib. Therefore, compounds 6d, 6f, 6i, 8c, 8e and 8h-j are potent dual inhibitors of COX-2 and 15-LOX. Docking study over COX-2 and 15-LOX active sites ensures the binding affinity and selectivity. These compounds are promising candidates for further development as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Andrew N Boshra
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hajjaj H M Abdu-Allah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
56
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
57
|
Maccarrone M. Missing Pieces to the Endocannabinoid Puzzle. Trends Mol Med 2019; 26:263-272. [PMID: 31822395 DOI: 10.1016/j.molmed.2019.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
The most bioactive ingredient of cannabis (Cannabis sativa or indica) extracts, Δ9-tetrahydrocannabinol (THC), was identified in the 1960s as one of more than 110 phytocannabinoids. It activates receptors of chemically different endogenous ligands (endocannabinoids) that, unlike THC, are metabolized by several enzymes of the endocannabinoid system. Here, the complexity of the plant-derived and endogenous cannabinoids (eCBs) is discussed, to better appreciate the challenge of: (i) dissecting their mutual interactions; (ii) understanding their impact on human pathophysiology; and (iii) exploiting them for human disease. To this aim, missing pieces to the eCB puzzle must be urgently found, by solving the 3D structures of key components, and interrogating noncanonical modes of regulation and trafficking of these lipid signals.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
58
|
Gaffney BJ. EPR Spectroscopic Studies of Lipoxygenases. Chem Asian J 2019; 15:42-50. [PMID: 31782616 DOI: 10.1002/asia.201901461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Indexed: 11/11/2022]
Abstract
Polyunsaturated fatty acids are sources of diverse natural, and chemically designed products. The enzyme lipoxygenase selectively oxidizes fatty acid acyl chains using controlled free radical chemistry; the products are regio- and stereo-chemically unique hydroperoxides. A conserved structural fold of ≈600 amino acids harbors a long and narrow substrate channel and a well-shielded catalytic iron. Oxygen, a co-substrate, is blocked from the active site until a hydrogen atom is abstracted from substrate bis-allylic carbon, in a non-heme iron redox cycle. EPR spectroscopy of ferric intermediates in lipoxygenase catalysis reveals changes in the metal coordination and leads to a proposal on the nature of the reactive intermediate. Remarkably, free radicals are so well controlled in lipoxygenase chemistry that spin label technology can be applied as well. The current level of understanding of steps in lipoxygenase catalysis, from the EPR perspective, will be reviewed.
Collapse
Affiliation(s)
- Betty J Gaffney
- Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
59
|
Mishra VK, Mishra S. Origin of Regio- and Stereospecific Catalysis by 8-Lipoxygenase. J Phys Chem B 2019; 123:10605-10621. [PMID: 31775504 DOI: 10.1021/acs.jpcb.9b07917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
60
|
Schmidt WF, Chen F, Broadhurst CL, Nguyen JK, Qin J, Chao K, Kim MS. GTRS and 2D-NMR studies of alpha and gamma linolenic acids each containing the same H2C14-(H–C C–H)–C11H2–(H–C C–H)–C8H2 moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
61
|
Xiao Y, Song C, Lin Q, Shi X, Yu W, Huang X, Wang H, Chen Y, Wang R, Geng X, Qin M, Hu K, Fan Y, Qiao Y, Gao E, Zhao W, Chang J. Cardioprotection of (±)-sodium 5-bromo-2-(α-hydroxypentyl) benzoate (BZP) on mouse myocardium I/R injury through inhibiting 12/15-LOX-2 activity. J Mol Cell Cardiol 2019; 135:52-66. [DOI: 10.1016/j.yjmcc.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 07/06/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022]
|
62
|
Pakhomova S, Boeglin WE, Neau DB, Bartlett SG, Brash AR, Newcomer ME. An ensemble of lipoxygenase structures reveals novel conformations of the Fe coordination sphere. Protein Sci 2019; 28:920-927. [PMID: 30861228 PMCID: PMC6459989 DOI: 10.1002/pro.3602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
The regio- and stereo-specific oxygenation of polyunsaturated fatty acids is catalyzed by lipoxygenases (LOX); both Fe and Mn forms of the enzyme have been described. Structural elements of the Fe and Mn coordination spheres and the helical catalytic domain in which the metal center resides are highly conserved. However, animal, plant, and microbial LOX each have distinct features. We report five crystal structures of a LOX from the fungal plant pathogen Fusarium graminearum. This LOX displays a novel amino terminal extension that provides a wrapping domain for dimerization. Moreover, this extension appears to interfere with the iron coordination sphere, as the typical LOX configuration is not observed at the catalytic metal when the enzyme is dimeric. Instead novel tetra-, penta-, and hexa-coordinate Fe2+ ligations are apparent. In contrast, a monomeric structure indicates that with repositioning of the amino terminal segment, the enzyme can assume a productive conformation with the canonical Fe2+ coordination sphere.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - William E. Boeglin
- Department of Pharmacology VanderbiltUniversity School of MedicineNashvilleTennessee, 37232
| | - David B. Neau
- Northeastern Collaborative Access Team, Argonne National LaboratoryCornell UniversityArgonneIllinois
| | - Sue G. Bartlett
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Alan R. Brash
- Department of Pharmacology VanderbiltUniversity School of MedicineNashvilleTennessee, 37232
| | - Marcia E. Newcomer
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
63
|
Gurung AB, Pamay P, Tripathy D, Biswas K, Chatterjee A, Joshi SR, Bhattacharjee A. Bioprospection of anti-inflammatory phytochemicals suggests rutaecarpine and quinine as promising 15-lipoxygenase inhibitors. J Cell Biochem 2019; 120:13598-13613. [PMID: 30937959 DOI: 10.1002/jcb.28634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
15-Lipoxygenase (15-LOX) belongs to the family of nonheme iron containing enzymes that catalyzes the peroxidation of polyunsaturated fatty acids (PUFAs) to generate eicosanoids that play an important role in signaling pathways. The role of 15-LOX has been demonstrated in atherosclerosis as well as other inflammatory diseases. In the present study, drug-like compounds were first screened from a set of anti-inflammatory phytochemicals based on Lipinski's rule of five (ROF) and in silico toxicity filters. Two lead compounds-quinine (QUIN) and rutaecarpine (RUT) were shortlisted by analyzing molecular interactions and binding energies of the filtered compounds with the target using molecular docking. Molecular dynamics simulation studies indicate stable trajectories of apo_15-LOX and docked complexes (15-LOX_QUIN and 15-LOX_RUT). In vitro 15-LOX inhibition studies shows that both QUIN and RUT have lower inhibitory concentration (IC50 ) value than the control (quercetin). Both QUIN and RUT exhibit moderate antioxidant activities. The cell viability study of these compounds suggests no significant toxicity in HEK-293 cell lines. Further, QUIN and RUT both did not show any inhibition against selected Gram-positive and Gram-negative bacterial species. Thus, based on our present findings, rutaecarpine and quinine may be suggested as promising 15-LOX inhibitor for the prevention of the atherosclerosis development.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Pezaiwi Pamay
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Debabrata Tripathy
- Genetics and Molecular biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Koel Biswas
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Anupam Chatterjee
- Genetics and Molecular biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India.,Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
64
|
Kozlov N, Humeniuk L, Ufer C, Ivanov I, Golovanov A, Stehling S, Heydeck D, Kuhn H. Functional characterization of novel ALOX15 orthologs representing key steps in mammalian evolution supports the Evolutionary Hypothesis of reaction specificity. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:372-385. [DOI: 10.1016/j.bbalip.2018.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022]
|
65
|
Satish M, Agrawal DK. Pro-resolving lipid mediators in the resolution of neointimal hyperplasia pathogenesis in atherosclerotic diseases. Expert Rev Cardiovasc Ther 2019; 17:177-184. [PMID: 30582389 PMCID: PMC6679914 DOI: 10.1080/14779072.2019.1563483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite advances in drug eluting technologies, neointimal hyperplasia (NIH) and restenosis still plagues endovascular therapy in atherosclerotic diseases. By appreciating atherosclerosis and NIH as complex inflammatory processes, specialized pro-resolving mediators (SPMs) are a superfamily of endogenous unsaturated fatty-acid derived lipids with the potential for inflammatory resolution. Areas covered: Inquiry into SPMs in this context is a novel approach and is the focus of this review, with emphasis on our understanding with NIH. Prior mechanistic understandings of SPM deficiency with atherosclerosis has offered insight, as well as the complexity and diversity of the SPM superfamily. Therapeutic investigation using SPMs to combat NIH is also evaluated here. Expert commentary: Endogenous deficiency of SPMs synthesis by 12/15-lipoxygenase underlies resolution deficits in atherosclerosis and NIH. Upstream PDGF inhibition by SPMs, most notably RvD1 and LXA4, confers a multifactorial attenuation of NIH that involves interconnected anti-inflammatory efforts, most notably switch pro-resolving smooth muscle cells (vSMCs) and macrophages. The ALX/FPR2 is one receptor system identified on vSMCs that interacts with these SPMs to promote NIH resolution. Therapeutically, while shown to be promising with less stent burden or cytotoxicity, SPMs must be balanced by necessary mechanistic, pharmacokinetic and anatomical considerations.
Collapse
Affiliation(s)
- Mohan Satish
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| |
Collapse
|
66
|
Mochizuki S, Matsui K. Green leaf volatile-burst in Arabidopsis is governed by galactolipid oxygenation by a lipoxygenase that is under control of calcium ion. Biochem Biophys Res Commun 2018; 505:939-944. [PMID: 30309649 DOI: 10.1016/j.bbrc.2018.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Abstract
Plants form green leaf volatiles (GLVs) almost instantly after tissue disruption caused by damages, such as herbivore damage. This rapid formation of GLVs, namely GLV-burst, is an essential factor for the plants' GLV-dependent direct and indirect defenses. However, mechanism of GLV-burst remains unknown. We observed that the formation of monogalactosyldiacylglycerol hydroperoxides (MGDG-OOHs) by Arabidopsis lipoxygenase 2 (AtLOX2) governs GLV-burst in Arabidopsis. Addition of a Ca2+ selective chelating reagent, BAPTA, during tissue disruption effectively suppressed the formation of MGDG-OOHs as well as GLV-burst. This suppression was relieved by the addition of Ca2+. Therefore, we propose that Ca2+-dependent activation of AtLOX2 facilitates GLV-burst formation as observed in leukotriene formation, which is regulated by Ca2+-dependent activation of LOXs in animal cells.
Collapse
Affiliation(s)
- Satoshi Mochizuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
67
|
Dar HH, Tyurina YY, Mikulska-Ruminska K, Shrivastava I, Ting HC, Tyurin VA, Krieger J, St Croix CM, Watkins S, Bayir E, Mao G, Armbruster CR, Kapralov A, Wang H, Parsek MR, Anthonymuthu TS, Ogunsola AF, Flitter BA, Freedman CJ, Gaston JR, Holman TR, Pilewski JM, Greenberger JS, Mallampalli RK, Doi Y, Lee JS, Bahar I, Bomberger JM, Bayır H, Kagan VE. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest 2018; 128:4639-4653. [PMID: 30198910 DOI: 10.1172/jci99490] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
Ferroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells. Induction of ferroptosis by clinical P. aeruginosa isolates from patients with persistent lower respiratory tract infections was dependent on the level and enzymatic activity of pLoxA. Redox phospholipidomics revealed elevated levels of oxidized AA-PE in airway tissues from patients with cystic fibrosis (CF) but not with emphysema or CF without P. aeruginosa. We believe that the evolutionarily conserved mechanism of pLoxA-driven ferroptosis may represent a potential therapeutic target against P. aeruginosa-associated diseases such as CF and persistent lower respiratory tract infections.
Collapse
Affiliation(s)
- Haider H Dar
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Karolina Mikulska-Ruminska
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| | - Indira Shrivastava
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hsiu-Chi Ting
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - James Krieger
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Erkan Bayir
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Gaowei Mao
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | | | - Alexandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Parsek
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Tamil S Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | | | | | - Cody J Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Department of Medicine and.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | | | - Ivet Bahar
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemistry and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Laboratory of Navigational Redox Lipidomics, Institute of Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
68
|
Simard-Bisson C, Parent LA, Moulin VJ, Fruteau de Laclos B. Characterization of Epidermal Lipoxygenase Expression in Normal Human Skin and Tissue-Engineered Skin Substitutes. J Histochem Cytochem 2018; 66:813-824. [PMID: 29985723 DOI: 10.1369/0022155418788117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipoxygenases (LOXs) are enzymes likely to be involved in corneocyte lipid envelope formation and skin barrier function. In humans, mutations in epidermis-type lipoxygenase 3 ( eLOX-3) and 12R-lipoxygenase ( 12R-LOX) genes are associated with autosomal recessive congenital ichthyosis (ARCI), whereas deletion of these genes in mice causes epidermal defects. LOXs also represent a matter of interest in psoriasis as well as in cancer research. However, their expression as well as the exact role of these enzymes in normal human skin have not been fully described. Our goal was to characterize the expression of epidermal LOXs in both normal human skin and Tissue-Engineered Skin Substitutes (TESS) and to consider TESS as a potential model for LOX functional studies. Staining for epidermal differentiation markers and LOXs was performed, in parallel, on normal human skin and TESS. Our results showed similar expression profiles in TESS when compared with native skin for e-LOX3, 12R-LOX, 12S-lipoxygenase (12S-LOX), and 15-lipoxygenase 2 (15-LOX-2) but not for 15-lipoxygenase 1 (15-LOX-1). Because of their appropriate epidermal differentiation and LOX expression, TESS represent an alternative model for future studies on LOX function.
Collapse
Affiliation(s)
- Carolyne Simard-Bisson
- Centre de recherche du CHU de Québec-Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Québec, Canada
| | - Lorraine Andrée Parent
- Centre de recherche du CHU de Québec-Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Québec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec-Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Québec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Bernard Fruteau de Laclos
- Centre de recherche du CHU de Québec-Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Québec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
69
|
ur Rehman T, Khan AU, Abbas A, Hussain J, Khan FU, Stieglitz K, Ali S. Investigation of nepetolide as a novel lead compound: Antioxidant, antimicrobial, cytotoxic, anticancer, anti-inflammatory, analgesic activities and molecular docking evaluation. Saudi Pharm J 2018; 26:422-429. [PMID: 29556134 PMCID: PMC5856943 DOI: 10.1016/j.jsps.2017.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/27/2017] [Indexed: 11/30/2022] Open
Abstract
In the present study, we describe various pharmacological effects and computational analysis of nepetolide, a tricyclic clerodane-type diterpene, isolated from Nepeta suavis. Nepetolide concentration-dependently (1.0-1000 µg/mL) exhibited 1,1-diphenyl,2-picrylhydrazyl free radical scavenging activity with maximum effect of 87.01 ± 1.85%, indicating its antioxidant potential, as shown by standard drug, ascorbic acid. It was moderately active against bacterial strain of Staphylococcus aureus. In brine shrimp's lethality model, nepetolide potently showed cytotoxic effect, with LC50 value of 8.7 µg/mL. When evaluated for antitumor activity in potato disc tumor assay, nepetolide exerted tumor inhibitory effect of 56.5 ± 1.5% at maximum tested concentration of 1000 µg/mL. Nepetolide at 20 mg/kg reduced carrageenan-induced inflammation (P < .001 vs. saline group) in rat paw. Nepetolide dose-dependently (100-500 mg/kg) decreased acetic acid evoked writhes, as exhibited by diclofenac sodium. In-silico investigation of nepetolide was carried out against cyclooxygenase-2, epidermal growth factor receptor and lipoxygenase-2 targets. Virtual screening through Patchdock online docking server identified primarily hydrophobic interactions between ligand nepetolide and receptors proteins. Enhanced hydrogen bonding was predicted with Autodock showing 6-8 hydrogen bonds per target. These results indicate that nepetolide exhibits antioxidant, antibacterial, cytotoxic, anticancer, anti-inflammatory and analgesic activities and should be considered as a lead compound for developing drugs for the remedy of oxidative stress-induced disorders, microbial infections, cancers, inflammations and pain.
Collapse
Affiliation(s)
- Tanzeel ur Rehman
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Azar Abbas
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa 616, Oman
| | - Farman Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Kimberly Stieglitz
- STEM Biotechnology Division, Roxbury Community College, Roxbury, MA, USA
| | - Shamsher Ali
- College of Professional Studies, Northeastern University, 350 Huntington Avenue, Boston, USA
| |
Collapse
|
70
|
Gousiadou C, Kouskoumvekaki I. Computational Analysis of LOX1 Inhibition Identifies Descriptors Responsible for Binding Selectivity. ACS OMEGA 2018; 3:2261-2272. [PMID: 30023828 PMCID: PMC6044675 DOI: 10.1021/acsomega.7b01622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Lipoxygenases are a family of cytosolic, peripheral membrane enzymes, which catalyze the hydroperoxidation of polyunsaturated fatty acids and are implicated in the pathogenesis of major human diseases. Over the years, a substantial number of scientific reports have introduced inhibitors active against one or another subtype of the enzyme, but the selectivity issue has proved to be a major challenge for drug design. In the present work, we assembled a dataset of 317 structurally diverse molecules hitherto reported as active against 15S-LOX1, 12S-LOX1, and 15S-LOX2 and identified, using supervised machine learning, a set of structural descriptors responsible for the binding selectivity toward the enzyme 15S-LOX1. We subsequently incorporated these descriptors in the training of QSAR models for LOX1 activity and selectivity. The best performing classifiers are two stacked models that include an ensemble of support vector machine, random forest, and k-nearest neighbor algorithms. These models not only can predict LOX1 activity/inactivity but also can discriminate with high accuracy between molecules that exhibit selective activity toward either one of the isozymes 15S-LOX1 and 12S-LOX1.
Collapse
|
71
|
ElBordiny HS, El-Miligy MM, Kassab SE, Daabees H, Mohamed Ali WA, Abdelhamid Mohamed El-Hawash S. Design, synthesis, biological evaluation and docking studies of new 3-(4,5-dihydro-1H-pyrazol/isoxazol-5-yl)-2-phenyl-1H-indole derivatives as potent antioxidants and 15-lipoxygenase inhibitors. Eur J Med Chem 2018; 145:594-605. [PMID: 29339254 DOI: 10.1016/j.ejmech.2018.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
New candidates of 3-(4,5-dihydro-1H-pyrazol/isoxazol-5-yl)-2-phenyl-1H-indole derivatives (4-7) were designed combining the pyrazoline/isoxazoline heterocycles and 2-phenylindole to explore its potential as 15-lipoxygenase (15-LOX) inhibitors. The design of the new derivatives was based on utilizing the antioxidant properties of pyrazoline, 2-phenylindole and the good 15-LOX inhibition properties of indolylpyrazoline. The derivatives were synthesized adopting simple and laboratory friendly reaction conditions to give the target compounds in quantitative yields. The resulting indolylpyrazolines/isoxazolines were evaluated as antioxidants against 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and superoxide dismutase (SOD); indolylpyrazoline (4b) was the most potent antioxidant against SOD assay (IC50 = 1.78 μM) to be superior to ascorbic by 2 folds. Consistently, (4b) was the most potent inhibitor when tested against Soybean 15-LOX (IC50 = 3.84 μM) excelling quercetin as standard inhibitor by 1.8 folds. Some of the new derivatives were docked into the active binding site of human 15-LOX (PDB entry 4NRE) emphasizing the most potent derivative (4b) and the least potent one (4c). Docking solutions of compounds (4b), (4c), (5b) and (6c) revealed that (4b) was the only compound that got stabilized into the catalytic pocket of enzyme by π-cation interaction with the catalytic Fe+ and formation of one hydrogen bond with Ile 676 amino acid. Other derivatives including the least potent one variably got stabilized into the active binding pocket by π-cation interaction with the catalytic Fe+ but failed to form hydrogen bond with Ile 676. For the future optimization of the generated inhibitors, (i) antioxidant activity against SOD, (ii) the inhibitor stabilization by π-cation interaction with the catalytic Fe+3 and (iii) formation of hydrogen bond with Ile 676 should be regarded.
Collapse
Affiliation(s)
- Haydi Saher ElBordiny
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Mostafa Mahmoud El-Miligy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21526, Egypt
| | - Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt.
| | - Hoda Daabees
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | | | | |
Collapse
|
72
|
Broadhurst CL, Schmidt WF, Nguyen JK, Qin J, Chao K, Kim MS. Gradient Temperature Raman Spectroscopy of Fatty Acids with One to Six Double Bonds Identifies Specific Carbons and Provides Systematic Three Dimensional Structures. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jbpc.2018.91001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
73
|
Broadhurst CL, Schmidt WF, Nguyen JK, Qin J, Chao K, Kim MS. Continuous gradient temperature Raman spectroscopy from -100 to 40°C yields new molecular models of arachidonic acid and 2-Arachidonoyl-1-stearoyl-sn-glycero-3-phosphocholine. Prostaglandins Leukot Essent Fatty Acids 2017; 127:6-15. [PMID: 29156157 DOI: 10.1016/j.plefa.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 01/31/2023]
Abstract
Despite its biochemical importance, a complete Raman analysis of arachidonic acid (AA, 20:4n-6) has never been reported. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we utilize the GTRS technique for AA and 1-18:0, 2-20:4n-6 phosphatidyl choline (AAPC) from cryogenic to mammalian body temperatures. 20Mb three-dimensional data arrays with 0.2°C increments and first/second derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. The AA DSC shows a large exothermic peak at -60°C indicating crystallization or a similar major structural change. No exothermic peak of this magnitude was observed in six other unsaturated lipids (DHA, n-3DPA, n-6DPA, LA, ALA, OA). Melting in AA occurs over a large range: (-60 to -35°C): very large frequency offsets and intensity changes correlate with premelting initiating circa -60°C, followed by melting (-37°C). Novel, unique 3D structures for both molecules reveal that AA is not symmetric as a free fatty acid, and it changes significantly when in the sn-2 phospholipid position. Further, different CH and CH2 sites are unequally elastic and nonequivalent.
Collapse
Affiliation(s)
- C Leigh Broadhurst
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| | - Walter F Schmidt
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Julie K Nguyen
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Jianwei Qin
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Kuanglin Chao
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Moon S Kim
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| |
Collapse
|
74
|
Droege KD, Keithly ME, Sanders CR, Armstrong RN, Thompson MK. Structural Dynamics of 15-Lipoxygenase-2 via Hydrogen-Deuterium Exchange. Biochemistry 2017; 56:5065-5074. [PMID: 28809482 PMCID: PMC5619234 DOI: 10.1021/acs.biochem.7b00559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids are inflammatory signaling lipids that are biosynthesized in response to cellular injury or threat. They were originally thought to be pro-inflammatory molecules, but members of at least one subclass, the lipoxins, are able to resolve inflammation. One step in lipoxin synthesis is the oxygenation of arachidonic acid by 15-lipoxygenase (15-LOX). 15-LOX contains two domains: a Ca2+ binding PLAT domain and a catalytic domain. 15-LOX is a soluble cytosolic protein until binding of Ca2+ to the PLAT domain promotes translocation to the membrane surface. The role of 15-LOX structural dynamics in this translocation has remained unclear. We investigated the dynamics of 15-LOX isoform B (15-LOX-2) upon binding of Ca2+ and ligands, as well as upon membrane association using hydrogen-deuterium exchange mass spectrometry (HDX-MS). We used HDX-MS to probe the solvent accessibility and backbone flexibility of 15-LOX-2, revealing significant differences in deuterium incorporation between the PLAT and catalytic domains, with the PLAT domain demonstrating higher flexibility. Comparison of HDX for 15-LOX-2 in the presence and absence of Ca2+ indicates there are few differences in structural dynamics. Furthermore, our HDX results involving nanodisc-associated 15-LOX-2 suggest that significant structural and dynamic changes in 15-LOX-2 are not required for membrane association. Our results also show that a substrate lipid binding to the active site in the catalytic domain does induce changes in incorporation of deuterium into the PLAT domain. Overall, our results challenge the previous hypothesis that Ca2+ binding induces major structural changes in the PLAT domain and support the hypothesis that is interdomain communication in 15-LOX-2.
Collapse
Affiliation(s)
- Kristin D Droege
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Mary E Keithly
- Department of Chemical and Physical Sciences, Missouri Southern State University , Joplin, Missouri 64801, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37240, United States
| | - Richard N Armstrong
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37240, United States
| | - Matthew K Thompson
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37240, United States
| |
Collapse
|
75
|
Mittal M, Hasan M, Balagunaseelan N, Fauland A, Wheelock C, Rådmark O, Haeggström JZ, Rinaldo-Matthis A. Investigation of calcium-dependent activity and conformational dynamics of zebra fish 12-lipoxygenase. Biochim Biophys Acta Gen Subj 2017; 1861:2099-2111. [DOI: 10.1016/j.bbagen.2017.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/26/2022]
|
76
|
Discovery two potent and new inhibitors of 15-lipoxygenase: (E)-3-((3,4-dihydroxybenzylidene) amino)-7-hydroxy-2H-chromen-2-one and (E)-O-(4-(((7-hydroxy-2-oxo-2H-chromen-3-yl) imino)methine) phenyl)dimethylcarbamothioate. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1968-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
77
|
Newie J, Neumann P, Werner M, Mata RA, Ficner R, Feussner I. Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric shielding and substrate fixation. Sci Rep 2017; 7:2069. [PMID: 28522865 PMCID: PMC5437038 DOI: 10.1038/s41598-017-02153-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
The biological function of lipoxygenases depends on the regio and stereo specific formation of fatty acid-derived hydroperoxides and different concepts exist to explain the mechanism that directs dioxygen to a specific carbon atom within the substrate. Here, we report the 1.8 Å resolution crystal structure of a cyanobacterial lipoxygenase that produces bis-allylic hydroperoxides (CspLOX2). Site directed mutagenesis experiments combined with computational approaches reveal that residues around the active site direct dioxygen to a preferred carbon atom and stereo configuration in the substrate fatty acid. Modulating the cavity volume around the pentadiene system of linoleic acid shifted the product formation towards 9S-, 9R-, 13S- or 13R-hydroperoxides in correlation with the site of mutation, thus decreasing the amount of the bis-allylic 11R-hydroperoxide. Decreasing the channel size of a 9R-lipoxygenase (CspLOX1) on the other hand could in turn induce formation of the bis-allylic 11R-hydroperoxide. Together this study suggests that an active site clamp fixing the pentadiene system of the substrate together with steric shielding controls the stereo and regio specific positioning of dioxygen at all positions of the reacting pentadiene system of substrate fatty acids.
Collapse
Affiliation(s)
- Julia Newie
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Piotr Neumann
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Martin Werner
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ricardo A Mata
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ralf Ficner
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| |
Collapse
|
78
|
Tirapegui C, Acevedo-Fuentes W, Dahech P, Torrent C, Barrias P, Rojas-Poblete M, Mascayano C. Easy and rapid preparation of benzoylhydrazides and their diazene derivatives as inhibitors of 15-lipoxygenase. Bioorg Med Chem Lett 2017; 27:1649-1653. [PMID: 28318946 DOI: 10.1016/j.bmcl.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
Two series of diaza derivatives were prepared by solvent-free condensation of benzoic acid and 4-substituted phenylhydrazines in order to obtain phenylhydrazides (HYD series) and, by oxidation of these compounds, the corresponding benzoyldiazenes (DIA series). Both sets were evaluated as inhibitors of soybean 15-lipoxygenase activity and antioxidant capability in the FRAP and CUPRAC assays. The most potent inhibitors of both series exhibited IC50 values in the low micromolar range. Kinetic studies showed that at least the more active compounds were competitive inhibitors. Docking results indicated that the most potent inhibitor interacts strongly with Ile-839 and iron in the active site.
Collapse
Affiliation(s)
- Cristian Tirapegui
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, correo 33, Santiago, Chile.
| | - Williams Acevedo-Fuentes
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Pablo Dahech
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, correo 33, Santiago, Chile
| | - Claudia Torrent
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, correo 33, Santiago, Chile
| | - Pablo Barrias
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, correo 33, Santiago, Chile
| | - Macarena Rojas-Poblete
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular, Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile; Universidad Tecnológica de Chile INACAP, Chile
| | - Carolina Mascayano
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, correo 33, Santiago, Chile
| |
Collapse
|
79
|
Horitani M, Offenbacher AR, Carr CAM, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 2017; 139:1984-1997. [PMID: 28121140 PMCID: PMC5322796 DOI: 10.1021/jacs.6b11856] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13C ENDOR then reveals the locations of 13C10 and reactive 13C11 of linoleic acid relative to the metal; 1H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Collapse
Affiliation(s)
- Masaki Horitani
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cody A. Marcus Carr
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Tao Yu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Veronika Hoeke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George E. Cutsail
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
80
|
Kalms J, Banthiya S, Galemou Yoga E, Hamberg M, Holzhutter HG, Kuhn H, Scheerer P. The crystal structure of Pseudomonas aeruginosa lipoxygenase Ala420Gly mutant explains the improved oxygen affinity and the altered reaction specificity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:463-473. [PMID: 28093240 DOI: 10.1016/j.bbalip.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
Secreted LOX from Pseudomonas aeruginosa (PA-LOX) has previously been identified as arachidonic acid 15S-lipoxygenating enzyme. Here we report that the substitution of Ala420Gly in PA-LOX leads to an enzyme variant with pronounced dual specificity favoring arachidonic acid 11R-oxygenation. When compared with other LOX-isoforms the molecular oxygen affinity of wild-type PA-LOX is 1-2 orders of magnitude lower (Km O2 of 0.4mM) but Ala420Gly exchange improved the molecular oxygen affinity (Km O2 of 0.2mM). Experiments with stereo-specifically deuterated linoleic acid indicated that the formation of both 13S- and 9R-HpODE involves abstraction of the proS-hydrogen from C11 of the fatty acid backbone. To explore the structural basis for the observed functional changes (altered specificity, improved molecular oxygen affinity) we solved the crystal structure of the Ala420Gly mutant of PA-LOX at 1.8Å resolution and compared it with the wild-type enzyme. Modeling of fatty acid alignment at the catalytic center suggested that in the wild-type enzyme dioxygen is directed to C15 of arachidonic acid by a protein tunnel, which interconnects the catalytic center with the protein surface. Ala420Gly exchange redirects intra-enzyme O2 diffusion by bifurcating this tunnel so that C11 of arachidonic acid also becomes accessible for O2 insertion.
Collapse
Affiliation(s)
- Jacqueline Kalms
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Swathi Banthiya
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Etienne Galemou Yoga
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mats Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hermann-Georg Holzhutter
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
81
|
Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayır H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017; 13:81-90. [PMID: 27842066 PMCID: PMC5506843 DOI: 10.1038/nchembio.2238] [Citation(s) in RCA: 1667] [Impact Index Per Article: 238.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Germany
- Department of Chemistry, University of Pittsburgh, Germany
- Department of Radiation Oncology, University of Pittsburgh, Germany
| | - Gaowei Mao
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Feng Qu
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | | | - Sebastian Doll
- Department of Helmholtz Zentrum München, Institute of Developmental Genetics, Germany
| | | | - Haider Hussain Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Bing Liu
- Department of Computational and Systems Biology, University of Pittsburgh, New York
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Vladimir B. Ritov
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Alexandr A. Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Dariush Mohammadyani
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Qin Yang
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Bettina Proneth
- Department of Helmholtz Zentrum München, Institute of Developmental Genetics, Germany
| | | | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, New York
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, New York
| | - Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Germany
| | | | - Brent R. Stockwell
- Department of Biological Sciences and Chemistry, Columbia University, New York
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Marcus Conrad
- Department of Helmholtz Zentrum München, Institute of Developmental Genetics, Germany
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
- Department of Critical Care Medicine, University of Pittsburgh, New York
| |
Collapse
|
82
|
Armstrong M, van Hoorebeke C, Horn T, Deschamps J, Freedman JC, Kalyanaraman C, Jacobson MP, Holman T. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency. Bioorg Med Chem 2016; 24:5380-5387. [PMID: 27647374 DOI: 10.1016/j.bmc.2016.08.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.
Collapse
Affiliation(s)
- Michelle Armstrong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Christopher van Hoorebeke
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Thomas Horn
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua Deschamps
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - J Cody Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, United States
| | - Theodore Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
83
|
Banthiya S, Kalms J, Galemou Yoga E, Ivanov I, Carpena X, Hamberg M, Kuhn H, Scheerer P. Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1681-1692. [PMID: 27500637 DOI: 10.1016/j.bbalip.2016.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 01/18/2023]
Abstract
Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system.
Collapse
Affiliation(s)
- Swathi Banthiya
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jacqueline Kalms
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Etienne Galemou Yoga
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Igor Ivanov
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Xavi Carpena
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, 08028 Barcelona, Spain; XALOC beamline, ALBA synchrotron (CELLS), 08290 Cerdanyola del Vallès, Spain
| | - Mats Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hartmut Kuhn
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
84
|
Bender G, Schexnaydre EE, Murphy RC, Uhlson C, Newcomer ME. Membrane-dependent Activities of Human 15-LOX-2 and Its Murine Counterpart: IMPLICATIONS FOR MURINE MODELS OF ATHEROSCLEROSIS. J Biol Chem 2016; 291:19413-24. [PMID: 27435673 DOI: 10.1074/jbc.m116.741454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/17/2022] Open
Abstract
The enzyme encoded by the ALOX15B gene has been linked to the development of atherosclerotic plaques in humans and in a mouse model of hypercholesterolemia. In vitro, these enzymes, which share 78% sequence identity, generate distinct products from their substrate arachidonic acid: the human enzyme, a 15-S-hydroperoxy product; and the murine enzyme, an 8-S-product. We probed the activities of these enzymes with nanodiscs as membrane mimics to determine whether they can access substrate esterified in a bilayer and characterized their activities at the membrane interface. We observed that both enzymes transform phospholipid-esterified arachidonic acid to a 15-S-product. Moreover, when expressed in transfected HEK cells, both enzymes result in significant increases in the amounts of 15-hydroxyderivatives of eicosanoids detected. In addition, we show that 15-LOX-2 is distributed at the plasma membrane when the HEK293 cells are stimulated by the addition Ca(2+) ionophore and that cellular localization is dependent upon the presence of a putative membrane insertion loop. We also report that sequence differences between the human and mouse enzymes in this loop appear to confer distinct mechanisms of enzyme-membrane interaction for the homologues.
Collapse
Affiliation(s)
- Gunes Bender
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and
| | - Erin E Schexnaydre
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and
| | - Robert C Murphy
- the Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Charis Uhlson
- the Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Marcia E Newcomer
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and
| |
Collapse
|
85
|
Suardíaz R, Jambrina PG, Masgrau L, González-Lafont À, Rosta E, Lluch JM. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation. J Chem Theory Comput 2016; 12:2079-90. [PMID: 26918937 DOI: 10.1021/acs.jctc.5b01236] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer. Overall, a different binding mode from the one accepted for 15-LOX-1 is proposed, which provides a molecular basis for 15-LOX-2 exclusive 15-HPETE production in front of the double (although highly 15-) 12/15 regiospecificity of 15-LOX-1. Understanding how these different isoenzymes achieve their regiospecificity is expected to help in specific inhibitor design.
Collapse
Affiliation(s)
- Reynier Suardíaz
- Department of Chemistry, King's College London , London SE1 1DB, United Kingdom
| | - Pablo G Jambrina
- Department of Chemistry, King's College London , London SE1 1DB, United Kingdom
| | - Laura Masgrau
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona Spain
| | - Àngels González-Lafont
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona Spain
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona Spain
| | - Edina Rosta
- Department of Chemistry, King's College London , London SE1 1DB, United Kingdom
| | - José M Lluch
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona Spain
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
86
|
Wennman A, Oliw EH, Karkehabadi S, Chen Y. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae. J Biol Chem 2016; 291:8130-9. [PMID: 26783260 PMCID: PMC4825015 DOI: 10.1074/jbc.m115.707380] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Indexed: 02/01/2023] Open
Abstract
Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.
Collapse
Affiliation(s)
- Anneli Wennman
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H Oliw
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Yang Chen
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
87
|
Kumar RB, Zhu L, Idborg H, Rådmark O, Jakobsson PJ, Rinaldo-Matthis A, Hebert H, Jegerschöld C. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs. PLoS One 2016; 11:e0152116. [PMID: 27010627 PMCID: PMC4806843 DOI: 10.1371/journal.pone.0152116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/09/2016] [Indexed: 12/04/2022] Open
Abstract
An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane.
Collapse
Affiliation(s)
- Ramakrishnan B. Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
| | - Lin Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Olof Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
- * E-mail:
| |
Collapse
|
88
|
Gousiadou C, Kouskoumvekaki I. LOX1 inhibition with small molecules. J Mol Graph Model 2016; 63:99-109. [PMID: 26722761 DOI: 10.1016/j.jmgm.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 01/13/2023]
Abstract
Lipoxygenases (LOXs) are nonheme, iron-containing dioxygenases that catalyze the dioxygenation of polyunsaturated fatty acids and are widely distributed among plant and animal species. Human LOXs, now identified as key enzymes in the pathogenesis of major disorders, have increasingly drawn the attention as targets and great effort has been made for the discovery and design of suitable inhibitors, to which end both pharmacological and computational methods have been employed. In the present work, using pharmacophore modeling and docking, we attempt to elucidate the inhibition of LOX1 with a new inhibitor, albidoside, an iridoid glucoside isolated from plants of the Scutellaria genus. Through a pharmacophore approach, complementarities between the ligand and the binding site are explored and a plausible mode of binding with the protein is suggested for albidoside.
Collapse
Affiliation(s)
- Chrysoula Gousiadou
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Irene Kouskoumvekaki
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
89
|
Mitra S, Bartlett SG, Newcomer ME. Identification of the Substrate Access Portal of 5-Lipoxygenase. Biochemistry 2015; 54:6333-42. [PMID: 26427761 DOI: 10.1021/acs.biochem.5b00930] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The overproduction of inflammatory lipid mediators derived from arachidonic acid contributes to asthma and cardiovascular diseases, among other pathologies. Consequently, the enzyme that initiates the synthesis of pro-inflammatory leukotrienes, 5-lipoxygenase (5-LOX), is a target for drug design. The crystal structure of 5-LOX revealed a fully encapsulated active site; thus the point of substrate entry is not known. We asked whether a structural motif, a "cork" present in 5-LOX but absent in other mammalian lipoxygenases, might be ejected to allow substrate access. Our results indicate that reduction of cork volume facilitates access to the active site. However, if cork entry into the site is obstructed, enzyme activity is significantly compromised. The results support a model in which the "cork" that shields the active site in the absence of substrate serves as the active site portal, but the "corking" amino acid Phe-177 plays a critical role in providing a fully functional active site. Thus, the more appropriate metaphor for this structural motif is a "twist-and-pour" cap. Additional mutagenesis data are consistent with a role for His-600, deep in the elongated cavity, in positioning the substrate for catalysis.
Collapse
Affiliation(s)
- Sunayana Mitra
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Sue G Bartlett
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
90
|
Eek P, Piht MA, Rätsep M, Freiberg A, Järving I, Samel N. A conserved π–cation and an electrostatic bridge are essential for 11R-lipoxygenase catalysis and structural stability. Biochim Biophys Acta Mol Cell Biol Lipids 2015. [DOI: 10.1016/j.bbalip.2015.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
91
|
Sharma S, Klinman JP. Kinetic Detection of Orthogonal Protein and Chemical Coordinates in Enzyme Catalysis: Double Mutants of Soybean Lipoxygenase. Biochemistry 2015; 54:5447-56. [PMID: 26154975 PMCID: PMC4565126 DOI: 10.1021/acs.biochem.5b00374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/09/2015] [Indexed: 11/29/2022]
Abstract
Soybean lipoxygenase-1 (SLO-1) is a paradigmatic enzyme system for studying the contribution of hydrogen tunneling to enzymatic proton-coupled electron transfer processes. In this study, the impact of pairs of double mutants on the properties of SLO-1 is presented. Steady-state rates and their deuterium kinetic isotope effects (KIEs) have been measured for the bimolecular reaction of enzyme with free substrate (kcat/Km) and compared to the unimolecular rate constant, kcat. A key kinetic finding is that the competitive KIEs on the second-order rate constant (kcat/Km) are all reduced from (D)kcat and, despite large changes in rate and activation parameters, remain essentially unaltered under a variety of conditions. These data implicate a protein reaction coordinate that is orthogonal to the chemical reaction coordinate and controls the concentration of the active enzyme. This study introduces a new means to interrogate the alteration of conformational landscapes that can occur following site-specific mutagenesis.
Collapse
Affiliation(s)
- Sudhir
C. Sharma
- Department of Chemistry, Department of Molecular
and Cell Biology, and California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Judith P. Klinman
- Department of Chemistry, Department of Molecular
and Cell Biology, and California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
92
|
Kagan VE, Tyurina YY, Tyurin VA, Mohammadyani D, Angeli JPF, Baranov SV, Klein-Seetharaman J, Friedlander RM, Mallampalli RK, Conrad M, Bayir H. Cardiolipin signaling mechanisms: collapse of asymmetry and oxidation. Antioxid Redox Signal 2015; 22:1667-80. [PMID: 25566681 PMCID: PMC4486147 DOI: 10.1089/ars.2014.6219] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE An ancient anionic phospholipid, cardiolipin (CL), ubiquitously present in prokaryotic and eukaryotic membranes, is essential for several structural and functional purposes. RECENT ADVANCES The emerging role of CLs in signaling has become the focus of many studies. CRITICAL ISSUES In this work, we describe two major pathways through which mitochondrial CLs may fulfill the signaling functions via utilization of their (i) asymmetric distribution across membranes and translocations, leading to the surface externalization and (ii) ability to undergo oxidation reactions to yield the signature products recognizable by the executionary machinery of cells. FUTURE DIRECTIONS We present a concept that CLs and their oxidation/hydrolysis products constitute a rich communication language utilized by mitochondria of eukaryotic cells for diversified regulation of cell physiology and metabolism as well as for inter-cellular interactions.
Collapse
Affiliation(s)
- Valerian E Kagan
- 1Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,3Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania.,4Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yulia Y Tyurina
- 1Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vladimir A Tyurin
- 1Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dariush Mohammadyani
- 5Department of Bioengineering, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jose Pedro Friedmann Angeli
- 6Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Sergei V Baranov
- 7Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judith Klein-Seetharaman
- 8Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Rama K Mallampalli
- 9Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Marcus Conrad
- 6Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Hülya Bayir
- 10Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
93
|
Venugopala KN, Govender R, Khedr MA, Venugopala R, Aldhubiab BE, Harsha S, Odhav B. Design, synthesis, and computational studies on dihydropyrimidine scaffolds as potential lipoxygenase inhibitors and cancer chemopreventive agents. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:911-21. [PMID: 25733811 PMCID: PMC4338777 DOI: 10.2147/dddt.s73890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dihydropyrimidine scaffold has a wide range of potential pharmacological activities such as antiviral, antitubercular, antimalarial, anti-inflammatory, and anticancer properties. 5-Lipoxygenase enzyme is an enzyme responsible for the metabolism of arachidonic acid to leukotrienes. The elevated levels of this enzyme and its metabolites in cancer cells have a direct relation on the development of cancer when compared to normal cells. The development of novel lipoxygenase inhibitors can have a major role in cancer therapy. A series of substituted 1,4-dihydropyrimidine analogues were synthesized and characterized by (1)H-NMR, (13)C-NMR, and HRMS. Molecular docking against lipoxygenase enzyme (protein data bank code =3V99) was done using Molecular Operating Environment 2013.08 and Leadit 2.1.2 softwares and showed high affinities. The synthesized compounds were tested for their lipoxygenase inhibitory activity and showed inhibition ranging from 59.37%±0.66% to 81.19%±0.94%. The activity was explained by a molecular docking study. The title compounds were also tested for cytotoxic activity against two human cancer cell lines Michigan Cancer Foundation-7 and human melanoma cells and a normal peripheral blood mononuclear cell line.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia ; Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Reshme Govender
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Mohammed A Khedr
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia ; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban, South Africa
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Sree Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Bharti Odhav
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
94
|
Newcomer ME, Brash AR. The structural basis for specificity in lipoxygenase catalysis. Protein Sci 2015; 24:298-309. [PMID: 25524168 DOI: 10.1002/pro.2626] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Many intriguing facets of lipoxygenase (LOX) catalysis are open to a detailed structural analysis. Polyunsaturated fatty acids with two to six double bonds are oxygenated precisely on a particular carbon, typically forming a single chiral fatty acid hydroperoxide product. Molecular oxygen is not bound or liganded during catalysis, yet it is directed precisely to one position and one stereo configuration on the reacting fatty acid. The transformations proceed upon exposure of substrate to enzyme in the presence of O2 (RH + O2 → ROOH), so it has proved challenging to capture the precise mode of substrate binding in the LOX active site. Beginning with crystal structures with bound inhibitors or surrogate substrates, and most recently arachidonic acid bound under anaerobic conditions, a picture is consolidating of catalysis in a U-shaped fatty acid binding channel in which individual LOX enzymes use distinct amino acids to control the head-to-tail orientation of the fatty acid and register of the selected pentadiene opposite the non-heme iron, suitably positioned for the initial stereoselective hydrogen abstraction and subsequent reaction with O2 . Drawing on the crystal structures available currently, this review features the roles of the N-terminal β-barrel (C2-like, or PLAT domain) in substrate acquisition and sensitivity to cellular calcium, and the α-helical catalytic domain in fatty acid binding and reactions with O2 that produce hydroperoxide products with regio and stereospecificity. LOX structures combine to explain how similar enzymes with conserved catalytic machinery differ in product, but not substrate, specificities.
Collapse
Affiliation(s)
- Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | | |
Collapse
|
95
|
Gaffney BJ. Connecting lipoxygenase function to structure by electron paramagnetic resonance. Acc Chem Res 2014; 47:3588-95. [PMID: 25341190 PMCID: PMC4270396 DOI: 10.1021/ar500290r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 01/09/2023]
Abstract
CONSPECTUS: Lipoxygenase enzymes insert oxygen in a polyunsaturated lipid, yielding a hydroperoxide product. When the acyl chain is arachidonate, with three cis-pentadiene units, 12 positionally and stereochemically different products might result. The plant lipids, linoleate and linolenate, have, respectively, four and eight potential oxygen insertion sites. The puzzle of how specificity is achieved in these reactions grows as more and more protein structures confirm the conservation of a lipoxygenase protein fold in plants, animals, and bacteria. Lipoxygenases are large enough (60-100 kDa) that they provide a protein shell completely surrounding an active site cavity that has the shape of a long acyl chain and contains a catalytic metal (usually iron). This Account summarizes electron paramagnetic resonance (EPR) spectroscopic, and other, experiments designed to bridge the gap between lipid-lipoxygenase interactions in solution and crystal structures. Experiments with spin-labeled lipids give a picture of bound lipids tethered to protein by an acyl chain, but with a polar end emerging from the cavity to solvent exposure, where the headgroup is highly flexible. The location of a spin on the polar end of a lysolecithin was determined by pulsed, dipolar EPR measurements, by representing the protein structure as a five-point grid of spin-labels with coordinates derived from 10 distance determinations between spin pairs. Distances from the lipid spin to each grid site completed a six-point representation of the enzyme with a bound lipid. Insight into the dynamics that allow substrate/product to enter/exit the cavity was obtained with a different set of spin-labeled protein mutants. Once substrate enters the cavity, the rate-limiting step of catalysis involves redox cycling at the metal center. Here, a mononuclear iron cycles between ferric and ferrous (high-spin) forms. Two helices provide pairs of side-chain ligands to the iron, resulting in characteristic EPR signals. Quantitative comparison of EPR spectra of plant and bacterial lipoxygenases has suggested conservation of a unique geometry of lipoxygenase iron centers. High frequency (94 GHz) EPR is consistent with a similar metal center in a manganese version of lipoxygenase. Overall, established and emerging EPR experiments have been developed and applied to the lipoxygenase family of enzymes to elucidate changes in the solution structures that are related to function.
Collapse
Affiliation(s)
- Betty J. Gaffney
- Department
of Biological
Science, Florida State University, Tallahassee, Florida 32306-4295, United States
| |
Collapse
|
96
|
Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D. Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 2014; 57:13-39. [PMID: 25435097 PMCID: PMC7112624 DOI: 10.1016/j.plipres.2014.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022]
Abstract
Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling.
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany; Department of Chemistry and Biochemistry, University of California - Santa Cruz, 1156 High Street, 95064 Santa Cruz, USA
| | - Susan Adel
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Ralf Schumann
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Saubashya Sur
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aparoy Polamarasetty
- School of Life Sciences, University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Pallu Redanna
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India; National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telangana, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
97
|
Adel S, Kakularam KR, Horn T, Reddanna P, Kuhn H, Heydeck D. Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens. Arch Biochem Biophys 2014; 565:17-24. [PMID: 25447821 DOI: 10.1016/j.abb.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Abstract
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies.
Collapse
Affiliation(s)
- Susan Adel
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India
| | - Thomas Horn
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India; National Institute of Animal Biotechnology, Hyderabad 500046, Andhra Pradesh, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
98
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
99
|
Neau DB, Bender G, Boeglin WE, Bartlett SG, Brash AR, Newcomer ME. Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J Biol Chem 2014; 289:31905-31913. [PMID: 25231982 DOI: 10.1074/jbc.m114.599662] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOX) play critical roles in mammalian biology in the generation of potent lipid mediators of the inflammatory response; consequently, they are targets for the development of isoform-specific inhibitors. The regio- and stereo-specificity of the oxygenation of polyunsaturated fatty acids by the enzymes is understood in terms of the chemistry, but structural observation of the enzyme-substrate interactions is lacking. Although several LOX crystal structures are available, heretofore the rapid oxygenation of bound substrate has precluded capture of the enzyme-substrate complex, leaving a gap between chemical and structural insights. In this report, we describe the 2.0 Å resolution structure of 8R-LOX in complex with arachidonic acid obtained under anaerobic conditions. Subtle rearrangements, primarily in the side chains of three amino acids, allow binding of arachidonic acid in a catalytically competent conformation. Accompanying experimental work supports a model in which both substrate tethering and cavity depth contribute to positioning the appropriate carbon at the catalytic machinery.
Collapse
Affiliation(s)
- David B Neau
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, and
| | - Gunes Bender
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Sue G Bartlett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803,.
| |
Collapse
|
100
|
Jameson JB, Kantz A, Schultz L, Kalyanaraman C, Jacobson MP, Maloney DJ, Jadhav A, Simeonov A, Holman TR. A high throughput screen identifies potent and selective inhibitors to human epithelial 15-lipoxygenase-2. PLoS One 2014; 9:e104094. [PMID: 25111178 PMCID: PMC4128814 DOI: 10.1371/journal.pone.0104094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/08/2014] [Indexed: 12/26/2022] Open
Abstract
Lipoxygenase (LOX) enzymes catalyze the hydroperoxidation of arachidonic acid and other polyunsaturated fatty acids to hydroxyeicosatetraenoic acids with varying positional specificity to yield important biological signaling molecules. Human epithelial 15lipoxygenase2 (15-LOX-2) is a highly specific LOX isozyme that is expressed in epithelial tissue and whose activity has been correlated with suppression of tumor growth in prostate and other epithelial derived cancers. Despite the potential utility of an inhibitor to probe the specific role of 15-LOX-2 in tumor progression, no such potent/specific 15LOX2 inhibitors have been reported to date. This study employs high throughput screening to identify two novel, specific 15LOX2 inhibitors. MLS000545091 is a mixed-type inhibitor of 15-LOX-2 with a Ki of 0.9+/−0.4 µM and has a 20-fold selectivity over 5-LOX, 12-LOX, 15-LOX-1, COX-1, and COX-2. MLS000536924 is a competitive inhibitor with a Ki of 2.5+/−0.5 µM and also possesses 20-fold selectivity toward 15-LOX-2 over the other oxygenases, listed above. Finally, neither compound possesses reductive activity towards the active-site ferrous ion.
Collapse
Affiliation(s)
- J. Brian Jameson
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Auric Kantz
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lena Schultz
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, United States of America
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AS); (TRH)
| | - Theodore R. Holman
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (AS); (TRH)
| |
Collapse
|